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Abstract

Large language models (LLMs) have demon-
strated impressive capabilities in generating
human-like text and have been shown to store
factual knowledge within their extensive pa-
rameters. However, models like ChatGPT can
still actively or passively generate false or mis-
leading information, increasing the challenge
of distinguishing between human-created and
machine-generated content. This poses sig-
nificant risks to the authenticity and reliabil-
ity of digital communication. This work aims
to enhance retrieval models’ ability to iden-
tify the authenticity of texts generated by large
language models, with the goal of improving
the truthfulness of retrieved texts and reduc-
ing the harm of false information in the era
of large models. Our contributions include:
(1) we construct a diverse dataset of authen-
tic human-authored texts and highly deceptive
AI-generated texts from various domains; (2)
we propose a self-supervised training method,
RetrieverGuard, that enables the model to cap-
ture textual rules and styles of false informa-
tion from the corpus without human labelled
data, achieving higher accuracy and robustness
in identifying misleading and highly deceptive
AI-generated content.

1 Introduction

Since the advent of transformer architectures
(Vaswani et al., 2023), large language models
(LLMs) have revolutionized the field of natural
language processing (NLP) by achieving unprece-
dented capabilities in various language tasks, such
as machine translation, summarization, text gen-
eration, and question answering. Notably, models
like GPT (Brown, 2020) and Llama (Touvron et al.,
2023) have not only excelled in these tasks but
also demonstrated the ability to mimic human lan-
guage patterns and logical reasoning, producing
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coherent and contextually relevant content. How-
ever, the remarkable flexibility of LLMs introduces
significant challenges, particularly in terms of the
accuracy and authenticity of generated content. Re-
search by (Ji et al., 2023) has shown that LLMs
cannot consistently guarantee the truthfulness of
their outputs, a limitation further exacerbated by
the phenomenon of "model hallucination". This de-
fect means that LLMs can, intentionally or uninten-
tionally, produce false or misleading information,
thereby increasing the difficulty of distinguishing
between human-authored and machine-generated
texts (Tang et al., 2023).

With the increasing prevalence of AI-generated
content across digital platforms, the potential harm
caused by LLM-generated misinformation has be-
come a critical concern, affecting areas such as cy-
bersecurity and public trust (Weidinger et al., 2021).
Therefore, it has become essential to deepen our
understanding of how LLMs produce false infor-
mation and improve our ability to detect it.

To this end, this work addresses three primary
research questions in this domain. First, we ex-
plore the methods by which LLMs can be guided
to produce misleading content. By analyzing the
differences between factual and fabricated texts in
terms of language, structure, and logic, we aim to
assess the deceptive potential of LLM-generated
misinformation and its implications for cybersecu-
rity. Second, we investigate the extent to which
this LLM-generated misinformation impacts the
performance of retrieval models, thereby evaluat-
ing these models’ abilities to distinguish between
factual and non-factual information. Finally, we ex-
amine strategies to enhance the ability of retrieval
models to identify false information. Specifically,
we aim to improve retrieval models’ accuracy in
finding authentic content while reducing the like-
lihood of retrieving deceptive documents, thereby
minimizing the risk of misinformation dissemina-
tion.
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Overall, this project aims to advance the under-
standing of LLM-generated misinformation and
provide practical solutions to improve the robust-
ness and reliability of retrieval systems in detecting
and mitigating the impact of false information. Our
contributions to the field are as follows:

• We have constructed a multi-domain dataset
featuring both authentic human-authored texts
and highly deceptive AI-generated content,
establishing a foundational resource for future
research.

• We demonstrate that LLM-generated false
content is highly deceptive, revealing the lim-
itations of current retrieval models in accu-
rately identifying non-factual information and
underscoring the adverse impact of LLMs on
information retrieval.

• We introduce a self-supervised fine-tuning
approach, RetrieverGuard, that enhances re-
trieval models’ ability to detect false informa-
tion across diverse datasets without compro-
mising their original performance. Retriever-
Guard does not require any human-labeled
question-answer pairs, making it applicable
in scenarios where such data is unavailable
and enhancing its practicality.

2 Related Work

Information retrieval (IR) aims to retrieve texts
relevant to user queries from large repositories,
traditionally relying on classical models such as
TF-IDF (Ramos et al., 2003), BM25 (Robertson
et al., 2009), and Vector Space Models (Turney
and Pantel, 2010). These methods rank documents
based on term frequency and inverse document
frequency statistics. While they perform well in
general-purpose retrieval tasks, they have limita-
tions in understanding the semantic relationships
between words (Zhu et al., 2024). In contrast, mod-
ern neural retrieval models leverage dense represen-
tations, transforming the retrieval process. Dense
Passage Retrieval (Karpukhin et al., 2020), Col-
BERT (Khattab and Zaharia, 2020), and Sentence
Transformers (Reimers, 2019) exemplify this evo-
lution. These models employ deep learning to map
queries and documents into high-dimensional vec-
tor spaces, enhancing their ability to capture seman-
tic similarity. Dense retrieval models, in particular,

have shown significant improvements in handling
ambiguous or complex queries.

