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Abstract
Social engineering attacks, such as phishing,
often target victims through visually perturbed
texts to bypass security systems. The noise
contained in these texts functions as an ad-
versarial attack, designed to deceive language
models and hinder their ability to accurately
interpret the content. However, since it is dif-
ficult to obtain sufficient phishing cases, pre-
vious studies have used synthetic datasets that
do not contain real-world cases. In this study,
we propose the BitAbuse dataset, which in-
cludes real-world phishing cases, to address the
limitations of previous research. Our dataset
comprises a total of 325,580 visually perturbed
texts. The dataset inputs are drawn from the
raw corpus, consisting of visually perturbed
sentences and sentences generated through an
artificial perturbation process. Each input sen-
tence is labeled with its corresponding ground
truth, representing the restored, non-perturbed
version. Language models trained on our pro-
posed dataset demonstrated significantly bet-
ter performance compared to previous meth-
ods, achieving an accuracy of approximately
96%. Our analysis revealed a significant gap
between real-world and synthetic examples, un-
derscoring the value of our dataset for build-
ing reliable pre-trained models for restoration
tasks. We release the BitAbuse dataset, which
includes real-world phishing cases annotated
with visual perturbations, to support future re-
search in adversarial attack defense. Our code
and datasets are available at https://github.
com/CAU-AutoML/Bitabuse.

1 Introduction

Social engineering attacks, including phishing,
spam, pretexting, baiting, and tailgating, aim to
leak confidential information by exploiting the psy-
chological vulnerabilities of victims (Salahdine and
Kaabouch, 2019). Among them, phishing often at-
tacks victims through texts of email, SMS, and
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URLs. Specifically, these phishing techniques by-
pass security systems such as spam filtering using
visually perturbed (VP) text (Deng et al., 2020;
Julis and Alagesan, 2020; Boucher et al., 2022;
Unicode Consortium, 2022), in which other char-
acters, typically homoglyphs, replace a part of the
characters in the text if the source language is En-
glish, that are nearly identical in appearance to the
original characters1. For example, modifying ‘Bit-
coin’ to ‘ßitcöı̆n’ is an example of this technique.

Because phishing attacks based on VP texts can
be prevented by restoring them to the original texts,
most studies (Suzuki et al., 2019; Sawabe et al.,
2019; Pruthi et al., 2019; Imam et al., 2022; Keller
et al., 2021) focused on devising an restoration
method. Specifically, they modified a non-VP text
dataset into a VP text dataset based on their own
heuristic rules and then evaluated the performance
of their restoration methods based on the synthe-
sized dataset. These approaches are effective for
identifying the weaknesses of the restoration meth-
ods, but their analysis may be biased toward their
own rules because the dataset is created without
regard to real-world VP texts. For example, Viper
(Eger et al., 2019) always perturbs a fixed portion
of characters in a sentence, which is unrealistic.
Furthermore, LEGIT (Seth et al., 2023) annotates
the legibility of synthetic VP text and introduces
a dataset by generating VP text that is applicable
to real-world scenarios through a model that ranks
transformations according to their readability. Nev-
ertheless, research on VP text in real-world settings
remains unexplored.

Although the data synthesizing strategy is help-
ful in circumventing the difficulty due to the lack
of publicized real-world VP texts regarding phish-
ing attacks, building a language model (LM)-based

1We will indicate such character as VP character subse-
quently. Similarly, VP words, VP sentences, and VP texts
mean words containing VP characters, sentences containing
VP words, and texts containing VP sentences, respectively.
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system for defending against phishing attacks only
based on the synthesized dataset may be risky be-
cause there can be a gap between real-world and
simulation. We argue that one way to achieve this
limitation is to mix the real VP texts with the syn-
thesized VP texts. In this case, it may be preferable
that the original texts of the synthesized ones come
from the same source for domain consistency. To
achieve this, we propose a new dataset, namely
BitAbuse, for defending phishing attacks.

Our contribution can be summarized as follows.
First, based on 262,258 phishing-related emails
identified from bitcoinabuse[.]com (Bitcoin Abuse,
2023), we created a raw corpus containing 325,580
sentences comprising 26,591 VP sentences and
298,989 non-VP English sentences. Second, based
on the corpus, we created three datasets: BitCore,
BitViper, and BitAbuse. Third, to depict the char-
acteristics of our dataset, we conducted pilot stud-
ies using popular methods in this field and then
compared their efficacy. We made the datasets of
phishing attacks publicly available2.

2 Related Work

In the studies involving VP texts, obtaining suf-
ficient data is often difficult because VP texts,
usually delivered as spam emails, are not widely
shared on the web. In particular, there is a lack
of datasets that reflect actual phishing attack situ-
ations, and existing datasets are only valid under
specific conditions or environments (Elsayed and
Shosha, 2018; Suzuki et al., 2019; Yazdani et al.,
2020; Almuhaideb et al., 2022), such as internation-
alized domain names (IDNs.) As a result, conven-
tional studies typically included a data synthesizing
procedure with the method for restoring VP texts.
Specifically, the dataset for testing the efficacy of
their VP text restoration methods is synthesized by
heuristic rules set in their own way.

Two notable studies regarding VP text data syn-
thesizing are TextBugger (Li et al., 2019) and Viper.
TextBugger is devised to generate VP texts using
predefined homoglyph pairs and perturbation meth-
ods. Its goal is to degrade the performance of LMs
by selecting characters in a text and replacing them
with VP characters. This is useful for exposing
vulnerabilities in security-sensitive tasks such as
sentiment analysis (Pang and Lee, 2008) or mali-
cious content detection (Hou et al., 2010). Viper

2https://huggingface.co/datasets/AutoML/
bitaubse

searches for homoglyphs and generates VP texts
based on embedding techniques. This method mod-
ifies the dataset by replacing characters in the text
with VP characters and induces visual disturbance
based on the replacement probability.

Regarding the restoration of VP texts, conven-
tional methods first restore malicious text using
SimChar DB-based (Suzuki et al., 2019), OCR-
based (Sawabe et al., 2019), Spell Checker-based
(Imam et al., 2022), or LM-based methods (Keller
et al., 2021) and then detect malicious texts. The
SimChar DB-based method automatically collects
homoglyphs from the Unicode character set to de-
tect VP characters in IDNs and restores them using
a predefined restoration table. OCR-based methods
were investigated to detect phishing attacks that de-
ceive users by putting VP characters in IDNs. This
method recognizes VP characters as images and
converts them into the original characters. The
Spell Checker-based method aims to detect im-
ages containing malicious text distributed on social
networks by considering deformed characters in
the text as typos and restoring them using a spell
checker. The restoration strategy that combines
two LMs, BERT (Devlin et al., 2019) and GPT
(Radford et al., 2018), was also considered (Keller
et al., 2021).

