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Abstract

Decoding and expressing brain activity in a
comprehensible form is a challenging frontier
in AI. This paper presents Thought2Text, which
uses instruction-tuned Large Language Models
(LLMs) fine-tuned with EEG data to achieve
this goal. The approach involves three stages:
(1) training an EEG encoder for visual feature
extraction, (2) fine-tuning LLMs on image and
text data, enabling multimodal description gen-
eration, and (3) further fine-tuning on EEG em-
beddings to generate text directly from EEG
during inference. Experiments on a public
EEG dataset collected for six subjects with im-
age stimuli and text captions demonstrate the
efficacy of multimodal LLMs (LLAMA-V3,
MISTRAL-V0.3, QWEN2.5), validated using
traditional language generation evaluation met-
rics, as well as fluency and adequacy measures.
This approach marks a significant advancement
towards portable, low-cost "thoughts-to-text"
technology with potential applications in both
neuroscience and natural language processing.

1 Introduction

Brain-Computer Interface (BCI) systems, com-
bined with portable and wearable noninvasive Elec-
troencephalographic (EEG) devices, enable direct
interfacing between the brain and external devices
(He et al., 2015). Advances in generating images
and natural language using EEG (Speier et al.,
2016; Benchetrit et al., 2023; Défossez et al., 2023)
hold promise for developing BCIs in various do-
mains, including assistive communication (e.g., for
ALS and stroke patients), mixed reality (AR/VR)
experience enhancement, mental health diagnosis,
and gaming. Recent strides in NLP driven by pow-
erful Large Language Models (LLMs) such as Ope-
nAI GPT-4. (Achiam et al., 2023), Google Gemini
(Team et al., 2023), Meta-LLaMA (Touvron et al.,
2023), Mistral (Jiang et al., 2023), and Microsoft
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Phi (Gunasekar et al., 2023) have enabled multi-
modal integration, facilitating language generation
from images (Liu et al., 2024b) and speech (Fathul-
lah et al., 2024). Our research focuses on a multi-
modal solution to decode brain signals directly into
text, using EEG signals. We choose EEG because
of its affordability compared to mainstream alterna-
tives such as Functional Magnetic Resonance Imag-
ing (fMRI) (Tang et al., 2023), which are costlier
and require complex setup. For generating text, we
leverage LLMs, which enable flexible, high-quality
text generation across various modalities, such as
images (Liu et al., 2024b), audio (Rubenstein et al.,
2023; Fathullah et al., 2024), and more and often
outperform current open vocabulary task-specific
methods (Shi et al., 2024).

Our approach for generating textual descriptions
from EEG signals involves three key steps: (a)
capturing language-agnostic EEG signals via vi-
sual stimuli, (b) encoding these signals into embed-
dings using a deep multichannel neural encoder,
and (c) fine-tuning language models by project-
ing image and EEG embeddings into a token em-
bedding space to generate responses. These re-
sponses are compared with gold standard image
descriptions to compute the training loss. During
inference, only EEG signals and a generic textual
prompt are used as inputs to the LLMs to gener-
ate responses. Our method requires images, EEG
data and descriptions for training, while inference
is bimodal, using only EEG to generate text.

For experiments, we use a public 128-channel
EEG dataset from six participants viewing visual
stimuli. The image descriptions are generated by
GPT-4-Omni (Achiam et al., 2023) and quality-
checked by human annotators, providing the text
modality necessary to build EEG-to-text gener-
ation systems. Although the goal is the gener-
ation of text from EEG, we use a dataset with
visual stimuli for their language-agnostic nature,
avoiding the potential complexities associated with
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reading and language processing (see Section 3
for details). We fine-tune large language models
(LLMs) using these descriptions, leveraging pre-
trained instruction-based language models such as
MISTRAL-V3 (Jiang et al., 2023), LLAMA-V3
(Touvron et al., 2023), and QWEN2.5 (Bai et al.,
2023a). Evaluation with standard generation met-
rics (Sharma et al., 2017) and GPT-4-based assess-
ments confirmed the effectiveness of our approach.

Our paper’s key contributions include:

• Integration of brain signals with instruction-
tuned LLMs.

• Fine-tuning models on EEG signals captured
for visual stimuli, leveraging its language-
agnostic nature to enhance LLM interaction.

• Validation of the efficacy of the model in a
popular public dataset that contains EEG sig-
nals captured using affordable devices.

The code and a link to the processed
dataset can be found at https://github.com/
abhijitmishra/Thought2Text.

