
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 3469–3498

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Concise and Organized Perception Facilitates Reasoning in Large
Language Models

Junjie Liu1, Shaotian Yan1, Chen Shen1,
Zhengdong Xiao1, Liang Xie2,1, Wenxiao Wang3,1, Jieping Ye1

1Alibaba Cloud Computing 2Zhejiang University of Technology 3Zhejiang University
Corresponding author: Chen Shen (zjushenchen@gmail.com)

Abstract

Exploiting large language models (LLMs) to
tackle reasoning has garnered growing atten-
tion. It still remains highly challenging to
achieve satisfactory results in complex logical
problems, characterized by plenty of premises
within the context and requiring multi-hop rea-
soning. In particular, the reasoning capabilities
of LLMs are brittle to disorder and distractibil-
ity. In this work, we first examine the mecha-
nism from the perspective of information flow
and reveal that LLMs confront difficulties akin
to human-like cognitive biases when dealing
with disordered and irrelevant content in rea-
soning tasks. However, in contrast to LLMs,
disordered and irrelevant content does not sig-
nificantly decrease human performance, as hu-
mans have a propensity to distill the most rel-
evant information and systematically organize
their thoughts, aiding them in responding to
questions. Stem from that, we further propose
a novel reasoning approach named Concise
and Organized Perception (COP). COP care-
fully analyzes the given statements to identify
the most pertinent information while eliminat-
ing redundancy efficiently. It then prompts the
LLMs in a more organized form that adapts to
the model’s inference process. By perceiving
concise and organized context, the reasoning
abilities of LLMs can be better elicited. Ex-
tensive experimental results on several popular
logical benchmarks (ProofWriter, PrOntoQA,
PrOntoQA-OOD, and FOLIO) and mathemati-
cal benchmark (DI-GSM) show that COP sig-
nificantly outperforms previous state-of-the-art
methods.

1 Introduction

The field of large language models (LLMs) has
witnessed significant progress in complex reason-
ing with the advent of Chain-of-thought (CoT)
prompting (Wei et al., 2022) and a series of re-
lated works (Qiao et al., 2023; Kojima et al.,
2022; Zhou et al., 2023; Yao et al., 2024; Besta

et al., 2024). These breakthroughs have yielded
remarkable achievements in various applications,
including arithmetic, commonsense, symbolic rea-
soning, etc. (Talmor et al., 2019; Austin et al.,
2021; Chen et al., 2021; Hendrycks et al., 2021;
Gao et al., 2023; Bubeck et al., 2023), and have
sparked widespread enthusiasm within the commu-
nity to continuously explore the immense poten-
tial of LLMs in tackling complex reasoning tasks.
However, the performance of LLMs drastically de-
creases when handling intricate tasks characterized
by plenty of premises within the prompt and re-
quiring multi-hop reasoning. One primary issue
is distractibility (Shi et al., 2023), where the rea-
soning capabilities of LLMs are highly susceptible
to deterioration when confronted with irrelevant
context. Another failure mode that has garnered
significant attention recently is disorder (Saparov
and He, 2023; Chen et al., 2024), where the perfor-
mance of LLMs Severely drops when the premise
order does not align with the context required in
intermediate reasoning steps. Figure 1(a) shows an
example from ProofWriter (Tafjord et al., 2021),
when the given premises are disordered (in deduc-
tive reasoning, disorder can be further understood
as that the premises are not in the same order as
the ground truth proof) and contain much informa-
tion irrelevant to the reasoning, the models face
a higher risk of selecting the wrong information
at some stage. This often leads to an incomplete
proof and subsequently an incorrect answer. Fig-
ure 1(c) illustrates such a misleading step, where
the original CoT selects the wrong reasoning path
(highlighted in red). This observation indicates that
LLMs usually struggle with proof planning when
irrelevant and disordered content hinders, as also re-
vealed in some contemporaneous works(Berglund
et al., 2023; Shi et al., 2023; Chen et al., 2024).

In this work, we first briefly investigate the un-
derlying mechanism of the influence of disordered
and irrelevant content on reasoning. Specifically,
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Gary is blue. Therefore Gary is nice. Gary is not quiet. […] If someone is smart then they are not young. Therefore 
Gary is not young. 

Anne is big. Anne is nice. Bob is not big. Gary is blue.𝟏 Gary is not 
quiet.𝟑	 […] If Gary is quiet and Gary is big then Gary is nice. If 
someone is nice and not quiet then they are big.𝟒 All blue people are 
nice.𝟐 If someone is big and quiet then they are blue. All big people 
are green.𝟓 If Gary is quiet and Gary is big then Gary is young. Green 
people are smart.𝟔 If someone is smart then they are not young.𝟕 […]
Question: True, false, or unknown? Gary is young. Answer: False.
Black represents irrelevant information, while Green represents concise 
information. 

[…] Gary is blue. Gary is not quiet. If Gary is quiet and Gary is big then Gary is nice. Therefore we do not 
know if Gary is nice. […] Therefore we do not know if Gary is young. 

Gary is blue. All blue people are nice. Therefore Gary is nice. Gary is not quiet. If someone is nice and not quiet then 
they are big. Therefore Gary is big. […] If someone is smart then they are not young. Therefore Gary is not young. 

CoT Inference with Organized Input

CoT Inference with Concise Input

Gary is blue.𝟏 All blue people are nice.𝟐 Gary is not quiet.𝟑 If
someone is nice and not quiet then they are big.𝟒 All big
people are green.𝟓 Green people are smart.𝟔 If someone is
smart then they are not young .𝟕 Anne is big. Anne is nice. Bob
is not big. […] If Gary is quiet and Gary is […]

Gary is blue.𝟏 Gary is not quiet.𝟑 If someone is nice and not
quiet then they are big.𝟒 All blue people are nice.𝟐 All big
people are green.𝟓 Green people are smart.𝟔 If someone is
smart then they are not young.𝟕
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Figure 1: (a) A 5-hop example of ProofWriter dataset, showcasing plenty of premises.Some premises are omitted
for brevity. (b) Corresponding reconstruction of concise and organized perception. Superscript serial numbers
represent the logical orders according to the gold proof. The concise input contains only relevant information
but lacks organizational structure. In contrast, the organized input arranges statements consistently with the gold
reasoning path, albeit including redundant information. (c) LLMs outputs. (d) Results of a confirmatory experiment.

we adopt neuron saliency score analysis, which
is an important approach for pinpoint the infor-
mation flow and the crucial interactions between
tokens (Dai et al., 2022; Hao et al., 2021; Wang
et al., 2023), and we conclude three phenomena. (i)
LLMs struggle to identify the correct entry point
of the reasoning path when faced with disorder
and distraction. (ii) The current step always highly
focuses on the previous step, to the extent that it
might even make up non existing premises to ac-
commodate the preceding step. Consequently, it is
challenging in allocating sufficient energy to iden-
tify the most accurate step. (iii) In addition, salient
information flow from irrelevant information ren-
ders models prone to distractions, inadvertently
causing them to focus on irrelevant content, which
ultimately leads to failures in reasoning.

The information flow analysis reveals how ir-
relevant and disorganized information can affect
model reasoning, and suggests the inertia of LLMs
when tackling complex tasks is very similar to the
one during human problem-solving process (Ha-
gendorff et al., 2023; Jones and Steinhardt, 2022).
However, in contrast to LLMs, the disordered and
irrelevant content does not significantly decline hu-
man performance, which benefits from the fact that
humans tend to distill the most relevant information
and organize their thoughts in an orderly manner,
such as constructing a mind map, in advance. This
allows them to address the question accurately by
referring to the mind map (Girotto et al., 1997;
Dekeyser et al., 2000).

Arise from that, we propose a novel reasoning ap-

proach named Concise and Organized Perception
(COP). Specifically, COP initially performs cap-
turing of locally-related premise segments among
the given premises, with the intent to facilitate an
initial comprehension of the input context. Next,
COP leverages the query question as an anchor to
integrate relevant pieces of locally-related premises
generated by the first step, creating a tree-like mind
map structure that presents global information in an
orderly manner and can eliminate irrelevant infor-
mation. Subsequently, LLMs are prompted by the
reconstructed context, which are organized in a pro-
gressively ordered manner from the mind map to
better adapt to the inference process of the model.

