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Abstract

To address the deficiencies in chart types and
the limited scope of chart tasks in existing
datasets, we conducted a comprehensive re-
view of current data collection methodologies.
By integrating manual annotation with data
generation leveraging GPT-4, we developed
a dataset that includes 25 diverse chart types
and a broad spectrum of tasks, such as data
retrieval and mathematical reasoning. Our anal-
ysis of existing models revealed that capabil-
ities in information extraction, mathematical
reasoning, and understanding of multiple chart
types are essential for performing a variety of
chart tasks. To overcome the limitations in
these areas, we devised a two-stage training
strategy and a method for jointly training the
vision encoder tailored for multi-type charts.
In the first stage, we designed several tasks
to enhance the model’s general understanding
of charts, aligning multimodal large models
pre-trained on natural images to chart tasks. To
further improve the model’s capability to under-
stand various chart tasks and enhance its reason-
ing abilities, we employed Chain-of-Thought
data for training in the second stage. Through
two-stage training on our proposed dataset, the
pre-trained multimodal large language model
achieved state-of-the-art performance across
multiple chart understanding tasks, demonstrat-
ing the superiority of our data and methods.

1 Introduction

MLLMs (Alayrac et al., 2022; Li et al., 2023; Dai
et al., 2024; Zhu et al., 2023; Chen et al., 2023a;
Ye et al., 2023; Liu et al., 2024, 2023b; Bai et al.,
2023; Achiam et al., 2023; Chen et al., 2023b,c)
that leverage the powerful emergent abilities (Wei
et al., 2022a) of LLMs are rapidly advancing and
have demonstrated remarkable abilities in visual
language tasks (Lin et al., 2023a,b). However,

*Equal contribution
†Corresponding author

MLLMs trained on large-scale natural images of-
ten face challenges when it comes to chart-related
tasks. Various types of charts serve as highly intu-
itive visualization mediums that play a crucial role
in facilitating the extraction and communication
of information from data. For instance, Sankey
charts are commonly employed to depict the flow
of energy or populations, while parallel coordinates
charts are utilized to compare multiple dimensions
across several samples. To reduce the gap between
natural images and chart images, many chart mod-
els have been proposed and MLLMs for chart un-
derstanding (Han et al., 2023; Liu et al., 2023a)
have attracted much attention.

While existing chart models have made
some progress, there are two main limitations.
Firstly,existing methods for generating instruc-
tion data primarily relied on manual annotation
or template generation. Manual annotation ap-
proaches (Masry et al., 2022) can capture diverse
questions, but the resulting data may contain er-
rors or ambiguities. Approaches that automatically
generate instruction data using models, such as
those used for the PlotQA (Methani et al., 2020)
dataset, may not fully reflect the real-world prob-
lems people would ask. The question formats in
these datasets tend to be relatively fixed and lack
the full diversity seen in human-generated ques-
tions. secondly, in real-world scenarios, there is a
wider variety of chart types, yet existing chart mod-
els perform poorly on tasks involving this greater
diversity. However, existing works primarily fo-
cus on understanding chart types like bar charts,
line charts, and pie charts. Although methods like
Chartllama (Han et al., 2023) and MMC (Liu et al.,
2023a) have expanded the repertoire of chart types,
their performance on a wider range of chart types
and tasks remains limited. This shortcoming in
comprehending diverse chart data significantly hin-
ders the development of chart understanding in
various domains, such as data analysis, medical
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diagnosis, educational technology, business intelli-
gence, and scientific research.

To address the challenges associated with the
collection of the aforementioned chart dataset, we
propose a highly scalable three-stage multimodal
chart data collection method named Omni-Chart.
Specifically, we divide our dataset construction pro-
cess into three stages: chart data generation, chart
generation, and instruction data generation. During
the chart data generation stage, we prompt GPT-
4 (Achiam et al., 2023) to generate the requisite
data for various themes and captions based on our
predefined chart types. Subsequently, in the chart
generation stage, we randomly select this data and
employ pyecharts to construct the charts with dif-
ferent settings (e.g., font, legend, and locations).
During the instruction data generation stage, we uti-
lize GPT-4 to generate data that aligns with human
preferences and exhibits diversity. By prompting
GPT-4 to rewrite pre-designed question templates
and calling relevant function interfaces to gener-
ate answers, this method combines the strengths of
human and template generation, ensuring diverse
tasks and questions while reducing errors.

Additionally, to address the issue of limited chart
types in previous datasets, we introduce Omni-
Chart-600K in this paper. This is a large-scale
chart understanding instruction tuning dataset that
includes a wider variety of chart types, collected
using the three-stage method described above. The
dataset has a total of 21 different chart type, in-
cluding boxplot, heatmap, 3D bar, themeriver, mul-
tichart, etc. and 9 different task types, including
math reasoning, code generation, chain-of-thought
reasoning, structural understanding, etc.

Due to the existing models’ weak capabilities in
mathematical reasoning and numerical extraction,
we employed a two-stage fine-tuning process on a
pre-trained multimodal large language model using
the dataset we proposed, and additionally enhanced
the model’s vision encoder. Through a series of
experiments, we demonstrated that models trained
on our dataset not only perform better on our multi-
chart type benchmark but also achieve state-of-the-
art results on traditional datasets.

The key contributions of our work are as follows:

• We propose a flexible and scalable method for
collecting high-quality chart instruction data.
Through our method, we constructed a high-
quality, multimodal chart dataset Omni-Chart-
600K with multiple chart types and topics.

• We propose a two-stage training strategy for
multi-type charts, tailored to enhance multi-
modal large language models that have been
pre-trained. In the first stage, we align the pre-
trained models to the chart domain through
extensive training across various chart tasks.
In the second stage, we leverage Chain-of-
Thought data to further boost the models’ ca-
pabilities in chart understanding and multi-
modal reasoning.

• With our dataset and method, we train a model
Omni-Chart that not only achieves state-of-
the-art performance in multi-type chart under-
standing benchmarks but also state-of-the-art
results in existing benchmarks.

2 Related work

2.1 Multimodal learning
Multimodal learning focuses on learning features
from different modalities (Lin et al., b). Some pre-
vious approaches (Xia et al., 2024; Huang et al.,
2024a,b) have utilized unified multimodal represen-
tations to align the semantic information across dif-
ferent modalities, while others (Guo et al., 2024a;
Jin et al., 2023) have emphasized the comprehen-
sive learning of each modality. Additionally, there
are methods (Yan et al., 2025; Guo et al., 2024b)
that propose efficient techniques for multimodal
learning. Existing approaches (Chen et al., 2023a;
Dai et al., 2024) typically leverage the powerful ca-
pabilities of large language models, utilizing multi-
modal data for training.

