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Abstract

Reward models (RMs) play a critical role in
aligning language models through the process
of reinforcement learning from human feed-
back. RMs are trained to predict a score re-
flecting human preference, which requires sig-
nificant time and cost for human annotation.
Additionally, RMs tend to quickly overfit on su-
perficial features in the training set, hindering
their generalization performance on unseen dis-
tributions. We propose a novel approach using
synthetic natural language critiques generated
by large language models to provide additional
feedback, evaluating aspects such as instruc-
tion following, correctness, and style. This of-
fers richer signals and more robust features for
RMs to assess and score on. We demonstrate
that high-quality critiques improve the perfor-
mance and data efficiency of RMs initialized
from different pretrained models, reducing the
reliance on costly human annotations. Further-
more, incorporating critiques improves both the
interpretability and robustness of RM training.

1 Introduction

Reinforcement learning from human feedback
(RLHF) has emerged as a popular technique for
aligning large language models (LLMs) with hu-
man preferences, underpinning the success of re-
cent state-of-the-art LLMs (Ouyang et al., 2022;
Bai et al., 2022; Achiam et al., 2023). RLHF typ-
ically involves two stages. First, a reward model
(RM) is trained to generate scalar rewards based
on human preferences. In the second stage, rein-
forcement learning algorithms are employed to op-
timize language models by maximizing the rewards
predicted by the trained RMs. The reward model
plays a crucial role in the RLHF process, acting as
a proxy for human assessment. In preference-based
algorithms, it is used to estimate whether a user is

*This research was conducted during the author’s intern-
ship at Cohere.

likely to favor one text over another, built upon
preference data collected from human annotators.
Given an input instruction, the RM compares two
completions and assigns a higher score to the pre-
ferred option. Highlighting the significance of the
reward model, Llama 2 (Touvron et al., 2023a) uti-
lized an extensive dataset of 1 million such binary
preference datapoints to train their reward model,
emphasizing its crucial role in achieving alignment
with human preferences.

Simultaneously, the prevailing approach to train-
ing preference-based reward models presents sev-
eral challenges: understanding how RLHF pro-
cesses align with human preferences is challenging
due to a lack of explainability and interpretabil-
ity in RM training. Preference scores annotated
by humans can be noisy, subjective and prone to
biases (Hosking et al., 2023; Kirk et al., 2024).
Additionally, it is difficult to determine whether
the RMs are fitting to superficial features or learn-
ing the actual preferences expressed by humans
in the data, and consequently how such values are
internalized by the LLMs during the second pref-
erence tuning stage (Casper et al., 2023; Marks
et al., 2024; Qiu et al., 2024). This process may
also introduce biases, for example, favoring longer
responses (Singhal et al., 2023).

Reward models can also be brittle – coupled with
their tendency to pick up on data artefacts, this
can lead to over-optimization towards the training
distribution, resulting in inconsistencies between
RM predictions and human preferences at infer-
ence time. Challenges also include generalization
to distribution shifts, as well as susceptibility to
adversarial attacks (Shen et al., 2023a; Gao et al.,
2023; Coste et al., 2023). A final drawback is that
training reward models requires training data, of a
different kind than the one used to train generative
text models. Collecting these human preference
annotations can be costly and laborious (Cui et al.,
2023). Consequently, existing preferences datasets
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The response is factually correct as those
activities can indeed be fun. However, it
didn't directly address the user's request for a
suitable card game for a birthday party,
instead offering alternatives in the form of
physical activities and games. 

A few activities could be: 1. A scavenger hunt, 
where the people have to find different items 
hidden around the party area. 2. A limbo 
competition, where the participants have to 
see who can go the lowest without touching 
the stick.

Cards Against Humanity is a great card 
game. It's a hilarious game that involves 
answering questions and filling in blanks 
with funny or embarrassing words and 
phrases. It's easy to learn, and the laughs 
will keep coming.

Prompt

Chosen

Rejected

Suggest a suitable 
card game for a 
birthday party.

Critiques for Preferred

Critiques for Worse

RM

(1) Generate Critiques (2) Train Reward Models

Scores 

0.57

0.23

Win / loss

🦙

RM

While the recommendation is helpful and
suggests a game that is popular for its humor
and ease of play, it may not fully consider the
audience's diversity and sensitivity as the
game contains potentially offensive material.

Win: reward of
Preferred is higher

Figure 1: A RM training example from REWARDBENCH enriched with synthetic natural language critiques. We
first prompt LLMs to generate critiques individually for each of the two prompt-completion pairs in a preference
example, and then train a RM that predicts a scalar reward on top of them. The critiques break down both positive
and negative features of the completion, evaluating it based on how effectively it fulfills the prompt requirements in
aspects such as instruction-following, truthfulness, and helpfulness.

are often small in scale (Wu et al., 2023), and lim-
ited on specific tasks (Stiennon et al., 2022).

In this paper, we propose to use model-generated
natural language critiques to overcome these limi-
tations, where the critiques explicitly reason about
the quality of a response. We illustrate our proposal
in Fig. 1. In step (1), we prompt LLMs to gener-
ate synthetic critiques for each point-wise prompt-
completion pair in the preference data. These cri-
tiques evaluate responses across multiple dimen-
sions, including correctness and adherence to in-
structions, in a manner similar to Chain-of-Thought
(CoT) reasoning (Wei et al., 2022). In step (2), we
train RMs conditioned on these critiques to predict
scalar rewards and evaluate their performance on
a test set augmented with critiques. We hypothe-
size that critiques, by explicitly reasoning about the
quality of responses and extracting textual features,
can address the challenges posed by implicit and
potentially ambiguous human annotations. We also
aim to explore whether these critiques, by high-
lighting meaningful and task-relevant aspects, can
enhance RM training efficiency and robustness.