Large Language Models (LLMs) have shown
remarkable capability in understanding deep se-
mantic representations of text(Brown et al., 2020;
Bubeck et al., 2023; Yu et al., 2023), making
them increasingly popular as core components
in retrieval systems. For instance, (Ma et al.,
2023) fine-tuned LLaMA to create a dense retriever
(RepLLaMA) and a pointwise reranker (RankL-
LaMA), demonstrating how LLMs can be adapted
to enhance retrieval and ranking functionalities.
These models leverage efficient learning paradigms
to achieve outstanding zero-shot retrieval perfor-
mance on large-scale datasets, underscoring the
adaptability of LLMs in real-world retrieval sce-
narios. The NV-Embed model(Lee et al., 2024),
as a general-purpose embedding model, introduces
latent attention layers to optimize text embeddings
and employs a streamlined two-stage contrastive
learning framework, which enhances retrieval per-
formance while maintaining deployment efficiency.
The General Text Embedding (GTE) model(Li
et al., 2023)combines unsupervised pre-training
and supervised fine-tuning, utilizing a multi-stage
contrastive learning approach with heterogeneous
data sources, showcasing broad applicability across
various retrieval tasks without reliance on propri-
etary datasets. Beyond modifications to model ar-
chitectures and hyperparameters, (Li et al., 2024a)
leverages In-Context Learning (ICL), embedding
task-specific examples directly within queries. This
approach generates embeddings with enhanced task
adaptability, effectively boosting generalization in
zero-shot and few-shot scenarios. Additionally,
(Wang et al., 2024) proposed a novel strategy that
uses LLMs to generate synthetic data, coupled with
contrastive learning, to rapidly enhance text em-
bedding quality, thereby eliminating the need for
intermediate pre-training steps.

Despite the remarkable advancements of Large
Language Models (LLMs)(Zhao et al., 2024),
their application in information retrieval remains
a double-edged sword, as the hallucinations and
false information they generate pose substantial
risks. Hallucinations refer to instances where the
model produces content that is ungrounded in ei-
ther input data or factual reality. This phenomenon
represents a severe threat to the reliability and secu-
rity of information systems, as LLMs can generate
highly convincing yet misleading or false content
(Papageorgiou et al., 2024; Su et al., 2024). Given
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Figure 1: Real and LLM-generated fake texts about Actin.

their sophisticated linguistic capabilities, LLMs of-
ten produce output that appears factually plausible,
making it increasingly challenging to distinguish
between authentic and fabricated information. In
high-stakes domains such as healthcare, journal-
ism, and scientific research, hallucinated outputs
can lead to significant consequences, including mis-
diagnoses, public confusion, and the dissemination
of inaccurate scientific findings (Tang et al., 2023;
Huang et al., 2023).

Hallucinations are not merely artifacts resulting
from incomplete data or suboptimal training; rather,
they reflect an inherent limitation within current
LLM architectures (Huang et al., 2023; Ji et al.,
2023). As noted by (Xu et al., 2024), these halluci-
nations are almost inevitable, given the extensive
yet non-exhaustive nature of training data and the
statistical foundations of language modeling.

Due to the significant risks posed by halluci-
nations in large language models (LLMs), an in-
creasing number of studies are devoted to detect-
ing, mitigating, and countering their adverse ef-
fects. Several methods aim to automatically detect
misinformation and fabricated content, utilizing
neural architectures specifically designed for hallu-
cination detection (Kelk et al., 2022; Zhong et al.,
2020). These detection approaches frequently em-
ploy contrastive techniques, comparing model out-
puts against known factual data, or utilize classi-
fiers to identify stylistic discrepancies between gen-
uine and hallucinated texts (Ippolito et al., 2020;
Guo et al., 2023).

To directly address hallucinations, recent re-
search has focused on embedding mitigation
mechanisms within LLMs themselves. Retrieval-

Augmented Generation (RAG) techniques and im-
proved context selection have demonstrated effec-
tiveness in reducing hallucinations by anchoring
generated content to reliable sources, thus con-
straining the model’s outputs (Gao et al., 2024;
Yu et al., 2024). Additionally, Inference-Time In-
tervention (ITI) dynamically adjusts the generative
process, allowing real-time assessments of content
veracity and accuracy to guide the model towards
more truthful outputs (Li et al., 2024b). Further-
more, veracity-oriented training paradigms priori-
tize alignment with factual information during gen-
eration, thus reducing both the frequency and im-
pact of hallucinations (Niu et al., 2024; Zellers
et al., 2020).