We believe such reconstruction perceives more
concise and organized information, which notice-
ably reduces the difficulty of LLMs’ planning and
better elicits the reasoning ability. Figure 1(b)(c)
shows an example where LLMs are empowered to
obtain the correct answer. We further conducted a
simple confirmatory experiment by randomly se-
lecting 196 samples and reconstructing the con-
text based on the provided ground-truth proofs, as
shown in Figure 1(b) 1. The results in Figure 1(d)
demonstrate that combining our approach with the
CoT baseline yields a 100% relative improvement
(35.9% vs 71.9%) in a 5-hop setting. The results
also indicate the complementarity between concise
and organized perception.

We conduct extensive experiments on several
popular logical benchmarks (ProofWriter, PrOn-

1This implementation is merely demonstrative, and differs
from the actual method as no ground-truth can be utilized.
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toQA, PrOntoQA-OOD), real-world complex logi-
cal benchmark (FOLIO) and mathematical bench-
mark (DI-GSM). The experimental results demon-
strate that COP significantly outperforms previous
state-of-the-art methods. Specially, COP surpasses
the CoT baseline by 9% on the FOLIO benchmark.

2 Related work

LLMs have demonstrated impressive few-shot
learning capabilities (Brown et al., 2020; Raffel
et al., 2020; ?; Ouyang et al., 2022; Touvron et al.,
2023a). Recent work has shown that LLMs, com-
bined with in-context learning (ICL) and chain-of-
thought (CoT) prompting, are capable of reasoning
to an extent (Huang and Chang, 2023; Qiao et al.,
2023; Nye et al., 2021; Wei et al., 2022; Kojima
et al., 2022; Lewkowycz et al., 2022). However,
it still remains highly challenging to achieve satis-
factory results in complex logical problems. (Xu
et al., 2023) explores the logical flaws of LLMs
on logical reasoning datasets from four dimensions
including answer correctness, explanation correct-
ness, explanation completeness and explanation
redundancy. (Wan et al., 2024) proposes an auto-
matic approach to evaluate the logical reasoning
abilities of LLMs based on propositional and pred-
icate logic, which systematically identifies poor
logical rules for LLMs’ reasoning. In particular,
the reasoning capabilities of LLMs are susceptible
to deterioration when confronted with inputs that
are either arranged in a disordered manner (Saparov
and He, 2023; Chen et al., 2024) or peppered with
irrelevant information (Shi et al., 2023). Specifi-
cally, (Saparov and He, 2023) investigated how
reasoning ability is affected by the traversal di-
rection of the ontology, and (Chen et al., 2024)
found that the premise order significantly affects
LLMs’ reasoning performance. In another study,
(Shi et al., 2023) observed that the performance
of language models tends to decrease when irrele-
vant context is included in the problem statement.
These phenomena aligns with the human prefer-
ences for solving logical problems (Girotto et al.,
1997; Dekeyser et al., 2000; Johnson-Laird, 2001).
Differing from their works, we further investigate
the impact of disordered and irrelevant content on
reasoning from the perspective of information flow
and propose a concise and organized perception
approach, drawing inspiration from the perspective
of human problem-solving.

Benefiting from LLMs’ strong logical reasoning

ability, some methods (Cobbe et al., 2021; Dalvi
et al., 2021; Zelikman et al., 2022) seek to encour-
age LLMs to generate reasoning steps explicitly
and then produce results in a single stage, while
some other methods seek to perform inference at
multiple times to complete the tasks (Zhou et al.,
2023; Jung et al., 2022). Several recent works,
such as LOGIC-LM (Pan et al., 2023), integrate
LLMs with symbolic reasoning to improve logical
problem-solving. Selection-Inference (Creswell
et al., 2023) alternates between selection and infer-
ence to generate a series of casual reasoning steps,
and LAMBADA (Kazemi et al., 2023) develops
a backward chaining algorithm to decompose rea-
soning into sub-modules. In addition to prompting
methods, some works aim to fine-tune LLMs to
produce the final answer directly, keeping reason-
ing implicit (Clark et al., 2021; Lewkowycz et al.,
2022). In contrast to their works from the perspec-
tive of how to plan that encourage or teach LLMs
how to solve complex logical problems, we intro-
duce the effective and compelling "Concise" and
"Organized" strategies to reduce the difficulty of
LLMs’ reasoning planning and better elicit their
reasoning abilities, which can be considered as an
alternative angle: reducing the difficulty of plan-
ning, or in other words, easy to plan. The detailed
analysis of novelty and effectiveness of COP can
be found in Appendix A.3.

3 Saliency score analysis

As a prevalent paradigm for interpretation, the
concept of information flow can be instrumen-
tal in dynamically identifying critical interactions
amongst tokens (Dai et al., 2022; Hao et al., 2021;
Wang et al., 2023). In this section, we leverage
the information flow analysis methodology, pred-
icated upon saliency scores derived from (Wang
et al., 2023), to delve deeper into the reasons be-
hind the pronounced degradation in LLMs’ per-
formance when confronted with disordered or ir-
relevant information. We perform analysis on the
ProofWriter (Tafjord et al., 2021) dataset based on
Llama-2-13B-Chat (Touvron et al., 2023b), and
the detailed saliency score definition and analy-
sis are listed in Appendix A.4. Figure 2(a) shows
reasoning steps and saliency score analysis on a
concise and organized example, which is consis-
tent with the example in Figure 1. For compari-
son, the premises of example in Figure 2(b) are
shuffled for analysis the impact of disordered in-
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0.3960 0.0881 0.0280 0.0170 0.0127 0.0123 0.0115 0.0070 0.0149

0.0594 0.0338 0.0490 0.0222 0.0143 0.0133 0.0133 0.0104 0.0108

0.1611 0.0200 0.0321 0.0734 0.0180 0.0156 0.0097 0.0112 0.0217

0.0443 0.0171 0.0210 0.0362 0.0651 0.0157 0.0082 0.0065 0.0082

0.0510 0.0214 0.0209 0.0216 0.0224 0.0295 0.0685 0.0099 0.0100

0.0685 0.0230 0.0233 0.0254 0.0264 0.0228 0.0273 0.0095 0.0130

0.0605 0.0273 0.0210 0.0252 0.0240 0.0180 0.0144 0.0239 0.0236

0.1592 0.0376 0.0308 0.0298 0.0333 0.0206 0.0183 0.0143 0.0223

0.0000 0.7316 0.2356 0.0934 0.0691 0.0323 0.0399 0.0225 0.0474

0.0000 0.0000 0.5383 0.1889 0.0781 0.0641 0.0512 0.0410 0.0377

0.0000 0.0000 0.0000 0.4670 0.1237 0.0622 0.0400 0.0489 0.0580

0.0000 0.0000 0.0000 0.0000 0.5127 0.1091 0.0569 0.0574 0.0467

0.0000 0.0000 0.0000 0.0000 0.0000 0.5846 0.2096 0.1031 0.1540
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0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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(c)
Figure 2: (a)(b)(c) Saliency score analysis on an example of ProofWriter based on shallow layers of Llama-2-13B-
Chat. The horizontal coordinate contains the step by step outputs, and the vertical coordinate contains the inputs
and outputs. Values in the plot represent saliency scores from column to row, normalized by each column.
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Figure 3: Saliency score analysis on ProofWriter based
on shallow and deep layers of Llama-2-13B-Chat.
"Base", "Disordered", and "Irrelevant" respectively de-
note the samples corresponding to the three scenarios
depicted in Figure 2 (a)(b)(c).

formation. Multiple irrelevant premises are added
in the example in Figure 2(c), but the order of the

relevant premises is consistent with the example
in Figure 2(a), for analysis the impact of irrele-
vant information. From Figure 2, we can observe
three phenomena. (i) Model can identify the cor-
rect entry point of the reasoning path during the
initial step when confronted with concise and or-
ganized reasoning content, which is highlighted by
the green box in Figure 2(a). In contrast, when the
model encounters input that is presented in a disor-
dered sequence or contains irrelevant information,
it becomes markedly challenging for the model to
ascertain an appropriate entry point for reasoning
at the initial step, which are highlighted by the
red boxes in Figure 2(b)(c). (ii) The information
flow from the previous step to the current step is
salient, as clearly depicted by the diagonal lines in
Figure 2(a)(b)(c). This preference for the previous
step excessively focuses attention there, compli-
cating the allocation of sufficient effort to identify
the subsequent correct step. Furthermore, it may
lead to the generation of non-existent premises to
cater to the content of the previous step, especially
when confronted with disordered and irrelevant
content. In Figure 2(b), "if sb is nice then they are
not young" is a fake generated premise, which can
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be considered as hallucination. (iii) Finally, Fig-
ure 2(c) identifies an adverse effect of irrelevant
information on reasoning, with the area highlighted
by purple box clearly showing a pronounced mani-
festation of this impact. This leads to model becom-
ing distractible, causing it to incorporate irrelevant
content into the reasoning path, and ultimately re-
sulting in reasoning failure.