We elaborate on our critique pipeline in the sub-
sequent sections of the paper, with the objective of
answering the following research questions:

RQ1: Do synthetic critiques improve RM perfor-
mance?

RQ2: How do critiques impact RM performance
and data efficiency as training scales up?

Our experiments show that using synthetic cri-
tiques improves RM performance, particularly in

the low-resource data regime. Notably, we show
that a high-quality model-generated critique is
roughly equivalent to 40 vanilla preference pairs,
thus paving the way for more efficient use of an-
notation budgets. Additionally, we observe that
critiques yield greater performance improvements
on tasks requiring reasoning and adversarial skills,
across various training data sizes. As synthetic
critiques can be efficiently generated using open-
source models, our method is both accessible and
cost-effective.

2 Related Work

The current generation of LLMs (Touvron et al.,
2023b; Team et al., 2023; Achiam et al., 2023;
Jiang et al., 2023) is commonly trained using a
multi-step process. This process usually consists
of pretraining the model on a huge unsupervised
corpus (Achiam et al., 2023; Le Scao et al., 2023;
Touvron et al., 2023a), supervised fine tuning on
demonstrations (Zhang et al., 2023) and reinforce-
ment learning from human feedback (Christiano
et al., 2017; Ziegler et al., 2019; Ouyang et al.,
2022). The incorporation of human feedback
has been essential for the success of such mod-
els (Ouyang et al., 2022; Schulman et al., 2022;
Achiam et al., 2023; Bai et al., 2022).

RLHF usually involves training a reward model
on preference data collected from annotators that is
used for learning a policy using RL algorithms like
RLOO (Ahmadian et al., 2024) or PPO (Schul-
man et al., 2017). Different methods have been pro-
posed for solving the reward modeling tasks. One
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of the most common ways to approach reward
modeling is to apply the Bradley-Terry model
(Bradley and Terry, 1952) for predicting human
preference. Rafailov et al. (2024) proposed Direct
Preference Optimization, where instead of learning
a separate reward model, the LLM can be used as
a proxy reward model. Note that even these offline
approaches require preference data, though without
the need to train a separate reward model. Lastly,
there are many efforts that use generative LLMs as
reward models by prompting the systems to choose
a preference (Li et al., 2023b, 2024; Zheng et al.,
2023; Verga et al., 2024) or directly output a score
(Cui et al., 2023).

Due to the central role that reward models play
in the RLHF process, there is an increasing interest
for systematically understanding their behaviour.
Lambert et al. (2024) introduced REWARDBENCH,
a benchmark dataset for evaluating reward mod-
els that contains pairs of completions with subtle
but meaningful reasons of why one completion is
preferred over the other. REWARDBENCH demon-
strated that while reward models are able to per-
form well on general chat, they struggle with more
challenging reasoning examples. Apart from gen-
eral performance, reward modeling is affected by
issues such as length bias (Singhal et al., 2023;
Shen et al., 2023b) and lack of interpretability (Cly-
mer et al., 2023). Moreover, these undesirable bi-
ases also mislead human annotators (Hosking et al.,
2023).

Critiques have emerged as a method for im-
proving interpretability during the model develop-
ment process and robustness against adversarial
examples (Wang et al., 2023a). These rationales
have been proven to play an essential role during
LLM training (Scheurer et al., 2023; Wu et al.,
2023) and evaluation (Zheng et al., 2023; Li et al.,
2023a). Recent works explore using critiques for
self-improvement by refining their outputs into bet-
ter ones (Madaan et al., 2024; Gou et al., 2023; Ye
et al., 2023). Additionally, Saunders et al. (2022)
demonstrate how critiques are helpful for human
annotators in identifying flaws that they might have
otherwise missed, while Yuan et al. (2024) analyze
the use of critiques to provide feedback to humans.

More similar to our work, Zeng et al. (2023)
find that when using language models as evalua-
tors, prompting them with a rationale and rubric
improves their evaluator accuracy. AUTO-J (Li
et al., 2023a) extends this idea by training a gen-
erative LLM judge that is able to rate responses

and generate critiques, improving the overall accu-
racy of the model. Concurrent works that explore
using critiques for training RMs include Ankner
et al. (2024). Despite critiques showing positive re-
sults in a wide variety of applications, their success
heavily relies on their quality (Sun et al., 2024).
In order to measure critiques quality, Lan et al.
(2024) propose CRITICBENCH, a benchmark de-
signed to assess four dimensions of critique ability
in LLMs: feedback, comparison, refinement, and
meta-feedback.

3 Methods

In this section, we detail the method we use to
generate synthetic critiques (§3.1), and how we
incorporate them during RM training (§3.2).