3 Misinformation Preparation

3.1 Information Retrieval Dataset Sources

In this work, we adopt BEIR (Benchmarking Infor-
mation Retrieval) (Thakur et al., 2021), a widely
used and comprehensive benchmark dataset and
evaluation platform for information retrieval tasks,
and contaminate it with LLM-generated misinfor-
mation to simulate the presence of false informa-
tion. BEIR includes data from 18 different tasks
and domains, such as NFCorpus (Boteva et al.,
2016) in the medical field, ArguAna in the legal
field, SciFact (Wadden et al., 2020) for fact verifi-
cation, and Natural Questions (Kwiatkowski et al.,
2019) for open-domain question answering. Each
dataset corresponds to specific task scenarios, such
as document retrieval, passage retrieval, question
answering, and conversational retrieval, forming a
multi-dimensional evaluation system. While these
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datasets provide a reliable foundation for assessing
the generalization capabilities of retrieval models in
various practical scenarios, they are not designed to
evaluate models’ ability to detect misinformation,
which is a key focus of this study.

3.2 LLM Misinformation Injection

In this research, we first address how to guide large
language models (LLMs) to generate misleading
content. Based on (Chen and Shu, 2024) research,
the methods for LLMs to generate misleading con-
tent are categorized into hallucination generation,
arbitrary misinformation generation, and control-
lable misinformation generation. We draw upon
the controllable misinformation generation method
and, using manually curated real datasets as the
base, design a template for generating misleading
content, enables us to guide LLMs in creating texts
that closely resemble real content but with decep-
tive elements:

LLM Prompt

Please make minor changes to the following
content to provide a piece of misinforma-
tion: {real_text}

For example, Figure 1 shows a misleading gener-
ation example about actin from the SciFact dataset.
The LLM emulates the style, language, and logical
features of the real text, making only subtle ad-
justments to the data and expression of viewpoints.
These minor changes are not easily noticeable to
the average reader, thereby increasing the deceptive
potential against retrieval models. Further details
will be provided in Section 5.

3.3 Struggles of Retrievers Amid
LLM-Generated Misinformation

To demonstrate the deceptive nature of this con-
tent, we generated misleading texts across the Sci-
Fact, HotpotQA, NFCorpus and Climate-FEVER
dataset, thereby creating a framework suited for
evaluating retrieval models’ capabilities in discern-
ing between real and false information. Using Text
Embedding Model, we visualized the semantic em-
beddings of randomly sampled real and misleading
texts in a two-dimensional space through T-SNE,
as shown in Figure 2. The figure clearly shows a
high degree of overlap between the semantic dis-
tributions of real and misleading texts, indicating
that misleading texts maintain semantic consistency

with the original texts and significantly increase
the retrieval model’s difficulty in distinguishing
between true and false information.

Figure 2: 2D Distribution Plot of Original and Fake
Corpora

Information retrieval systems are typically
trained to distinguish between texts based on their
proximity in the embedding space. When two texts
reside very closely together, the system is likely to
struggle in distinguishing between them. In Fig-
ure 3, we illustrate how the accuracy of information
retrieval is degraded by LLM-generated misinfor-
mation. Clearly, we observe an average drop in
NDCG scores of 11.0%.

Figure 3: Plot of Original and Fake Corpora on
NDCG@3
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4 The Proposed Method: RetrieverGuard

Intuitively, we should push the embeddings of
authentic text away from those containing LLM-
generated misinformation. However, this is a non-
trivial task for two main reasons: (1) we assume
that human-labeled question-answer pairs are un-
available, as they are rare in real-world scenarios.
These pairs are typically needed as positive sam-
ples in common contrastive learning approaches;
(2) we must also ensure that the performance of
retrieval models is maintained in the absence of
misinformation, which means we cannot shift the
embeddings of authentic texts too far apart.

RetrieverGuard builds on an unsupervised con-
trastive learning framework, particularly inspired
by SimCSE (Gao et al., 2022), with enhancements
through leveraging large language models to im-
prove the robustness and semantic discrimination
of embeddings in low-data contexts, shown in Fig-
ure 4.

Figure 4: Flowchart of RetrieverGuard.