A common drawback of conventional studies is
that the datasets used for evaluating the restoration
performance of phishing attacks contain no real VP
texts. As a result, the restoration performance in
real-world situations may be over/underestimated,
and unstable pre-trained LM models can be ob-
tained. In this study, we create a new dataset that
can contribute to phishing attack studies by collect-
ing VP texts used in bitcoinabuse[.]com.

3 BitAbuse

We collect VP texts used in phishing attacks from
the bitcoinabuse[.]com (Bitcoin Abuse, 2023) web-
site. The website bitcoinabuse[.]com is a platform
where worldwide users can share content related
to Bitcoin fraud, such as emails. The site provides
data collected through user participation, making it
easy to find phishing email bodies containing VP
texts. Additionally, because users directly upload
emails after masking personal information, it can
be ensured that the data can be collected safely
without privacy concerns.

We used 262,258 phishing-related emails col-
lected from bitcoinabuse[.]com between May 16,
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Original VP sentence Ground truth (VP characters are restored)

i am going to s nd out your vid o record ng to
ev ry bit of yo r contacts and you c n easily
im g ne c ncerning the disgrac you will s e.

i am going to send out your video recording to
every bit of your contacts and you can easily
imagine concerning the disgrace you will see.

ì f you w nt to prevent th ì s, tr nsfer 0.019 btc to
my b ì tco ì n w llet ( ì n c se you do not know how
to do ì t, then wr ì te to google: "buy b ì tco ì n").

if you want to prevent this, transfer 0.019 btc to
my bitcoin wallet (in case you do not know how
to do it, then write to google: "buy a bitcoin").

Table 1: Examples of VP sentences (Left) and manually restored sentences (Right) in the raw corpus (note that
vowels such as ’a’, ’e’, ’i’, ’o’, and ’u’ are mainly used as VP, which are highlighted in gray).

2017, and January 15, 2022. Detailed statistics of
the raw dataset are discussed in Appendix A.

Although our primary goal is to create a VP text
dataset related to English texts, the emails collected
from English-speaking countries also included non-
English texts, so removing irrelevant emails was
followed. However, using existing language detec-
tion models to classify emails written in English
is challenging due to the presence of English VP
text, and fully manual filtering is also impractical.
Therefore, we utilized the BERT model (Devlin
et al., 2019) with a fully connected classification
layer trained to automatically classify English text.
The BERT model used in this classifier has a hidden
state size of 768, 12 hidden layers, and 12 atten-
tion heads. Among the 262,258 email texts, 16,598
were randomly chosen and manually labeled as En-
glish (10,024 texts) or non-English (6,574 texts),
and these labeled email texts were used to train the
classification model. The labeled dataset was ex-
clusively divided into train, validation, and test sets
with 13,444, 1,494, and 1,660 texts, respectively.
We provide the detailed hardware specification and
hyperparameter settings in Appendix B.

The classifier achieved an accuracy of approxi-
mately 99.28% on 1,660 uninvolved email texts in
the training phase. The trained classifier removed
84,204 non-English email texts from the 262,258
ones, resulting in 178,054 email texts for further
processing. Although this process significantly ac-
celerates the preprocessing, non-English emails
may still remain because the classification is imper-
fect. Such non-English sentences from those email
texts are removed manually during a subsequent
process that will be explained later.

After rough filtering 178,054 non-English email
texts, we obtained 326,732 sentences by splitting
the original texts with a maximum length of 512.
Because those sentences include unnecessary com-

ponents, such as random character sequences, we
used a series of regular expressions to remove them
efficiently. The list of regular expressions we used
for further preprocessing and downloadable URL
links are presented in Appendix C. We found that
the raw dataset contains a wide range of VP char-
acters not addressed in previous studies, such as
control characters from U+0001 to U+0005, that
will remain in BitCore and BitAbuse datasets.

To validate the restoration performance, we man-
ually annotated the label for each character in the
326,732 sentences. Since manually annotating VP
text is highly labor-intensive and inefficient, we
extracted VP words from the VP text and manu-
ally created non-VP word labels for each VP word.
These labels were then applied to the VP text to
generate non-VP text labels. In cases where it was
difficult to determine the label by looking only at
the VP word, we referred to the original text to ac-
curately annotate the corresponding non-VP word.
While annotating, 1,152 irrelevant sentences, such
as repetitive identical characters, random charac-
ter sequences, or non-English sentences missed
from the previous classification process, were re-
moved. Table 1 shows examples of VP text with
the corresponding ground truth sentences, and brief
statistics of the raw corpus are presented in Ap-
pendix A. Also, We created BitCore, BitViper,
and BitAbuse datasets based on the raw corpus.
Brief statistics of the three datasets are presented
in Table 10 of Appendix D.

4 Experimental Settings

We tested the restoration performance using Sim-
char DB (Suzuki et al., 2019), OCR (Sawabe et al.,
2019), Spell Checker (Imam et al., 2022), Char-
acter BERT-based(El Boukkouri et al., 2020), and
GPT-4o mini-based methods (OpenAI, 2023) in
the viewpoint of three well-known evaluation mea-
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(a) Complete graph of VP character-word association

(b) Subgraph regarding ‘a’ (c) Subgraph regarding ‘e’

(d) Subgraph regarding ‘i’ (e) Subgraph regarding ‘o’

Figure 1: Visualization of clustering based on VP character-word association of BitCore dataset. (a) overview of
the obtained graph, (b) subgraph regarding VP characters of ‘a’, (c) subgraph regarding VP characters of ‘e’, (d)
subgraph regarding VP characters of ‘i’, and (e) subgraph regarding VP characters of ‘o’

Measure Dataset
Restoration Method

SimChar DB OCR Spell Checker Character BERT GPT-4o mini

Word BitCore 0.5515± 0.0036 0.6531± 0.0036 0.8909± 0.0016 0.9984 ± 0.0004 0.7168± 0.0040
Level BitViper 0.3373± 0.0006 0.3177± 0.0006 0.7133± 0.0011 0.9534 ± 0.0008 0.5034± 0.0009

Accuracy BitAbuse 0.3547± 0.0010 0.3446± 0.0008 0.7275± 0.0012 0.9568 ± 0.0006 0.5196± 0.0010

Word BitCore 0.6581± 0.0026 0.7255± 0.0022 0.8734± 0.0016 0.9992 ± 0.0001 0.8966± 0.0023
Level BitViper 0.4708± 0.0005 0.4617± 0.0005 0.6942± 0.0010 0.9294 ± 0.0010 0.7963± 0.0007

Jaccard BitAbuse 0.4860± 0.0007 0.4830± 0.0007 0.7083± 0.0009 0.9347 ± 0.0008 0.8037± 0.0005

BitCore 0.8199± 0.0011 0.8860± 0.0011 0.9476± 0.0008 0.9997 ± 0.0000 0.9328± 0.0025
BLEU BitViper 0.7808± 0.0003 0.7748± 0.0002 0.8753± 0.0005 0.9765 ± 0.0004 0.8919± 0.0004

BitAbuse 0.7838± 0.0004 0.7836± 0.0004 0.8809± 0.0005 0.9782 ± 0.0003 0.8947± 0.0004

Table 2: Comparison results of the five restoration methods in terms of three evaluation measures. Bold text indicates
the best performance, and underlining indicates the second-best performance.

sures, such as Word Level Accuracy (Imam et al.,
2022), Word Level Jaccard, and BLEU (Zeng et al.,
2021). In addition, detailed information regarding
the experiments, such as the model’s hyperparame-
ters, is described in Appendix F.