3.1 Synthetic Critique Generation with LLMs

In the first step, we generate synthetic critiques
for the preference data D used to train the RMs.
We prompt LLMs to generate critiques as follows:
Given a preference data pair (x, y+, y−), where x is
a prompt and (y+, y−) are the chosen and rejected
completions, we prompt the LLM to generate point-
wise critiques c for each completion y. Specifically,
for each chosen pair (x, y), where y can be either
a chosen or rejected completion, we generate a
critique c. This way, we obtain a new critique-
augmented training dataset with triplets (x, y, c).
We used the critique prompt from Cui et al. (2023),
designed to optimize feedback quality, to generate
synthetic critiques c that evaluate how well the
completion meets prompt requirements, including
instruction-following, truthfulness, and helpfulness.
For details of the prompt template see App. A. An
example of critique is shown in Fig. 1.

3.2 Training RMs with critiques
No-Critiques Baseline We train reward models
that take in a prompt and a completion to output
a scalar score. We use a binary ranking loss fol-
lowing Ouyang et al. (2022). Specifically, the loss
function we use for No-Critiques baseline is:

L(θ,D) = −E(x,y+,y−)∼D
log (σ (rθ(x, y+)− rθ(x, y−)−m(r))) (1)

where rθ(x, y) is the scalar output of the reward
model for prompt x and completion y with train-
able parameters θ, and m(r) is a margin that de-
notes the preference rating. A large margin is used
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for responses with distinct ratings, and a smaller
one for similar responses.

Critiques RM Once we have the critiques c gen-
erated from LLMs, we augment the training data
by enriching them with critiques. We achieve this
by concatenating the critiques after each comple-
tion to form new preference pairs (x, y+ : c+, y− :
c−),1 which become a critique-augmented training
set D′. We train critique RMs on D′ with the loss:

L(θ,D′) = −E(x,y+,y−,c)∼D′ log

(σ (rθ(x, y+ : c+)− rθ(x, y− : c−)−m(r)))
(2)

We implement our RMs by replacing the final
projection layer of a pretrained language model
with a linear layer that predicts a logit. During
inference, we similarly prompt for critiques using
the same LLMs on the test set and use this critiques-
augmented test set for evaluation. As a baseline,
we compare with No-Critiques RMs trained on data
without critiques added.

4 Experimental Setup

In this section, we introduce the datasets we use
(§4.1), the LLMs for synthetic critiques generation
(§4.2), the pretrained models on which we build
RMs (§4.3), and the training details (§4.4).

4.1 Datasets
For RM training, we collect a human-preference
dataset that consists of 5k examples of open-ended,
multi-turn conversations between a user and a chat-
bot. Each dataset entry includes a prompt or in-
put instruction and two corresponding completions,
with a human-annotated label indicating the better
option. A preference rating is also given on a scale
of three points (slightly better, better, significantly
better). For more details of training data see App. B.
During inference, for each prompt paired with two
completions from the test set, we use the trained
RMs to assign a reward score for both the chosen
and rejected completion. We use test accuracy as
a metric to assess the performance of the RM, cal-
culated based on the proportion of instances where
the chosen completion receives a higher score than
the rejected one.2

1In practice, we also add a short template describing the
role of the following critique before c.

2We use accuracy on test prompts as a metric for evalu-
ating RMs, under the premise that higher RM test accuracy
correlates with enhanced downstream performance of LLMs
trained with these RMs in RLHF.

We evaluate the RMs on a variety of benchmark
datasets that target a broad set of capabilities, in-
cluding chat, instruction following, coding, and
safety. A summary of the evaluation dataset is
shown in Table 1. Specifically, we evaluate on
REWARDBENCH (Lambert et al., 2024), a dataset
of prompt completion pairs that benchmarks how
RMs perform on challenging, structured and out-
of-distribution queries. REWARDBENCH contains
four categories with a total of 2,985 prompts from
different subsets: Chat (358 prompt in total) con-
tains prompts from AlpacaEval (Li et al., 2023b)
and MTBench (Zheng et al., 2023) that test RM’s
basic capability to distinguish correct responses in
open-ended chat. Chat Hard (456) contains adver-
sarial prompts from LLMBar (Zeng et al., 2023)
and MTBench that stress test RM’s ability to under-
stand trick questions and subtly different instruc-
tion responses, where the dispreferred output has
appealing superficial qualities that challenge LLM-
as-a-judge evaluators. Safety (740) contains pairs
from XSTest (Röttger et al., 2023) and Do-Not-
Answer (Wang et al., 2023b) that test the model’s
ability to refuse dangerous content and avoid in-
correct refusals. Reasoning (1431) evaluates code
and reasoning abilities. Code prompts from Hu-
manEvalPack (Muennighoff et al., 2023) have cor-
rect and buggy code as chosen as rejected comple-
tions, and reasoning prompts are from PRM800k
(Lightman et al., 2023). We also compute a Avg.
Score by averaging the four categories with the
same weighting as in REWARDBENCH.

Additionally, we include PandaLM (Wang et al.,
2023a) as part of our evaluation set, consisting of
762 prompts. The instructions in this dataset are
drawn from Self-Instruct (Wang et al., 2022), with
responses generated by different LLMs and each
label independently provided by three different hu-
man evaluators.

