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Abstract

Question Answering (QA) is an important part
of tasks like text classification through infor-
mation gathering. These are finding increasing
use in sectors like healthcare, customer sup-
port, legal services, etc., to collect and classify
responses into actionable categories. LLMs,
although can support QA systems, they face a
significant challenge of insufficient or missing
information for classification. Although LLMs
excel in reasoning, the models rely on their
parametric knowledge to answer. However,
questioning the user requires domain-specific
information aiding to collect accurate informa-
tion. Our work, GUIDEQ, presents a novel
framework for asking guided questions to fur-
ther progress a partial information. We lever-
age the explainability derived from the clas-
sifier model along with LLMs to ask guided
questions, further enhancing the information.
This further information helps in more accurate
classification of a text. GUIDEQ derives the
most significant key-words representative of a
label using occlusions. We develop GUIDEQ’s
prompting strategy for guided questions based
on the top-3 classifier label outputs and the sig-
nificant words, to seek specific and relevant
information, and classify in a targeted manner.
Through our experimental results, we demon-
strate that GUIDEQ outperforms other LLM-
based baselines, yielding improved F1-Score
through the accurate collection of relevant fur-
ther information. We perform various analyti-
cal studies and also report better question qual-
ity compared to our method.

1 Introduction

Question Answering (QA) systems have been an
integral part of the NLP landscape (Moise et al.,
2010). In particular, the emergence of LLMs has
enabled reasoning, proactive questioning, and bet-
ter semantic understanding of the user response

‡Equal contributions

Figure 1: Illustration of partial information by user
followed by a specific guided question

during questing answering or dialogue (Wang et al.,
2023a). Proactive questioning is another important
limb of such systems wherein the bot engages with
the user and directs the conversation ahead(Keskar
et al., 2019; Sun et al., 2023). It finds applications
in many places like medical, customer support sys-
tems, and legal systems.

A more specific challenge such systems face is of
the static classification of user textual data. Often a
textual data needs to be classified into a particular
category or label (Wang et al., 2023b; Chen et al.,
2022). For example, consider a system to classify
a patient symptoms descriptions into one of the
disease conditions, or a customer complaint system
wherein a user writes a complaint to be categorized
into a particular category. A practical challenge
faced by such static categorization is inadequate or
missing information toward appropriate routing of
the user input to an actionable category. It can be
immensely benefited by introduction of questioning
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Figure 2: (A) Overall working framework of GUIDEQ to leverage LLM and label explainability for asking guided
question. (B) Details of the prompting strategy used. (C) Final classification along with incremental information.

component to prompt for further information or
knowledge, grounded in previous response and the
domain itself. Figure 1 shows an example of the
same.

Our work introduces a novel framework,
GUIDEQ 1, aimed at framing guided questions
based on prior partial information, such that spe-
cific relevant information can be asked for. This
increment of information can aid for more accu-
rate classification and completion of text. A classic
techniques include classifier models for text classi-
fication(Devlin et al., 2019) (Liu et al., 2019) (He
et al., 2020). LLMs, on the other hand, have shown
impressive abilities for reasoning and context un-
derstanding (Nan et al., 2023). Further with tech-
niques like in-context learning (Garg et al., 2022)
and chain of thought (Wei et al., 2024) with few-
shot exemplars (Brown et al., 2020), the task spe-
cific adaptation of LLMs greatly benefits. However,
the LLM’s parametric knowledge may still not cap-
ture domain specific requires. Finetuning options
like FT (Full parametric training) and PEFT (Hu
et al., 2021) for learning from data history posses a
huge challenge of high computation cost (Sathish
et al., 2024).

Our framework, GUIDEQ leverages the innate
semantic understanding and reasoning ability of
LLMs to combine with external classification ex-
planability, for asking the most relevant guiding
question. We specifically use Llama-3 8B-Instruct

1Code available at: https://github.com/SDRMp/
GuideQ

model (Touvron et al., 2023) for questioning and in-
formation seeking. We train DeBERTa and BERT
models (Devlin et al., 2019) for classification tasks
using complete information, which serves as the
primary pivot for predicting the most probable la-
bels.GUIDEQ aims to use the inherent explanations
of classifications for question formation. For each
class label we also learn the most significant words
and phrases that contribute to the particular label
classification. We use occlusions to find the key-
words for a label using the training data. The LLM
utilizes the top most probable classifier labels and
their significant representative keywords to form
the guiding questions. Intuitively, the keywords
are representative of the most important concepts
present in the label knowledge. The summarized
overview with keywords example can be found in
figure 2. The LLM finds similar concepts present
in the partial information and the labels and frames
a question based on the most distinguishing con-
cepts between the labels. This helps direct further
information that may not have been readily known
to the user earlier.

We evaluate our framework, GUIDEQ, on 6 text
classification datasets. We first report the F1-Score
of partial information and how accuracy changes
by questioning and appending the new answer. We
also show how explanability is influenced by key-
words, namely by testing with unigrams, bigrams,
and trigrams. We also report a higher question gen-
eration quality compared to other baseline meth-
ods. Overall, our work, GUIDEQ, presents a novel
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framework to ask guided questions when the initial
text is incomplete or partial. The question is such
that it effectively differentiates between the most
likely labels.