4.1 Methods

We tested the restoration performance using five
different methods. The SimChar DB-based method
checks if there is an alphabetic homoglyph for each
character in the Simchar Database and uses it to
restore the homoglyph. The OCR-based method
was implemented by applying OCR to each char-
acter and selecting the character with the highest
probability. Spell Checker-based method entailed
the segmentation of sentences into individual word
units through a rule-based approach, followed by

the restoration of each word using a spell checker
based on Levenshtein Distance, as documented in
the corresponding references (Norvig, 2016; Lison
and Tiedemann, 2016).

Character BERT The Character BERT-based
method employs a BERT model that processes to-
ken sequences at the character level to restore VP
characters, inferring them as the original characters
through the context of individual characters. In
this approach, instead of relying on a standard sub-
word tokenizer-based BERT—which is less effec-
tive when tokens contain perturbed characters—a
character-level sequence approach is adopted for
both input and output. This method is particularly
important because attackers often modify charac-
ters within tokens to deceive victims, leading to
widespread perturbations across most tokens. Stan-
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Method Example 1 Example 2

Original
Text

afte t t, i h v st t d tr c ing
î nt t ct î v í t í s.

'
0 .

SimChar
DB

after t t, i hav start d tr cking
ur int rn t ctiviti s.

e e e e e o ' e
oo ae0 o .

OCR
after that, i hqva stqrtad tracking your
tntarnat acttv í t í as. i w ll elete evehythlng l've got ab0ut you.

Spell
Checker

after that, i have started tracking your
<None> <None>. i will delete everything love got about you.

Character
BERT

after that, i have started tracking your
internet activities. i will delete everything i've got about you.

GPT-4o
mini

after that, i have started taking about internet
activities. i will let you know about what you.

Table 3: Restoration examples of the five methods where “<None>” indicates that the method failed to restore the
word (VP and incorrectly restored characters are highlighted in gray color and underlined, respectively.)

dard BERT’s Masked Language Model (MLM)
mechanism, which relies on contextual informa-
tion from surrounding tokens, struggles in such
cases because the context tokens themselves may
also be perturbed. Experiments with the Character
BERT-based model involve training to restore and
output the input VP sentence from three datasets
into the corresponding restored sentence. In this
process, both the input and output are sequences
of character-level tokens. The training process of
Character BERT was configured with a learning
rate of 5×10−5, a batch size of 32, and ten training
epochs. Additionally, the AdamW optimizer was
used with settings of β1 = 0.9, β2 = 0.999, and
a weight_decay = 0, along with a linear learning
rate scheduler. The experiment shown in Table 4
uses the same hyperparameters as the previously
mentioned experiment, except the number of train-
ing epochs is set to 20.

We also employed the GPT-4o mini model to
assess the performance of the latest large language
model on the BitAbuse. GPT-4o mini is a closed-
source generative language model, and the experi-
ment was conducted via OpenAI’s inference API.
To leverage the model, we designed a prompt, as
detailed in Table 15 of Appendix F.

4.2 Evaluations

We evaluated each method using the three mea-
sures that were used in previous VP text restoration
studies: Word Level Accuracy, Word Level Jaccard,
and BLEU. Word Level Accuracy is a measure that
evaluates whether the restored word matches at
each word position. When Nc represents the num-

ber of correctly restored words and N represents
the total number of words in each sentence, Word
Level Accuracy is calculated as

Word Level Accuracy =
Nc

N
.

The Word Level Jaccard score is calculated by
forming the word set Wp from the predicted sen-
tence and the word set Wl from the labeled sen-
tence and then computing the ratio of the size of
their intersection to the size of their union. Specifi-
cally, the Word Level Jaccard score is defined as

Word Level Jaccard =
|Wp ∩Wl|
|Wp ∪Wl|

.

The BLEU score is calculated by constructing
the character sequences Cp of the predicted sen-
tence and the character sequences Cl of the labeled
sentence and then calculating the precision of the
n-grams of the two sequences by

BLEU = B × exp

(
N∑

n=1

wn log pn

)
.

where N and wn are the maximum length and the
weight of the n-grams, respectively. pn represents
the precision of the n-grams in Cl and Cp, and
B is the brevity penalty used in the BLEU score
calculation. In this paper, N = 4 is used to calcu-
late the BLEU score, and wn = 1/N is set. The
brevity penalty follows the standard BLEU score
calculation method.
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Without specific mentions, among sentences of
BitAbuse dataset, 60%, 20%, and 20% of them
were used for training, validation, and testing, re-
spectively. The performance of each method was
evaluated on the test set, and the average perfor-
mance was measured by repeating the experiments
with ten random training and test set splits.

5 Experimental Results

We conducted exploratory data analysis on VP
words, VP characters, ratios, and so on that may
help devise an effective methodology for defending
phishing attacks.

Next, the number of VP sentences according to
the occurrence ratio of VP characters to sentence
length in the BitCore, BitViper, and BitAbuse
datasets is presented as a histogram as in Fig-
ure 3 in Appendix D. Figure 1 shows the VP
character-word association graph using the Yifan
Hu algorithm (Hu, 2005) in Gephi (Bastian et al.,
2009). This graph represents the clustering of the
VP character-word association of BitCore dataset,
where nodes correspond to characters and words
subjected to perturbation attacks. The distance be-
tween nodes indicates the degree of their related-
ness3. Figure 1(a) illustrates the overall graph, and
Figures 1(b)–(e) each represents the graph regard-
ing key characters. Notably, the core of the major
clusters is occupied by vowels such as ‘a’, ‘e’, ‘i’,
and ‘o’. This likely occurs because vowels are
frequently used across various words, resulting in
strong associations within the graph and position-
ing them at the center. Specifically, the character ‘e’
appears to play a more global role within the graph,
whereas other characters show stronger relations
with words belonging to different clusters.

Table 2 shows the restoration performance of
SimChar DB, OCR, Spell Checker, Character
BERT, and GPT-4o mini-based methods on three
datasets. Experimental results indicate that the
Character BERT-based method significantly out-
performs the other three methods. Regarding
each dataset, all five methods achieved the best
and worst performance for BitCore and BitViper
datasets, respectively. Table 3 represents two exam-
ples of restoration results regarding five methods.