4.2 LLM Critique Generator

To examine the effects of critiques, we select a
range of LLMs with varying architectures, model
sizes and training data for critique generation. We
set up a pool of 6 models: (1) LLaMA2-7B-Chat
(Touvron et al., 2023a), (2) LLaMA2-70B-Chat
(Touvron et al., 2023a), (3) Mixtral-8x7B-Instruct
(Jiang et al., 2024), (4) Command R,3 a 35B-
parameter model, (5) Command R+4 (103B), and

3huggingface.co/CohereForAI/c4ai-command-r-v01
4huggingface.co/CohereForAI/c4ai-command-r-plus
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Dataset # Examples Description

RewardBench
Chat 358 Open-ended chat prompts from AlpacaEval and MTBench.
Chat Hard 456 Questions from MTBench and LLMBar to stress test ability to understand trick questions.
Safety 740 Prompts that test refusal of dangerous content from XSTest and Do-Not-Answer.
Reasoning 1,431 Code and reasoning prompts from HumanEvalPack and PRM800k.

PandaLM 762 Prompts from self-instruct, labeled by three independent human annotators.

Table 1: Summary of the evaluation dataset used.

(6) GPT4-Turbo5 (Achiam et al., 2023). Given a
set of training and test preference data, we prompt
each of the models to generate a set of critiques for
both sets. For each experiment, we ensure that the
train and test data match in that they are enriched
by critiques generated by the same model. For
baseline, we compare with No-Critiques, where we
train and evaluate the RM on sets without critiques.

4.3 Pretrained Models for RM initialization

To explore the impact of pretrained model initializa-
tion for critiques RM training, we experiment with
different pretrained model checkpoints to build the
linear layer on top, varying in size and training data:
(1) LLaMA2-7B-Base, (2) Command-35B-Base,
and (3) Command R (35B). Command-35B-Base
is a checkpoint from which Command R was ob-
tained with further finetuning, and is what is gener-
ally called a “base” model. Including Command R
allows to check the impact that further supervised
finetuning and preference modelling has on such a
model.

4.4 Training Details

For all RMs in our experiments, we use a training
batch size of 32 and train for 1 epoch with 155
steps in total, as we find that training for longer
leads to overfitting. We train all the parameters,
including both the pretrained model weights and
the final linear layer. We use a cosine decay for
learning rate schedule and Adam optimizer. The
maximum learning rate is 8 × 10−5 for all RMs
starting on top of Command R and Command 35B-
Base. The learning rate is decreased down to 10%
of the maximum, and we use a warmup of 32 steps.
We run experiments on clusters of v4 TPUs. We
observe that RM training starting from LLaMA2-
7B-Base is sensitive to hyperparameters on training
sets enriched with different model critiques. We hy-
pothesize this sensitivity arises because LLaMA2-
7B-Base is a relatively small base model that has

5To be precise, we used gpt-4-0125-preview.

not been instruction-tuned, making it susceptible
to the varying distributions of critiques generated
by different models. For this pretrained model,
we conduct hyperparameter optimization on learn-
ing rate for RM runs enriched by different model
critiques, on a separate validation set of 195 pref-
erence examples. We keep a cosine schedule with
decay down to 10%. We keep the warmup step as
5 and sweep the initial learning rate of [5× 10−5,
8× 10−5, 1.6× 10−4].

5 Evaluation Results

We train RMs on preference data enriched by syn-
thetic critiques generated from different models
starting from a range of pretrained model as de-
tailed in §4. Here, we show the main findings of
using critiques for RM training. Specifically, we
answer RQ1 regarding the effectiveness of critiques
in §5.1, RQ2 regarding the scaling behavior in §5.2.
We show finegrained result analysis in §5.3.

5.1 Do synthetic critiques improve RM
performance?

Table 2 summarizes the evaluation results on the
four subsets in REWARDBENCH, and PandaLM.
Fig. 2 displays REWARDBENCH Avg. Score. In
most cases, adding critiques improves RM test ac-
curacy compared to No-Critiques baseline, illus-
trating the effectiveness of synthetic critiques.

High-quality critiques improve RM test accu-
racy. As a measure of critique quality, we use the
automatic metrics from Metacritique (Sun et al.,
2024), including meta-precision, meta-recall, and
meta-F1, as described in App. E. These metrics
evaluate critique ratings using GPT-4-generated
critiques as a reference. We observe that critique
quality has an impact on RM test performances.
Specifically, across the base pretrained models,
stronger models such as GPT4-Turbo consistently
provide the highest Avg. Score for both datasets,
with a score increase of 0.16 and 0.14 on REWARD-
BENCH for RMs starting from LLaMA-7B Base
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Critiques
RewardBench PandaLM

Chat Chat Hard Safety Reasoning Score
(358) (456) (740) (1,431) (762)

LLaMA-7B Base Ckpt

No-Critiques 0.2012 0.6425 0.6000 0.5451 0.2507
LLaMA2-7B-Chat 0.5674 0.4934 0.3878 0.4310 0.3976
Command R 0.2151 0.6557 0.6041 0.5882 0.3123
Mixtral-8x7B-Instruct 0.2147 0.6732 0.6000 0.6678 0.3609
LLaMA2-70B-Chat 0.2060 0.6557 0.5878 0.6645 0.3898
Command R+ 0.1926 0.6952 0.6027 0.6991 0.3793
GPT4-Turbo 0.2452 0.6996 0.6270 0.7496 0.4213

Command-35B Base Ckpt

No-Critiques 0.2486 0.6930 0.6000 0.7178 0.3675
LLaMA2-7B-Chat 0.2682 0.6952 0.5905 0.7394 0.4383
Command R 0.2821 0.6667 0.6311 0.7867 0.4383
Mixtral-8x7B-Instruct 0.2989 0.6864 0.6014 0.7185 0.4580
LLaMA2-70B-Chat 0.2849 0.6732 0.6176 0.7910 0.4501
Command R+ 0.3073 0.7149 0.6176 0.8144 0.5000
GPT4-Turbo 0.3827 0.7961 0.6878 0.8527 0.5066