We summarize the key contributions of our work
as follows: (i) We introduce a novel framework,
GUIDEQ, for providing guided questioning such
that an initial partial information can be incre-
mented. (ii) The guided questioning increments
the information by leveraging explainability de-
rived through top most confident classifier labels
and their corresponding most significant key words.
(iii) We show that further information collection
through our framework significantly improves the
classification accuracy as compared to other base-
lines. We also show that GUIDEQ generates more
accurate and targeted questions in relation to the
user query.

2 Related Works

2.1 Posthoc Explanations and LLMs

Post-hoc explanations enhance the interpretability
of Large Language Models (LLMs) by providing
insights into which input features influence model
outputs, addressing the "black-box" nature of these
models (Kroeger et al., 2024). The AMPLIFY
framework (Krishna et al., 2024), for instance, uses
attribution scores to generate natural language ra-
tionales, guiding LLMs to make more accurate
predictions. Integrating LLMs with existing XAI
algorithms like SHAP can produce more accessible
and human-readable explanations. LLM-generated
explanations are as effective as traditional gradient-
based methods (Zytek et al., 2024).
Previous works use the technique of Integrated
Gradients (Sundararajan et al., 2017), previously
used for word-level attribution in language mod-
els(Enguehard, 2023) to generate keywords that
contribute the most for a particular classification
label.

2.2 Task oriented dialogues

Task-oriented dialogue systems aim to achieve spe-
cific goals through structured interactions, tradi-
tionally decomposing tasks into natural language
understanding (NLU), dialogue management (DM),
and natural language generation (NLG) . This
modular approach often leads to error propaga-
tion and requires extensive domain-specific data
(Budzianowski and Vulić, 2019). Recent advance-
ments, like SimpleTOD (Hosseini-Asl et al., 2020),

leverage LLMs to unify NLU, DM, and NLG into
a single sequence prediction task. By treating all
sub-tasks as a single sequence prediction problem,
SimpleTOD exploits transfer learning from pre-
trained models for improved performance. Pre-
trained generative models can effectively support
ToD by learning domain-specific tokens.

2.3 Information-seeking questions using
LLMs

Large Language Models (LLMs) have significantly
advanced the field of information-seeking ques-
tion answering by generating contextually rich and
coherent responses (Jin et al., 2023). Traditional
search engines have evolved with models like GPT-
3 and GPT-4, which can formulate search results
in natural language, incorporating references from
relevant sources. These models are particularly
effective at summarizing and synthesizing infor-
mation from various texts, making them valuable
tools in medical and educational contexts. How-
ever, challenges such as "hallucination"—where
the model generates plausible but incorrect informa-
tion—highlight the need for mechanisms to verify
and attribute sources accurately (Kamalloo et al.,
2023).

2.4 In-context learning

In-context learning (ICL) has emerged as a novel
paradigm where language models are capable of
learning from a few examples within a context,
making predictions without explicit parameter up-
dates. The key mechanism of ICL is the use of
demonstration contexts, which consist of input-
output examples formatted as natural language tem-
plates (Li et al., 2023). This method allows large
language models to perform various tasks by lever-
aging patterns learned from these demonstrations,
which are provided as part of the input prompt.
Recent studies highlight the adaptability of ICL
to new tasks, significantly reducing computational
costs compared to traditional supervised learning
methods (Dong et al., 2024). Furthermore, ICL has
demonstrated potential across different modalities,
such as vision-language and speech tasks, by incor-
porating properly formatted data and architectural
designs. Our work contributes to this growing field
by utilizing ICL for the classification of incomplete
sentences. By leveraging label explanations and
guiding language models to ask targeted questions,
we aim to refine user responses in medical con-
texts, ultimately enhancing the model’s ability to
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generate accurate and relevant follow-up queries.

3 GUIDEQ - Methodology

3.1 Overview

Given a partial input x, the objective is to classify
x (or x with additional information) into the cor-
rect label. Here, partial input refers to text that
may be incomplete or lacking essential details. We
use a classifier, C, to map the input to one of n
labels, where the label set L = {l1, l2, . . . , ln} is
dataset-dependent. To enhance this process, we
identify representative keywords and phrases us-
ing occlusion techniques for each label. For a
label li, the associated keywords are denoted as
ri = {wi

1, w
i
2, . . . , w

i
k}.

GUIDEQ leverages a large language model
(Llama-3 8B-Instruct in our study) to refine the
classification through an interactive process. The
model takes as input the top-k predicted labels,
their corresponding keywords, and a prompting
strategy. It then generates a question q designed to
elicit information from the user related to the most
relevant concepts in the keywords, further guiding
the classification towards the correct label.

We divide our methodology as: (1) Classi-
fier Finetuning, (2) Keyword Learning, and (3)
Explainability-Driven Question Generation.