3The Yifan Hu algorithm uses a multiscale approach to
position highly related nodes close to each other while plac-
ing less related nodes further apart. This algorithm is funda-
mentally based on a force-directed layout, where nodes are
arranged according to the forces of attraction and repulsion
between them based on the frequency of association.

Although the Character BERT-based method re-
stores two VP sentence examples perfectly, Table 2
indicates that the restoration performance of Char-
acter BERT is imperfect. Table 5 lists VP words in
three datasets that are incorrectly restored by the
Character BERT-based method. The table shows
that it often fails to restore if two or more VP char-
acters are continued in the corresponding VP word.

We evaluated the Word Level Accuracy regard-
ing the proportion of VP characters in sentences to
validate the robustness of each method, as shown in
Figure 2. In this experiment, the Character BERT-
based method showed robust performance on both
BitCore and BitAbuse datasets. It is interesting
to note that it loses its robustness on BitViper
dataset that does not include BitCore dataset, indi-
cating that BitCore significantly contributes to the
robust performance of the Character BERT-based
method. In summary, the Character BERT-based
method showed the most robust performance for
VP sentences with a high VP character ratio. To see
experimental results regarding Word Level Jaccard
and BLEU, please refer to Appendix G.

Test performance with VP characters unseen
during the training phase can be critical for the
Character BERT-based method. Additional experi-
ments were conducted using the Character BERT-
based method with varying amounts of training
VP sentences to validate this aspect. Specifically,
when the amount of training VP sentences is ex-
tremely small, the Character BERT-based method
encounters many unseen VP characters. Table 4
presents the performance of the Character BERT-
based method when the proportion of training VP
sentences is set to 1%, 5%, 10%, and 20%, respec-
tively. In these experiments, we recognized that
differences in the size of the test dataset could im-
pact the fairness of performance comparisons. To
address this, we sampled the remaining data, which
were not used for training or validation, to stan-
dardize the size of the test dataset. Performance
evaluation was conducted by measuring the per-
formance of each pattern in the test dataset and
calculating the mean and variance. This process
was grounded in the Law of Large Numbers to
include as many samples as possible, aiming to
approximate the population mean.

The experimental results revealed that when the
amount of training VP sentences was as low as
1% or 5%, significant performance degradation
was observed for both the BitViper and BitAbuse
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(a) BitCore dataset (b) BitViper dataset (c) BitAbuse dataset

Figure 2: Word Level Accuracy performance of each method regarding VP character ratio in each sentence

Measure Dataset
Training / Validation / Test ratio (%)

1 / 20 / 79 5 / 20 / 75 10 / 20 / 70 20 / 20 / 60

Word BitCore 0.9704± 0.0047 0.9917± 0.0016 0.9957± 0.0003 0.9975 ± 0.0007
Level BitViper 0.5318± 0.0013 0.7085± 0.0518 0.8786± 0.0112 0.9236 ± 0.0015

Accuracy BitAbuse 0.5632± 0.0035 0.7778± 0.0690 0.8963± 0.0035 0.9315 ± 0.0020

Word BitCore 0.9759± 0.0032 0.9951± 0.0007 0.9976± 0.0003 0.9986 ± 0.0002
Level BitViper 0.4446± 0.0003 0.6192± 0.0576 0.8242± 0.0150 0.8862 ± 0.0021

Jaccard BitAbuse 0.4861± 0.0018 0.7041± 0.0768 0.8491± 0.0048 0.8979 ± 0.0024

BitCore 0.9923± 0.0013 0.9984± 0.0003 0.9992± 0.0001 0.9996 ± 0.0001
BLEU BitViper 0.7624± 0.0003 0.8563± 0.0259 0.9399± 0.0053 0.9618 ± 0.0007

BitAbuse 0.7803± 0.0009 0.8907± 0.0344 0.9485± 0.0017 0.9656 ± 0.0009

Table 4: Comparison results of Character BERT-based restoration in terms of three evaluation measures with
different amounts of training set

Dataset
Original Ground Restored
VP word Truth Word

tcoin bitcoin rktcoin

BitCore
Çoin bitcoin akomoin

À res address uddress
gòog good goog

ec me became become

BitViper
br e brute broke

a t beast eeast
selle seller sellet

tr l truly trull

BitAbuse
all mail mall

se ÿ i e service senside
breakoù breakout breakous

Table 5: List of VP words in three datasets that are
incorrectly restored by the Character BERT-based meth-
ods from the experiments of Table 2 (VP characters are
highlighted in gray color.)

datasets. This finding suggests that sufficient VP

sentences are necessary to build a stable Character
BERT model for VP text restoration. On the other
hand, despite the performance drop with lower pro-
portions of training data, the Word Level Accuracy
still exceeded 0.5. This indicates that the model can
restore relatively well from unseen attacks, even
when it is exposed to many new VP attacks dur-
ing the test phase. Additionally, using a smaller
amount of training data allows the model to com-
plete training more quickly, which is a desirable
attribute in practical applications.

6 Discussion

Figure 2 demonstrates the performance of various
restoration methods based on the proportion of
VP characters. Compared to other methods, the
Character BERT-based method performed more
effectively as the proportion of VP characters in-
creased. This indicates that the Character BERT-
based method can accurately restore VP characters
by leveraging contextual information. Conversely,
the Spell Checker-based method exhibited a sharp
decline in performance as the proportion of VP
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characters increased, highlighting the limitations of
simply correcting typographical errors when deal-
ing with text containing a high proportion of VP
characters. The GPT-4o mini-based method un-
derperformed compared to the spell checker-based
method, likely because the GPT-4o mini is a gen-
erative model. Consequently, the word order and
indexing between the input and output sentences
are not maintained. This trait of generative lan-
guage models seems to result in reduced perfor-
mance in word accuracy evaluations, where word
positioning is critical. Furthermore, the perfor-
mance decline caused by the refusal responses trig-
gered by the safety features of the language model,
which will be discussed later, is also thought to
have contributed to these results. Figures 4 and 5,
like Figure 2, evaluate the Word Level Jaccard and
BLEU performance for the ratio of VP characters
in sentences. The Jaccard performance closely mir-
rored the Word Level Accuracy results, but the
BLEU performance exhibited a slightly different
pattern. In both Figures 2 and 4, the Character
BERT-based method consistently demonstrated the
most effective performance as the VP character ra-
tio increased, with significant performance gaps
between it and the other methods. However, in
Figure 5, the performance of all methods, except
for the Character BERT-based method, generally
improved, reducing the performance gap. This
suggests that the BLEU score is more sensitive to
contextual accuracy, meaning that even if the exact
words do not match, simpler methods can achieve
higher scores as long as the sentence structure and
meaning are somewhat preserved.