2.2 Chart-related dataset
Currently, many multimodal chart-related
datasets (Huang et al., 2024c; Masry et al.,
2022) have been proposed to enhance the chart
comprehension capabilities of visual language
models. FigureSeer (Siegel et al., 2016) focuses on
chart data from scientific papers but is limited to
only one type of chart, which is overly simplistic
for diverse applications in real world. In contrast,
datasets such as FigureQA (Kahou et al., 2017),
DVQA (Kafle et al., 2018), LEAF-QA (Chaudhry
et al., 2020), Chart-to-text (Kantharaj et al.,
2022b), PlotQA (Methani et al., 2020) and
LEAFQA++ (Singh and Shekhar, 2020) encom-
pass a broader array of chart types, including
bar charts and scatter plots, thereby enhancing
data diversity. However, these datasets suffer
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What is the closing price 
of Biofuels in September?

A: 34

What is the sum of the 
maximum value and the 
minimum value in this 
chart?A: 23.55

Data extraction Math Reasoning
What type of chart is 
used for illustrating 
the impact of 
renewable energy 
credits trading?

Type Recognition

A: sankey

Please generate the 
tabular data for this 
chart.

Chart Extraction

Detail Description Can you please give me a detailed description of the chart?
A: The chart titled \"Contribution of Sports to Overall Wellness\" presents data on the contribution of various sports activities to overall 
wellness. The chart is a rose-type chart showcasing the values attributed to different sports categories.\n\n- Softball: The data indicates 
that softball contributes 3,044,146 units to overall wellness.\n- Swimming: Swimming is shown to contribute 2,097,517 units to overall 
wellness.\n- Tennis: The sport of tennis contributes 517,046 units to overall wellness.\n- Bowling: Bowling emerges as a significant 
contributor with 4,160,277 units to overall wellness.\n- Skydiving: Skydiving leads the chart, contributing a substantial 4,753,149 units to 
overall wellness.\n\nThe chart illustrates that skydiving and bowling are the two sports making the most significant contributions to 
overall wellness, with softball, swimming, and tennis following behind in terms of their respective contributions.\n\nThis data suggests 
that engaging in sports activities, such as skydiving, bowling, softball, swimming, and tennis, can positively impact overall wellness. 
Those participating in these sports may experience various physical, mental, and emotional benefits that contribute to their overall well-
being.

Caption extraction
What specific title has 
been assigned to this 
chart?
A: Resource Allocation 
to Environmental 
Causes

Structural Understanding

Where is the legend 
located in this 
picture?

A: upper right corner
A: The tabular data for this 
chart is 'Entity, Amsterdam, 
Maldives, Rome, Berlin, Rio de 
Janeiro, Bali, Paris, Phuket, 
Hawaii, Vancouver, Dubai, 
Miami\n2018, 1466, 588, 2364, 
214, 387, 2132, 2012, 2133, 1092, 
477, 266, 2108\n2017, 2122, 1569, 
1295, 464, 2911, 1765, 385, 1115, 

Chain-of-thought Reasoning
What is the highest level of 
annual consumption in 2012? 
We can first extract the 
tabular information of this 
chart and then use simple 
mathematical operations to 
solve this question.

A: The tabular data for this 
chart is  'Entity, Amsterdam, Maldives, Rome, Berlin, Rio de Janeiro, Bali, 
Paris, Phuket, Hawaii, Vancouver, Dubai, Miami\n2018, 1466, 588, 2364, 
214, 387, 2132, 2012, 2133, 1092, 477, 266, 2108\n2017, 2122, 1569, 1295, 
464, 2911, 1765, 385, 1115, 123, 1997, 1974, 2703\n2024, 1860, 2039, 1733, 
425, 1044, 2460, 198, 369, 236, 1025, 2337, 2692\n2012, 1880, 2713, 2224, 
2068, 516, 791, 2186, 2089, 2698, 766, 1578, 964\n'The question asks what 
is the highest level of annual consumption in 2012? According to the CSV 
data we extracted, we know that the highest level of annual 
consumption in 2012 is 2713, so the answer is 2713.

Code Generation Do you know how to write 
a Python program to plot 
the chart?
A: 
def pie_chart(x_data, y_data, text, radius_
in, radius_out,font_size, color, rosetype, c
aption_top, caption_bottom, 
left, right, top, bottom,color_caption, font_
weight):

pie = Pie(init_opts=opts.InitOpts(animati
on_opts=opts.AnimationOpts(animation=Fa
lse)))

pie.add(series_name='', data_pair=[list(
z) for z in zip(['Daily', 'Quarterly', 'Hourly', '
Shift-
wise', 'Weekly'],[412, 642, 293, 850, 751])],

radius=['0%', '55%'],
label_opts=opts.LabelOpts(is_s

how=False))
pie.set_colors(['#7A6AAC', '#211D42', '#

FDD8D8', '#624A4E', '#2DB53F’]) …….

123, 1997, 1974, 2703\n2024, 1860, 2039, 1733, 425, 1044, 2460, 198, 369, 236, 1025, 2337, 
2692\n2012, 1880, 2713, 2224, 2068, 516, 791, 2186, 2089, 2698, 766, 1578, 964\n'The 
question asks what is the highest level of annual consumption in 2012? According to the 
CSV data we extracted, we know that the highest level of annual consumption in 2012 is 
2713, so the answer is 2713.

Summarization Summarize the main 
content for this image.

A: The chart illustrates the 
user growth rates for 
different cloud computing 
platforms over the years. Key 
platforms include Rackspace, 
Google Cloud, and Heroku. 
Notable trends show 
fluctuations in user growth 
rates for each platform from

2015 to 2029. Rackspace and Heroku demonstrate varying growth 
patterns, while Google Cloudgenerally maintains higher user 
growth rates throughout the period.

(1) bar (2) line (3) pie (4) scatter (5)radar

(6) boxplot (7) parallel (8) effectscatter (9) gauge (10) multiple

(11) funnel (12) pictorialbar (13) liquid (14) rose (15) 3Dbar

10 Advanced Charts 

5 basic charts

(21) calendar(16)  sankey (17) heatmap (18) wordcloud (19) candlestick (20) themeriver

6 Thematic Charts 

Figure 1: Our instruction dataset Omni-Chart-600K includes 10 types of tasks and 21 types of charts.
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datasets chart type chart figure instruction tuning data task type

chartQA (Masry et al., 2022) 3 21.9K 32.7K 1
plotQA (Methani et al., 2020) 3 224K 28M 1
char-to-text (Kantharaj et al., 2022b) 6 44K 44K 1
Unichart (Masry et al., 2023) 3 627K 7M 3
StructChart (Xia et al., 2023) 3 9K 9K 1
ChartLlama (Han et al., 2023) 10 11K 160K 7
Omni-Chart-600K 21 633K 6.8M 10

Table 1: Comparison of our instruction dataset against mainstream datasets related to charts.