Further, we conduct quantitative analysis on
1200 samples in the ProofWriter dataset to under-
stand why LLMs’ performance significantly de-
creases when faced with disordered or irrelevant
information, from a more holistic viewpoint. Draw-
ing on (Wang et al., 2023), we conduct a compre-
hensive analysis of information flow across both
the shallow and deep layers. As shown in Fig-
ure 2(d)(1), when inputs are concise and organized,
the saliency score from the ground-truth reason-
ing entrance to the first reasoning step is signifi-
cantly higher than when faced with disordered or
irrelevant content. Figure 2(d)(2) shows that the
proportion of samples with the highest saliency
score from the ground-truth reasoning entrance to
the first reasoning step is still the highest when in-
puts are concise and organized. Intuitively, such
a preference for the reasoning entry aligns with
the problem-solving processes observed in humans
because locating information within organized and
concise sets is considerably more straightforward
than navigating through a pile of complex infor-
mation. Figure 2(d)(3) shows the information flow
from the previous two steps to the current step,
which is also salient as we observed in the diagonal
lines in Figure 2(a)(b)(c). In additional, irrelevant
information has dispersed the flow of information
as illustrated in Figure 2(d)(4), which is very simi-
lar to the inertia of humans. However, in contrast to
LLMs, the disordered and irrelevant content does
not significantly decrease human performance, as
humans have a propensity to distill the most rele-
vant information and systematically organize their
thoughts, aiding them in responding to questions.
Thus, draw inspiration from the aspect of human
problem-solving, we introduce two effective and
compelling strategies ("Concise" and "Organized")
to better elicit LLMs’ reasoning abilities.

4 Approach

We present the Concise and Organized Perception
(COP) reasoning approach, aiming to reconstruct
concise and organized context as inputting to re-

duce the difficulty of model reasoning. Given a
reasoning context containing plenty of premises
P = {p1, ..., pn}, which may include relevant, ir-
relevant, or disorganized information, the task is to
answer a question Q based on the given premises.

In order to emulate human capability in process-
ing complex logical reasoning tasks, we propose
a three-stage method to effectively tackle disor-
der and distractibility. Firstly, we seek to capture
locally-related premises based on their internal log-
ical or semantic relationships, that is, connecting
each single premise between each other to form
a series of premise fragments. Such pieces of
premise provide an initial structural grasp of the
original context on a localized level. Secondly,
in the face of several independent pieces, there
is a crucial need for holistic systematization to
foster comprehension at a global scale. Our ap-
proach leverages the question Q as an anchor to
identify relevant fragments and integrate them into
a whole tree-like mind map. This structure not only
presents global information in an orderly manner
but also discards any irrelevant premises. Subse-
quently, owing to the progressively organized man-
ner of the mind map, COP creates a more concise
and organized reasoning context that can be easily
adapted to the inference process of LLMs. The
details of these stages will be described in the fol-
lowing subsections.

4.1 Capturing of locally-related premises
It is generally not a wise strategy to hastily an-
swer questions without fully grasping the given
context when performing reasoning tasks; other-
wise, it easily leads to inaccurate or incomplete
reasoning. Therefore, instead of starting with look-
ing for relevant clues step by step based on each
single premise as previous methods (e.g., SI and
LAMBADA) do, the first step of the proposed COP
is capturing locally-related premises to form a se-
ries of premise fragments. This allows for an initial
structural grasp of the context, facilitating the re-
construction of the context in later steps.

As mentioned previously, complex reasoning
problems involve a set of premises P . Imitating
the process of human beings organizing thoughts,
capturing of locally-related premises can be effec-
tively achieved by employing directed edges to
connect premises that bear relevance to one an-
other. For example, an edge pi → pj connects
premise pi to premise pj with the locally-related
direction from i to j. This approach facilitates a lo-
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Locally-related
Capturing

1⃣ Grandpa Lou enjoys watching movies on the Hallmark channel, where every movie las ts  90 minutes. (𝑝! ->none)
2⃣ Ava is  a firs t-year student at a University in Chicago. (𝑝" ->none)
3⃣ Sara wants to buy herself a new jacket and 2 pairs of shoes. The jacket Sara wants costs $30 and each pair of shoes cos t $20. (𝑝# -> 𝑝$ )
4⃣ Sara babys its  the neighbor' s kids 4 times, earning $5 each time Sara babysits  them. Sara' s parents pay her $4 each time Sara mows the 
lawn. (𝑝% -> 𝑝& )

                               Sara wants to buy herse lf a new jacket and 2  pairs of shoe s. -> T he  jacket Sara  
wants costs $30 and each pair of shoes cost $20. -> If Sara already had $10 saved before Sara 
started babysitting. -> Sara babysits the neighbor's kids 4 times, earning $5 eac h time Sara 
babysits them. -> Sara's parents pay her $4 each time Sara mows the lawn.

Mind Map

                   Premises: [𝑝!] Grandpa Lou enjoys watc hing movies on the 
Hallm ark channel, whe re every, movie  lasts 90 minu te s. [𝑝"]	Sara wants to buy  
herself a new jacket and 2 pairs of  shoes. [𝑝#]	Sara baby sits the ne ighbor's kid s 
4 times, earning $5 eac h time Sara babysits them. [𝑝$]	Sara's parents pay her $4  
each time Sara mows the lawn. [𝑝%]	Ava is a first-year student at a University  in  
Chicago. [𝑝&]	The  jacket Sara wants costs $30 and each pair of shoes cost $20. 
Question: [𝑄]	If Sara already had  $10 saved before Sara started babysittin g 
how many  times must Sara mow the lawn before Sara can afford the jacket 
and shoes?

Locally-related
Capturing

Step1

Step3

Grandpa Lou enjoys watching movies on the Hallmark channel, where every movie las ts  90 minutes. -> None. (𝑝! ->None)
Sara wants to buy herself a new jacket and 2 pairs of shoes. -> The jacket Sara wants  costs $30 and each pair of shoes cost $20.  (𝑝# -> 𝑝$ )
Sara bab ys its  th e n eighbo r' s kids 4 ti mes , earning  $5 each time  Sara babysi ts  the m. -> Sa ra' s parent s p ay her  $4 each ti me Sara  mows the  
lawn. . (𝑝% -> 𝑝& )
Sara' s parents pay her $4 each time Sara mows the lawn. -> None. (𝑝& ->None)
Ava is  a firs t-year student at a University in Chicago. -> None.  (𝑝" ->None)
The jacket Sara wants cos ts  $30 and each pair of shoes cost $20. -> None.  (𝑝$ ->None)

disordered irre le vant

LLM

Comprehension on 
a Localized Level

Question: If Sara a lready had $10 saved bef ore Sara started baby sitting how 
many times must Sara mow the lawn before Sara can afford the jacket and shoes?

Premises: Sara want s to buy herself a new jacket and 2 pairs of  shoes. The j acke t Sara wants costs $30 
and each pair of shoes cost $20. If Sara already  had $10 saved before Sara started babysitting. Sara 
babysits the ne ighbor's kids 4 time s, earning $5 each time Sara babysits them. Sara's parents pay  her $4 
each time Sara mows the lawn. 
Question: If Sara already had $10  saved before Sara started babysitti ng, how many times must Sara mow 
the  lawn before  Sara can afford the  jacket and shoes?

LLM
➕

Grandpa Lou ...
Ava is  a firs t-year .. .
Sara wants to buy .. .
Sara babys its  the .. ..

Irrelevant Remove

Quest ion-anchored

Step2

Context Reconstruct ionorganize d concise
… So, Sara needs 
to mow the lawn 10  
times to ...