Table 2 presents the comparison results of five
restoration methods across three datasets using
three evaluation measures. The results show that
the Character BERT-based method clearly outper-
formed the others, with all approaches achieving
the highest performance on the BitCore dataset
and the lowest performance on the BitViper
dataset. Examples of the restoration for VP sen-
tences through each method are shown in Table 3.
Although the Character BERT, GPT-4o mini, and
Spell Checker share the commonality of leveraging
contextual information, the character BERT-based
method was more accurate in the restoration. The
SimChar DB-based method could only restore VP
characters included in SimChar DB, and many of
the VP characters that appeared did not exist in
the DB, resulting in poor restoration performance.

Additionally, a fundamental limitation of simple
mapping-based methods like SimChar DB is their
inability to handle one-to-many mappings for VP
characters. Since these methods are rule-based,
they can only output a single non-VP character for
each VP character. We will demonstrate how fre-
quently one-to-many corresponding VP characters
appear in the dataset in Appendix H. The OCR-
based method also had poor restoration capability
for each VP character, and it was observed that
character recognition was more difficult in the case
of VP characters containing diacritics. The Spell
Checker-based method showed high performance
in restoring words containing VP characters, but it
occasionally failed to find suitable words when the
VP character ratio in the sentence was high. The
GPT-4o mini-based method showed limited restora-
tion capabilities. While it was able to successfully
restore most VP characters in cases like Exam-
ple 1, it failed when VP characters dominated the
sentence, as in Example 2, producing outputs that
differed significantly from the input. Additionally,
in certain cases, due to the language model’s safety
features, responses such as “I’m sorry, but I can’t
assist with that,” “I’m sorry, I can’t assist with that,”
or “I’m sorry, I can’t help with that” were generated
in response to unethical content. These instances
made up about 13.22% of the BitAbuse, which is
a notable proportion. The Character BERT-based
method excels by directly learning the context and
succeeded in almost perfectly restoring VP words.
This implies that models like BERT, which are sig-
nificantly smaller than generative large language
models such as GPT-4, can be more efficient for
restoring VP text, as they still achieve high perfor-
mance despite their smaller size. Table 5 provides
examples of VP words that were incorrectly re-
stored using the Character BERT-based method.
The results indicate that restoration failures are
more likely when VP characters appear consecu-
tively or when there is a high density of attacked
VP characters nearby.

As demonstrated by the comparison results in Ta-
ble 2, the Character BERT-based method achieved
nearly 100% accuracy on BitCore dataset, high-
lighting its robustness and reliability. In addition,
with sufficient training VP sentences, it achieved
almost perfect performance on BitAbuse dataset
as shown in Table 4.

Given the high performance of LM pre-trained
using BitAbuse, it may be employed in highly spe-
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cialized, high-performance restoration tasks. For
example, the pre-trained model could be applied
in digital forensics to decode and reconstruct docu-
ments, emails, or logs that have been intentionally
manipulated to obscure evidence. In addition, the
model can be further trained to effectively handle
even subtle and complex text modifications, which
could improve forensic analysis. We believe that
this model could also be used in secure messaging
systems, where it would restore the original content
of messages that have been deliberately obfuscated
to ensure the secure transmission of sensitive infor-
mation. These studies may highlight the potential
of our datasets and pre-trained models to address
critical challenges in secure communications.

7 Conclusion

In this study, we created three VP text datasets:
BitCore, BitViper, and BitAbuse. Our analy-
sis results show that BitCore and BitViper have
significantly different characteristics, and the LM-
based reconstruction method demonstrates strong
robustness and potential on all three datasets.
BitAbuse, a pre-trained model using 325,580 VP
sentences, can be downloaded from BitAbuse.4. In
future studies, a hybrid approach, such as combin-
ing OCR and Character BERT, can be explored to
achieve robust performance with insufficient train-
ing samples. Internalizing them into LMs may
be beneficial for remedying the greedy data con-
sumption nature of LMs and in scenarios where
collecting sufficient samples is challenging. In ad-
dition, lightweight yet accurate LMs for restora-
tion tasks may be obtained if the bias to the
words attacked frequently and vowel characters
in real-world phishing attacks is exploited effec-
tively. Lastly, validating the zero-shot performance
of BitAbuse model should also be performed.

4https://huggingface.co/datasets/AutoML/
bitaubse
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Limitations

The VP text restoration experiments conducted in
this study did not include additional restoration
methods to avoid exceeding the scope of the study.
Specifically, a performance comparison between
the Character BERT-based and other LM-based
restoration methods was not performed. Thus, it
is difficult to evaluate the superiority of Character
BERT over other modern LMs. Character BERT
showed sufficiently good performance, but it will
be possible to compare effectiveness and efficiency
with methods applying other LMs in the future.

The BitAbuse dataset used in this study only
includes data related to Bitcoin scams, which lim-
its its ability to reflect a variety of phishing attack
scenarios. In addition, phishing attacks may appear
in more diverse or complex forms over time, and
failure to reflect this diversity may reduce the gener-
alizability of our study. Thus, future studies should
aim to construct an extended dataset that includes
various phishing attack scenarios and conduct stud-
ies comparing different restoration methods.

Also, our datasets were created for study pur-
poses to defend against phishing attacks based on
VP texts. However, there is a risk that this dataset
could be used by non-experts in phishing to learn
and execute attacks. For example, WormGPT, re-
cently created on the dark web to generate criminal
text, and PoisonGPT, released by Mithril Security,
spread contaminated results. These models might
use our datasets to develop malicious tools. Con-
sequently, this could lead to the sophistication of
phishing attacks, resulting in more victims. In ad-
dition, the damage caused by the misuse of such
datasets is difficult to hold accountable legally. Cur-
rently, many countries lack clear regulations re-
garding the technological misuse of such datasets,
necessitating careful considerations and observa-
tions. The datasets and models used in this paper
are publicly available, but they should not be used
for purposes other than research.

Ethics Statement

Our datasets were created for study purposes to
defend against phishing attacks based on VP texts.
However, there is a risk that this dataset could be
used by non-experts in phishing to learn and exe-
cute attacks. For example, WormGPT, recently cre-
ated on the dark web to generate criminal text, and
PoisonGPT, released by Mithril Security, spread
contaminated results. These models might use our

datasets to develop malicious tools. Consequently,
this could lead to the sophistication of phishing
attacks, resulting in more victims. In addition,
the damage caused by the misuse of such datasets
is difficult to hold accountable legally. Currently,
many countries lack clear regulations regarding the
technological misuse of such datasets, necessitat-
ing careful considerations and observations. The
datasets and models used in this paper are publicly
available, but they should not be used for purposes
other than research.
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Category Value

Number of email texts 262,258
Min. length of email text 10
Max. length of email text 2,000
Average length of email text 417

Table 6: Brief statistics of phishing emails collected
from bitcoinabuse[.]com

Category Value

Number of sentences 325,580
Number of VP sentences 26,591
Number of non-VP sentences 298,989
Average length of sentences 91