3.2 Classifier Finetuning

The first step in our GUIDEQ framework involves
finetuning a classifier using labeled training data.
Our dataset consists of domain-specific text-label
pairs, which are divided into training (80%), evalu-
ation (15%), and test (5%) sets.

We train C on the complete input text and its
corresponding label. Training is conducted on the
training split, with performance monitored on the
evaluation split. By training on full texts, the model
learns to output the most likely labels for any input,
even if the input is incomplete during inference, as
described in later sections.

3.3 Keywords learning

Given n possible labels, L = {l1, l2, . . . , ln}, the
classifier assigns a probability score to each label
for a given input. Our goal is to identify the most
significant words or phrases (unigrams, bigrams,
and trigrams) that represent each label. These key-
words capture the core semantic and conceptual
elements of the label’s category. For example, the
label ’fever’ might be characterized by keywords

like "high temperature" or "body ache," while a
telecommunication label might feature keywords
like "mobile phone" or "network issues." These
keywords enhance the explainability of the classifi-
cation.

We employ the occlusion method to identify the
top-i significant words or word pairs for each label
li, represented as ri = {wi

1, w
i
2, . . . , w

i
k}. Occlu-

sions involve systematically removing or masking
words from the input and observing the effect on
the model’s confidence score. A sharp drop in con-
fidence indicates that the removed word is crucial
for the label prediction. Each word or phrase is then
assigned a weight based on its importance, and the
most relevant keywords are aggregated with ad-
ditive weights for each label. To capture diverse
concepts, we consider unigrams, bigrams, and tri-
grams for each label. Figure 2(A) illustrates how
these guiding keywords are used for question gen-
eration. In our experiments, we include the top 15
word pairs per label in the LLM prompt to guide
the question generation process effectively.

3.4 Explainability-Driven Question
Generation

The final question generation stage follows the fol-
lowing method: First, we pass the incomplete input
x to the classifier, which returns the top-k labels
with the highest confidence scores. We set k = 3,
selecting the top-3 most likely labels for x. Using
these labels, we prompt the Llama-3 8B-Instruct
model, applying a tailored prompting strategy to
generate a guided question.

The prompt provided to the LLM includes the
following components: (i) the partial input x; (ii)
the top-3 predicted labels; (iii) the corresponding
guiding keywords for each of these labels; (iv) a
structured instruction prompt; and (v) a few-shot
examples to guide the LLM’s output.

The generated question, q, can be formulated as:

q = LLM(P ||x || {(lx1 , rx1 ), (lx2 , rx2 ), (lx3 , rx3 )})
where P represents the instruction prompt, which
combines the logical structure of the components
with three few-shot examples. These examples il-
lustrate how to generate questions that efficiently
target missing or unclear information, aiding in
more accurate classification. The prompting strat-
egy for generating questions follows a structured,
three-step process:

Step 1: The LLM first filters out irrelevant la-
bels from the top-3 predictions, retaining only those
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Dataset Train Val Test

cnews 25,062 4,423 1,552
dbp 240,942 36,003 60,794 (876)
s2d 969 171 60
salad 17,174 3,031 1,064
stress 2,291 405 142
20NG 9,064 1,600 7,019 (1000)

Table 1: Dataset statistics used in experiments along
with training, validation, and testing splits

most relevant to the input query. This is achieved
by comparing the input with the keywords associ-
ated with each label, allowing the model to focus
on labels that contextually align with the partial
information.

Step 2: Next, the LLM examines the guiding
keywords for the remaining labels. These keywords
represent key concepts associated with each label,
serving as focal points for further inquiry. The
LLM identifies the most contextually relevant key-
words that can expand upon the incomplete infor-
mation in the input x. This step ensures that the
follow-up questions target the most meaningful as-
pects of the missing information.

Step 3: Finally, the LLM uses the selected key-
words to generate a coherent, targeted question.
The question is designed to elicit specific details
necessary for distinguishing between the potential
labels, facilitating more accurate classification.

As shown in Figure 2(B), this strategy ensures
a focused and contextually relevant interaction, es-
pecially for specialized categories, reducing the
risk of hallucinations and irrelevant questions by
grounding the response in the prior training data.

4 Experimental Setup

This section outlines the experimental configura-
tions and evaluation protocols employed to assess
the performance of our framework, GUIDEQ. The
goal of GUIDEQ is to enhance classification un-
der incomplete information by generating guided
questions that elicit relevant, missing inputs. This
targeted information retrieval facilitates more ac-
curate classification, grounded in prior learned pat-
terns.

4.1 Datasets
We evaluated GUIDEQ on six diverse text clas-
sification datasets, each representing a unique
domain and presenting distinct challenges: (i)

Crypto News (cnews) (Oliviervha, 2023),(ii) DB-
pedia (dbp) (Lehmann et al., 2015), (iii) Symp-
tom2Disease (s2d) (Hassan et al., 2024), (iv) salad-
Bench (salad) (Li et al., 2024), (v) Human stress
Prediction (stress) (Kreesh, 2024), and (vi) 20
Newsgroups (20NG) (Lang, 1995), representing
healthcare, financial, and behavioral domains re-
spectively. Table 1 summarizes the total data in-
stances used for each of the six dataset along with
the exact split for training, validation, and testing.