4.1 Data Augmentation with Dropout Noise

Unlike traditional retrieval models that depend on
explicit query pairs, our model bypasses predefined
query pairs by directly training on original text
samples for self-supervised learning. For each text
sample xi, we feed it into the model twice, applying
independent dropout masks to generate two distinct
embeddings qi and pi:

qi = fθ(xi, dropout1), (1)

pi = fθ(xi, dropout2), (2)

where qi and pi are considered as a positive pair;
f denotes the Transformer-based encoder, and θ
represents model parameters. Here, dropout1 and
dropout2 refer to independent dropout masks ap-
plied during forward propagation. This strategy not
only supplies pseudo-labels for data augmentation
but also introduces contrastive signals between pos-
itive samples, thus enhancing the robustness of em-
beddings to different noise distributions. Further-
more, the randomness of dropout masks enables the
model to generate diverse semantic representations
for the same text sample, simulating data variety
and compensating for the lack of actual data.

4.2 Dual Negative Sampling Strategy: Soft
and Hard Negatives

To further improve the model’s capacity to distin-
guish between semantically similar content, we
incorporate a layered negative sampling strategy.
This strategy includes both soft and hard negatives
to capture subtle semantic differences and enhance
the detection of deceptive content.

Specifically, we generate soft negatives by sam-
pling other real text xj from the same batch (where
j ̸= i):

sj = fθ(xj , dropout1) (3)

Soft negatives allow the model to retain a dis-
tributional understanding of the overall semantic
space when learning the relationships between real
texts. This type of soft constraint permits the model
to discern differences between various text sam-
ples through spatial relationships in the embedding
space, thereby establishing a broad and comprehen-
sive semantic embedding distribution. This ensures
that the model can maintain distinctions among
authentic content within the semantic space.

However, soft negatives alone may not suffi-
ciently challenge the model, particularly for dis-
tinguishing highly similar deceptive texts. There-
fore, to strengthen the model’s ability to make fine-
grained distinctions between real and fake content,
we use synthetic texts x′i, generated by large lan-
guage models (LLMs), as hard negatives:

ni = fθ(x
′
i, dropout1) (4)

Hard negatives are crafted to directly mimic the
semantic structure and stylistic features of real
texts, aiming to deceive the model. By doing
so, they provide a challenging learning signal that
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forces the model to rely on subtle cues to differen-
tiate between positive and hard negative samples.
This enhancement ultimately sharpens the model’s
sensitivity to subtle cues, boosting its effectiveness
in identifying misleading information.

4.3 Contrastive Learning Training Objective
To maximize the similarity between queries and
positive samples in the semantic embedding space
while increasing the distance from both soft and
hard negatives, we employ a layered contrastive
learning loss function. The objective is to ensure
optimal separation between positive and negative
samples. The loss function L is defined as follows:

L = − log
esim(qi,pi)/τ

esim(qi,pi)/τ + β +
∑
j ̸=i

ϕ
(5)

ϕ = esim(qi,sj)/τ , β = esim(qi,ni)/τ (6)

where sim represents the cosine similarity function,
which quantifies the similarity between two vectors
in the embedding space. The temperature parame-
ter τ moderates the smoothing effect on the simi-
larity, controlling the weighting and compactness
within the embedding space. The goal is to maxi-
mize the similarity between the query embedding
qi and the positive sample pi, while expanding the
distance to the soft negative sj and hard negative
ni.

Specifically, by incorporating soft and hard neg-
atives within the cosine similarity framework, the
model dynamically adjusts the positions of real
and synthetic samples, creating a distinct semantic
boundary. This ensures that, in high-dimensional
semantic space, the model maintains sensitivity to
subtle misleading signals, thereby effectively en-
hancing its robustness and accuracy in retrieval
tasks.

5 Experiments

The primary objective of this study is to compre-
hensively evaluate model performance across vari-
ous domains, tasks, and scenarios involving decep-
tive information. Given the widespread application
of large language models in information retrieval
and verification, we aim to explore the relationship
between model scale and task complexity, focus-
ing on robustness and generalization when con-
fronted with highly similar deceptive texts. Our
experiments specifically compare two model scales

(Stella_1.5B and Stella_400M) to assess their capa-
bilities in scientific fact verification, cross-domain
reasoning, medical information retrieval, and cli-
mate change fact-checking. Using multiple evalua-
tion metrics, we quantitatively analyze the models’
performance across genuine and deceptive datasets.