Theme Generation

Caption Generation

Data Generation

What scenarios, fields, 
and topics are charts 
typically applied to? 
Please follow the 
template output for 
Scenario: Description.

Scenario: Business and Finance
Description: Charts are 
extensively used in business and 
finance to present financial data, 
sales figures, market trends, 
forecasts, and key performance 
indicators. Common chart types 
include line charts, bar charts, pie 
charts, scatter plots, and financial 
charts like stock price charts.

… …

1

2

Please create captions 
for charts according to 
the following 
description:
Scenario: From Step 1.
Description: From Step 
1.

1.Income Level and Distribution of 
Urban Residents
2.Consumption Expenditure 
Characteristics of Households in 
Different Income Groups
3.Trend of Total Savings Deposits 
of Urban and Rural Residents
4.Impact of Population Age 
Structure on Demand for Social 
Services

… …

Input

Input

3

Stage 2 Chart Generation Stage 3 Instruction Data Generation

Task DiversityData Type Setting

Boxplot
Heatmap

Radar
Liquid

Scatter
Funnel
3Dbar
… … 

Random Sampling

Font
Legend
Color

Theme
Location

Axis
Grid
… … 

Input
Generation 
prompt.
Generation 
example.
Caption from 
Step 2.

{‘caption’: , 
‘candidate’: ,

‘x_data’:,
‘’target_data:,},

{‘caption’: , 
‘candidate’: ,

‘x_data’:,
‘’target_data:,}

…
…
…

{‘chart data’: 
{‘caption’: ,……},

‘chart type’: 
‘themeriver’,

‘setting’: {‘location’: 
{‘caption’: , ……}, 
‘font’: {}, ……}}

{“caption”: “Examine the 
annual rainfall in various 
seasons using a line chart”,  
“type”: “Region”, 
“candidate”: [ “Europe”, 
“Asia”, …], “x_data”: 
[2000,2001,2002,...], 
“x_category”: “year”, 
“target_category”: “rainfall 
(millimeters)”,  “min_data”: 

0, “max_data”: 5000}

According to the min 
and max in json, use 
Python to randomly 
select candidate and 
generate target data.

{“caption”: “Examine the annual 
rainfall in various seasons using a 
line chart”,  … …,“target_data”: 
[230, 580, 951, 3521, 21, …], 
“x_category”: “year”, 
“target_category”: “rainfall 
(millimeters)”,  “min_data”: 0, 
“max_data”: 5000}

{‘chart data’: 
{‘caption’: ,……},

‘chart type’: ‘bar’,
‘setting’: {‘location’: 

{‘caption’: , ……}, 
‘font’: {}, ……}}

{‘chart data’: 
{‘caption’: ,……},

‘chart type’: ‘boxplot’,
‘setting’: {‘location’: 

{‘caption’: , ……}, 
‘font’: {}, ……}}

QA Refinement

Summarization

Structural Understanding

Chain-of-thought Reasoning

… …
Math Reasoning

Ø Summarize the following chart. … 

Ø Where is the legend of the chart?
Ø Can you identify the position of the 

caption in the chart?…

Ø What are the economic levels of the 
areas shown in the charts? Let us think 
step by step. …

Ø What is the total rainfall for the area 
represented by the yellow curve in the 
chart? …

Refinement prompt.
Refinement example.
Question Template 
from Step 1.
Chart data json.

1

2
Input { “question”: ”Can 

you identify the 
position of the legend 
within the image?”
”answer”: “lower right 
corner”}, … … 

Stage 1 Chart Data Generation

Figure 2: The overall process of our chart dataset construction.

from limitations due to their reliance on template-
generated questions and overly simplistic answers
derived from a fixed vocabulary. ChartQA (Masry
et al., 2022) represents a significant improve-
ment by utilizing manually annotated data and
incorporating tasks that demand higher levels
of logical and mathematical reasoning, aligning
more closely with the complexities of real-world
problems. The instructional data proposed by
MMC (Liu et al., 2023a) continues to focus
on chart types traditionally common in earlier
datasets. Chartllama (Han et al., 2023) further
diversifies the chart typology to include ten types,
introducing less common varieties such as funnel
and box charts, thereby broadening the scope for
application in more specialized contexts.

2.3 Chart Understanding

Chart data, as an important form of struc-
tured data, plays a crucial role in understand-
ing and visualizing real-world data. previous ap-
proaches(Kantharaj et al., 2022a; Hsu et al., 2021;
Li and Tajbakhsh, 2023; Cheng et al., 2023; Xia
et al., 2023; Liu et al., 2022b; Lee et al., 2023)
to image understanding can be mainly categorized
into two types. The first type involves fine-tuning
models that are pretrained on different downstream
tasks or datasets. For example, Matcha(Liu et al.,
2022b) enhances the pretraining of Pix2Struct(Lee
et al., 2023) by designing tasks related to chart de-
rendering and mathematical reasoning, which per-
forms well on tasks such as QA and chart-to-text.
Deplot(Liu et al., 2022a) utilizes a modality trans-
formation module trained to convert images into
tabular representations, which are then leveraged
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to exploit the reasoning capabilities of Large Lan-
guage Models (LLMs) for enhanced comprehen-
sion of chart-based tasks.. UniChart(Masry et al.,
2023) expands on more pretraining tasks, demon-
strating better generalization capabilities. The other
approach, such as ChartLlama(Han et al., 2023),
fine-tunes the model using constructed instruc-
tion data, eliminating the need for task-specific
or dataset-specific fine-tuning. However, in the
real world, charts are more diverse than the few
types primarily focused on by current models (bar
charts, line charts, pie charts), and these models
often lack the ability to understand other types of
charts. Additionally, existing evaluation datasets
also lack diversity in chart types. For example,
ChartQA(Masry et al., 2022) only includes three
types of charts, and the benchmark proposed by
MMC(Liu et al., 2023a) lacks a comprehensive
evaluation of other chart types, failing to fully as-
sess the chart understanding capabilities of current
models

3 Datasets

3.1 Background

Despite the increasing importance of chart under-
standing for multimodal AI models, existing chart
dataset benchmarks such as ChartQA have limita-
tions in their diversity of chart types and the quality
of their question-answer annotations. Compared
to the wide variety of chart visualizations in the
real world, these datasets cover a relatively nar-
row range of chart categories. Furthermore, the
question-answer pairs in these datasets, whether
human-annotated or model-generated, often do not
fully capture the nuanced and diverse types of ques-
tions that humans might naturally ask about data
visualizations.