We followed a standard 80%-15%-5% division
into training, validation, and test sets for datasets
without predefined splits (cnews, s2d, salad, and
stress). For 20 Newsgroups (20NG) and DBPedia,
which came with predefined splits, we extracted the
validation set from the training data while preserv-
ing the original test set. Given the computational in-
tensity of processing large test sets, particularly for
20NG (20 classes) and DBPedia (218 classes), we
employed the Facility Location Selection method
from the Apricot library to sample the test sets
while maintaining class diversity. This sampling
capped the maximum test samples at 1,000, yield-
ing 1,000 samples for 20NG and 876 samples for
DBPedia, enabling efficient evaluation while pre-
serving result integrity. We provide more informa-
tion about the dataset and it’s relevance in appendix
section A.

4.2 Baselines

We benchmark GUIDEQ against three baselines
for question generation: (i) Partial: using only
the initially provided partial information to assess
classification performance without any additional
inputs, serving as a direct comparison of classifica-
tion under incomplete data. (ii) LLM: leveraging a
standalone LLM (Llama-3 8B-Instruct), prompted
to generate questions based on the partial input,
representing a generic approach to eliciting miss-
ing information. As the input data mirrors realis-
tic scenarios, the LLM’s questions are grounded
in semantic context and not in hypothetical con-
structs. (iii) LLM-nk: LLM with only labels and
no keywords - combining the LLM with the top-
3 predicted classification labels, where the LLM
generates questions based solely on these labels
without keywords. These baselines, denoted as Par-
tial, LLM, and LLM-nk, provide a comprehensive
evaluation of GUIDEQ’s performance.
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BERT Classifier Model DeBERTa Classifier Model

Dataset Partial LLM LLM-nk GuideQ Partial LLM LLM-nk GuideQ

cnews 45.2 48.5 (3.3) 49.8 (4.9) 50.9 (5.7) 42.6 45.5 (2.9) 46.4 (3.8) 49.6 (7.0)
dbp 86.9 87.0 (0.1) 86.5 (-0.4) 88.7 (1.8) 85.0 84.9 (-0.1) 84.8 (-0.2) 91.3 (6.3)
s2d 61.1 72.3 (11.2) 66.9 (5.8) 79.7 (18.6) 64.7 71.5 (6.8) 68.4 (3.7) 86.8 (22.1)
salad 35.2 53.6 (18.4) 55.2 (20.0) 57.1 (22.2) 38.0 55.7 (17.7) 56.2 (18.2) 58.7 (20.7)
stress 32.3 35.0 (2.7) 33.3 (1.0) 32.9 (0.6) 43.1 41.4 (-1.7) 43.0 (-0.1) 46.1 (3.0)
20NG 67.5 68.2 (0.7) 68.0 (0.5) 72.9 (5.4) 63.2 64.0 (0.8) 63.9 (0.7) 65.8 (2.6)

Table 2: Comparison of % F1-Scores of GUIDEQ along with three baseline approaches - (i) partial: partial
information; (ii) LLM: Only LLM is used for question framing; (iii) LLM-nk: LLM is provided with top 3
predictions. The results are reported for two classifier models: BERT and DeBERTa. Numbers in bracket constitute
gain over partial information scores

4.3 Evaluation
We conduct multiple experiments to assess various
aspects of the problem. For a robust classifica-
tion analysis, we use two classifier models: BERT-
uncased and DeBERTaV3 (a comparatively larger
model). Throughout our experiments, we utilize
Llama-3 8B-Instruct, an open-source LLM chosen
for its strong reasoning capabilities and computa-
tional efficiency, offering a balance between per-
formance and cost due to its smaller parametric
size.

During testing, each data instance is split into
two equal parts: the first half serves as the partial
input, while the second half acts as the reference
from which the generated question seeks to extract
missing information. To evaluate question quality
and answer relevance, we employ DeBERTaV3
finetuned on SQuadV2 (Rajpurkar et al., 2018), as
the question-answering models, which extract the
most relevant text from the reference based on the
question. We set a 20% confidence threshold for
answering.

We demonstrate four experimental settings to
thoroughly analyze GUIDEQ:
(i) Classification Performance: We measure clas-
sification performance, which refers to correctly as-
signing the given text to its corresponding label by
reporting F1-Scores. First, we report scores using
only the partial information (the first half of each
instance). For the other baselines, a question is
generated, and relevant phrases are extracted from
the reference text using the QA models with a 20%
confidence threshold. This extracted information is
appended to the partial input, and the combined text
is classified. We use two-gram keywords for the
important results while compare using one-gram
and three-gram in a section 6.4.