LLM

… Sara ne eds t o 
mow the  lawn  
15 times to ...Direct Reasoning

Failure (a)

(b)(c)

Figure 4: Overview of the proposed COP with an example on DI-GSM (constructed from GSM8K (Cobbe et al.,
2021)) with disordered and irrelevant premises. Green represents relevant premises [p2, p3, p4, p6], black represents
irrelevant premises [p1, p5], and orange represents the question [Q]. Details of DI-GSM are listed in section5.1.

calized understanding of the relationship between
the premises pi and pj . For logical premises, espe-
cially modus ponens (pa: if A then B; pb: if B then
C), capturing of locally-related premises can be
performed by leveraging directed edges to connect
each premise to premises whose consequents sat-
isfy one or more of the conditions specified in the
current premise. In the given case, premise pb can
be directly connected to premise pa. Besides logi-
cal premises, capturing of locally-related premises
can be performed through semantic correlation,
temporal correlation, etc. Figure 4(a) illustrates
an instance consisting of premises with semantic
correlation. Benefiting from LLMs’ powerful in-
context learning and semantic understanding abil-
ity, our proposed method encourages LLMs to per-
form capturing locally-related premises by search-
ing relevant premises for each premise in the given
context, which can be prompted with few-shot ex-
amples. As shown in Figure 4(a), there are six
premises in the original problems, which are disor-
dered and contain two irrelevant premises. Through
the understanding of semantic correlation, LLMs
adeptly identified and correlated relevant premises
within vast premises. For example, p2 is con-
nected to p6 while p1 is connected to "None" in Fig-
ure 4(a). After capturing locally-related premises
for each premise, different pieces of locally-related
premises can be integrated again through the con-
nection directions between premises, ultimately
forming a initial understanding of the original prob-
lem’s context. Figure 4(a) shows the four pieces of
locally-related premises after integration, in which
the relevance between premises is much clearer
than that of the original input. The detailed prompts
used in this step are listed in the Appendix A.7.

4.2 Generation of mind map

The above captured locally-related premise frag-
ments are independent and cannot be directly
merged. Serving as an anchor point, the query
question functions as a connecting bridge. Upon
receiving a question, relevant clues can be identi-
fied among the pieces of locally-related premises,
allowing for the creation of a tree-like mind map
structure relevant to the question. This process
effectively eliminates irrelevant information and
presents a coherent global understanding of the
relevant information in an ordered manner.

Specifically, COP encourages LLMs to find all
premises centered around the question Q, which
can also be prompted with few-shot examples. The
detailed prompts used in this step are listed in the
Appendix A.7. As shown in Figure 4(b), two rele-
vant pieces of locally-related premises are involved,
and another two irrelevant ones are discarded. Al-
though "If Sara already had $10 saved before Sara
started babysitting" is a logical description of the
question, COP can still correlate it to other pieces
of locally-related premises, ultimately forming a
holistic and ordered structure. Once we find the
relevant pieces of locally-related premises, we per-
form a D-depth searching starting from each of
them to avoid reasoning loops, where D is the max
reasoning depth. In this way, a tree-like mind map
based on the given question is constructed. Gen-
erating a tree-like mind map structure based on
questions as anchor points is a crucial step in our
method that facilitates the development of a struc-
tured arrangement centered around the core ques-
tion while eliminating irrelevant information. Such
a strategy provides a foundational guarantee for
subsequent concise and organized context recon-
struction.
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4.3 Context reconstruction

In the generated mind map, the irrelevant premises
to the problem are removed, and the most relevant
premises to the problem are retained in order. A
straightforward approach to perform context re-
construction is to employ a depth-first traversal
technique to comprehensively traverse the entire
mind map, thereby obtaining organized inputs, as
shown in Figure 4(c). The premise order in the
reconstructed context aligns with the progression
needed for intermediate reasoning steps, thereby
better eliciting the reasoning capabilities of LLMs.
Moreover, compared with the original reasoning
context, the reconstructed one has the advantage of
being concise and dramatically reduces the influ-
ence of irrelevant information.

[𝒑𝟒] Alex 
is nice.

[𝒑𝟑]If sb is nice 
then it is blue.

[𝒑𝟏]Blue, nice 
people are young.

[𝒑𝟐] If Stella is 
rough then Alex 

is young.

[𝒑𝟓]Red 
people are 

rough.

[𝒑𝟔]Stella 
is red.

[Q] Alex 
is young.

[𝒑𝟒] Alex 
is nice.

Sub-mind 
Map 1

Sub-mind 
Map 2

Context Reconstruction:
Sub-mind Map 1: Stella is red. Red people are rough. If Stella is rough then Alex is young.
Sub-mind Map 2: Alex is nice. If someone is nice then it is blue. Alex is nice. Blue, nice 
people are young.

First Try, LLM: answer is true.

Second Try, Stopping.

Figure 5: An example on ProofWriter of sub-mind-map
segmentation and context reconstruction.

However, a single mind map may contain several
sub-mind-maps, especially in scenarios involving
logical reasoning. Figure 5 presents an example
of a mind map consisting of two sub-mind-maps.
Given a question "Alex is young" and its mind map
generated in previous steps, the question is simulta-
neously relevant with both premise p1 and p2, lead-
ing to the natural formation of two sub-mind-maps
within the larger mind map. Each sub-mind-map
consists of several related premises with directed
connections. Therefore, to streamline the reasoning
process when faced with multiple sub-mind-maps,
it is more efficient to segment the sub-mind-maps
before embarking on the final reasoning phase, as
opposed to directly engaging with the reconstructed
context of the entire mind map. To answer the given
question, a reasoning context for each possible sub-
mind-map should be constructed. Subsequently,
the reconstructed contexts are successively used
to prompt the reasoning of LLMs until a certain
answer regarding the given question is made. As
illustrated in Figure 5, when the model performs
reasoning based on the reconstructed context in
sub-mind-map 1 and obtains the exact answer, the
reasoning for this question is completed, and the

reconstructed context in sub-mind-map 2 is not
needed. Such strategy of sub-mind-map segmen-
tation can be regarded as a more refined approach
for some exceptional situations.

5 Experiments

5.1 Datasets and compared methods

For Real-world Settings, we perform experiments
on FOLIO and DI-GSM. For Synthetic Settings,
we perform experiments on ProofWriter, PrOn-
toQA and PrOntoQA-OOD. Details about datasets
can be found in A.1. We perform a thorough com-
parison between our proposed method and the ex-
isting state-of-the-art methods (Standard Few-Shot,
CoT (Wei et al., 2022), IRRE (Shi et al., 2023),
S2A (Weston and Sukhbaatar, 2023), SI (Creswell
et al., 2023), LogicLM (Pan et al., 2023) and LAM-
BADA (Kazemi et al., 2023)). Details of the com-
pared methods can be found in A.2.

5.2 Experimental results

5.2.1 Results Analysis
Comparison with SOTA. Table 1 and Table 2
show the results on different datasets. For SI and
LAMBADA, as they just report results based on
GPT-3.5-Turbo(Kazemi et al., 2023), we also con-
duct experiments on GPT-3.5-Turbo for fair com-
parison. COP consistently achieves the highest
accuracy across all experimental settings. Notably,
COP outperforms SOTA methods by a large margin
on the hardest Depth-5 subset of ProofWriter. It
shows a remarkable 65.74% relative improvement
compared to CoT and 23.15% compared to LAM-
BADA, which demonstrates the effectiveness of
COP. LogicLM converts natural language questions
into first-order logical symbolics and performs sym-
bolic reasoning to accomplish logical reasoning
tasks. All problems in DI-GSM are mathemati-
cal problems, making it difficult for LogicLM to
represent them using first-order logic. As shown
Table 1 and Table 2, COP outperforms CoT and
LogicLM, while LogicLM is not able to work well
on real-world setting DI-GSM (marked as "X"),
demonstrating the efficacy of COP. Details of mark
"X" are listed in A.2. The results of LogicLM
on FOLIO are reproduced, and the logic program
errors in LogicLM are considered as the failure
cases in our report. ProofWriter and ProntoQA
contain various reasoning depths, detailed results
on different reasoning depths are listed in A.5.1.