2 Related Work

Integrating behavioral signals such as eye move-
ment and brain signals into NLP and computer
vision tasks (Mishra and Bhattacharyya, 2018;
Sharma and Meena, 2024) has seen significant
progress. Key datasets include ZuCo 2.0 (Hol-
lenstein et al., 2019), which captures EEG and
eye-gaze during natural language reading, and
MOABB (Jayaram and Barachant, 2018), offering
over 120,000 EEG samples from 400+ subjects
from various BCI tasks such as motor imagery, vi-
sual evoked potentials, and cognitive load. Datasets
such as MindBigData (Vivancos and Cuesta, 2022)
and CVPR2017 (Spampinato et al., 2017) pro-
vide substantial EEG data collected from partic-
ipants’ responses to handwritten and open vocabu-
lary object-based image stimuli respectively. These
datasets have facilitated research on the classifica-
tion of EEG data (Spampinato et al., 2017; Palazzo
et al., 2020; Khaleghi et al., 2023) and the gen-
eration of images from EEG signals using GANs
(Goodfellow et al., 2020) and latent diffusion mod-
els (Rombach et al., 2022; Bai et al., 2023b; Lan
et al., 2023; Tirupattur et al., 2018).

Additionally, multimodal datasets like The Alice
Dataset (Bhattasali et al., 2020), which includes

EEG and fMRI recordings from participants listen-
ing to a story, provide two measurable modalities:
audio stimulus and the corresponding text. Another
recent multimodal dataset, EIT-1M (Zheng et al.,
2024), contains one million EEG-Image-Text pairs,
collected as participants viewed visual-textual stim-
uli. At the time of writing, a partial version of the
EIT-1M dataset was released, containing data for
only one subject.

Generating language from EEG signals remains
an elusive challenge. The most closely related work
is EEG2TEXT (Liu et al., 2024a), which utilizes
EEG pretraining and a multi-view transformer to
decode EEG signals into text. Another approach
similar to ours, using multiple modalities, is pre-
sented in (Ikegawa et al., 2024), where intracranial
EEG (iEEG) signals were recorded from patients
watching videos, and each video frame was used
to generate images and text using CLIP vision-
language model (Radford et al., 2021). Unlike
our approach, this study involved implanting elec-
trodes in patients. Furthermore, these works do
not leverage large language models (LLMs) with
prompt engineering for generating prompt-specific
responses. We believe our method of fine-tuning
LLMs using non-invasive EEG input is the first of
its kind.

3 Dataset and the need for Visual Stimuli

Building a system that generates text from neu-
ral activity naturally requires a dataset of paired
< eeg, text > examples. However, using textual
stimuli presents inherent challenges. Reading is a
learned skill that requires the decoding of symbols
into sounds and meanings, syntactic parsing, and
sequential integration in time. In contrast, visual
perception is more innate, natural, and image pro-
cessing is more parallel (Dehaene, 2009; Townsend,
1990). Furthermore, using EEG data collected on
textual stimuli introduces additional complexities
of language processing, such as determining brain
activity windows for specific words, managing re-
tention of word context post-onset, and managing
the overlap of contexts when words are shown in
different time frames (Wehbe et al., 2014; Mur-
phy et al., 2022). Additionally, vocabulary size
presents a challenge: while EEG-to-text systems
perform well in closed-vocabulary settings, open-
vocabulary decoding becomes inefficient as vocab-
ulary size increases (Martin et al., 2018; Wang and
Ji, 2022; Liu et al., 2024a). The core challenge
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Annotator Percentage of Correct Captions

Annotator 1 98%

Annotator 2 96%

Agreement Score 93%

Table 1: GPT-4 Captions Validation Results from Ama-
zon Mechanical Turk

in thought-to-text systems thus lies in two key as-
pects: (a) harnessing language-agnostic neural
signals with minimal interference from linguistic
processing and (b) using these signals to generate
text in a target language, potentially by specifying
an instruction or prompt.

This leads us to experiment with datasets where
EEG signals are recorded in response to visual
stimuli rather than textual input. For (a), vi-
sual stimuli provide several advantages: By re-
lying on images, it circumvents the complexities
of language processing and also elicits brain re-
sponses to salient image features, making them
more suited to capture neural activity in a language-
agnostic manner. For (b), generating text from
visual stimuli-evoked EEG remains challenging,
as most EEG datasets collected with visual stim-
uli (e.g., CVPR2017 dataset (Spampinato et al.,
2017), MOABB (Jayaram and Barachant, 2018),
MindBigData (Vivancos and Cuesta, 2022)) lack
an associated text component, which is essential for
evaluating whether the generated text from EEG
signals accurately captures the perceived salient
features of the images. To address this, robust im-
age captioning tools such as GPT-4 Omni (Achiam
et al., 2023) can be employed to generate captions
that effectively capture the salient imformation of
visual stimuli, thus creating a tri-modal dataset
with < eeg, text, image > tuples. Text genera-
tion can further be guided by specifying a prompt
or instruction to tailor the output to a particular
language or context. This approach enriches the
dataset and provides a more comprehensive foun-
dation for thought-to-text research.