5.1 Datasets

Dataset Domain Task Relevancy Corpus
SciFact Scientific Fact Checking Binary 5183
HotpotQA Wikipedia QA Binary 20000
NFCorpus Bio-Medical IR 3-level 3633
Climatic-FEVER Wikipedia Fact Checking Binary 10000

Table 1: Datasets Used for Model Train and Evaluation

As shown in Table 1, we selected four datasets
covering a diverse range of tasks and domains.
Following the methodology outlined in Chapter
3, we employed a guided generation framework
with OpenAI’s "gpt-3.5-turbo" to create two de-
ceptive text expansions, Fake1 and Fake2, for each
dataset’s corpus, ensuring they matched the original
corpus in size. The generation strategies included
semantic perturbation, logical inversion, and data
fabrication, thereby presenting realistic challenges
to the model. Fake1, used as a hard negative sample
set during training, enhances the model’s sensitiv-
ity to subtle contextual variations and its ability to
detect deceptive content. Fake2 serves as a valida-
tion expansion to assess the model’s robustness and
generalization when confronted with previously
unseen deceptive texts, offering an additional eval-
uation benchmark. Given the substantial size of
the HotpotQA and Climate-FEVER datasets, we
performed random sampling to reduce the corpus
size and training cost without compromising the
integrity of the validation set.

5.2 Experimental Setup

5.2.1 Models and Training Configuration
Our experiments utilize two scales of Stella mod-
els: Stella_1.5B and Stella_400M. The 1.5B model,
with a larger parameter count, offers enhanced rep-
resentation capabilities, while the 400M model
is more computationally efficient, suitable for
resource-constrained environments. Both mod-
els are Transformer-based but differ in parameter
scales to evaluate the effect of model size on com-
plex tasks and deception detection.

For experimental rigor, we employ unsupervised
contrastive learning across all models, using ran-
dom dropout noise for data augmentation and a
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Model Dataset NDCG@3 MAP@3 NDCG@5 MAP@5 NDCG@10 MAP@10

Original (Stella-1.5B)
Scifact 72.2 69.1 75.3 71.2 77.6 72.4
Scifact+Fake1 63.2 59.8 66.0 61.6 69.8 63.5
Scifact+Fake2 63.4 59.5 65.8 61.2 69.4 63.0

RetrieverGuard (Stella-1.5B)
Scifact 73.0 70.0 75.7 71.8 78.2 73.1
Scifact+Fake1 65.7 62.4 68.4 64.1 71.8 65.8
Scifact+Fake2 65.0 61.5 67.8 63.4 71.2 65.0

Original (Stella-1.5B)
HotpotQA 86.9 82.9 88.9 84.7 90.3 85.6
HotpotQA+Fake1 72.1 63.1 77.2 67.7 79.4 69.1
HotpotQA+Fake2 72.3 63.4 77.3 67.9 79.5 69.3

RetrieverGuard (Stella-1.5B)
HotpotQA 86.4 82.3 88.4 84.1 89.8 85.0
HotpotQA+Fake1 73.6 64.9 78.1 69.0 80.2 70.4
HotpotQA+Fake2 73.7 65.1 78.3 69.3 80.3 70.6

Original (Stella-1.5B)
NFCorpus 44.5 10.1 41.8 11.9 39.0 14.4
NFCorpus+Fake1 34.0 8.0 32.4 9.1 29.7 10.6
NFCorpus+Fake2 33.6 7.8 31.9 9.0 29.9 10.5

RetrieverGuard (Stella-1.5B)
NFCorpus 44.2 9.8 41.7 11.6 38.9 14.1
NFCorpus+Fake1 36.3 8.3 34.0 9.4 31.1 10.9
NFCorpus+Fake2 35.5 8.3 33.5 9.4 31.3 11.1

Original (Stella-1.5B)
Climate-FEVER 34.7 25.7 38.4 29.5 44.3 33.0
Climate-FEVER+Fake1 27.0 19.4 30.5 22.5 36.6 25.7
Climate-FEVER+Fake2 25.2 17.8 28.9 20.9 34.8 24.0

RetrieverGuard (Stella-1.5B)
Climate-FEVER 35.8 26.6 39.4 30.5 45.3 34.0
Climate-FEVER+Fake1 31.4 23.0 34.4 26.1 40.3 29.3
Climate-FEVER+Fake2 30.2 22.2 33.8 25.5 39.5 28.6

Table 2: Results with stella-1.5B show that models trained using RetrieverGuard effectively handle misinformation.

dual-negative sample mechanism to enhance sen-
sitivity and differentiation capability against de-
ceptive information. Training does not include ex-
plicit query pairs; instead, self-supervised methods
construct positive and negative pairs, enabling the
model to learn fine-grained text differences without
query reliance.