Command R-35B Ckpt

No-Critiques 0.3855 0.7390 0.7514 0.9033 0.6339
LLaMA2-7B-Chat 0.3352 0.7171 0.6500 0.7453 0.5302
Command R 0.3492 0.7500 0.6527 0.8790 0.5433
Mixtral-8x7B-Instruct 0.2709 0.7281 0.6351 0.8433 0.5144
LLaMA2-70B-Chat 0.3603 0.7544 0.6324 0.8449 0.5472
Command R+ 0.3073 0.7697 0.6405 0.7277 0.5276
GPT4-Turbo 0.3799 0.8246 0.7405 0.8705 0.5131

Generative Judge Baseline

Gen-Command R+ 0.5464 0.2765 0.6709 0.0673 -
Gen-Command R+ (+Critiques) 0.5670 0.3635 0.7290 0.3685 -

State-of-the-art

TextEval-Llama3.1-70B 0.9410 0.9010 0.9320 0.9640 -
Llama-3.1-Nemotron-70B-Reward 0.9750 0.8570 0.9510 0.9810 -

Table 2: Test accuracy on REWARDBENCH and PandaLM for RMs starting from three pretrained model checkpoints
and enriched with various model critiques. Best results are bolded, and second-best are underlined. State-of-the-art
results are taken from the REWARDBENCH leaderboard (Oct 2024).

and Command-35B Base respectively. This is fol-
lowed by Command R+, with an increase of 0.1
and 0.062 respectively. On the other hand, weaker
critiques generated from a smaller model such as
LLaMa2-7B-Chat have a detrimental effect on test
accuracy on LLaMA-7B Base. Similar to Saunders
et al. (2022) and Sun et al. (2024), we observe a
positive correlation between the effect of critiques
on test performance and critique model sizes, as
shown in Fig. 7.

Critiques are more effective on weaker check-
points. We found that the choice of the pre-
trained model for RM also plays a role in the final
performance. Comparing across pretrained check-
points, we observe that RM performance improves
with the capacity of the starting models, both with-
out critiques and with critiques. Notably, critiques
significantly enhance performance in RMs starting
from weaker base models, such as LLaMA2-7B
Base. On the other hand, the Command R-35B

model performs well across tasks even without any
critiques, notably in Safety and Reasoning. We
speculate that this is because Command R-35B, un-
like the other base models, has already been trained
on a large amount of preference data, giving it
strong preference modeling capabilities before RM
training starts, whereas starting from base models
provides more room for RMs to leverage synthetic
critiques effectively in predicting their final reward.

5.2 What impacts do critiques have on RMs
as training scales up?

Next, we conduct experiments to study the scaling
behavior of RM training with critiques. We prepare
four No-Critiques training datasets with 5k, 50k,
100k, and 200k preference examples. We then
generate synthetic critiques for all four sets and
train RMs on them to compare with No-Critiques.

Critiques Increase Data Efficiency. We initial-
ize RMs from the 35B Command R base model and
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7B LLaMA2 Base 35B Command Base 35B Command R
Pretrained Model for RM Training
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Command R+
GPT4-Turbo

Figure 2: Avg. Score on REWARDBENCH, which shows
the weighted average test accuracy of each category un-
der REWARDBENCH. Strong critiques, such as those
generated by GPT4-Turbo, improve scores on RMs start-
ing from 7B LLaMA2 Base and 35B Command Base,
whereas weaker critiques, such as those generated by
LLaMA2-7B-Chat, could be detrimental. 35B Com-
mand R is a strong preference tuned model for RM on
which No-Critiques excel.

generate synthetic critiques using Command R+.
We use REWARDBENCH Avg. Score for evalua-
tion, as illustrated in Fig. 3. We observe that on RE-
WARDBENCH, increasing the number of training
examples generally increases test accuracy, both
with and without critiques. Using synthetic cri-
tiques enhances data efficiency, as demonstrated
by the greater accuracy gains of Command R+ Cri-
tiques over No-Critiques, particularly in low-data
settings (5k-50k). The benefit of critiques becomes
less pronounced with abundant data, as both RMs
achieve comparable test performance around 200k
training examples. However, we note that improv-
ing critique quality is a viable strategy for main-
taining their effectiveness at scale. As highlighted
in Fig. 3, when critique quality is high, we con-
tinue to observe a substantial performance boost
even in abundant-data settings: at 200k examples,
GPT-4 with strong critiques (dashed line) outper-
forms No-critiques by a clear margin with only 5k
examples.

How many No-Critiques examples Is a Critique
Worth? To illustrate the effectiveness of strong
critiques, we plot the REWARDBENCH score from
Table 2 for RMs trained with 5k synthetic cri-
tiques using Command R, LLaMA2-70B-Chat,
Command R+, and GPT4-Turbo as dashed lines in
the background of Fig. 3. We observe that 5k Com-
mand R+ Critiques achieve a test accuracy compa-
rable to approximately 90k No-Critiques. Similarly,
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Figure 3: REWARDBENCH Score scaling behavior for
RMs trained with increasing number of training exam-
ples, with No-Critiques and Command R+ Critiques.
Using critiques enhances data efficiency, particularly in
low-data setting. Dashed lines show scores achieved
by 5k synthetic critiques, which reach a comparable
No-Critiques test accuracy with significantly less data.