For our experiments, we utilize the CVPR2017
dataset (Spampinato et al., 2017), which contains
preprocessed EEG data from six participants, each
viewing 50 images across 40 diverse object cate-
gories1 (such as vehicles, musical instruments, etc).
Each EEG recording, corresponding to one par-
ticipant and one visual stimulus, consists of 128

1we use the terms object and class interchangeably to refer
to an object category.

channels recorded for 0.5 seconds at a sampling
rate of 1 kHz. Data are represented as a 128×N
matrix, where N, approximately 500, represents
the number of samples per channel in each seg-
ment. According to Spampinato et al. (2017), the
EEG signals were pre-processed by first applying a
second-order Butterworth bandpass filter between
5 Hz and 95 Hz and a notch filter at 50 Hz to re-
move power line noise. In addition, since the exact
duration of the EEG signals can vary, the first 20
samples (20 ms) were discarded to reduce interfer-
ence from the previous image, and then standardiz-
ing the signal to a common length of 440 samples,
accounting for segments with N < 500. The dataset
provides pre-filtered signals across three frequency
ranges: 14-70Hz, 5-95Hz, and 55-95Hz. In line
with previous research (Palazzo et al., 2020), we se-
lected the 55-95 Hz range, as it has shown the most
reliable results. We used the training, validation,
and test split from the original paper for overall and
subject-wise analysis.

Since the CVPR2017 dataset lacks textual de-
scriptions, we used GPT-4 to generate brief one-
line captions for each image as they are efficient in
capturing salient information without introducing
extraneous details. Here, the aim is to map EEG
data to concise captions to simplify the alignment
task, making it feasible despite the noise and vari-
ability inherent in EEG signals. To ensure quality,
we validated these auto-generated captions using
human annotators from Amazon Mechanical Turk,
who rated their fluency and adequacy on a binary
scale. Table 1 shows the validation results, includ-
ing annotator agreement on acceptable captions,
highlighting the reliability of the generated cap-
tions. We release the descriptions under the same
license as the original data.

4 Method

Our approach uses a three-stage process to gener-
ate coherent text from EEG signals. The overall
workflow is illustrated in Figure 1.

4.1 Stage1: Training EEG Encoder for
Embedding Extraction

The first stage of our approach focuses on de-
veloping an encoder that extracts meaningful em-
beddings (Heeg) from multi-channel EEG signals.
Since the target thoughts are short and pertain to
the most salient features of an image, we design
the encoder with two objectives: (a) aligning the
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Figure 1: Multi-stage training process for Thought2Text. Stage 1: EEG ChannelNet encoder is trained using MSE
loss (aligning EEG embeddings with CLIP model image embeddings) and CE loss (for EEG classification). Stage 2:
LLMs are fine-tuned using image descriptions and object labels, with only the projector trained while the LLM and
CLIP encoder remain frozen. Stage 3: Similar to stage 2, but the projector is trained with EEG embeddings. LLM
and EEG encoder remain frozen.

EEG embeddings with those derived from image
stimuli using a pretrained visual encoder, and (b)
predicting the most salient object (e.g., piano) from
the EEG embeddings.

As shown in Figure 1, we use a multichannel
EEG encoder inspired by ChannelNet (Palazzo
et al., 2020), a deep convolutional neural network
model, to convert EEG signals into multidimen-
sional embeddings (Heeg). These embeddings are
further processed by an MLP classifier to predict
object labels (yobj), which correspond to objects
present in the image stimuli. The label-set matches
ImageNet’s labels, available as part of the dataset,
representing the most salient object in each image.