To better drive and evaluate the chart understand-
ing capabilities of large multimodal models, there
is a need to develop a more comprehensive dataset
that covers a broader spectrum of chart types and
contains high-quality question-answer annotations
that reflect real-world chart analysis tasks. In this
section, we will first describe the process of our
chart dataset construction, and then present a thor-
ough analysis of its contents and characteristics.

Our data construction process can be mainly di-
vided into three stages: chart data generation, chart
generation, and instruction data generation. The
overall process is presented in Figure 2. We will
introduce them in the following subsections.

3.2 Chart Data Generation

The goal of the chart data generation stage is to
establish a diverse set of chart-related data that
can serve as the foundation for building a compre-
hensive chart dataset for large multimodal model
training. Unlike approaches that leverage the ca-
pabilities of image generation models (Lin et al.,
2024, a), we divide the chart data generation stage
into three distinct steps, leveraging the capabilities
of GPT-4 to generate a wide range of chart themes,
captions, and data. More details about the prompts
can be found in the appendix A

Step 1: Theme Generation. The first step in-
volves leveraging GPT-4 to generate a diverse set
of scenarios, fields, and topics where charts are
typically applied. By prompting GPT-4 with the
question, the model will produce a set of scenar-
ios, each accompanied by a descriptive paragraph.
This step aims to establish a broad range of chart
themes that can be used as the foundation for the
subsequent caption and data generation.

Step 2: Caption Generation. Building upon
the themes generated in the previous step, step 2
utilizes GPT-4 to create captions for charts corre-
sponding to each of the identified themes. For each
theme and its accompanying description, the model
is prompted to "Please create captions for charts
according to the following description: Scenario:
[Scenario from Step 1], Description: [Description
from Step 1]." Notably, for each theme, N captions
will be generated. This step ensures that the cap-
tions are tailored to the specific contexts, enhancing
the relevance and diversity of the dataset.

Step 3: Data Generation. For each caption gen-
erated in the previous step, we will request GPT-4
to generate a JSON object containing several keys,
such as the caption itself, the type of chart, a list
of candidate data points, and the minimum and
maximum values for the data points. Since GPT-4
often generates duplicate and redundant data, in or-
der to further enhance the diversity of the data and
make it more realistic, we create a Python program
to randomly select a subset of the candidate data
points and generate target data within the specified
ranges, ensuring a diverse set of chart types, data
distributions, and scales.

3.3 Chart Generation

The goal of this stage is to generate a diverse set
of chart figures based on the chart data generated
in stage 1. This stage utilizes Pyecharts to plot
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{"Caption": "Community 
Development and Resident Life: 
Infrastructure Development and Life 
Satisfaction",  "Type": 
"Community",  "Candidate": 
["New York City", "Los Angeles", 
"Chicago", "Houston", "Phoenix", 
"Philadelphia", "San Antonio", "San 
Diego",…, "Minneapolis", "Tulsa", 
"Arlington", "Tampa"],  
"a_dimension": "Infrastructure 
Development",  "a_min": 1000000,  
"a_max": 50000000,  "b_dimension": 
"Life Satisfaction",  "b_min": 0,  
"b_max": 10}

{"Caption": "Community Development and Resident Life: 
Infrastructure Development and Life Satisfaction", 
"Candidate": ["Charlotte", "Dallas", …,"Fort Worth", 
"Arlington"],"a_dimension": "Infrastructure Development",  
"a_min": 1000000,  "a_max": 50000000,  "b_dimension": 
"Life Satisfaction",  "b_min": 0,  "b_max": 10, a_data: 
[Python Random(a_min, a_max)], b_data: Python 
[Random(b_min, b_max)]}

{"Caption": "Community Development and Resident Life: 
Infrastructure Development and Life Satisfaction", 
"Candidate": [“Colunmbus", “Denver 
“Houston"],"a_dimension": "Infrastructure Development",  
"a_min": 1000000,  "a_max": 50000000,  "b_dimension": 
"Life Satisfaction",  "b_min": 0,  "b_max": 10, a_data: 
[Python Random(a_min, a_max)], b_data: Python 
[Random(b_min, b_max)]}

{"Caption": "Community Development and Resident Life: 
Infrastructure Development and Life Satisfaction", 
"Candidate": ["Fresno", "El Paso",…, "Sacramento", 
“Virginia Beach"], a_dimension": "Infrastructure 
Development",  "a_min": 1000000,  "a_max": 50000000,  
"b_dimension": "Life Satisfaction",  "b_min": 0,  "b_max": 
10, a_data: [Python Random(a_min, a_max)], b_data: 
Python [Random(b_min, b_max)]}

GPT-4 Generated Chart Data Python Randomly Selection&Generation Pyecharts Plotting

Figure 3: The pipeline of chart generation. We first utilize GPT-4 to generate candidates and the value range of
target data. Then we use Python to randomly select several candidates (denoted in Green) and generate target data
(denoted in Blue). Finally, we use Pyecharts to plot the chart with random plot settings (e.g. color, legend). We use
multichart generation as an example.

Figure 4: Distribution of our datasets.

chart figures, ensuring a realistic and diverse set of
visualizations. Pyecharts supports a wide range of
chart types, enabling us to produce charts of various
categories based on the diverse data obtained from
stage 1.

The chart generation process begins by inputting
the chart data generated in stage 1, along with a
randomly selected chart type from a total of 21
types (e.g., bar, heatmap, liquid). Additionally, a
chart setting is randomly selected, which includes
various customizable elements such as the location
of the legend, caption, font, color, and more. This
random selection ensures that the generated charts
are diverse and realistic, mimicking the variability
in real-world visualizations. In Figure 3, we present
the process of chart generation of an example.