5k Command R and 5k LLaMA2-70B-Chat equate
to roughly 62k No-Critiques, while 5k GPT4-Turbo
surpass even 200k No-Critiques.

In our experiments we do not use the trained
RM to fine-tune a policy model. Research on RM
accuracy and downstream performance (Lu et al.,
2024; Shen et al., 2023a) shows a positive correla-
tion between the two, with improvements in RM
accuracy often leading to better outcomes in down-
stream tasks. Previous works, including LLaMA
2 (Touvron et al., 2023b), have observed that RMs
with similar performance tend to yield compara-
ble downstream results and have used RM accu-
racy as a key proxy for final model performance.
Our critique-based approach demonstrates a way
to achieve equivalent or superior results with sig-
nificantly less data, thereby enhancing efficiency.

5.3 Analysis

Finegrained Analysis We observe that the ben-
efit of critiques varies by task type. We present
a detailed breakdown of test accuracy over differ-
ent tasks under REWARDBENCH with scaling in
Fig. 4b and App. D. As shown in Table 2, the ac-
curacy on the Chat subset of REWARDBENCH is
low (often below random chance) with 5k exam-
ples. However, Fig. 4a demonstrates a significant
improvement when scaling to 10k pairs, achieving
very high scores (0.91) and potentially saturating
this task. Compare this to Fig. 4b on Reasoning –
a harder task – where using critiques outperforms
the baseline (by more than 10 points) and where
they only converge with 20k training examples. In
addition, Fig. 4c shows that training with critiques
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(c) Chat Hard

Figure 4: Accuraccy for Chat, Reasoning and Chat
Hard section of REWARDBENCH for RMs trained
with increasing number of training examples, with No-
Critiques and Command R+ Critiques.

leads to greater robustness against adversarial ex-
amples on Chat Hard, and the effect is persistent
across training data sizes. Interestingly, critiques
offer a more significant performance boost for tasks
involving reasoning and adversarial skills, across
increasing training data. We hypothesize that this
is attributed to the Chain-of-Thought style feed-
back within critiques, which provides additional
context for RMs to condition on when predicting
a scalar score. We leave it as future work to ex-

plore the impact of critiques on LLM reasoning
abilities when preference-tuned with such critique-
enhanced RMs.

Critiques versus Knowledge Distillation As the
critiques in our experiments are generated from an-
other model, training critiques RM can be seen as
a form of knowledge distillation. To understand
the benefits of critiques versus general knowledge
transfer, we perform baseline studies where we
directly prompt the critique generator for Likert
scores (on a scale of 0 to 10), for each point-wise
prompt-completion pair in the test set, and compute
the proportion that is correct if the generated score
is higher on the preferred completion. This setting
resembles the performance of an inference-time
generative RM (Li et al., 2023a) and can serve as an
upper bound of the test set performance achievable
from a distilled model. We call this baseline Gener-
ative Judge RM and present the results with a Com-
mand R+ critique generator (called Gen-Command
R+). We further include another inference-time
baseline, Gen-Command R+ (+Critiques) where
we additionally prompt for a critique before out-
putting a score. We use the same prompt template
for critiques RMs in App. A. In Table 2, we observe
that while Gen-Command R+ performs strongly on
Chat and comparably on Safety, the critiques RMs,
across different critique generators, overwhelm-
ingly outperform this baseline on Reasoning and
Chat Hard, validating their effectiveness particu-
larly in more challenging and adversarial prompts.
For Gen-Command R+ (+Critiques), we observe
that similar to training scalar RMs, conditioning
on critiques during inference leads to a higher test
score (with an increase of 0.3 on Reasoning) than
No-Critiques, agreeing with the observations in
Wang et al. (2023a). As the benefit of critiques ex-
ists in both training and inference, using critiques
is not merely a form of knowledge transfer but
introduces an additional Chain-of-Thought that en-
hances the model’s decision-making process.

6 Conclusion

We propose an accessible and cost-effective ap-
proach to improve reward models (RMs) in RLHF
by enriching them with synthetic natural language
critiques. We prompt LLMs to generate critiques
that assess the prompt-completion pair and train
RMs to predict scalar rewards conditioned on these
critiques. Experiments demonstrate the effective-
ness of using critiques for RMs, as evidenced by
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their stronger performance on existing RM bench-
marks. We found that critiques are especially effec-
tive in low-data settings, when they are of high
quality, the base RM is weak, and the task re-
quires reasoning skills. In these cases, a single
high-quality critique-enhanced preference pair can
be as valuable as 40 standard preference pairs. As
these critiques are generated without human labour,
this approach offers a more cost-effective way to
obtain competitive reward models, given the cur-
rent scarcity and high cost of preference training
data. We also show that our method of leveraging
critiques as part of the reward model’s Chain-of-
Thought enhances the training process and inter-
pretability. In future work, we plan to investigate
their potential to improve LLM reasoning abilities.