(ii) Question Quality: We calculate the win rate
between pairs of methods by determining which
generated question is more aligned with the com-
plete text (both partial input and reference). The
win rate accuracy is reported for the following pairs:
(GUIDEQ, LLM), and (GUIDEQ, LLM − nk).
(iii) Explainability via Keywords: We explore
the explainability provided by different keyword
types associated with each label—unigram, bigram,
and trigram. This analysis compares the impact of
keyword granularity on GUIDEQ’s performance,
helping us understand how keyword-based ques-
tion generation improves the classification process.
(iv) Multi-Turn Interaction: We investigate the
potential of multi-turn question generation, where
multiple rounds of guided questions are used to
iteratively refine the extracted information. This
setting evaluates how effectively GUIDEQ handles
scenarios where a single question is insufficient to
gather all relevant details.

Setup: We fine-tune DeBERTa and BERT-
uncased models as the classifier in our frame-
work. Additionally, we use the Llama-3 8B-
Instruct model for question generation. We select
this smaller parametric model to reduce computa-
tional overhead while maintaining robust perfor-
mance. For each dataset, we split the text instances
at the sentence level, dividing them into two equal
parts. The first half serves as the partial information
provided to the model. The second half, referred
to as the "grounded context", is used to extract
answers to the generated questions. DeBERTaV3
finetuned on SQuadV2, is employed as the Ques-
tion Answering model, tasked with extracting the
most relevant answer snippets from the grounded
contexts.
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Skyline Classification

Datasets
F1-score/

BERT
F1-score/
DeBERTa

Datasets
F1-score/

BERT
F1-score/
DeBERTa

cnews 63.8 65.6 salad 64.5 66.4
dbp 95.5 94.5 stress 43.5 47.7
s2d 99.8 100.0 20NG 75.8 71.6

Table 3: Skyline F1-Scores for complete original text
(both partial and reference combined) on BERT and
DeBERTa classifier models

5 Results and Observations

Our work, GUIDEQ, was evaluated on six classi-
fication datasets, enabling a rigorous assessment
of the framework’s ability to generate guided ques-
tions from partial information and improve classifi-
cation accuracy.

The strongest results for GuideQ framework can
be seen in table 2, wherein we report the F1 score
for classification task post-answering the generated
question. The question answering model is such
that it extracts the most relevant text from the ref-
erence text in respect to the asked question. We
observe that for all datasets at all instances (expect
for stress with BERT classifier), our method shows
the highest overall classification scores (F1 score)
across both classifier models. Second, considering
results of both classifier models together, table 1
also shows that GUIDEQ always has the highest
margin of improvement compared to F1 scores with
partial information.

We observe an improvement of 18.6% (BERT)
and 22.1% (DeBERTa) for s2d and 22.1% (BERT)
and 20.7% (DeBERTa) for salad dataset with our
method over partial information. This large shift
shows our method is effectively able to frame ques-
tions based on previous training data and keywords.
This makes the question asked more grounded in
context of the partial information. A question
maybe raised as to why some datasets show more
improvement in F1 score than the others. We ob-
serve the skyline F1 score results for each dataset
using the complete text on both classifier models
(table 3). The skyline results reveal the inherent
classification ability of the datasets themselves.

We also observe that in some situations with
other baselines, the addition of new answer based
on generated question negatively impacts the clas-
sification, i.e., reduces F1 score. Example of the
same is a drop of 0.4% for dbp dataset with BERT
classifier and a drop of 0.2% with DeBERTa classi-
fier using LLM-nk approach. Many instances also

Win Rate Scores

Datasets LLM LLM-nk Datasets LLM LLM-nk

cnews 66.0% 67.0% salad 72.0% 62.0%
dbp 93.0% 92.0% stress 65.0% 70.0%
s2d 90.0% 85.0% 20NG 89.0% 93.0%

Table 4: Win Rate (WR) % scores of questions gener-
ated for (i) GUIDEQ with LLM baseline; (ii) GUIDEQ
with LLM-nk baseline

include when the baselines show only a slight im-
provement. However, our method never shows a
dip in score compared to partial information clas-
sification. The range of percentage gain is also
comparatively larger than other methods. This is
crucial in realistic situations where we want to en-
sure that originally correct categorized text is not
misclassified.

6 Analysis

6.1 Effect of Classifier Model

We perform our experiments by finetuning two dif-
ferent classifier models - BERT and DeBERTa for a
robust analysis. Firstly, GUIDEQ outperforms other
methods on both the classifier models in most set-
tings. Only for stress dataset with BERT classifier,
a classic LLM based approached worked better and
showed 2.7% increase in F1 score. When absolute
percentage gain over partial information is taken
into consideration for our method, classification
using DeBERTa leads for four out of six datasets.
BERT shows highest absolute gain for salad and
20NG datasets. We represent the percentage gains
in brackets in table 2 and underline the highest gain
across a dataset. Although we observe comparable
gains for partial information classification along
with LLM, and LLM-nk baseline approaches.