Table 7: Brief statistics of the raw corpus

Description Regular Expression Description Regular Expression

Miscellaneous symbols [\u 260e\u 2610\u 2611
\u 261e\u 2620\u 2639
\u 2640\u 2642\u 2661
\u 2665\u 267b\u 26a0
\u 26d4]

R Dingbats [\u 2705\u 270a\u 270c
\u 270d\u 2714\u 2757
\u 2764\u 2795\u 2797
\u 27a1]

R

General punctuations and
formatting characters

[\u 200b-\u 200d\u 2022
\u 202a\u 2028\u 2039
\u 203a\u 2060-\u 2069]

R Emoticons, HTML tag patterns,
and special character sequences

¯\\_\(ツ\)_\/¯ | & #8203; |
</?sp.n>| \?\ u200d [♀♂] | \* ††
\* \*

R

Latin supplements [\u 00a7\u 00a9\u 00ab-
\u 00ae\u 00b0\u 00b7
\u 00bb\u 00bf]

R Control characters [\u 0000\u 0006-\u 0008
\u 000b-\u 001f\u 0080-
\u 009f]

R

Bitcoin wallet address [13][a-km-zA-HJ-NP-
Z1-9]{25,34}

R Email address [\w -\.]+@([\w -]+\.)+
[\w -]{2,4}

R

CJK characters [\u 3040-\u 9fff\u ac00-
\u d7ff]

R Box elements / geometric shapes [\u 2592\u 25a0\u 25cb
\u 25cf]

R

Emoji etc. [\u 1f000-\u 1ffff] R Private use area [\u e000-\u f8ff] R
Variation selectors [\u fe00-\u fe0f] R Combining diacritical marks [\u 032a\u 034f] R
Arabic characters [\u 061c\u 0640] R Sinhala characters [\u 0d9a\u 0dd4] R
Letter-like symbols [\u 2116\u 2122] R Mathematical operators [\u 2211\u 22ef] R
Miscellaneous symbols and
arrows

[\u 2b07\u 2b55] R Halfwidth and fullwidth forms [\u ff0a\u ff5e] R

Modifier letter up arrowhead [\u 02c4] R Superscript six [\u 2076] R
Combining enclosing keycap [\u 20e3] R Upwards arrow [\u 2191] R
Top half integral symbol [\u 2320] R Zero width no-break space [\u feff] R
Special space characters [\u 00a0\u 2002-\u 200a

\u 3000]
S Small quotation mark, accent

mark, or prime symbol
[\u 00b4\u 02bb\u 02cb
\u 2018\u 2019\u 2032]

'

Diaeresis, double quotation mark,
or double prime symbol

[\u 00a8\u 201c\u 201d
\u 2033\u 275d\u 275e]

" Various types of hyphens, dashes,
or the minus sign

[\u 2010\u 2011\u 2013
\u 2014\u 2015\u 2212]

-

Low quotation mark or a
fullwidth comma

[\u 201a\u 201e\u ff0c] , Double exclamation mark or a
fullwidth exclamation mark

[\u 203c\u ff01] !

Various types of left brackets [\u 300a\u 3010\u ff08] ( Various types of right brackets [\u 300b\u 3011\u ff09] )
Various types of equals sign [\u 2248\u ff1d] = Horizontal ellipsis [\u 2026] ...
Fullwidth colon [\u ff1a] : Text decoding errors €™ '
Fullwidth semicolon [\u ff1b] ; â €[ œ] ? "
Multiplication sign [\u 00d7] x

Table 8: Preprocessed characters represented in their Unicode based on corresponding regular expressions

Original Text Preprocessed Text

Reminder Your system devices has been Hacked
National Security Agency Authority-11622272

( Reminder ) Your system devices has been Hacked (
National Security Agency ) Authority-11622272

Af 20
0b te 20
0b r 20
0b re 20
0b ce 20
0b iv 20
0b in 20
0b g 20
0b th 20
0b e 20
0b pa 20
0b ym 20
0b en 20
0b t, 20
0b I 20
0b w 20
0b il 20
0b l

20
0b de 20
0b le 20
0b te 20
0b t 20
0b he 20
0b v 20
0b id 20
0b eo 20
0b ,

After receiving the payment, I will delete the video,

You may not know me &#8203;nd &#8203;ou are
pr &#8203;b &#8203;bly&#8203;

You may not know me nd ou are pr b bly

Table 9: Example of text preprocessed using regular expressions. The red box with the number in it indicates the
unprintable Unicode character of the hex value written inside it (Please see color PDF.)

Dataset
Number of Average Number of Unique VP Number of Unique VP

VP Sentences Length VP Words (%) Words VP Characters (%) Characters

BitCore 26,591 92 261,460 (58%) 37,726 503,239 (26%) 317
BitViper 298,989 91 2,861,434 (58%) 1,126,986 4,347,988 (20%) 525
BitAbuse 325,580 91 3,122,894 (58%) 1,160,211 4,851,227 (21%) 706

Table 10: Brief statistics of BitCore, BitViper, and BitAbuse datasets
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Word Number of Word Number of
Variants VP attacked

your 369 you 15,103
access 361 your 10,725
email 293 to 7,745

software 286 and 7,626
Bitcoin 268 the 6,906
videos 266 a 5,277
video 265 I 4,005
have 254 have 3,781

transfer 230 this 3,685
bitcoin 227 video 3,576
internet 225 that 3,103

browsing 220 of 2,881
you 207 know 2,713

which 205 will 2,436
about 200 is 2,407
will 198 all 2,391

contacts 195 on 2,196
activities 191 what 2,163
relatives 187 contacts 1,850

with 185 as 1,794
social 173 with 1,779

devices 171 it 1,773
account 158 i 1,758
antivirus 156 software 1,674
tracking 155 email 1,654
watching 154 after 1,625

after 143 from 1,614
managed 142 access 1,510

know 137 part 1,430
from 135 site 1,365
also 134 videos 1,345

considering 134 in 1,247
virus 134 me 1,234

microphone, 131 are 1,233
deactivate 130 not 1,222

information 130 bitcoin 1,197
this 129 which 1,186

accounts 125 do 1,170
according 124 watching 1,159
received, 123 visited 1,148

away 122 payment 1,131
websites 122 can 1,119

masturbating 120 for 1,086
purchased 119 malware 1,056

gained 118 porn 1,029
signatures 118 don’t 985

happen 117 account 976
installed 117 right 923
months 117 screen 848
simple 117 about 843

Table 11: The top 50 list of VP word variants and VP at-
tacks for each word appearing in the BitAbuse dataset.

A Statistics of Raw Dataset

Table 6 shows brief statistics of the collected
email texts. We identified 262,258 phishing-related
emails from bitcoinabuse[.]com between May 16,
2017, and January 15, 2022, and extracted the text
bodies of these emails. The length of the email bod-
ies averages about 417 characters, ranging from a
minimum of 10 characters to a maximum of 2,000

Word VP words

your yøur, , o , u , ,
µ , y ur, y r, , 0 , . . .

access c e s, cce , accêss, acce ,
acc ss, a ss, ác e , . . .

email e a l, é , émãï l, ëma ï l, e í l,
ê l, e , ma í , é á l, . . .

software softw e, softw re, softwäre,
s ftw , t é , sòftwarè , . . .