Hyperparameters are kept consistent across mod-
els to ensure comparability. All models utilize the
Adam optimizer, with an initial learning rate of
1× 10−5 and batch size of 8. We apply a learning
rate decay and hard-negative sample weighting de-
cay strategy, gradually reducing the learning rate
to 1 × 10−8 and increasing the batch size to 64.
Each model undergoes multiple runs on every task
to mitigate potential biases from data randomness.

5.2.2 Evaluation Metrics
To comprehensively evaluate model performance,
we employ the following metrics: NDCG@k and
MAP@k. These metrics are capable of assessing
both the ranking performance and retrieval accu-
racy of the model.

5.3 Results Analysis
The experimental results clearly indicate that
Stella_1.5B (Table 2) and Stella_400M (Table 6
in Appendix E) exhibit significant performance dif-
ferences across various datasets, illustrating the
influence of model size, dataset diversity, and the
presence of deceptive texts, particularly in multi-

hop reasoning and cross-domain tasks. The op-
timal training hyperparameter configurations for
each dataset are presented in Table 4 in Appendix
B.

Stella_1.5B consistently outperforms the 400M
model across original datasets, with this trend be-
ing particularly pronounced on complex datasets
such as HotpotQA and Climate-FEVER. On Hot-
potQA, the 1.5B model achieves an NDCG@5 of
88.9 compared to 86.4 for the 400M model, indi-
cating that the larger model excels at capturing in-
tricate semantic relationships and logical reasoning.
When deceptive texts are introduced, the NDCG@5
for the 1.5B model on HotpotQA+Fake1 and Hot-
potQA+Fake2 drops to 77.2 and 77.3, respectively,
compared to a decrease to 74.7 and 74.8 for the
400M model. These reductions indicate that, al-
though both models are affected by deceptive texts,
the 1.5B model exhibits a higher resilience against
such interference in multi-hop reasoning tasks.

However, the impact of deceptive texts extends
beyond mere performance degradation; it funda-
mentally threatens the integrity of information re-
trieval systems. This is especially evident in the
results on the Scifact dataset. The NDCG@3
for the 1.5B model on the original data is 72.2,
which sharply decreases to 63.4 upon the introduc-
tion of Fake2, while the 400M model’s NDCG@3
decreases from 71.9 to 62.0. A similar trend
is observed in the NFCorpus dataset, where the
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NDCG@3 for two models drops by approximately
11.0 and 12.0. These substantial declines under-
score that deceptive texts, particularly those re-
lated to domain-specific information, significantly
impair the models’ decision-making capabilities,
leading to severe misjudgments when dealing with
complex, domain-specific issues. This issue is
particularly concerning in sensitive fields such as
medicine and science, where misleading informa-
tion can have far-reaching adverse effects. Such
degradation in model accuracy could result in se-
rious misguidance in practical applications, poten-
tially providing users with inaccurate information
and ultimately affecting the quality of decision-
making.

To mitigate the harmful effects of deceptive texts,
the proposed self-supervised contrastive learning
method demonstrates remarkable efficacy. Partic-
ularly for the Stella_1.5B model, training with de-
ceptive texts substantially improves sensitivity and
accuracy in detecting deceptive information. For
instance, on the Climate-FEVER dataset, the un-
trained 1.5B model’s NDCG@3 drops from 34.7 to
27.0 after introducing Fake1, whereas the Retriev-
erGuard 1.5B achieves an NDCG@3 of 31.4 on the
same Fake1 data, reducing the decline by 4.4. Simi-
lar improvements are observed across other metrics,
such as NDCG@5 and MAP@5, with NDCG@5
increasing from 30.5 to 34.4, and MAP@5 im-
proving from 22.5 to 26.1. Additionally, on the
unseen validation interference dataset Fake2, the
trained model demonstrates exceptional robustness
and generalizability; for example, the 1.5B model’s
NDCG@3 improves from 25.2 to 30.2 (approxi-
mately 5.0) on Climate-FEVER. These enhance-
ments illustrate that self-supervised learning with
soft and hard negative sampling not only boosts
the model’s performance on the original data (by
approximately 1.0), but also significantly strength-
ens the model’s resilience against interference from
deceptive datasets.

In summary, the experimental results confirm
that by increasing model size and incorporating a
self-supervised contrastive learning approach, the
Stella_1.5B model better withstands the interfer-
ence of high-similarity deceptive texts. The spe-
cific data reflects substantial improvements across
various datasets and tasks, validating the efficacy
of self-supervised learning for detecting deceptive
information. Furthermore, the challenges posed
by deceptive texts underscore the necessity for de-
veloping more robust information retrieval models

to ensure users have access to more reliable and
authentic information.