A possible reason for the same maybe as fol-
lows: DeBERTa being a larger parameter model
compared to BERT is able to capture more relevant
explainable keywords for a given label using occlu-
sions. This results in a better formed and focused
question. The conclusion we can derive is that
even though a better classifier model doesn’t nec-
essarily show higher F1 scores with partial infor-
mation, it aids to improve results when combined
with GUIDEQ framework leveraging keywords.

6.2 Analysis of baseline approaches

We also observe that the performance of the other
two baselines, i.e., the use of only an LLM to ask
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BERT DeBERTa

Dataset uni bi tri uni bi tri

cnews 6.8 5.6 6.1 7.2 7.1 8.9
dbp 2.5 1.8 1.6 6.6 6.3 6.2
s2d 19.7 18.6 17.0 14.6 22.1 12.8
salad 20.7 21.9 21.3 20.1 20.7 20.6
stress -0.3 0.6 1.6 -0.2 3.0 -1.5
20NG 5.8 5.4 5.0 3.9 2.7 3.0

Table 5: Comparison of % absolute gain over partial
information F1-Scores for GUIDEQ framework with
unigram (uni), bigram (bi), and trigram (tri) keywords

relevant question and providing an LLM with only
the top-3 classifier labels perform almost at par
with each other. In other words, though we con-
clude that GUIDEQ shows improved performance
over other baselines, the two baselines themselves
are comparable to each other in performance. For
example, for salad dataset LLM-nk baseline per-
forms better while for s2d dataset only LLM base-
line shows higher results. This holds true for both
classifier models. While GUIDEQ leverages ex-
plainability through keywords along with labels,
the LLM-nk baseline uses only labels. Apparently,
the labels themselves do not add explicit informa-
tion that would help guide for completion of the
text.

6.3 Quality of Generated Questions

Next, we evaluate the question quality of different
baselines. We do this by calculating the win rates
using LLM model of question generated with our
method taking LLM and LLM-nk as base on a sub-
set of 100 random instances for each dataset. Table
4 summarizes the results for the same. We observe
that our method always has a win rate above 50%.
The minimum win rate reached is 62.0% for salad
datasets with LLM-nk. For three datasets: db, s2d,
and 20NG, GUIDEQ performs exceptionally higher.
Overall, table 4 shows that our method frames ques-
tions which are more relevant and specific to the
partial information and unseen reference answer.

6.4 Effect of n-grams in GUIDEQ

In this section we compare the results three dif-
ferent n-gram approaches for keywords genera-
tion, namely: unigram, bigram, and trigram, which
means the keywords are restricted exactly to be
single words, two words, and three words respec-
tively. The results comprising of percentage gain
of F1 score over that of partial information are

Figure 3: Multiturn Results: F1-Scores for three turn
question answering on cnews datatset.

summarized in table 5. We observe that while all
the three perform almost similar, still results with
questions formed using unigram and bigram are su-
perior in 30/36 total setups as compared to results
using trigram. In other words, GUIDEQ slightly
performs better when the explainable keywords are
restricted to two or three words. Although there is
no particular trend between unigram and bigram
themselves.

7 Ablation Study: Multi-turn

Our framework explores a multi-turn setting, where
successive guided questions are posed following a
prior response. We specifically report multi-turn
results on the cnews dataset due to its larger context
per instance and significant differences in partial
information scores versus skyline F1-Scores. The
text is divided into three segments, with the first
serving as partial information to initiate the guided
questioning (GuideQ) process. This method in-
volves dynamically updating the pool of guiding
words, removing those already used in previous
turns. After generating questions, the answer ex-
traction model derives responses from the residual
text. This answer, combined with the initial partial
information and the refreshed guiding words, in-
forms the next GuideQ round. This cycle repeats
over three turns, continually refining the guiding
words to enhance the relevance and depth of in-
formation retrieval. Figure 3 illustrates the sum-
marized results, showing our method’s superior
performance in multi-turn scenarios.

8 Conclusion and Future Work

Our work GUIDEQ, introduces a novel framework
designed to generate guided questions that enhance
classification accuracy and improve information
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gathering in scenarios with partial data. By us-
ing explainable AI, GUIDEQ combines keywords
identified from classifier models with LLM-based
question generation to create guided questions.
This approach shows better performance on mul-
tiple datasets compared to other baseline meth-
ods. Our results show consistent improvements
in F1 scores, with gains of up to 22% on certain
datasets. GUIDEQ generate high-quality, context-
relevant questions is evident from the win rates
against baseline methods. GUIDEQ’s effectiveness
in multi-turn interactions and its flexibility in ac-
commodating different n-gram approaches for key-
word generation further underscore its potential for
real-world applications in information retrieval and
classification tasks.

We focus exclusively on open-source LLMs like
Llama-3 8B-Instruct, which strike an excellent bal-
ance between performance and computational ef-
ficiency. Our approach highlights the potential of
open and accessible models to drive innovation
without the heavy resource demands of proprietary
alternatives.