Bitcoin B tc , B í tco í , B t ,
tc , B t , tc , . . .

Table 12: Examples of VP variants regarding five words
of Table 11 with the highest number of variants (VP
characters are highlighted in gray color.)

because the platform limits the maximum number
of characters to 2,000. The content of phishing-
related emails was uploaded from approximately
224 countries, and the country of upload and the
language of the collected text may differ.

Table 7 presents the statistics of the raw corpus
after splitting the collected texts into individual
sentences and removing meaningless texts, as men-
tioned in the Data Collection section. The sentence-
splitting process was performed using the NLTK
library, resulting in a total of 325,580 sentences.
In the next step, sentences containing non-ASCII
characters were classified as VP sentences, and the
classification was manually reviewed to ensure ac-
curacy. After the review, 26,591 sentences were
identified as VP sentences, while 298,989 were
categorized as non-VP sentences.

B Filtering Non-English Texts

In our study, we exploited the BERT model with a
fully connected classification layer trained to clas-
sify English texts from non-English texts. To train
our model, we use the Flair library (Akbik et al.,
2019). In addition, the learning rate was set to
1e − 6, with 1 learning epoch (the library early
stopped training due to the very small learning
rate), a batch size of eight, an AdamW optimizer
(β1 = 0.9, β2 = 0.999, weight_decay = 0), and
the AnnealOnPlateau scheduler implemented in
the Flair library. Additionally, a single NVIDIA
GeForce RTX 3080 GPU was used.
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Char.
Number of

Char.
Number of

Variants VP attacked

i 34 o 179,792
a 28 i 145,832
o 27 c 95,863
e 22 a 85,905
u 22 e 57,009
r 20 n 38,135
m 14 t 38,085
n 14 d 37,178
p 13 l 34,865
s 13 u 14,840
b 13 r 14,381
t 12 s 14,202
c 12 p 13,717
w 12 v 9,788
k 12 y 9,073
y 10 h 7,313
h 9 k 5,966
l 8 m 5,349
d 8 g 3,452
j 7 f 3,273
v 6 w 2,855
g 6 b 2,413
x 5 x 480
q 5 q 220
f 3 j 107
z 3 z 10
0 2 0 6

Table 13: The full list of VP character variants and VP
attacks for each character appearing in the BitAbuse
dataset.

C Regular Expressions

Table 8 shows the list of regular expressions
we used for further preprocessing. The first
and fourth, the second and fifth, and the third
and sixth columns mean the description of
characters, regular expressions, and replaced
characters, respectively. R and S in the third and
sixth columns mean “Removed” and “Space”.
For example, No-break Space (U+00A0), En
Space (U+2002), Hair Space (U+200A), and
Ideographic Space (U+3000) are special space
characters and would commonly be replaced with
regular space characters. The space after \u in
the regular expression is included intentionally
for clarity but is excluded in the actual regular
expression. We also release a downloadable list of

regular expressions and preprocessing code from
https://huggingface.co/datasets/AutoML/
bitaubse/blob/main/preprocessing.py.

Table 9 shows example sentences after the pre-
processing based on the regular expressions. In
three examples of the table, emojis and special
characters in the sentence are removed, and unusual
characters are replaced with ASCII characters with
the same meaning. For example, in the first ex-
ample in the table, “Left Black Lenticular Bracket
(U+3010)” and “Right Black Lenticular Bracket
(U+3011)” were replaced with regular parentheses
(U+0028, U+0029). In the second example, un-
printable Unicode characters that are presented as
a hex value in the red box are removed.

D Statistics of BitAbuse

We created BitCore, BitViper, and BitAbuse
datasets based on the raw corpus. Brief statistics of
the three datasets are presented in Table 10. Specif-
ically, BitCore was created by simply selecting
26,591 VP sentences from the raw corpus. Next,
BitViper was created by applying the character
perturbation procedure of Viper that uses the ICEs
method with a probability of 0.2 to 298,989 non-
VP sentences of the raw corpus, following the same
settings used in the original study for the restora-
tion task5. Lastly, BitAbuse was created by merg-
ing BitCore and BitViper, resulting in the largest
dataset of our study that contains both real-world
and synthetic VP sentences.

E Statistics and Examples of VP Words
and Characters

We summarized the number of VP word variants
and that of attacks on each corresponding word ap-
pearing in VP texts in Table 11. VP word variants
were frequently found in terms related to Bitcoin
scam domains, such as “email”, “software”, “Bit-
coin”, and “video”. In contrast, the words most
often attacked were common words like “you”,
“to”, “and”, “the”, and “a”. This indicates that
these commonly used words are more likely to be
targeted due to their frequent everyday use. Al-
though domain-specific words exhibit a significant
number of variants, their attack frequency is rela-
tively low. This suggests that attackers are cautious

5TextBugger is not considered here because it attacks by
altering keywords in sentences for semantic classification.
Thus, applying TextBugger to non-VP texts of the raw corpus
requires additional work, such as labeling whether a sentence
is spam, which is out of the scope of this study.
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(a) BitCore dataset (Real) (b) BitViper dataset (Synthesized) (c) BitAbuse dataset (Mixed)

Figure 3: The histogram of the number of VP sentences BitCore (26,591 sentences), BitViper (298,989 sentences),
and BitAbuse datasets (325,580 sentences) according to the occurrence ratio against the sentence length.

Peak VP sentence examples

0.07 - 0.09 if you do n t fund th s bitc in address with $1000 with n n xt 2 days, i will contact
yo r relativ s ánd veryb dy on y r contact lists ánd show them your record ngs.

0.32 - 0.34 r gh f er h , my s f w re b ed y ur c m le e c c s fr m y ur
messe ger, f ceb , s well s em l cc u .

0.66 - 0.68 pr m sè t dë á t và t d dë t l thë hà f l tw r r
y dëv d thê r c ê t v o , c ì d r ng thá t í h v
b hê t t or ê t ì ê y .

Table 14: VP sentence examples of the three peaks in the histogram of BitCore dataset shown in Figure 3(a) (VP
characters are highlighted in gray color.)

(a) BitCore dataset (b) BitViper dataset (c) BitAbuse dataset

Figure 4: Word Level Jaccard performance of each method regarding VP character ratio in each sentence

(a) BitCore dataset (b) BitViper dataset (c) BitAbuse dataset

Figure 5: BLEU performance of each method regarding VP character ratio in each sentence

about excessively altering key semantic words to
avoid disrupting the overall context. In addition,

our analysis indicates that the restoration model
may put more weight on training common words to
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be an effective VP text restoration. Moreover, the
presence of a wide range of variants necessitates
that the restoration model is capable of handling
these diverse perturbation attacks. Thus, domain-
specific knowledge of source language may also be
incorporated to achieve accurate training.