The model is trained by minimizing two losses:
(A) a categorical cross-entropy loss (CE) between
the predicted and ground-truth object labels, and
(B) a mean squared error (MSE) between the EEG
embeddings (Heeg) and pooled image embeddings
(Hclip) from a pretrained CLIP model (Radford
et al., 2021), which captures semantically rich im-
age representations. CLIP’s embeddings offer ro-
bust transfer learning capabilities, making them
ideal for aligning with EEG data. Performance met-
rics for EEG-to-image classification using trained

MLP Classifier
To better align EEG embeddings with visual

stimuli, we simplify images by removing non-
central details like color, converting them into
sketches using techniques such as Gaussian Blur
and Canny filters. Although this step is empir-
ical and optional, using sketches help focus the
alignment on the core features of the object as dis-
cussed in Fine-Grained Sketch-Based Image Re-
trieval (Luo et al., 2023) and Interactive Sketch
Question Answering (Lei et al., 2024).

The general loss function (L) balances MSE
and CE, weighted by a hyper-parameter α (set to
0.5):

L = (1− α) · MSE(Heeg,Hclip)

+ α · CE(yobj , ŷobj) (1)

We predict both Heeg and yobj for three rea-
sons: (a) aligning EEG embeddings with image em-
beddings allows us to leverage multimodal vision-
language models later, adapting pretrained models
for EEG-based text generation, (b) joint optimiza-
tion ensures the embeddings emphasize salient ob-
jects in the images, and (c) object labels, combined
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with EEG embeddings, can later be fed into mul-
timodal language models to guide more accurate
generation. Given the noisy nature of EEG sig-
nals, including object labels in the prompts helps
keep the model grounded in the salient object and
reduces the likelihood of hallucinations.

4.2 Stage2: Priming LLMs with Image
Embeddings

To enable LLMs to process multimodal inputs, such
as EEG and visual embeddings, we designed a pro-
jector inspired by recent advancements in vision-
language models (Zhang et al., 2024) and is a fully
connected feed-forward layer. Since LLMs are
inherently text-based and cannot natively accept
non-text embeddings, the projector transforms em-
beddings from the vision and EEG models into
the token embedding space of the LLM. This en-
sures that the projected embeddings have the same
dimensionality as the LLM’s token embeddings.

The projector is a simple feed-forward layer that
maps the embeddings to the LLM token space.
These transformed embeddings are then concate-
nated with token embeddings extracted from the
input prompt, allowing the LLM to process both
text and external modality embeddings seamlessly.
In our main setting, the input prompt is structured
as follows:

{"role": "system", "content": "You are a helpful
assistant."},
{"role": "user", "content": "<image> <ob-
ject_string> Describe this in one sentence:"},

Input prompt

In stage 2, we first embed the tokens from
the extended prompt, including the object labels,
using the LLM’s token embedding layer. For
this, text tokens are input as token IDs that were
converted to dense vectors via a lookup in the
LLM’s embed_tokens layer. The token embed-
dings, Ht1 , Ht2 , ...,HtN , are then augmented with
multimodal embeddings. Specifically, the embed-
ding for the < image > token is replaced by the
projected multimodal embedding Hmm, and the
token-embeddings for the < object_string > is
replaced by the embeddings of the ground-truth
object label. The multimodal embedding Hmm is
computed by projecting pooled embeddings from
CLIP, Hclip, into the LLM’s token embedding

space using the following transformation:

Hmm = Wmm ·Hclip + bmm (2)

Here, Wmm and bmm represent the projector pa-
rameters. Once Hmm is computed, it is prepended
to the token embeddings from the input prompt,
enabling the LLM to process multimodal informa-
tion.

During training, labels are created by right-
shifting the tokens in the prompt, aligning them
with the ground-truth image descriptions. Special
tokens such as beginning of sentences (BoS), end
of sentences (EoS) padding tokens (PAD), sys-
tem and user and assistant message indicator tokens
are used considering LLM specific tokenizers. The
input prompts are also converted into LLM specific
chat templates. The LLM is then fine-tuned using a
standard cross-entropy loss between the predicted
tokens and the actual tokens from the ground-truth
descriptions.

4.3 Stage3: Tuning LLMs with EEG
Embeddings

This stage closely resembles stage 2, with the dis-
tinction that instead of Hclip, we utilize Heeg, ex-
tracted from the EEG encoder trained in stage 1,
to compute multimodal embeddings Hmm. Dur-
ing this stage, the projector parameters Wmm and
bmm are further tuned. We would like to high-
light that throughout this and the previous stage,
only the projector is trained, while the LLM and
EEG encoders remain frozen to mitigate parameter
instability caused by EEG noise.