3.4 Instruction Data Generation

The goal of this stage is to generate high-quality
instruction data that addresses the limitations of
previous methods. Concretely, previous methods
for generating instruction data primarily relied on
manual annotation and template generation, both
of which have their own challenges. Firstly, man-
ual annotation, despite showcasing the diversity
of questions, often contains errors. For example,
in the ChartQA dataset, instructions include rel-
ative terms like "last year", which not only lack
complete information for model training but also
hinder the assessment of the model’s chart com-
prehension abilities. Similarly, methods like those
used in PlotQA, which construct instruction data
using models, exhibit a gap from the real-world
problems people would actually ask, with the ques-
tion format being relatively fixed and lacking vari-
ety. Based on the above observation, we divide our
instruction data generation into two steps to ensure
task and question diversity, respectively. In the first
step, manual design of tasks for charts is performed
to ensure task diversity. We design a total of 10
task types, such as summarization questions, detail
understanding questions, chain-of-thought reason-
ing, and math reasoning as shown in Figure 8. In
the second step, the task template designed in step
1 is input into GPT-4, along with an example and
chart data in JSON format from stage 2. GPT-4
is then used for question refinement, making the
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Dataset Understandability Relevance Clarity Reasonableness Correctness Average

ChartQA (Masry et al., 2022) 2.52 2.29 2.67 2.63 2.87 2.596
Omni-Chart-600K 2.49 2.34 2.61 2.65 2.90 2.598

Table 2: User study of different datasets based on multiple criteria.

task question more fitting to the specific chart. This
step refines the task questions to ensure they are
well-suited to the chart data, resulting in a more
diverse and realistic set of instruction data.

3.5 Data statistic

Quantitative Analysis:We present the statistics
of our generated dataset in Table 1 and Figure 4.
Our dataset comprises 21 different types of chart
data, making it, to the best of our knowledge, the
dataset with the most chart types included. In ad-
dition to common chart forms such as bar charts,
line charts, and pie charts, our dataset also encom-
passes 3D bar charts, parallel charts, theme river
charts, Sankey charts, and more, as shown in Fig-
ure 1. Additionally, our dataset distinguishes itself
from others by maintaining a balanced distribu-
tion across all chart types, in contrast to traditional
datasets where basic chart types predominate. Re-
garding task variety, our dataset is exceptionally
comprehensive. Furthermore, drawing inspiration
from (Wei et al., 2022b), we have meticulously
designed tasks for Chain of Thoughts reasoning.
These tasks are specifically tailored to bolster the
chart reasoning capabilities of models, an essential
attribute for practical applications in the real world.

Quantitative Analysis: we conducted a compre-
hensive user study on data quality with 10 partici-
pants. For each chart type, we randomly selected
10 different chart QA pairs, making a total of 210
chart QA pairs. Each participant was asked to an-
swer five multiple-choice questions for each QA
pair, evaluating the data across five aspects. For
example, Relevance measures the correlation be-
tween the question and the chart data, while Rea-
sonableness evaluates whether the question aligns
with real-world scenarios. As shown in Table 2, the
user study indicates that our data quality surpasses
that of ChartQA.

4 Experiments

4.1 Architecture baseline

Based on the LLaVA(Liu et al., 2024) framework,
we develop our Omni-Chart model for chart under-

standing. LLaVA, which has been pretrained on
a diverse array of visual language tasks, brings a
wealth of prior knowledge that is crucial for large
language models (LLMs). To effectively capture
both the overarching and detailed features of charts,
the input chart is initially resized into a single patch.
This is complemented by additional patches that
are created from a high-resolution version of the
image. This dual approach ensures a comprehen-
sive analysis of the visual data. In the input se-
quence, the image tokens are strategically placed
at the start, immediately followed by the language
query. To validate the effectiveness of the dataset
we constructed, Omni-Chart-600K, we established
a baseline based on LLaVA1.6.

4.2 Training Details
To enhance the capabilities of our multimodal large
language model, we have developed a two-phase
training pipeline. In the first phase, we train the
pretrained MLLM model using simple tasks such
as data extraction and structural understanding to
align it with chart-related tasks. In the second
phase, we employ more complex tasks, such as
mathematical reasoning and chain of thoughts rea-
soning, to unleash the potential of the MLLM. Fur-
thermore, through our analysis comparing chart
images with natural images, we observed that chart
images usually contain finer-grained numerical
data and legends. Consequently, we employed a
method of jointly fine-tuning the LLaVA vision en-
coder to develop the Omni-Chart model. Through-
out this training, we employ LoRA (Hu et al., 2021)
with a rank of 32. In the second stage, we integrate
the LoRA weights from the previous stage and
introduce a new LoRA adapter to optimize perfor-
mance.

4.3 Evaluation benchmark and metric
Tasks: To comprehensively assess the performance
of our model, we employ three established down-
stream tasks. ChartQA (Masry et al., 2022), where
performance is evaluated by relaxed accuracy on
human and augmentation splits. The human split
presents a more challenging dataset as it includes
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model
chart QA Chart-to-Table Chart-to-Text

aug human overall Chart QA Pew Statista

Pix2struct (Lee et al., 2023) 81.6 30.5 56.0 - 10.3 38.0
Matcha (Liu et al., 2022b) 90.2 38.2 64.2 - 12.20 39.40
DePlot (Liu et al., 2022a) - - - 79.3 - -
Chart-T5 (Zhou et al., 2023a) 74.4 31.8 53.1 - 9.10 37.5
Unichart (Masry et al., 2023) 87.8 43.9 65.85 91.1 12.5 38.1
Chartllama (Han et al., 2023) 90.4 48.9 69.65 90.0 14.2 40.7
Omni-chart (Ours) 86.6 60.9 73.8 92.2 15.8 53.2

Table 3: Results on several benchmarks

questions requiring mathematical reasoning. Chart-
to-Table (Liu et al., 2022a), which requires the
model to extract CSV data from charts. Perfor-
mance is measured using RMSF1 from DePlot.
Chart-to-Text (Kantharaj et al., 2022b), focusing
on converting chart data directly into descriptive
text. Additionally, to verify the existing models’
understanding of multiple types of charts, we con-
structed a benchmark Omni-ChartQA for under-
standing multiple chart types using the method we
proposed. This benchmark includes QA tasks for
21 types of charts and employs relaxed accuracy as
the evaluation metric, comprehensively assessing
the models’ ability to understand a wider variety of
chart types.
Baselines: We benchmark the performance of
Omni-Chart model against seven baseline mod-
els: LLaVA (Liu et al., 2024), Chart-T5 (Zhou
et al., 2023b), Chartllama (Han et al., 2023),
UniChart (Masry et al., 2023), cogvlm-chat-
hf (Wang et al., 2023), deepseek-vl (Lu et al., 2024),
internVL2-8B (Chen et al., 2024), Qwen2-VL-7B-
Instruct (Wang et al., 2024).