5.4 Sensitivity to Misinformation Ratios

To simulate the randomness found in real-world
databases—such as cases where some corpora have
corresponding deceptive counterparts while others
do not, or instances where certain corpora contain
more than one interfering corpus. We randomly
introduced AI-generated deceptive corpora into the
original SciFact corpus. The proportion of decep-
tive to authentic data ranged from 20% to 200%.
Figure 5 illustrates the performance of both the
original 1.5B model and the RetrieverGuard model
in identifying deceptive texts under varying mis-
information ratios. Although the performance of
both models declines as the noise ratio increases,
the trained model demonstrates a clear advantage
in terms of both the rate of decline and overall
resilience to interference. These results further val-
idate the robustness and broad applicability of the
proposed RetrieverGuard method.

Figure 5: NDCG@3 for Origin stella_1.5B and Retriev-
erGuard stella_1.5B of different Noise Ratios

6 Conclusion

Our study provides an in-depth examination of the
challenges posed by misinformation generated by
large language models (LLMs) to information re-
trieval systems, offering a highly practical solution.
By constructing a diverse dataset spanning multi-
ple domains and containing both authentic human-
authored texts and highly deceptive AI-generated
content, we have established a foundational re-
source for future research in this area. Further-
more, we developed and validated the Retriever-
Guard method, which leverages a self-supervised
contrastive learning strategy that employs both soft
and hard negatives to enhance model robustness
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and misinformation detection capabilities. Exper-
imental results demonstrate that RetrieverGuard
achieves outstanding performance in improving re-
trieval accuracy and countering highly deceptive
content, thus providing crucial technical support
for maintaining the reliability and authenticity of
IR systems in the era of LLMs.

Limitations

While the self-supervised contrastive learning
method has demonstrated significant effectiveness
in deception detection, it faces several limitations.
Firstly, the training process is time-intensive, and
the method’s performance may be suboptimal in
low-resource or few-shot settings. Furthermore,
its reliance on soft and hard negative sampling
could lead to overfitting on specific types of de-
ceptive texts when scaling to larger and more di-
verse datasets, which may hinder the model’s gen-
eralization capabilities. Additionally, while large-
parameter models exhibit superior performance in
deception detection, they are accompanied by sub-
stantial computational costs.
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A Appendix A: Discuss

Scale Effect: The experimental results demon-
strate that the 1.5B model consistently outperforms
the 400M model across nearly all tasks, particularly
in deception detection, exhibiting greater robust-
ness. This indicates a positive correlation between
model size and its ability to handle highly simi-
lar deceptive information. Larger models have a
heightened capacity to capture subtle semantic dif-
ferences and manage complex semantic structures,
effectively maintaining high performance. This
characteristic is especially notable when facing de-
ceptive texts with intricate logic and semantics.

Domain-Specific Challenges: Cross-domain
tasks, such as HotpotQA and Climatic-FEVER, im-
pose higher demands on the model’s semantic un-
derstanding and reasoning capabilities. Although
the 1.5B model performs well on genuine data,
there remains substantial room for improvement
on deceptive data. This suggests that current mod-
els require further optimization for handling multi-
hop reasoning and domain-specific tasks. The
model’s limitations become particularly evident
when processing highly similar deceptive informa-
tion. In these scenarios, existing methods fail to
adequately address the deception risks inherent in
cross-domain and complex tasks, highlighting a
critical need for further advancements.

Interference Effects of Deceptive Texts: Re-
gardless of model size, deceptive text expansions
exert a significant negative impact on model per-
formance. The experimental results reveal that
even the larger 1.5B model experiences notable de-
clines in NDCG, MAP, and other metrics when con-
fronted with highly similar deceptive texts. This re-
flects existing models’ vulnerabilities in managing
deceptive information and the inadequacies in miti-
gating the impact of deceptive texts on model ac-
curacy. Such effects are particularly pronounced in
specific domains (e.g., climatology and medicine),
where they may not only degrade model perfor-
mance but also risk severely misleading users. In
the era of large language models, the challenges
posed by deceptive information cannot be over-
looked, as they threaten the integrity and reliability
of information retrieval systems. Thus, strengthen-
ing model resilience against deceptive information
and enhancing performance across multi-task sce-
narios have become critical challenges that demand
urgent attention.

Broader Potential of Self-Supervised Con-

trastive Learning The self-supervised contrastive
learning method proposed in this study has proven
highly effective in enhancing model resilience to
deceptive information. Beyond the specific tasks
addressed in this research, this approach holds con-
siderable potential for broader application across
various domains involving misinformation detec-
tion. Areas such as social media content modera-
tion, fake news detection, and online fraud preven-
tion could all benefit from this technique.