4.4 Inference

During inference, the EEG ChannelNet encoder
processes EEG signals to generate EEG embed-
dings Heeg. The multimodal projector, trained in
stage 3, transforms Heeg into multimodal embed-
dings Hmm. Heeg is also fed into the MLP Classi-
fier, trained in stage 1, to predict the object label.
This predicted label is appended to a generic input
prompt, similar to the one mentioned in Section
4.2, and the token embeddings are computed for
the combined input. Finally, the token embeddings
from the projector and the language prompt are
concatenated and fed into the LLM to generate
descriptions. Notably, no images are used during
inference, making the process strictly bimodal.
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5 Experimental Details

In this section we highlight the dataset, model de-
tails, and evaluation procedure.

5.1 Dataset

We utilize the open-source CVPR2017 dataset
(Spampinato et al., 2017), licensed for academic re-
search, featuring EEG signals from six subjects
viewing 50 images across 40 ImageNet classes
(Deng et al., 2009), totaling 2000 images. The
data is split into training (7959), evaluation (1994),
and test (1987) examples. Additional details can
be found under Section 3.

5.2 Model Details

We use ChannelNet (Palazzo et al., 2020) for the
EEG encoder, modifying the final linear layer to
produce 512-dimensional embeddings to match the
output of the CLIP vision encoder (openai/clip-vit-
base-patch32). The EEG encoder is trained with a
batch size of 16 for 100 epochs, using the AdamW
optimizer and a learning rate of 1e−4. For fine-
tuning the LLM, we use a similar setup: a batch
size of 16, training for 5 epochs per stage, and em-
ploying gradient accumulation and checkpointing.
The learning rate for the LLM fine-tuning is kept
at 2e−5. All implementations are carried out using
PyTorch and Huggingface’s transformers library.

We evaluate three LLMs: LLAMA-V3 (meta-
llama/Meta-Llama-3-8B-Instruct), MISTRAL-
V0.3 (mistralai/Mistral-7B-Instruct-v0.3), and
QWEN2.5-7B (Qwen/Qwen2.5-7B-Instruct),
selected for their efficiency on consumer-grade
GPUs such as the NVIDIA RTX 4060Ti. The
multimodal embedding Hmm is projected to
match the token embedding dimensions required
by each LLM. All models are permissively
licensed for academic research, and training takes
approximately 8 GPU hours per LLM training
cycle. During inference, we use a batch size of 1,
with generation parameters such as top_k, top_p,
and temperature set to their default values for each
LLM.

To demonstrate the effectiveness of our ap-
proach, we compare it against the following base-
lines: (a) ONLY_OBJ: where LLMs generate a
description based solely on the predicted object
without any additional input (e.g., if the object
is "car," the LLM generates a description of the
word "car" following the prompt in Section 4.2);
(b) ONLY_OBJ + RAND_EMB: where we pass

a random embedding alongside the predicted ob-
ject labels to the LLMs; (c) NO_STAGE2: where
the priming step described in Section 4 is skipped;
and (d) ONLY_EEG: where only the EEG embed-
dings from Stage 1 are used as input, ignoring the
object labels. Our proposed Thought2Text solu-
tion, which incorporates all stages and all inputs, is
labeled ALL in the experiments.

5.3 Evaluation

We use standard NLG metrics such as BLEU,
METEOR, ROUGE (Sharma et al., 2017), and
BERTScore (Zhang et al., 2019). Furthermore, we
assess the quality of the generation using GPT-4,
following (Liu et al., 2024b).GPT-4 measures two
aspects: fluency, for grammar , and adequacy, for
accuracy in conveying meaning, both rated on a
scale of 1-5, with 5 denoting the highest quality.

6 Results

Table 2 presents a comprehensive comparison of
metrics across different models and setups. From
these results, it is evident that the complete ap-
proach, denoted as ALL, consistently outperforms
other setups across all evaluation metrics. As ex-
pected, chance-based baselines like ONLY_OBJ
and OBJ + RAND_EMB exhibit poor perfor-
mance. With our proposed methodology, the
LLaMA-v3-8B_ALL model achieved a BLEU-N
(N=1) score of 25.5%, Mistral-7B_ALL scored
26%, and Qwen2.5-7B_ALL reached 22.7%—-all
significantly higher than their respective chance
scores under the chance setups. In particular,
some models, mainly the LLaMa variants, show
increased sensitivity to random input, leading to
further reduction in the scores with chance setups.

We will first discuss the inferences from the re-
sults obtained with other alternative setups before
delving into a subject-wise analysis.