9 Limitations

Despite GUIDEQ’s promising results, several lim-
itations should be noted. First, the framework’s
performance is dependent on the quality of the ini-
tial classifier model and the relevance of extracted
keywords. Suboptimal classifier training or key-
word selection could lead to less effective question
generation. Secondly, the framework’s reliance on
LLMs for question generation also introduces po-
tential biases and inconsistencies inherent to these
models. Finally, the computational resources re-
quired for running large language models may pose
scalability challenges in certain applications.

For evaluating question quality, we recognize
the inherent challenges of obtaining domain expert
human evaluations across diverse fields such as
healthcare, finance, and news. However, the win
rate metric serves as a systematic and practical
tool for comparison, offering meaningful insights
even in the absence of gold-standard labels. This
metric enables us to effectively evaluate generated
questions across a variety of applications.
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A More dataset details

We use six different NLP classification datasets to
demonstrate the effectiveness of our framework.
Each of the six focuses on a different domain, al-
lowing for robust testing.
s2d: The Symptom2Disease (s2d) dataset chal-
lenges the model’s ability to classify diseases based
on incomplete symptom descriptions, which is crit-
ical in medical decision-making.
cnews: The Crypto News dataset assesses the
framework’s adaptability to rapidly evolving finan-
cial data.
stress: The Human Stress Prediction dataset eval-
uates the model in a psychological context, where
input data is often sparse or incomplete.
20NG: The 20 Newsgroups dataset, with its wide
range of discussion topics, tests the model’s gener-
alizability across various themes.
dbp: The DBpedia dataset challenges the model
with a broad spectrum of structured factual infor-
mation, which is essential for handling real-world
knowledge-based queries.
salad: The Salad-Bench dataset is a novel bench-
mark designed for evaluating LLMs in safety, de-
fense, and attack scenarios.

B Prompts used

Primarily, we use two different prompting base-
lines along with the GuideQ framework. ’LLM’ is
the baseline where the model alone generates the
clarifying question without external information.
The only input is the partial information. Secondly,
LLM-nk is the baseline where LLM sees the par-
tial information and the top-3 categories to choose
from without exposure to the guiding keywords.
Finally, GuideQ leverages both top labels and guid-
ing keywords corresponding to each of them for
the formation of clarification questions.

We present the prompts corresponding to each
of them in figure 4 , figure 5, figure 6, for LLM,
LLM-nk, and GuideQ respectively.

The few shot examples used are as follows.
Each time we take increasing inputs of partial
information, categories, and guiding keywords:

Example 1:
Partial information: I constantly sneeze and have a
dry cough.

Category: Allergy
keywords: headache, coughing, wet, sneeze, pain

Category: Diabetes
keywords: severe, feet, skin, rashes, infection
Category: Common Cold
keywords: swollen, cough, body, shivery, ache, dry

QUESTION: "Besides fever, are you experi-
encing symptoms such as cough, severe headaches,
localized pain, or inflammation? Also, can you
describe the pattern of your fever—is it continuous
or does it occur in intervals?"

Explanation (GuideQ): Sneeze and dry cough
are the main subjects of the partial information.
Coughing is present in Allergy and common cold,
but cough or sneeze is not present in Diabetes.
Therefore, Diabetes can’t be a possible label. Only
two labels—Allergy and Common Cold—are
considered. The keywords suggest that knowing
about symptoms like headache, body pain, shivery,
etc., will help refine the classification into one of
the labels.

Example 2: Partial information: The soft-
ware keeps crashing.

Category: Software Bug
Keywords: crash, error, bug, glitch
Category: User Error
Keywords: instructions, setup, incorrect, usage
Category: Hardware Issue
Keywords: overheating, components, failure,
malfunction

Explanation: The main subject of the par-
tial information is the software crash. The keyword
’crash’ is directly related to Software Bug but
could also be indirectly related to User Error
and Hardware Issue. However, to differentiate,
asking about the conditions under which the crash
happens or if any error messages appear could help
narrow down the correct category.

QUESTION: "When the software crashes,
do you receive any specific error messages, or
does it happen during particular tasks? Have you
noticed any hardware malfunctions or overheating
before the crashes?"

Example 3:
Partial information: The car is making a strange
noise.
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Category: Engine Problem
Keywords: noise, misfire, engine, smoke
Category: Tire Issue
Keywords: flat, noise, pressure, alignment
Category: Transmission Issue
Keywords: shifting, noise, gears, slipping

Explanation: The main subject of the par-
tial information is the strange noise. The keyword
’noise’ is present in all three categories—Engine
Problem, Tire Issue, Transmission Issue. Knowing
more about the type of noise and when it occurs
can help identify the correct category.

QUESTION: "Can you describe the noise
in more detail? Is it a grinding, squealing, or
clicking sound? Does it happen while driving,
when shifting gears, or when the car is stationary?"