7 Limitations

While we evaluate RMs using ranking test accuracy,
we did not experiment with optimizing LLMs with
such critique-enriched RMs, but focused on eval-
uating RMs directly on existing RM benchmarks.
However, previous work (Shen et al., 2023a) sug-
gests that stronger RMs lead to enhanced perfor-
mance of LLMs during RLHF. Regarding critique
quality, the critiques generated by the LLMs might
be incorrect, or contain hallucinations. As men-
tioned in § 5.2, the added value of critiques dimin-
ishes in the abundant data regime. However, even
in that scenario adding critiques does not reduce
the final performance and obtains better score in
the more challenging settings such as Reasoning
and Chat Hard, indicating better generalization. In
our experiments, we did not investigate the effect of
generating on-policy critiques, which would be in-
teresting to explore. A final limitation is the limited
improvement when starting from a strong prefer-
ence tuned model, which is similar to the case of
abundant preference data. We would also like to
extend our experiments to include a wider set of
pretrained checkpoints, and prompting methods to
understand their effects on critiques.
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A Prompt Template

We show the template we use to prompt LLMs for
point-wise critiques in Fig. A. We made minimal
changes starting from the template in Cui et al.
(2023).
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Template for Point-wise Critique Generation

User: {prompt}
Chatbot: {response} # could be either chosen or rejected
Please provide a critique of the last response in one short paragraph. Your critique should be
concise, specific, insightful and to the point. Aspects you should consider are: (1) Helpfulness.
A good response should precisely/closely answer the user’s request. (2) Correctness. A good
response should be honest and factually correct.

Prompt: Write a poem about the ocean.

Chosen: Sure! Here is a poem about the ocean: The ocean, a majestic mystery, A universe of its
own, yet succinctly, A force that brings life, calm and strife, Ever-changing, a constant revolution.
Powerful, yet gentle, peacefully still, A mirror, a dancer, a rousing thrill. Blue like the sky, a vivid,
soulful hue, A home to creatures, big and small, novel. From mighty whales to tiny, shimmering fish,
The ocean’s depths unfold with a rush, A treasure trove of diversity, Its secrets yet to be unlocked,
unfurled. With waves that caress, then attack with might, The ocean’s embrace is an exhilarating
light, A force that shapes our fragile Earth, A magical, ethereal, breathtaking worth. But like a
tempest, it can roar and rage, Sending fear into the heart of the age, Unleashing chaos, a devastating
spell, A reminder of nature’s strength, supreme. The ocean, a paradox, serene and fierce, A vibrant,
vital force, a beautiful deity. Its call echoes through time, a yearning heard, A vast, ethereal wonder,
a mystery unfurled. And in its depths, the soul finds a home, A place of wonder, a place of profound
solace and roam. Does this poem capture the essence of the ocean for you? Let me know if you
would like me to make any adjustments or incorporate any other specific themes or ideas about the
ocean into the poem.

Rejected: The ocean’s mystery unfolds, A story that begins where land meets shore. Beneath its
surface, a new world is found, A captivating haven, a haven to be explored. Its vastness stretches
far and wide, A home to countless creatures, big and small, From mighty whales to tiny plankton,
Each playing a part in this oceanic pantomime. The ocean’s rhythm is ancient and true, A flow that
ebbs and flows with every moon, It whispers secrets of a bygone era, A symphony of reminders of
love that it did confer. Its power is mighty and commanding, Yet it can be as gentle as a caress, It
nourishes and sustains, A source of life, a mirror of our deepest wishes. It is a mirror of our souls,
A reflection of our inner selves, A place of discovery, Where the secrets of the universe are finally
revealed. The ocean’s mystery is a story never told, But written with each wave’s constant toil,
It is a part of us, And a part of the world that is ever-evolving. And though its secrets may seem
reserved, They are there for those who are willing to explore, To those who yearn to discover more,
The ocean’s mystery is a tale to be uncovered, not ignored.

Confidence: Slightly Better

Figure 5: An example from the training dataset.

B Training Data Format

We detail the data collection process for our train-
ing preference data, which contain multi-turn con-
versational tasks seeded with an initial prompt that
is synthetically generated. Two completions are
sampled from a previous generation of a model, and
the preference label is provided by one human an-

notator. The human annotators were paid more than
minimal wage for the annotation task. This dataset
does not contain any tie, so there is always one com-
pletion which is considered better than the other.
To define how much it is each pair is also annotated
with a confidence margin (slightly better, better,
significantly better), which indicates how confident
the annotator is about the ranking decision. The
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User: Brainstorm uses for a paperclip.

preferred response: A paperclip can be used to keep papers together, hang items on a bulletin board, mark pages in a book, or
create a makeshift zipper pull. It can also be used to repair torn clothing or to attach items to a keychain.

LLaMA2-7B-Chat: The response provided is helpful in addressing the user’s request by providing a list of potential uses for
a paperclip. However, the list is quite general and does not provide any particularly creative or innovative ideas for using a
paperclip. Additionally, some of the listed uses, such as repairing torn clothing, are not necessarily unique to paperclips and
could be accomplished with other materials as well. Overall, the response is factually correct but could benefit from more specific
and creative suggestions for using a paperclip.

Command R: The suggestions provided for alternative uses of a paperclip are concise and closely aligned with the user’s request.
However, some of the uses, such as using a paperclip for keeping papers together or fastening items to a keychain, are relatively
obvious and common. While the response is factually correct, it may not offer innovative or unexpected ideas, falling short of
providing a truly insightful or surprising critique.

Mixtral-8x7B-Instruct: The response is helpful in providing a list of potential uses for a paperclip, but it could be improved by
providing more detail or context for each use case. For example, instead of simply stating that a paperclip can be used to mark
pages in a book, the response could explain how to do this or provide tips for using a paperclip in this way. Additionally, the
response could be more specific in terms of the types of items that can be attached to a keychain using a paperclip. Overall,
while the response is factually correct, it could be more helpful by providing more detailed and specific information.