Generalizability. COP consistently achieves
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Table 1: Comparison of accuracy with various LLMs. "X" means the method has difficulty in running on DI-GSM.

Models GPT-4o Claude-3-5-Sonnet Llama-3-70B-Instruct GPT-3.5-Turbo

Datasets/Methods FOLIO DI-GSM ProofWriter
-d5 FOLIO DI-GSM ProofWriter

-d5 DI-GSM ProofWriter
-d5

ProofWriter
-d5

PrOntoQA
-5hop

PrOntoQA
-OOD

Standard 58.00 80.30 61.33 64.00 79.55 65.00 76.52 55.00 41.67 49.60 43.33
CoT 60.00 83.33 77.33 65.00 85.61 65.67 72.73 67.50 53.50 69.80 85.67
IRRE 62.00 83.33 76.50 66.00 84.09 66.67 77.27 66.17 52.17 77.20 80.67
S2A 63.00 74.24 73.33 67.00 80.30 57.33 73.48 61.00 43.00 56.00 74.67
SI - X - - X - X - 46.00 45.00 -

LogicLM 56.00 X 68.33 55.00 X 77.83 X 70.17 51.40 51.58 -
LAMBABDA - X - - X - X - 72.00 96.00 38.33

COP 65.00 84.85 96.50 68.00 86.36 94.50 78.79 83.50 88.67 99.20 94.00

Table 2: Comparison of accuracy based on Llama-3-8B-
Instruct and Qwen2-72B-Chat.

Models Llama-3-8B-Instruct Qwen2-72B-Chat

Datasets/Methods DI-GSM ProofWriter-d5 DI-GSM ProofWriter-d5

Standard 35.61 44.17 71.21 46.67
CoT 43.18 44.33 78.79 63.83
IRRE 50.00 43.17 71.97 63.17
S2A 40.91 45.00 75.76 56.33

LogicLM X 31.83 X 48.25
COP 52.27 77.67 80.30 75.67

Table 3: Comparison of average inference calls and
token numbers on FOLIO and ProofWriter.

FOLIO

Method Calls Prompt-tokens Total-tokens
LogicLM 4 6204.3957 7281.5731

COP 3 3801.9971 4104.9285

ProofWriter-5Hop

Method Calls Prompt-tokens Total-tokens
LAMBADA 24.71 19200.05 21922.77

COP 3.87 2004.97 2440.26

high accuracy using different LLMs including GPT-
4o, Claude3.5-Sonnet, Llama-3-70B/8B-Instruct,
Qwen2-72B-Instruct, crossing both synthetic set-
ting and real-world setting (FOLIO and DI-GSM).
Additional results on more different size open-
source and close-source LLMs including Qwen1.5-
72B-Chat, Llama-2-13B-Chat, mistral-7b-instruct-
v0.3, Gemini-1.0-Pro and GPT-4o-mini can be
found in A.5.2.

Efficiency. Besides, as shown in Table 3, COP
improves the performance while reducing the cost.
COP utilize two efficient strategies (concise and
organized) to identify ordered and related informa-
tion, reducing the token consumption of irrelevant
information and longer reasoning path caused by
disorder during reasoning. The detailed compari-
son of average token usage can be found in A.5.3.

Ablation study. We conduct experiments on
DI-GSM to analyze the effectiveness of the com-
ponents in COP. Results are in Table 4. On the
one hand, without the mind map generation step in

COP, the accuracy drops (only 43.94), proving the
importance of identifying relevant premises around
the given question, which is a well-designed step in
our COP. One the other hand, we compare with two
approaches (Zhao et al.; Guo et al., 2023) instead
of our mind map generation step. COP is also the
best and effective. Details can be found in A.2.

Table 4: Analysis of the components in COP.

COP w/o mind map
generation

w/ m1
(Zhao et al.)

w/ m2
(Guo et al., 2023)

53.79 43.94 41.67 43.18

5.2.2 Failure case analysis
COP. In this section, we focus on the errors caused
by COP itself to study its possible flaws. We com-
pare the results of COP on DI-GSM and CoT on
DI-GSM with original concise and organized in-
puts based on GPT-3.5-turbo. The accuracy of COP
is 53.79 (71/132), and the accuracy of CoT is 68.94
(91/132). We analyze the differences in the results
and find that COP gets 15 more questions correct
compared to CoT, and COP fails 35 more questions
than CoT. After applying COP, the order of state-
ments in the 15 correct questions is different from
the original order, and the changed order generated
by COP is more suitable for reasoning, demonstrat-
ing the success of organized perception in COP.
The error types of the 35 failure cases are shown
in Table 5. There are 10 cases where the order of
the premises caused failure in reasoning. There
are 13 cases where the premises are not connected
to other premises in the given context. There are
2 cases where the premises are not output in the
step of capturing of locally-related premises. These
failure cases are attributed to the fact that captur-
ing of locally-related premises is driven by LLMs,
and it is difficult for the method to ensure that the
generated connections between premises are com-
pletely accurate. Similarly, for the remaining 10
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cases, some key relevant premises were discarded
when generating mind maps, causing failure in rea-
soning. We present several case studies in A.6 for
clearer understanding. We leave the failure caused
by these error types as future work. Besides, our
approach naturally comes from a different perspec-
tive easy to plan, it can be seamlessly combined
with other popular methods, such as LAMBADA,
to further enhance their performance.

Table 5: The detailed failure case analysis on DI-GSM.

Step Capturing of Locally
-related Premises

Generation of
Mind Map

Type Connection
Order

Connection
Output

Connection
None

Connection
Discard

Errors 10/35 2/35 13/35 10/35

LAMBADA
LAMBADA+COP

32.8

46.9 47.9

53.5

46.3

62.7
59.8

77.3

65.3

71.8

97.7 98.3
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Figure 6: (a) Comparison of LAMBADA and LAM-
BADA+COP on Proofwriter. (b) The proportions
of different error reasons of LAMBADA and LAM-
BADA+COP. There are four steps in LAMBADA,
which are Fact Check, Rule Selection, Goal Decompo-
sition and Sign Agreement. "Incorrect-Selection/Goal/
Sign" means that LAMBADA fails in Fact Check or
Rule Selection/Goal Decomposition/Sign Agreement
steps.

COP combined with LAMBADA. Based on
easy to plan, our COP can be seamlessly combined

with LAMBADA. The performance of LAMBADA
and LAMBADA+COP on ProofWriter d5 subset
are listed in Figure 6 (a). Compared with the origi-
nal LAMBADA method, the performance of LAM-
BADA+COP under different inference depths is
improved, proving the effectiveness of COP. In ad-
dition, Figure 6(b) proves that COP can improve
the success rate of LAMBADA in the steps that
are affected by context redundancy and disorder.
Details can be found in A.5.6.

6 Conclusion

In this study, we propose a reasoning approach
called Concise and Organized Perception (COP)
to handle complex reasoning problems effectively.
By combining Concise and Organized strategies
with vanilla CoT, we have achieved state-of-the-
art performance on multiple popular reasoning
benchmarks. Besides, COP requires significantly
fewer inference calls and tokens compared to
decomposition-type methods (e.g., LAMBADA),
highlighting our superiority in terms of both effec-
tiveness and efficiency. In addition, we investigate
the underlying mechanism of the influence of dis-
ordered and irrelevant content on reasoning, and
reveal the inherent inertia of LLMs when tackling
complex tasks, further supporting the motivation in
COP.

Limitations

In this work, we focus on two issues including dis-
tractibility and disorder. And we focus on the task
characterized by plenty of premises, which may
contain disordered and irrelevant content. Tasks in
which premises do not have an obvious order and
do not involve irrelevant information are outside
the scope of this paper.

We believe our crucial insight on the proposal
of easy-to-plan method has broader implications.
However, as in error analysis, COP may fails on
some examples, but the overall performance im-
proves across different models (results are listed in
Main text and Appendix). For more general reason-
ing tasks, performing robust capturing of locally-
related premises and generating more appropriate
tree-like mind map structures require further explo-
ration. We plan to address these issues in future
research.
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A Appendix

A.1 Datasets
Real-world Setting: (1) FOLIO (Han et al., 2022)
is a challenging real-world dataset for logical rea-
soning, written in highly natural wordings and
aligned with real-world knowledge. We randomly
sampled 100 examples for testing. (2) DI-GSM
is a constructed dataset containing dirordered and
irrelevant information, which is one of the latest,
complex and representative settings and specially
designed for research of distractibility and disor-
der. Referring to (Chen et al., 2024), we first select
GSM8K (Cobbe et al., 2021) test problems with at
least five sentences in the problem statements and
shuffle the sentences. Besides, we randomly add 2
to 3 irrelevant statements to the questions. The final
testing data in DI-GSM contains 132 problems.