6.1 Comparison with Stage 2 Omission
(NO_STAGE2)

The ROUGE-N (N=1) score for LLaMA3-8B’s
ALL variant is 30.0%, whereas the NO_STAGE2
variant achieves only 26.9%, indicating a signif-
icant improvement when Stage 2 is added. The
same trend is observed for other metrics like BLEU,
METEOR, and BERT Score, and is observed across
other models as well. In terms of adequacy as mea-
sured by GPT-4, the ALL variant stands out except
for Qwen model which shows a tendency to copy
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LLM ROUGE-N ROUGE-L BLEU-N MET- BERT GPT-4 GPT-4
N=1 N=2 N=1 N=4 EOR Score Flu. Ade.

LLaMA3-8BONLY_OBJ 9.8 1.5 8.5 7.3 1.3 12.6 0.84 3.44 1.30
LLaMA3-8BOBJ+RAND_EMB 3.8 0.4 3.3 2.8 0.4 5.9 0.84 4.72 1.08
LLaMa3-8BONLY_EEG 28.9 7.3 26.2 24.1 5.2 23.7 0.89 4.80 1.49
LLaMA3-8BNO_STAGE2 26.9 6.1 23.9 22.6 4.3 23.7 0.88 4.83 1.41
LLaMA3-8BALL 30.0 8.1 26.6 25.5 5.5 26.3 0.89 4.82 1.58

Mistral-7B-v0.3ONLY_OBJ 17.6 3.4 14.8 14.5 2.5 23.2 0.86 4.46 1.52
Mistral-7B-v0.3OBJ+RAND_EMB 17.9 3.6 15.1 15.7 2.9 22.8 0.87 4.89 1.55
Mistral-7B-v0.3ONLY_EEG 26.7 5.3 23.5 23.3 4.2 22.0 0.88 4.82 1.25
Mistral-7B-v0.3NO_STAGE2 29.2 7.3 26.5 24.1 5.0 24.0 0.89 4.77 1.60
Mistral-7B-v0.3ALL 30.6 8.8 28.0 26.0 6.1 26.2 0.89 4.79 1.65

Qwen2.5-7BONLY_OBJ 17.6 2.8 14.5 14.8 2.4 21.0 0.85 3.91 1.47
Qwen2.5-7BOBJ+RAND_EMB 1.7 0.1 1.6 1.3 0.3 6.4 0.84 4.73 1.01
Qwen2.5-7BONLY_EEG 25.2 3.6 21.5 21.9 3.2 20.2 0.88 4.77 1.10
Qwen2.5-7BNO_STAGE2 24.4 4.1 20.9 20.7 3.3 20.2 0.88 4.66 1.24
Qwen2.5-7BALL 26.4 4.6 22.8 22.7 3.7 21.1 0.88 4.75 1.28

Table 2: Averaged Evaluation Metrics (%) and GPT-4 assessment (Flu. is fluency and Ade. is adequacy) of text
generated from EEG signals using different LLMs. A comparison is made between chance-level performance
(with only object label given as input (ONLY_OBJ), and the object label and a random embedding given as input
(OBJ + RAND_EMB) and only EEG embeddings given as input (ONLY_EEG) and our solutions without Stage
2 (NO_STAGE2), and the complete solution with all stages (ALL).

.

the object and produce shorter sentences in the case
of ONLY_OBJ which is positively rated by GPT-4.
Overall, the table demonstrates that incorporating
Stage 2 (as detailed in Section 4) – which aligns
EEG embeddings with image embeddings using a
CLIP-based supervision strategy – contributes to
higher-quality text generation.

6.2 Generation performance without object
labels in the input

While our initial hypothesis was that EEG embed-
dings – derived from noisy multichannel EEG data
– might not fully capture complex thoughts, thus
requiring additional inputs like object labels, it is
pleasantly surprising to observe that even without
object labels, the models (ONLY_EEG) perform
comparably with the best models (ALL). This un-
derscores the effectiveness of aligning EEG em-
beddings with vision embeddings in stage 1 and
pretraining the LLM, particularly the projectors, in
stage 2 with vision embeddings.

6.3 Subject-wise Analysis

For this analysis, each subject’s EEG data is used
to independently train and test the LLMs, simulat-
ing a personalized solution. The dataset comprises
six subjects, allowing for individual analysis to
evaluate the robustness of the approach across dif-
ferent participants. As depicted in Figure 2, in the
subject-wise analysis, the advantages of the com-

plete approach (ALL) become even more promi-
nent. Cross-subject and in-subject experiments
consistently favor the ALL configuration, with sig-
nificant improvements in Adequacy score when
Stage 2 is included, especially for LLaMA3-8B
and Qwen2.5-7B models. These improvements,
though numerically small, are crucial in the con-
text of EEG data where every bit of alignment and
finetuning matters due to its inherently noisy and
sparse nature.