B Appendix B: Final Model
Hyperparameters

Here, we set the Dropout rate to 0.1 for all datasets,
and the specific experimental parameters are shown
in Table 5 in Appendix C.

Dataset Batch Size lr Dropout Epoch
SciFact 8 1e−8 0.1 3
HotpotQA 8 1e−7 0.1 1
NFCorpus 16 1e−8 0.1 4
Climatic-FEVER 8 1e−7 0.1 1

Table 3: Train Hyperparameters for each Dataset on
Stella_1.5B

Dataset Batch Size lr Dropout Epoch
SciFact 8 1e−8 0.1 2
HotpotQA 8 1e−8 0.1 3
NFCorpus 8 1e−8 0.1 3
Climatic-FEVER 64 1e−8 0.1 2

Table 4: Train Hyperparameters for each Dataset on
Stella_400M

C Appendix C: Dropout statistic

We experimented with different dropout rates while
keeping the other training parameters constant and
found that a Dropout rate of 0.1 yielded the best re-
sults for both the NDCG@3 and MAP@3 metrics.

Dropout Ratio NDCG@3 MAP@3
0.01 64.9 61.3
0.03 64.8 61.2
0.06 64.8 61.3
0.1 65.3 61.8
0.15 64.8 61.3
0.2 65.1 61.6

Table 5: Dropout statistic of SciFact on Stella_1.5B
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Model Dataset NDCG@3 MAP@3 NDCG@5 MAP@5 NDCG@10 MAP@10

Original (Stella-400M)
Scifact 71.9 69.2 74.2 70.9 77.0 72.3
Scifact+Fake1 62.6 58.9 65.2 60.6 68.0 61.9
Scifact+Fake2 62.0 57.9 64.3 59.4 67.3 60.9

RetrieverGuard (Stella-400M)
Scifact 72.3 69.4 74.1 70.8 77.0 72.3
Scifact+Fake1 65.6 62.1 67.5 63.5 70.4 64.9
Scifact+Fake2 63.8 60.1 66.0 61.6 69.3 63.2

Original (Stella-400M)
HotpotQA 84.1 79.4 86.4 81.4 88.0 82.5
HotpotQA+Fake1 69.6 60.5 74.7 65.1 77.1 66.7
HotpotQA+Fake2 69.7 60.7 74.8 65.2 77.2 66.8

RetrieverGuard (Stella-400M)
HotpotQA 84.4 79.8 86.6 81.7 88.3 82.9
HotpotQA+Fake1 71.4 62.7 76.2 66.9 78.5 68.4
HotpotQA+Fake2 71.6 62.8 76.3 67.0 78.6 68.5

Original (Stella-400M)
NFCorpus 44.7 10.3 42.7 12.3 39.9 14.8
NFCorpus+Fake1 32.7 7.4 31.3 8.8 29.9 10.5
NFCorpus+Fake2 32.6 7.7 31.8 9.1 30.4 10.8

RetrieverGuard (Stella-400M)
NFCorpus 44.9 10.3 42.3 12.2 39.9 14.7
NFCorpus+Fake1 35.1 7.8 33.3 9.5 31.5 11.1
NFCorpus+Fake2 35.5 8.2 33.6 9.5 31.8 11.2

Original (Stella-400M)
Climate-FEVER 34.4 25.3 37.8 29.0 43.9 32.4
Climate-FEVER+Fake1 25.9 18.5 29.2 21.4 34.6 24.2
Climate-FEVER+Fake2 24.2 17.2 28.0 20.2 33.4 23.0

RetrieverGuard (Stella-400M)
Climate-FEVER 34.6 25.6 38.0 29.3 44.2 32.8
Climate-FEVER+Fake1 28.4 20.7 31.3 23.4 36.7 26.3
Climate-FEVER+Fake2 27.4 19.9 30.3 22.6 35.7 25.5

Table 6: Results of Stella_400M.

D Appendix D: Resource

All our experiments were conducted using a sin-
gle A800-80G GPU, with varying time consump-
tion across different datasets. For example, on the
Climate-FEVER dataset (10k samples), the parame-
ter search took approximately 32 hours. Under opti-
mal training parameters, RetrieverGuard’s training
time was around 1 hour.

E Appendix E: Result of Stella_400M

In our experiments, all reported results are aver-
aged over multiple runs to ensure the accuracy and
stability of the overall findings. Specifically, we
conducted three experiments and statistical anal-
yses on the Stella_1.5B and Stella_400M models
across four datasets. The table presents the average
values, with most data fluctuations within a range
of less than 0.5% (except for NDCG@1, which is
around 1%). For the Noise Ratio experiment in
Section 5.4, we performed an additional five runs
and reported the averaged results.
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