Synthetic Setting: (3) ProofWriter (Tafjord
et al., 2021) is a commonly used logical reason-
ing dataset and contains five subsets, named d5, d3,
d2, d1 and d0 respectively. dx part requires ≤ x
hops for reasoning. We randomly sampled 600 ex-
amples in each part. (4) PrOntoQA is a synthetic
logical reasoning dataset2 and we use three parts
hop5, hop3, and hop1 for testing. hopx part re-
quires x hops for reasoning. We randomly sampled
500 examples in each part. (5) PrOntoQA-OOD
is another synthetic logical reasoning dataset con-
taining different types of premises. We used the
generated data file generated_ood_data.zip based
on open-source code3, and randomly selected 300
samples from the original hop2 part for testing.

A.2 Compared methods

We perform a thorough comparison between our
proposed method and the existing state-of-the-art
methods (Standard Few-Shot, CoT (Wei et al.,
2022), IRRE (Shi et al., 2023), S2A (Weston and
Sukhbaatar, 2023), SI (Creswell et al., 2023), Logi-
cLM (Pan et al., 2023) and LAMBADA (Kazemi
et al., 2023)). As typical methods of teaching
model how to plan, SI (Creswell et al., 2023) al-
ternates between selection and inference to gen-
erate reasoning steps based on forward chaining,
while LAMBADA (Kazemi et al., 2023) introduces
backward chaining for high-level proof planning.
LogicLM (Pan et al., 2023) seek to convert natural
language questions into first-order logical symbol-
ics and performs symbolic reasoning to accomplish
reasoning tasks. IRRE (Shi et al., 2023) explic-
itly instructs LLMs to ignore irrelevant informa-
tion in the problem description to perform reason-
ing. S2A (Weston and Sukhbaatar, 2023) utilizes
instruction-tuned LLMs to refine the context by
eliminating irrelevant text, allowing for controlled
attention focus and deliberate reasoning before gen-
erating a response. We set the temperature to 0 for
all LLMs and experiments.

Details of "X". In Table 1 and Table 2, "X"
indicates that the method has difficulty in running
on DI-GSM. (1) LogicLM is primarily designed
for logical reasoning problems. It converts natural
language questions into first-order logical symbol-
ics and performs symbolic reasoning to accomplish
logical reasoning tasks. In contrast, all problems
in DI-GSM are mathematical problems, making it

2https://github.com/asaparov/prontoqa/tree/v1
3https://github.com/asaparov/prontoqa
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difficult for LogicLM to represent them using first-
order logic. Thus, LogicLM cannot work well on
DI-GSM. (2) SI and LAMBABDA have difficulty
in working on DI-GSM. SI and LAMBABDA are
designed for deductive logical reasoning. Here a
simple case in deductive logical reasoning, like "If
A then B; If B then C;". SI and LAMBABDA per-
form search based on certain modus ponens (like A,
B, C), which is not satisfied on real-world datasets
DI-GSM.

Mark "-" in Table 1. Besides, as mentioned
in FOLIO, such approaches like SI and LAM-
BADA, which use superficial strategies and shal-
low heuristics, can perform well on modus ponens
(like ProofWriter), but they perform poorly on FO-
LIO. The data in FOLIO does not satisfy these easy
forms in datasets like ProofWriter. Thus, SI and
LAMBADA have difficulty in running on FOLIO.
We implemented method LAMBADA and SI ac-
cording to the details in their paper. The results
(based on GPT-4o) in Table 6 show that LAM-
BADA and SI do have difficulty in working on
FOLIO, and their performance is even worse than
CoT. We mark "-" on the FOLIO dataset for SI
and LAMBABDA based on other LLMs in our
reported results, making the experimental results
more rigorous.

Table 6: Results on FOLIO based on GPT-4o.

CoT SI LAMBABDA COP

60.00 58.00 53.00 65.00

A.3 Novelty and effectiveness analysis

Novelty. Distractibility and disorder are two trend-
ing issues, which our COP foucus on. It should be
noted that IRRE (Shi et al., 2023) and S2A (We-
ston and Sukhbaatar, 2023) seek to only solve dis-
tractibility issue in a simple way. And, one of
the latest research(Chen et al., 2024) also men-
tions disorder issue, but it only raises the issue
without proposing a solution. In this work, we
focus on both these two issues distractibility and
disorder. Our paper presents saliency score anal-
ysis to demonstrate how disordered and distract-
ing information affects model reasoning for the
first time, which provide insights to the commu-
nities researching these two issues and supports
the motivation in COP. Arise from human problem-
solving process and information flow analysis, we
propose COP with several key steps including cap-

turing of locally-related premises and mind map
generation. And results show that COP can achieve
significant performance improvements in complex
real-world and multi-hop settings while some other
compared methods fail. Information flow analysis
and method COP, which is novel, together provide
further contributions to distractibility and disorder
research. Besides, we compare COP with a di-
rect way based on reordering and filtering informa-
tion. We conduct an additional experiment based
on gpt-3.5-turbo on ProofWriter-D5 and prompt
LLM with few-shot examples to directly organize
disordered information and ignore irrelevant infor-
mation in one stage. Results are listed in Table 7,
and the accuracy based on the direct way is only
about 53%, which is bad and even worse than CoT
baseline. On the contrary, the accuracy of COP is
significantly improved (88.67% vs 53.50%). This
benefits from two key steps designed in our COP.
So COP is effective and novel.

Table 7: The performance comparisons on Proofwriter-
d5 between the direct way, CoT and COP.

CoT Direct-way COP

53.50 53.17 88.67

Effectiveness. We further conduct experiments
on DI-GSM to analyze the effectiveness of the com-
ponents in COP. The results are listed in Table 8.
On the one hand, without the mind map generation
step in COP, the accuracy drops (only 43.94), prov-
ing the importance of identifying relevant premises
around the given question, which is a well-designed
step in our COP. One the other hand, we compare
with two approaches (Zhao et al.; Guo et al., 2023).
We change graph information into text format to
prompt LLM reasoning in (Zhao et al.)(m1). We
use Graph Modelling Language(GML) format to
prompt LLM reasoning in (Guo et al., 2023)(m2).
Model fails to understand the relations between
premises based on graph information in (Zhao
et al.; Guo et al., 2023), which prevents it from
identifying the most relevant premises to the prob-
lem in order. Overall, the steps designed in COP,
which are effective, ensure the performance.

A.4 Additional saliency score analysis

A.4.1 Saliency score definition

According to (Wang et al., 2023), saliency score
for each element of the attention matrix is defined
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Table 8: Effectiveness analysis of the components in
COP.

COP w/o mind map
generation

w/ m1
(Zhao et al.)

w/ m2
(Guo et al., 2023)

53.79 43.94 41.67 43.18

as:
Il =

∑

h

|AT
h,l

∂L(x)

∂Ah,l
| (1)

where Ah,l is the attention matrix of the h-th head
in the l-th layer, x is the inputs, L(x) is the cross-
entropy loss function, saliency score Il(i, j) is the
significance of the information flow from token i
to j in the x. The information flow from sentence
A to sentence B is defined as:

IS(A,B) =
1

|{lers}|
∑

l∈{lers}
(

1

|ta||tb|
∑

a∈ta

∑

b∈tb

Il(a, b))

(2)

where ta and tb are the token sets of sentences A
and B respectively, |ta| and |tb| are the length of ta
and tb, {lers} is the set of candidate layers in LLM.
IS(A,B) is normalized according to B in each
generation step. Drawing on (Wang et al., 2023),
we analyze information flow from the shallow and
deep layers of the LLM. Specifically, given a model
with L layers, we select first five layers {lers} =
{1, 2, 3, 4, 5} for shallow analysis, and select last
five layers {lers} = {L−4, L−3, L−2, L−1, L}
for deep analysis. In our experiments, we analyze
information flow from multiple aspects:

1. The saliency score from the ground-truth rea-
soning entrance to the first reasoning step is
defined as:

A1 =
1

N

N∑

i=1

IS(s
(i)
entrance, g

(i)
1 ) (3)

where s
(i)
entrance is the ground-truth reasoning

entrance sentence in inputs of sample i, g(i)1

is the first generated sentence (outputed by
LLMs) of sample i, N is the total number
of test samples. A larger A1 means that the
model can better find the reasoning entrance.