The NO_STAGE2 configuration, which omits
the essential alignment step between EEG embed-
dings and image embeddings, consistently demon-
strates lower performance across subjects, as il-
lustrated by the BLEU Unigram scores in Figure
2. This validates our hypothesis that direct fine-
tuning without the warm-up provided by Stage 1
and Stage 2 is insufficient for EEG data. The chal-
lenge is further exacerbated by the inherent difficul-
ties associated with EEG data, which, even when
ethically collected and cleaned, still suffer from
limited data availability and significant variability
across sessions and subjects.

Subject-wise analysis is essential in practice
due to the inherently private and sensitive nature
of EEG data. Models like ours, designed for
thought-to-text translation, must be developed and
deployed within privacy-preserving settings. Cre-
ating a personalized solution without access to ex-
tensive cross-subject EEG data can be challeng-
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(c) Qwen2.5-7B - GPT4 Adequacy
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(d) Llama-3-8B - BLEU Unigram
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(e) Mistral-7B-v0.3 - BLEU Unigram
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(f) Qwen2.5-7B - BLEU Unigram

Figure 2: Subjectwise analysis comparing ALL and NO_STAGE2 variants across subjects for GPT-4 Adequacy
and BLEU Unigram metrics, evaluated using different models. For BLEU scores, the ALL variants show a
noticeable improvement across all six subjects compared to the NO_STAGE2 variants. Although numerically
smaller, a consistent improvement in Adequacy is also observed with the ALL variants, which is significant in
context of noisy EEG data.

ing. To this end, our multi-stage approach demon-
strates that pretraining on non-EEG data (such
as images) and fine-tuning on small amounts of
subject-specific EEG data opens new avenues for
privacy-preserving personalized EEG-LLM model
development.

6.4 Qualitative Inspection and Basic Error
Analysis

For qualitative inspection, we compared the gener-
ated descriptions of images produced by both the
GPT-4 and the MISTRAL-7B-V0.3 model (ALL
and ONLY_EEG variants). Table 3 in the Ap-
pendix section presents notable examples from our
assessment of the model’s generated descriptions.
In many instances, the approach with input of EEG
+ predicted object label generates highly accurate
descriptions, as illustrated in positive examples
2 and 4 for the piano and pumpkin, respectively.
However, in cases of misgeneration, we encounter
not only significantly inaccurate outputs and hallu-
cinations, as seen in examples 6, 7, and 8, but also
instances of genuine confusion. For example, the
EEG signal for a flower is misidentified as a mush-
room in example 5, leading to incorrect generation.
This misidentification indicates potential areas for
improvement in object classification.

However, a key advantage of the EEG-only ap-
proach is that even when the predicted object label
is incorrect, the model can still produce reasonably
coherent descriptions, as seen in anecdotal exam-
ple 1. This highlights the robustness of the EEG
embeddings in guiding the language model’s gen-
eration. Similar observations were made with other
models based on LLaMa and Qwen architectures,
further validating the consistency and reliability of
our approach across various LLM frameworks. We
acknowledge that the selected examples are pur-
posefully chosen to illustrate different scenarios.

7 Conclusion and Future Work

In this paper, we introduced a novel approach
to convert EEG signals into text, leveraging
instruction-tuned LLMs fine-tuned with EEG data.
Our method progresses through three stages: train-
ing an EEG encoder for feature extraction, fine-
tuning LLMs on multimodal data, and further re-
fining them with EEG embeddings for direct text
generation from neural signals. Validation on a pub-
lic EEG dataset demonstrates the efficacy of pop-
ular LLMs in "transforming" thoughts evoked by
viewing images into text. We observed significant
performance improvements compared to chance
evaluation, and our methodology, incorporating all
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stages, performed well in both cross-subject and in-
subject analyses, as validated through quantitative
evaluation. The qualitative evaluation provided fur-
ther insights into various scenarios involving EEG
signals and object labels versus EEG signals alone
as inputs for generating text. These evaluations
not only reinforce the effectiveness of our method-
ology for efficient text generation but also under-
score the potential of utilizing EEG data alone to
achieve the desired results. However, instances of
misidentification that result in incorrect outputs re-
veal opportunities for further improvements in text
generation.