Table 12 shows examples of VP variants for
five words from Table 11 with the highest num-
ber of variants. The left column lists the origi-
nal words, while the right column displays the VP
characters used to perturb the original words, in-
cluding unusual cases with control characters like
U+0001 to U+0005. These characters can be ren-
dered as graphic symbols depending on the envi-
ronment, suggesting their use in VP attacks. The
examples highlight the variability of VP charac-
ters applied to the same word, resulting in multiple
non-duplicated variations, such as “access” being
perturbed into forms like “ c e s” or “accêss”. Ad-
ditionally, within the same word, certain characters
(e.g., “c” and “s” in “access”) may appear as both
VP and non-VP characters, indicating that attackers
likely apply perturbations in a probabilistic rather
than consistent manner.

Table 13 presents statistics on the number of VP
character variants and the frequency of perturbation
attacks in the BitCore dataset. The overall statisti-
cal results for this analysis are provided in Table 13.
The number of variations for a single character, as
shown in Table 13, is highest for ‘i’, followed by
‘a’, ‘o’, and ‘e.’ This aligns with the high con-
nectivity of these characters in the VP character-
word association graph visualized in Figure 1 This
suggests that characters with more variations are
broadly associated with a wide range of words. For
example, the character ‘i’ has 33 variations and is
strongly connected to various words in Figure 1,
more so than other characters. This indicates the
significant role that ‘i’ plays within VP sentences.

Figure 3 shows the histogram of the number of
VP sentences according to the occurrence ratio of
VP characters against the length of the sentence
in BitCore, BitViper, and BitAbuse datasets, re-
spectively. The x- and y-axes of each figure rep-
resent the ratio of VP characters included and the
number of corresponding VP sentences, respec-
tively. As shown in Figure 3(a), the VP sentences
collected from bitcoinabuse[.]com does not yield
unimodal distribution regarding the number of VP
characters included. Rather, it has three peaks re-
garding the VP character ratio, such as 0.07 to 0.09,

Prompt

Restore the In Text to its original Out Text (Pro-
vide only output text):
In Text: {vp text}
Out Text:

Table 15: The prompt used in GPT-4o mini for the
restoration experiment. “{vp text}” refers to the VP text
to be restored.

0.32 to 0.34, and 0.66 to 0.68, that may be useful
for devising VP restoration methods. Figure 3(b)
representing the histogram of BitViper dataset in-
dicates that its distribution of significantly different
to that of BitCore dataset. Figure 3(c) shows the
histogram of BitAbuse dataset. Table 14 lists VP
sentence examples of the three peaks in the his-
togram of BitCore dataset shown in Figure 3(a).

We argued that the artificially synthesized
datasets may have a gap to real phishing attack
situations. For example, because Viper modifies a
fixed ratio of characters in the sentence where the
user sets the ratio value, all the modified sentences
have approximately the same portion of VP charac-
ters as shown in Figure 3(b), which is not aligned
with the observation given from Figure 3(a). The
figure also indicates that there are three peaks, with
prominent ones appearing between 0.07 and 0.09,
0.32 and 0.34, and 0.66 and 0.68. These peaks
suggest that VP texts can be categorized into dis-
tinct groups. In Table 14, three VP sentences, each
corresponding to each peak, are presented. The VP
sentence associated with the first peak frequently
contains vowels with added accents whereas that
with the second peak exhibits a pattern of using
Greek letters as VP characters. Lastly, the VP sen-
tence related to the third peak contains the use of
characters from various languages as VP charac-
ters, with a notable example being the substitution
of the letter ‘h’ with the Armenian character “ .”

F Experimental Details

We provide additional details on the experimental
settings and methods used in the experiments.

F.1 Character BERT Based Method
In the experiment shown in Table 2, the training
process of Character BERT was configured with
a learning rate of 5 × 10−5, a batch size of 32,
and ten training epochs. Additionally, the AdamW
optimizer was used with settings of β1 = 0.9,
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β2 = 0.999, and a weight_decay = 0, along with
a linear learning rate scheduler. The experiment
shown in Table 4 uses the same hyperparameters as
the previously mentioned experiment, except the
number of training epochs is set to 20.

F.2 GPT-4o mini Based Method

When employing the GPT-4o mini model, we de-
signed a prompt for VP text restoration, as detailed
in Table 15. The experiment used OpenAI’s batch
API, with a total cost of approximately 3.47 USD.

F.3 Experimental Environment

The implementations were done by using the
Pytesseract (Lee, 2024), Pyspellchecker (Barrus,
2024), and Transformers (Wolf et al., 2020) library.
The experiment was performed on the computing
hardware with an Intel i9-10980XE processor, two
NVIDIA GeForce RTX 3090 GPUs, and 128GB
of RAM. Additionally, the textual content was ren-
dered using the Noto Sans Runic (Cozens et al.,
2024) and GoNotoCurrent font (B, 2024).

G Performance regarding VP Character
Ratio in Each Sentence

Figures 4 and 5 show the Word Level Jaccard and
BLEU performance of each method regarding the
VP character ratio in each sentence. As shown in
Figure 2, the Character BERT-based method out-
performed SimChar DB, OCR, and Spell Checker-
based methods. Similar to the experimental re-
sults regarding Word Level Accuracy, the Character
BERT-based method showed robust performance
on both BitCore and BitAbuse datasets, whereas
it loses its robustness on BitViper dataset that
does not include BitCore dataset.

H Statistics of One-to-Many
Corresponding VP Characters

As mentioned in the Discussion section, simple
mapping-based methods like SimChar, used in the
experiments, have a fundamental limitation in han-
dling one-to-many VP character relationships, as
they can only output a single non-VP character for
each VP character. To verify this, we analyzed how
frequently one-to-many VP characters appear in
the dataset.

Table 16 lists VP characters, sorted by how often
each one is mapped to different non-VP charac-
ters, showing that up to six options can arise when
restoring a single VP character.

VP Character Corresponding Characters

a, o, u, d, g, q
o, c, d, g, q
o, q, g, c, d
o, d, c, g, q
o, d, c, g, q

o d, g, c, q
o, c, d, q
i, l, j, k
i, l, k, j
i, l, j
i, l, r
l, i, k
h, n, b
o, d, q
u, m, p
g, c, o
v, u, o

þ p, h, b
q, d, g

Table 16: List of the top 20 VP characters with one-to-
many mappings

Figure 6: The number of VP characters with two or
more corresponding mappings

Additionally, figure 6 presents the number of
VP characters in the dataset that correspond to two
or more non-VP characters. This demonstrates
that a significant number of VP characters have
one-to-many relationships, supporting the idea that
simple mapping-based methods are not effective in
BitAbuse.
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