4.4 Results

As demonstrated in Table 3, the multimodal large
language models trained using our dataset have
achieved state-of-the-art performance across sev-
eral benchmarks. Our models particularly excel
on the ChartQA benchmark, which involves com-
plex mathematical reasoning, due to the rich di-
versity of reasoning information contained within
our Chain-of-Thought data. Additionally, as our
dataset encompasses a variety of tasks, including
data extraction, our methodology secures state-of-
the-art results on benchmarks such as Chart-to-Text
and Chart-to-Table. Furthermore, as shown in Ta-
ble 4, general multimodal large language models

have limited capability in understanding multiple
types of chart data. In contrast, our method sig-
nificantly enhances the understanding of various
chart types, addressing the deficiencies of existing
methods in handling a broader spectrum of chart
types. Our empirical evidence demonstrates that
training large language models on a diverse range
of chart types and tasks can substantially improve
their ability to effectively understand and interpret
various chart formats.

4.5 User Study
Similarly, to evaluate the model’s output, we ran-
domly selected 100 chart-question model output
pairs. Each participant was required to answer five
multiple-choice questions for each QA pair, evalu-
ating five aspects of the model. Each option repre-
sents a different score. Through a comprehensive
user study, we demonstrated that our model’s out-
put performs well across various aspects, as shown
in Table 5.

4.6 Ablation Study
We evaluate our design using five distinct abla-
tion settings described in Talbe 6. ‘Zero Shot’
indicates the use of a pretrained LLaVA model
without additional training. ‘Direct Fine-Tuned’
involves fine-tuning the LLaVA Language Model
with LoRA and our QA dataset without Chain of
Thought(CoT). ‘LLM Only + CoT’ consists of
fine-tuning the Large Language Model (LLM) ex-
clusively with CoT data. The settings ‘LLM +
Vision Encoder + CoT’ and ‘LLM + Vision En-
coder* + CoT’ assess the effects of varying LoRA
ranks, with both involving simultaneous tuning of
the LLM and Vision Encoder. Experimental re-
sults demonstrate that our chart-specific Chain of
Thought data significantly enhances overall perfor-
mance, and further tuning of the vision encoder
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Chart Type cogvlm deepseek internVL2 Qwen2-VL Chartllama LLaVA Ours

Overall 23.68 19.82 27.04 35.60 8.87 22.89 44.88
radar 14.75 11.26 21.72 28.15 5.93 15.92 21.87
parallel 30.23 21.40 35.35 41.86 5.95 30.34 41.07
rose 17.24 14.48 33.10 47.13 7.80 28.35 53.48
pie 14.38 12.36 30.34 40.90 8.47 23.86 46.79
wordcloud 34.69 36.73 18.37 36.73 34.23 20.12 18.79
themeriver 14.62 5.66 17.45 20.28 5.53 19.27 50.69
candlestick 2.69 0.45 3.59 6.28 4.90 16.36 9.70
sankey 25.57 19.09 27.18 32.04 10.16 24.13 55.25
effectscatter 26.33 23.13 32.03 42.70 8.28 18.83 38.85
bar 23.17 21.95 30.49 40.24 9.20 17.77 34.17
pictorialbar 29.35 22.89 25.37 36.32 14.71 20.91 34.04
boxplot 9.39 17.84 14.08 13.62 6.48 26.40 47.20
heatmap 39.22 33.19 49.57 52.16 17.40 26.76 55.38
gauge 38.62 27.24 31.71 47.56 7.77 28.10 52.08
scatter 26.94 31.84 34.29 46.53 10.81 19.07 34.90
funnel 35.03 23.05 40.72 62.57 5.57 27.11 82.94
multiple 22.58 22.58 17.74 29.84 9.80 14.68 27.32
line 26.17 18.22 31.31 34.58 8.31 17.89 28.78
calendar 21.12 20.50 28.26 22.05 8.55 29.32 76.25
Liquid Fill Chart 30.06 23.31 26.99 41.72 6.34 16.65 20.48
3Dbar 15.15 9.09 18.18 24.24 8.69 22.79 19.67

Table 4: Results by different chart types on Omni-ChartQA.

Dataset Accuracy Relevance Readability Reasonableness Completeness Average

Chartllama (Han et al., 2023) 2.31 2.42 2.63 2.32 2.57 2.450
Omni-Chart-600K 2.55 2.45 2.58 2.34 2.60 2.504

Table 5: User study on the outputs of different models.

method ChartQA
overall

Zero shot 47.3
direct fine-tuned 51.4
LLM Only + CoT 71.0
LLM+Vison Encoder + CoT 71.8
LLM+Vison Encoder∗+CoT 73.8

Table 6: Ablations study: ‘*’ indicates the use of a
LoRA rank of 32, while the other configurations employ
a LoRA rank of 16.

also improves scores, corroborating the findings
in (Laurençon et al., 2024).

5 Conclusion
In this paper, we introduce a versatile and scalable
three-stage instruction collection method, signifi-

cantly reducing labeling errors and increasing data
diversity. Utilizing this methodology, we devel-
oped Omni-Chart-600K, which, to the best of our
knowledge, is the most comprehensive chart in-
struction dataset in terms of chart variety, compris-
ing 21 distinct chart categories and 10 task types,
with a total of 633K chart images and 6.8M instruc-
tion data. Additionally, we present a two-stage
training strategy that leverages fine-tuning on a pre-
trained multimodal large language model, achiev-
ing SOTA outcomes not only in traditional chart
understanding tasks but also in more challenging
tasks that demand comprehensive comprehension
of multiple diverse chart types. We firmly posit that
our dataset and methodological approach signifi-
cantly enhance MLLM’s capability to accurately
interpret and analyze the vast spectrum of complex
charts encountered in real-world scenarios.
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6 Limitations

In our exploration of automated chart data pro-
cess, we introduced a dataset comprising 21 dis-
tinct types of charts. While this diversity repre-
sents a significant advancement in the field, some
limitations have been identified that could impact
the effectiveness of models trained on this dataset.
Concretely, although the dataset encompasses a
broad array of chart types, it does not cover the
entire spectrum of charts found in real-world ap-
plications. This gap in the dataset might hinder
the model’s ability to generalize well across truly
diverse chart types, potentially limiting its appli-
cability in practical scenarios where uncommon
or complex charts are prevalent. Addressing these
limitations represents significant future work.
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A Prompt design

Our approach leverages GPT-4 to generate high-
quality chart data. To fully unleash the genera-
tive capabilities of GPT-4 and minimize errors, we
have designed sophisticated prompts. Specifically,
to produce chart data of varied themes and types,
we initially prompt GPT-4 to generate application
themes for specific types of charts. Subsequently,as
shown in the Figure 5, GPT-4 is prompted to create
100 titles for each specific chart type, applying a
pre-generated theme every 50 titles to enhance the
diversity of the chart data. To generate the data
constituting the charts, as shown in the Figure 6,we
employ a one-shot approach where GPT-4 is given
an example to enhance its instruction-following ca-
pabilities, thus ensuring the generation of accurate
and diverse chart data. Similarly, in the question
rewriting phase,as shown in the Figure 7, we uti-
lize a one-shot method to enrich the format of the
questions, making them more representative of real-
world scenarios.