C Examples

C.1 Generated Questions

Table 8 shows examples of generated questions us-
ing various baselines as well as our GuideQ frame-
work for a comparative analysis. In the example
shown, we observe that guiding keywords help
reach the second half better. is highly effective in
addressing the user’s symptoms. It specifically tar-
gets the brownish, stringy phlegm they described,
key to diagnosing pneumonia, and explores crit-
ical symptoms like chest tightness and breathing
difficulty. Additionally, it inquires about the dura-
tion of symptoms, providing important context for
assessing illness progression. In contrast, question-
LLM and questionnk are more general and do not
focus on the phlegm’s characteristics, which are
essential for diagnosing pneumonia. While they
ask about respiratory infections and symptoms like
wheezing and chest tightness, they are less detailed
and may result in vague responses, missing crucial
diagnostic information.

C.2 Generated Keywords

Table 9 shows examples of generated keywords
based on one-gram, two-gram, and three-gram oc-
clusion methods. From a qualitative observation,
we note that two-gram is can be an optimum ap-
proach to capture relevant information. While one-
gram may miss important information, three-gram
can have the tendency to in-cooperate irrelevant
information.

D Further Results of classification

We further report the recall and precision scores
for the main classification task following table 1
results. The recall and precision values show a
similar trend as that of F1-score in table 1. We
report precision scores in table 6 and recall in table
7. GuideQ shows significant improvement over
other baselines in most of the situations.
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Figure 4: LLM prompt baseline

Figure 5: LLM-nk prompt baseline

BERT Classifier Model DeBERTa Classifier Model

Dataset partial LLM LLM-nk GuideQ partial LLM LLM-nk GuideQ
cnews 0.489 0.514 0.523 0.545 0.568 0.566 0.574 0.603
dbp 0.943 0.934 0.926 0.913 0.926 0.919 0.919 0.932
s2d 0.625 0.757 0.722 0.805 0.697 0.763 0.757 0.793
salad 0.414 0.584 0.607 0.622 0.447 0.613 0.611 0.627
stress 0.323 0.352 0.338 0.330 0.471 0.426 0.468 0.421
20NG 0.697 0.699 0.700 0.748 0.659 0.674 0.688 0.704

Table 6: Precision results for GuideQ
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Figure 6: GuideQ prompt

BERT Classifier Model DeBERTa Classifier Model

Dataset partial LLM LLM-nk GuideQ partial LLM LLM-nk GuideQ
cnews 0.436 0.469 0.484 0.496 0.418 0.440 0.451 0.495
dbp 0.838 0.846 0.845 0.885 0.820 0.825 0.825 0.912
s2d 0.653 0.729 0.681 0.799 0.667 0.722 0.688 0.806
salad 0.358 0.547 0.562 0.571 0.374 0.556 0.561 0.591
stress 0.339 0.364 0.347 0.368 0.427 0.417 0.424 0.433
20NG 0.678 0.688 0.685 0.730 0.641 0.649 0.648 0.679

Table 7: Recall results for GuideQ
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Context

First Half:
I can’t seem to catch my breath and I’m sweating a lot. I feel really sick and have a lot of
phlegm in my throat.
Second Half as Reference:
My chest hurts and my heart is racing. The mucus I’m coughing up is brownish and stringy.

LLM-nk: Have you experienced any recent exposure to airborne pathogens, such as a
viral outbreak at work or school, or have you been around someone with a similar illness?
Are there any other symptoms you’re experiencing, such as chest tightness, wheezing, or a
productive cough?

LLM only: Have you recently been exposed to anyone with a respiratory infection, or have
you been in a crowded or poorly ventilated area? Are you experiencing chest tightness,
wheezing, or any other symptoms besides difficulty breathing, sweating, and excessive
phlegm?

GuideQ: Can you tell me more about the phlegm you’re coughing up? Is it yellow, green,
brown, or red? Are you experiencing any chest tightness or pain? And do you have any
difficulty breathing when you’re resting or exerting yourself?

Table 8: Example of generated question using various baseline approaches along with GuideQ.

Context

First Half:
I can’t seem to catch my breath and I’m sweating a lot. I feel really sick and have a lot of
phlegm in my throat.
Second Half as Reference:
My chest hurts and my heart is racing. The mucus I’m coughing up is brownish and stringy.

1-gram:
<’pressure.’, ’sinuses’, ’cold’, ’eyes’, ...>
<’phlegm’, ’cough,’, ’coughing’, ’throat’, ...>
<’nauseous,’, ’affects’, ’eyes’, ’chest’, ...>

2-grams:
<’weak, and’, ’My eyes’, ’My sinuses’, ’keep sneezing’, ...>
<’red phlegm.’, ’time breathing.’, ’some brownish’, ’brownish mucous’, ...>
<’occasionally get’, ’have nighttime’, ’can occasionally’, ’occasionally flake’, ...>

3-grams:
<’days. My sinuses’, ’cough. I ve got’, ’chills and a’, ’sinuses are congested’, ...>
<’and red phlegm’, ’brownish phlegm coming’, ’difficulty breathing I m’, ’phlegm I m
coughing’, ...>
<’night I get’, ’occasionally flake. My’, ’breathing Sometimes at’, ’difficulty breathing
Sometimes’, ...>

Table 9: Example of various guiding keywords generated using different n-gram methods.
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