2. The proportion of samples with the highest
saliency score from the ground-truth reason-
ing entrance to the first reasoning step is de-
fined as :

A2 =
1

N

N∑

i=1

δ(s
(i)
entrance, s

(i)
opt),

s
(i)
opt = argmax

s
(i)
j

IS(s
(i)
j , g

(i)
1 )

(4)

where s
(i)
entrance is the ground-truth reasoning

entrance sentence in inputs of sample i, s(i)j

is the j-th sentence in inputs of sample i, g(i)1

is the first generated sentence (outputed by
LLMs) of sample i, δ is the Kronecker func-
tion, N is the total number of test samples. A
larger A2 means that the model can also better
find the reasoning entrance.

3. The saliency score from the previous two steps
to the current step is defined as:

A3 =
1

NK

N∑

i=1

K∑

k=1

IS(g
(i)
k−2, g

(i)
k ) + IS(g

(i)
k−1, g

(i)
k )

(5)

where g
(i)
k is the k-th generated sentence (out-

puted by LLMs) of sample i, K is the total
number of generated sentences, N is the total
number of test samples. The value of A3 in-
dicates the information from the previous two
steps to the current step. A larger A3 means
the model is more likely to pay attention to
the information in previous two steps.

4. The proportion of information flow from rele-
vant and irrelevant information when contains
irrelevant information is defined as:

A4 =
r

r + 1
,

r =
1

N

N∑

i=1

1

K|j(i)irre|

∑K
k=1

∑
j∈j

(i)
irre

IS(s
(i)
j , g

(i)
k )

1

K|j(i)re |

∑K
k=1

∑
j∈j

(i)
re

IS(s
(i)
j , g

(i)
k )

(6)

where g
(i)
k is the k-th generated sentence (out-

puted by LLMs) of sample i, K is the total
number of generated sentences, j(i)re is the in-
dex sets of relevant ground-truth reasoning
sentences in inputs of sample i, j(i)irre is the
index sets of irrelevant sentences in inputs of
sample i, |j(i)re | and |j(i)irre| are the length of j(i)re

and j
(i)
irre, N is the total number of test sam-

ples. Then, the saliency score from relevant
information is defined as 1 − A4. A larger
A4 means that the information flow from ir-
relevant information is more salient, and the
model is more likely to foucs on irrelevant
information.

A.4.2 Additional analysis
In this section, we analyze the information flow
based on saliency score on multiple models and
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Figure 7: Saliency score analysis on ProofWriter based on Qwen-14B-Chat. (a) The saliency scores from the
ground-truth reasoning entrance to the first reasoning step (A1). (b) The proportion of samples with the highest
saliency score from the ground-truth reasoning entrance to the first reasoning step (A2). (c) The saliency scores
from the previous two steps to the current step (A3). (d) The proportion of information flow from relevant and
irrelevant information when contains irrelevant information (A4).
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Figure 8: Generated fake premises analysis on ProofWriter based on Qwen-14B-Chat. (a) The saliency scores from
the previous two steps to the current step (A3) when generating a fake premise that is not in the given premises. (b)
The number of the generated fake premises. (c) The proportion of information flow from relevant and irrelevant
information when contains irrelevant information (A4) when generating a fake premise that is not in the given
premises.
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Figure 9: Saliency score analysis on DI-GSM based on Llama-2-13B-Chat. (a) The saliency scores from the
ground-truth reasoning entrance to the first reasoning step (A1). (b) The saliency scores from the previous two
steps to the current step (A3). (c) The proportion of information flow from relevant and irrelevant information when
contains irrelevant information (A4).
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Figure 10: Saliency score analysis on DI-GSM based on Qwen-14B-Chat. (a) The saliency scores from the
ground-truth reasoning entrance to the first reasoning step (A1). (b) The saliency scores from the previous two
steps to the current step (A3). (c) The proportion of information flow from relevant and irrelevant information when
contains irrelevant information (A4).

Figure Metrics
Shallow Deep

Base Disordered Irrelevant Base Disordered Irrelevant

Figure 2 (d)(1)

Mean 0.3354 0.2048 0.0781 0.2801 0.2459 0.0824
Std 0.1244 0.1055 0.0556 0.1194 0.1181 0.0465
CI1 0.3219 0.1933 0.0721 0.2672 0.2331 0.0774
CI2 0.3489 0.2162 0.0841 0.2931 0.2587 0.0875

P-value - 0 0 - 0.0002 0

Figure 2 (d)(2)
Proportion 0.6515 0.1788 0.1611 0.3606 0.2727 0.1884

P-value - 0 0 - 0.0152 0

Figure 2 (d)(3)

Mean 0.7153 0.7258 0.6215 0.446 0.485 0.3417
Std 0.1072 0.112 0.0944 0.1303 0.1378 0.1016
CI1 0.7089 0.7188 0.6162 0.4382 0.4763 0.336
CI2 0.7216 0.7329 0.6268 0.4537 0.4937 0.3474

P-value - 0.0287 0 - 0 0

Figure 5 (a)

Mean 0.3433 0.2577 0.0644 0.448 0.3824 0.113
Std 0.1171 0.1335 0.0363 0.1805 0.1981 0.0637
CI1 0.3318 0.2446 0.0609 0.4302 0.363 0.1067
CI2 0.3548 0.2708 0.068 0.4657 0.4019 0.1193

P-value - 0 0 - 0 0

Figure 5 (b)
Proportion 0.39 0.1525 0 0.7975 0.595 0.2972

P-value - 0 0 - 0 0

Figure 5 (c)

Mean 0.6049 0.6105 0.4714 0.3521 0.3563 0.2436
Std 0.1134 0.1147 0.1134 0.0197 0.1106 0.0884
CI1 0.5985 0.6041 0.4662 0.3459 0.3502 0.2395
CI2 0.6113 0.6169 0.4767 0.3583 0.3625 0.2477

P-value - 0.2261 0 - 0.3403 0

Figure 6 (a)

Mean 0.6615 0.6756 0.5153 0.4252 0.4091 0.2677
Std 0.1211 0.1168 0.132 0.1348 0.0959 0.0971
CI1 0.6222 0.6417 0.4914 0.3815 0.3813 0.2501
CI2 0.7007 0.7096 0.5392 0.4689 0.437 0.2852

P-value - 0.5808 0 - 0.5179 0

Figure 7 (a)

Mean 0.1693 0.1652 0.0978 0.1968 0.1595 0.1324
Std 0.0421 0.0359 0.0352 0.0815 0.0677 0.0509
CI1 0.1624 0.1592 0.0919 0.1834 0.1438 0.1239
CI2 0.1763 0.1711 0.1036 0.2102 0.1707 0.1408

P-value - 0.3688 0 - 0.000035 0

Figure 7 (b)

Mean 0.4999 0.4996 0.4741 0.3863 0.395 0.3645
Std 0.1003 0.1042 0.1029 0.1518 0.1462 0.1582
CI1 0.491 0.4898 0.4652 0.3728 0.3814 0.3509
CI2 0.5088 0.5093 0.4829 0.3997 0.4086 0.378

P-value - 0.9587 0.00054 - 0.3703 0.0256

Figure 8 (a)

Mean 0.106 0.1054 0.0805 0.1058 0.1055 0.0804
Std 0.0177 0.0189 0.0137 0.0177 0.019 0.0137
CI1 0.103 0.1023 0.0782 0.1029 0.1024 0.0782
CI2 0.1089 0.1086 0.0827 0.1088 0.1087 0.0827

P-value - 0.802 0 - 0.8886 0

Figure 8 (b)

Mean 0.5374 0.5397 0.4688 0.4975 0.4951 0.4743
Std 0.0877 0.0971 0.0866 0.1043 0.1059 0.1134
CI1 0.5277 0.5291 0.4599 0.486 0.4836 0.4627
CI2 0.5471 0.5502 0.4776 0.5091 0.5066 0.4858