B template

Our method combines the strengths of human an-
notation and template generation to produce high-
quality chart instruction data. We posit that the
range of questions about charts in the real world
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is finite. Consequently, as illustrated in Figure 8,
we have designed comprehensive template ques-
tions that address a variety of tasks such as iden-
tifying maximum and minimum values, the po-
sitions of legends, and simple mathematical rea-
soning. These template questions encompass all
potential tasks and have been diversified through
rewriting by GPT-4. The resultant diverse instruc-
tion data substantially supports multimodal large
language models in better understanding chart data,
enhancing their performance across relevant tasks.

C Qualitative Results

C.1 Results of chartQA
Reasoning capability is a crucial aspect of multi-
modal large language models. To better harness
this ability, we have designed tasks based on chain-
of-thought reasoning, enabling the model to pro-
gressively reason through complex questions to
arrive at the final answer. As shown in Figure 9,
ChartQA is a challenging dataset that involves di-
verse reasoning tasks. Compared to ChartLlama,
our model achieves more accurate results through
COT-based reasoning, demonstrating its enhanced
capability to handle intricate problem-solving sce-
narios.

C.2 Results of Chart-to-Table
The task of Chart-to-Table involves parsing charts
into CSV data. We have also incorporated a Chart-
to-Table task during training and have parsed var-
ious types of charts. This approach has signifi-
cantly enhanced the model’s parsing capabilities,
as demonstrated in Figure 10.

C.3 Results of Chart-to-Text
Through comprehensive multitask training, our
model also performs better on the Chart-to-Text
task.

D Baseline Model Details

D.1 Pix2Struct
Pix2Struct is a pretrained image-to-text model de-
signed to understand visually-situated language,
which encompasses a wide range of visual sources
such as textbooks with diagrams, web pages with
images and tables, and mobile apps with buttons
and forms. The model addresses the limitations of
previous domain-specific approaches that lacked
flexibility and shared resources by introducing a
novel pretraining strategy.

Pix2Struct’s pretraining involves parsing masked
screenshots of web pages into simplified HTML,
leveraging the rich visual elements found on the
web to generate a diverse pretraining dataset. This
method not only utilizes traditional pretraining sig-
nals such as OCR, language modeling, and image
captioning but also enhances them by translating
complex visual information into structured HTML
text.

D.2 Matcha
Matcha builds upon the foundation of Pix2Struct.
It introduces several pretraining tasks specifically
tailored to improve the model’s capabilities in plot
deconstruction and numerical reasoning, which are
critical for effective visual language modeling.

D.3 DePlot
Recognizing the limitations of previous state-of-
the-art models, which require extensive training on
large datasets and still show limited reasoning ca-
pabilities, especially with complex human-written
queries, DePlot presents a significant advancement
by offering a few-shot solution for visual language
reasoning.

DePlot’s methodology decomposes the chal-
lenge into two primary steps:

1. Plot-to-Text Translation: This involves trans-
lating the visual information from plots or
charts into a linearized table format.

2. Reasoning Over Translated Text: Utilizing
the table format to enable reasoning, which
leverages the capabilities of large language
models (LLMs).

A key innovation in DePlot is the modality conver-
sion module that performs the plot-to-table transla-
tion. This output is then used to prompt a pretrained
large language model, harnessing the few-shot rea-
soning capabilities of these models.

D.4 Chart-T5
Chart-T5 operates through a cross-modal pre-
training approach, utilizing plot-table pairs to train
the model. The pre-training incorporates two novel
objectives:

1. Masked Header Prediction (MHP): This objec-
tive trains Chart-T5 to recognize and predict
the headers of tables derived from chart im-
ages, which is crucial for understanding the
structure and categorization within charts.
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2. Masked Value Prediction (MVP): This trains
the model to predict the numeric or textual
data within the table cells, enhancing its abil-
ity to accurately interpret the detailed infor-
mation presented in charts.

D.5 Unichart

This model addresses the limitations of existing
methods in chart-based data analysis tasks, such as
chart question answering and chart summarization,
which often rely solely on pretraining in language
or vision-language tasks without adequately mod-
eling the explicit structures of charts.

To tackle these challenges, the first step involved
building a large corpus of charts that vary in topics
and visual styles. UniChart then utilizes this corpus
to effectively encode textual, data, and visual ele-
ments of charts, employing a chart-grounded text
decoder for generating text.

Unichart’s pretraining involves a mix of chart-
specific tasks designed to improve both low-level
and high-level understanding of charts:

Low-level tasks focus on extracting visual ele-
ments and data directly from the charts. High-level
tasks aim to enhance the model’s overall chart un-
derstanding and reasoning capabilities.

D.6 LLaVA

LLaVA is one of the most advanced open-source
multimodal large language models currently avail-
able. LLaVA employs a two-stage training process,
where the first stage aligns the visual and language
modalities, and the second stage fine-tunes the
model for visual instructions. The model leverages
machine-generated data where GPT-4 provides lan-
guage instructions aligned with images, allowing
LLaVA to learn from this synthesized multimodal
context.

D.7 chartllama

chartllama introduce a novel high-quality
instruction-tuning dataset was created using GPT-4.
This involved a multi-step data generation process:

1. Tabular Data Generation: This step focused
on creating the underlying data that would be
visualized in the charts.

2. Chart Figure Creation: Using the tabular data,
various chart figures were generated, encom-
passing a diverse range of chart types.