Our future work will focus on optimizing the
model architecture, leveraging foundational pre-
trained EEG models on diverse dataset, improv-
ing EEG-text alignment through stage 2 training
on large scale image datasets and diverse tasks
such as optical character recognition, question an-
swering and summarizing and exploring practical
applications in healthcare and assistive technolo-
gies, marking a significant stride toward accessible
"thoughts-to-text" systems.

Limitations

Extracting fine-grained information from EEG sig-
nals presents challenges due to high data-to-noise
ratio and low spatial resolution. Despite these dif-
ficulties, EEG signals can still identify object cat-
egories, which can then be used with a generic
prompt to aid in text generation. However, mis-
classification of similar-shaped objects (see the
Appendix, Figure 3), such as mistaking a mush-
room for a flower, underscores potential ambigui-
ties in object recognition. In addition, there were
instances where the encoder generated unrelated
descriptions, such as identifying a coffee maker as
a computer or an elephant as a panda. Object clas-
sification accuracy varies among subjects (see the
Appendix, Table 4) due to individual differences in
interpreting images, leading to diverse EEG signal
variations and increased prediction variance. One
approach to address this is by training personalized
models for each subject and assessing their perfor-
mance. Additionally, implementing methods that
enhance the generalizability of predictions across
subjects could be explored. Another challenge is
data scarcity; Deep Learning models typically re-
quire substantial data for training. Hence, acquiring
more high-quality, multi-channel EEG data under
controlled experimental conditions is crucial to re-

duce noise. Despite these challenges, our quantita-
tive and qualitative findings demonstrate promising
results. We believe that additional training on larger
datasets and rigorous controlled experiments will
significantly improve performance.

While reading thoughts can be beneficial for in-
dividuals with limited ability to communicate, the
major risk lies in the potential misuse of BCIs to in-
trude into thoughts without consent. However, with
appropriate measures and regulations, these risks
should not hinder advancements in understanding
and translating human cognition, as the benefits
outweigh the challenges.

Ethics Statement

For this work, we utilized anonymized open-source
EEG data, acknowledging the sensitivity of EEG
data and the imperative of ethical compliance.
All experimental data used in our research were
anonymized to protect participant privacy and up-
hold ethical standards. Additionally, we employed
OpenAI’s ChatGPT-4 system to enhance writing
efficiency by generating LaTeX code, ensuring con-
cise sentences, and aiding in error debugging.
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8 Appendix

We present supporting anecdotal examples in Table 3, subject-wise classification results in Table 4, and
image classification results in Figure 3.

ID Image Input Reference
Object

Predicted
Object

Reference
Description

Thought2Text
Description

1 EEG mushroom flower A large yellow
mushroom with a
brown stem and a

brown cap,
surrounded by
green foliage.

A group of
mushrooms

growing on a log.

2 EEG
+ OBJ

piano piano A black grand
piano in a living

room.

A grand piano with
a stool in front of

it.

3 EEG piano piano A man in a red
coat and black

pants is playing a
piano in a room

with a chandelier.

A man is playing
the piano in a

dimly lit room.

4 EEG
+ OBJ

pumpkin pumpkin A carved pumpkin
with a face and

eyes, sitting on a
table.

A carved pumpkin
with a spooky face

on it.

5 EEG
+ OBJ

flower mushroom A black and white
photograph of a

single daisy with a
white center and a
dark brown center.

A group of
mushrooms

growing on a log.

6 EEG
+ OBJ

coffee mug coffee mug A hand holding a
mug with a blue

background and a
handprint design.

A person holding a
coffee mug with

the words "World’s
Best Dad" written

on it.

7 EEG guitar watch or
watches

A young boy
sitting on a chair
playing a guitar.

A man is holding a
guitar in front of a

microphone.

8 EEG
+ OBJ

camp or
camping

camp or
camping

A tent in a
mountainous area
with trees and fog.

A tent set up in a
forest with a

campfire nearby.

Table 3: Sample positive (in green) and negative (in red) anecdotal examples using the MISTRAL-7B-V0.3 ALL
and EEG_ONLY variants that take different inputs: EEG signals + object information and EEG signals alone.
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Subject Accuracy

Subject 1 0.631
Subject 2 0.631
Subject 3 0.544
Subject 4 0.600
Subject 5 0.594
Subject 6 0.531

Overall 0.530

Table 4: Subject-wise Object Classification Accuracy obtained using raw EEG Signals from Stage-1 (%). The
train-test splits used to obtain these results are identical to those used in the main experiments.

Figure 3: Confusion Matrix for classification results from stage 1. Some misclassifications are flowers being
identified as mushrooms, airplane as identified as clownfish or fish, elephant as a panda etc.
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