LLaMA2-70B-Chat: The previous response provides some useful ideas for using a paperclip, such as keeping papers together,
marking pages in a book, and creating a makeshift zipper pull. However, it falls short in terms of creativity and imagination. The
suggestions offered are fairly obvious and do not fully explore the potential uses of a paperclip. Additionally, the response does
not provide any specific examples or explanations to help the user better understand how to implement these ideas. Overall,
while the response is not incorrect, it could be more helpful and inspiring for the user.

Command R+: The response provides a concise and varied list of possible paperclip uses, offering an insightful and helpful
critique of the everyday item’s potential. The suggestions are creative and practical, covering a range of scenarios where a
paperclip could be utilized. The ideas are correct and sensible, and the tone is positive and straightforward, closely answering the
user’s request.

GPT4-Turbo: The last response, while providing a brief overview of potential uses for a paperclip, falls short in terms of depth
and creativity. It lists a few common uses but misses the opportunity to explore more innovative or less conventional applications,
such as resetting electronic devices through their pinhole reset buttons, using it as a SIM card eject tool in smartphones, or even
bending it into a stand for small items like business cards or phones. The response is helpful and correct in what it does offer,
ensuring factual accuracy in the suggested uses. However, it could significantly benefit from expanding the scope of applications
to fully address the user’s request for brainstorming uses, thereby enhancing its helpfulness and engaging the user’s curiosity
more effectively.

Table 3: Example of point-wise critiques generated by different models for a preferred preference response.

distribution is as followed in increasing confidence
margin: 86.6% slightly better, 12.6% better, 0.8%
significantly better. In Fig. 5 we show an example
prompt and completion pairs, along with the label
and confidence margin. For the evaluation dataset,
the REWARDBENCH (Lambert et al., 2024) dataset
and PandaLM (Wang et al., 2023a) contain subsets
of various license types and can be found respec-
tively at: https://huggingface.co/datasets/
allenai/reward-bench, https://github.com/
lmmlzn/Awesome-LLMs-Datasets.

C Critique Generation Examples

Table 3 has critiques from the different models for
the same given (preferred) response.

D Scaling Performance By Task

We illustrate a break down of REWARDBENCH

Score v.s. training examples by task type in Fig. 6.
We observe that RMs enriched with Command R+

Critiques consistently outperforms No-Critiques on
Reasoning task. Chat Hard contains challenging
prompt completions that are designed with super-
ficial features to trick LLM-based evaluators. On
this dataset, training with Command R+ Critiques
leads to a less performance drop compared to No-
Critiques over increasing number of training exam-
ples, suggesting that critiques help with robustness
against adversarial examples. We observe that the
classifier-based RMs overwhelmingly outperform
the generative judge baseline. While the genera-
tive judge performs strongly on Chat, comparably
on Safety, it performs poorly in Reasoning, fol-
lowed by Chat Hard. Upon closer inspection on
Reasoning, we see that many of the mistakes for
Gen-Command R+ (score of 0.06) are due to the
generative judge assigning the same score to both
preferred and worse, leading to a tie. We hypothe-
size that this is because without preference training,
completion pairs from the more difficult Reasoning
subset appear similar to the pretrained checkpoint,
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(d) Safety

Figure 6: REWARDBENCH Score v.s. training data size by task type.

which is not sensitive to their differences. However,
when conditioning on critiques, Gen-Command R+
(+Critiques) spreads out the reward scores on those
ties, leading to a 0.3 increase (score of 0.3685).

E Critique Quality Analysis

We analyze the quality of the critiques generated
by different models using metacritique scores pro-
posed in Sun et al. (2024), as shown in Table 4.
Sun et al. (2024) develop metrics to quantify the
critique ratings using GPT4-generated critiques as
reference. Specifically, precision gauges the ac-
curacy of the critique’s content, ensuring each in-
formation unit contained in the critique is factual.
Recall measures the comprehensiveness of the cri-
tique, and the extent to which it fully covers the
necessary breadth of information in the reference.
F1 is the harmonic mean of precision and recall.
For more detail please refer to Sun et al. (2024).
We observe that the quality correlates to the size
of the critique models. LLaMA2-7B-Chat shows
relatively low metacritique scores (a Meta-F1 of
0.5481). Mixtral-8x7B-Instruct critiques are more

comprehensive, whereas those generated by Com-
mand R families are more accurate. In the early
stage of our experiments, we also trained on a small
amount of human-annotated critiques and observed
improved test accuracy slightly higher than GPT4-
Turbo, validating that human critiques are helpful
and effective in improving RM performance.
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Critiques Meta-Precision Meta-Recall Meta-F1

LLaMA2-7B-Chat 0.6295 0.5504 0.5481
Command R 0.7108 0.6005 0.6250
Mixtral-8x7B-Instruct 0.7095 0.6553 0.6439
LLaMA2-70B-Chat 0.6934 0.6184 0.6232
Command R+ 0.7667 0.6065 0.6422

Table 4: Metacritique scores of critiques generated by different models.
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Figure 7: REWARDBENCH Score vs. critiques generated by models of increasing sizes. The x-axis is listed in
increasing model parameter count. The effects of critiques on test accuracy correlates with critique model sizes, for
base model checkpoints.
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