3. Instruction Tuning Data Design: This final
step involved crafting instruction sets that
would guide the model in interpreting the
charts correctly.
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Prompt design
Your current task is to provide titles for pie charts in different application scenarios. 
Please provide me 100 different titles,requiring 50 of them to be the titles of the pie 
chart in the Marketing scenario, and the other 50 to be the titles of the pie chart in 
the Human Resources scenario. 
The title is required to summarize related types, such as countries, movies, 
electronic products, etc. 
Here are an example: 
“Market share chart of different electronic products”

Figure 5: Prompt for generating titles. The blue ones are pre-generated possible themes for that type of chart, each
time generating 100 chart titles of different themes.
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Prompt design
Your task is to output a JSON file containing six keys: "caption," "type," 
"candidate," "characteristic," "min_data," and "max_data." For the given radar 
chart titles, first output the title, then indicate the object type described by this radar 
chart. After that, output 100 candidate options for this question. The candidates 
should be real and unique, and should not include identifiers such as A, B, C, 1, 2, 
3, etc. Additionally, provide the nature of the comparison of the candidates in the 
radar chart. Also, specify the range of values for each characteristic of the radar 
chart corresponding to the title.
Make sure that the number of items in the "characteristic" key's list is greater than 6.
Here's a simple example:
Input: "Comparison of Different Features of Various Mobile Phone Brands Radar 
Chart"
Output:
{ "caption": "Comparison of Different Features of Various Mobile Phone Brands 
Radar Chart", "type": "Mobile Phone Brands", "candidate": [ "Apple", "Samsung", 
"Huawei", "Xiaomi", "Oppo", "Vivo", "OnePlus", "Google (Pixel)", "Sony", "LG", 
"Nokia", "Motorola", "HTC", "Asus", "Lenovo", "ZTE", "BlackBerry", "Alcatel", 
"Meizu", "Realme", "Infinix", "Tecno", "Coolpad", "LeEco (Letv)", "Sharp", 
"Panasonic", "Micromax", "Karbonn", "Lava", "Gionee", "Honor", "Ulefone", 
"Elephone", "Vernee", "Doogee", "BLU", "Razer", "Wiko", "Essential", 
"Fairphone", "YotaPhone", "Jolla", "Cat", "HP", "Dell", "Fujitsu", "Casio", "Acer", 
"Kyocera", "Hisense" ], "characteristic": [ "Portability", "Price", "Value for 
Money", "Speed", "Appearance", "User-Friendliness", "Performance", 
"Practicality", "Durability" ], "min_data": 200000, "max_data": 100000000 }
Now, input:"
Radar chart comparing different economic indicators in different countries”
Output:

Figure 6: Prompts for generating chart data. This phase produces all the data necessary for plotting charts, including
candidates, characteristics, maximum values, minimum values, and more. The one-shot prompt method ensures the
generated data is both accurate and diverse.
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Prompt design
Your task is to output a list of JSON and do not output other information, where 
each dictionary in the list contains four keys named 
"question" ,"answer","image_index" and "type".  You need to combine your data in 
template form to generate the corresponding question. Then, rewrite that question 
to make it more varied in form while keeping the original meaning unchanged, and 
output the question along with the answer,image_index and type. Below are the 
templates for the questions:
"template": "Does the graph contain grids?"
Here is a simple example:
"input": [{
"caption": "Line Chart of Changes in Song Rankings on Different Music Charts",
"answer": "Yes",
"image_index": 6,
"type": "line"
}]
"output": [{
"question": "Does the line chart depicting changes in song rankings on different 
music charts include gridlines?",
"answer": "Yes",
"image_index": 6,
"type": "line"
}]
Now, for the current input:
"input": ["{"caption": "Bar chart of monthly sales figures for different product 
categories", "anwser": "Yes", "image_index": 0, "type": "bar"}", "{"caption": "Bar 
chart illustrating monthly expenditure for different customer segments", "anwser": 
"Yes", "image_index": 1, "type": "bar"}", "{"caption": "Bar graph showing 
monthly returns on different financial instruments", "anwser": "Yes", 
"image_index": 2, "type": "bar"}", "{"caption": "Bar chart illustrating annual profit 
margins for different competitors", "anwser": "Yes", "image_index": 3, "type": 
"bar"}", "{"caption": "Bar chart depicting monthly performance metrics for 
different sales teams", "anwser": "No", "image_index": 4, "type": "bar"}", 
"{"caption": "Bar graph representing quarterly market shares of different product 
brands", "anwser": "No", "image_index": 5, "type": "bar"}”]
"output":

Figure 7: Prompts for rewriting template questions. To generate more diverse instruction data, we prompt GPT-4
to rewrite predetermined template questions. The rewritten questions become more varied, including alternative
formulations of generic questions and questions that incorporate chart titles, aligning more closely with real-world
scenarios.
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template

What is the difference between the maximum value and the minimum value in this chart?
What is the ratio of the maximum value to the minimum value in this picture?
What is the sum of the maximum value and the minimum value in this chart?
What is the maximum value in this chart?
What is the minimum value in this chart?
How many legend labels are there?
How many figure-types are there?
Which item has the largest value at a certain point?
What is the worst performing item on a certain indicator?
What is the chart type of this picture?
What is the closing price of an item at a certain point?
Does the graph contain grids?
Does the graph contain legend？
Does the graph contain a title?
Which data does this picture describe?
What is the pointer pointing to in this picture?
What is the title of the graph?
What is the value of a certain item at a certain point?
what is the proportion of a certain item?
What is the value of a certain item?
How many days of data does this calendar graph represent?
What is the end time of this calendar chart?
What is the best indicator of performance for a given item?
How are the legend labels stacked?
In this picture, where is the legend?
Which item accounts for the largest proportion?
What is the difference between the maximum value and the minimum value represented 
by this calendar chart?
What is the maximum value represented by this chart?
Which item has the smallest proportion?
What is the minimum value represented by this calendar graph?
How many points are greater than the average for a certain item?
What is the average of a certain item?
…

Figure 8: Part of the template questions, covering most types of tasks.
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Chart LLaMA: Kitchen lighting

Omni-Chart: The tabular data for this chart is 
'Entity, Value
Accent, 557
Track, 301
Task, 873
Cove, 529
Desk lamp, 510’
The question asks what lighting category has 
the smallest proportion within this 
segmentation. According to the CSV data we 
extracted, we know that Track has the 
smallest proportion with a value of 301, so 
the answer is Track

Question: what lighting category has the smallest proportion within this segmentation

Figure 9: results on chart QA task

Characteristic, Net worth, Earnings per episode
Nikolaj Coster-Waldau, 16, 0.5 
Peter Dinklage, 16, 0.5
Emilia Clarke, 13, 0.5
Kit Harington, 12, 0.5
Lena Headey, 9, 0.5
Maisie Williams, 6, 0.15
Sophie Turner, 6, -

Characteristic, Net worth, earnings per episode
Nicky Wilder,6.5,6
Peter O'Toole,5.5,6
Emilia Clarke,13,13
Kirsten Dunst,12,12
Lauren Bacall,9.5,9
Meryl Streep,8,8
Sophie Turner,6,6
Meryl Streep,6,6
Julianne Moore,5.5,5.5

Chart LLaMA

Omni-Chart 

Figure 10: results on Chart-to-Table task
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