P-value - 0.7581 0 - 0.7716 0

Figure 11: Saliency score analysis including mean, std, p-value, and confidence interval. Confidence interval is
(CI1, CI2). P-value is calculated based on value of Base.
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datasets, to further support the observations in sec-
tion3. We perform experiments on the ProofWriter
and DI-GSM dataset based on Llama-2-13B-Chat
and Qwen-14B-Chat. Figure 7 shows the saliency
score analysis on ProofWriter based on Qwen-14B-
Chat. Consistent with the analysis on ProofWriter
based on Llama-2-13B-Chat, when inputs are con-
cise and organized, the saliency score from the
ground-truth reasoning entrance to the first reason-
ing step is significantly higher than when inputs
are disordered or contain irrelevant information, as
shown in Figure 7(a). The proportion of samples
with the highest saliency score from the ground-
truth reasoning entrance to the first reasoning step
is still the highest when inputs are concise and orga-
nized. As shown in Figure 7(b), in the shallow layer
analysis, the proportion when inputs are concise
and organized is as high as 40%, while the propor-
tion when inputs contain irrelevant information is
0%. In the deep layer analysis, the proportion when
inputs are concise and organized is as high as 80%,
while the proportion when inputs are disordered or
contain irrelevant information drops significantly.
This analysis suggests that concise and organized
inputs will empower the model to accurately iden-
tify the entry point for reasoning, thus minimizing
failures attributed to inaccuracies at the reasoning
entrance. Besides, information flow from the pre-
vious two steps to the current step and irrelevant
information is also relatively salient, which is also
consistent with the previous analysis. On the one
hand, information flow from previous two steps
to the current step is salient in Figure 7(c), which
complicates the identification of the next correct
reasoning path, and even makes up premises when
faced with disordered and irrelevant content. On
the other hand, as shown in Figure 7(d), salient in-
formation flow from irrelevant information makes
models distractible, causing models to focus on
irrelevant content and leading to reasoning failure.

In addition, we further analyze the generated
fake premises when reasoning on ProofWriter
based on Qwen-14B-Chat, which can be consid-
ered as hallucination. As shown in Figure 8(b),
the number of the generated fake premises in the
disordered case is larger than that in the concise
and organized case, and the number of the gener-
ated fake premises in the irrelevant case is as high
as 120. Comparing Figure 7(c) and Figure 8(a),
information flow from the previous two steps to the
current step is more salient when generating fake
premises than the average. Information flow from

irrelevant information in Figure 8(c) has the same
trend, with an increase of about 10% in both shal-
low and deep layers. Figure 9 and Figure 10 show
the saliency score analysis on DI-GSM based on
Llama-2-13B-Chat and Qwen-14B-Chat. Similar
results occurred on these models and data, further
revealing the negative impact of disordered and
irrelevant information on reasoning.

A.4.3 Other statistical analysis
Other statistical analysis including std, p-value and
confidence interval are shown in Figure 11. Col-
umn "Figures" can be linked to figures in main text.
Results show that saliency score analysis based on
mean metric can directly reflect differences under
different experimental settings to a certain extent.

A.5 Additional experimental analysis

A.5.1 Performance on different parts of
ProofWriter and PrOntoQA.

Table 9 lists the detailed results on different parts
of ProofWriter and PrOntoQA. COP outperforms
SOTA methods on different reasoning depths (like
easy 1-hop, hard 5-hop) on PrOntoQA. For dif-
ferent parts of ProofWriter, COP is still the best.

A.5.2 Performance with different large
language models

To study if the proposed COP is effective across
different base models, we test our method on sev-
eral closed-source LLMs including GPT-3.5-turbo,
GPT-4o, Claude-3-5-Sonnet and Gemini-1.0-Pro
in main text. In addition, we conducted experi-
ments on DI-GSM with several weaker LLMs in-
cluding Qwen1.5-72B-Chat, Llama-2-13B-Chat,
mistral-7b-instruct-v0.3, Gemini-1.0-Pro and GPT-
4o-mini. As shown in Table 10, COP still consis-
tently achieves high accuracy using different LLMs,
revealing its effectiveness across different LLMs
(open-source and close-source LLMs).

A.5.3 Number of inference calls and tokens
In Figure 12, we compared the average number
of inference calls per example under different rea-
soning depths on the ProofWriter dataset. COP
requires significantly fewer inference calls than
LAMBADA, and the number of inference calls
remains relatively stable as the number of hops
increases. Besides, Table 11 compares token num-
bers used per question on the ProofWriter dataset
with different hops. The token numbers are taken
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Table 9: Performance on different parts of ProofWriter and PrOntoQA.

Datasets/ ProofWriter PrOntoQA
Methods d5 d3 d2 d1 d0 average 5-hop 3-hop 1-hop average

CoT 53.50 61.17 61.33 62.33 62.83 60.23 69.80 74.20 86.20 76.73
SI 46.00 51.00 56.00 61.00 97.00 62.20 45.00 52.00 97.00 64.67

LogicLM 70.11 - - - - - 93.20 - - -
LAMBABDA 72.00 82.00 87.00 90.00 98.00 85.80 96.00 99.00 98.00 97.67

COP 88.67 90.67 91.43 92.50 98.50 91.72 99.20 99.60 100.00 99.60

Table 10: The performance comparisons on DI-GSM using different weaker close-source and open-source LLMs.

Methods Qwen1.5
-72B-Chat

Llama-2
-13B-Chat

mistral-7b
-instruct-v0.3

Gemini-1.0
-Pro

GPT-4o
-mini

CoT 56.82 11.36 20.45 36.36 70.45
COP 59.09 15.15 27.27 55.30 71.97

Table 11: Comparison of average token numbers on the ProofWriter dataset.

Hops 0 1 2 3 4 5

LAMBADA-Prompt 567.71 4825.98 8154.11 9247.04 14401.85 19200.05
LAMBADA-Total 611.76 5293.22 8992.39 10333.2 15944.14 21922.77

COP-Prompt 433.21 1876.82 1915.68 1953.45 1996.62 2004.97
COP-Total 594.53 2199.44 2270.31 2341.29 2425.71 2440.26

Table 12: Comparison of average inference calls and token numbers on the FOLIO dataset.

Method Calls Prompt-tokens Total-tokens

LogicLM 3.88 6204.39 7281.57
COP 3 3801.99 4104.92
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Figure 12: Comparison of inference calls on the
ProofWriter dataset.

from the usage statistics returned by the OpenAI
API. COP-Prompt and LAMBADA-Prompt stand
for the input token numbers of COP and LAM-
BADA, while COP-Total and LAMBADA-Total
stand for the overall token consumed by input and
output. As shown in the table, COP costs much
fewer token numbers than LAMBADA, and the
number of token numbers remains relatively stable
as the number of hops increases, demonstrating our
proposed COP’s superiority in both effectiveness
and efficiency.

While LAMBADA is not able to work on DI-
GSM and FOLIO, and LogicLM is not able to work
on DI-GSM, we compared the average number of
inference calls and tokens used in COP and Logi-
cLM on FOLIO. Table 12 shows the results. COP
still costs fewer inference calls and much fewer
token numbers than LogicLM, which demonstrates
the superiority of COP in terms of efficiency.

A.5.4 Concise and organized perception
analysis

As analyzed in Section3, disordered and irrelevant
content has a negative impact on reasoning from
the perspective of information flow. The proposed
COP seeks to enhance reasoning performance and
simplify the reasoning process by systematically
removing irrelevant information and reorganizing
the inputs. Thus, we analyze the performance of
COP from two aspects: the degree of removal of ir-
relevant information and the order of input. Firstly,
each sample in DI-GSM contains 2 to 3 irrelevant
statements to the questions, for a total of 322 irrel-
evant statements. After applying COP, only nine
statements have not been removed, demonstrating
the success of concise perception in COP. Secondly,
the statements of questions are randomly shuffled
in DI-GSM. We use Kendall tau distance to mea-

sure the order difference of statements between
the shuffled data and the original data. Kendall
tau distance ranges from -1 to 1. The larger the
Kendall tau distance, the more relevant it is. Before
applying COP, the average Kendall tau distance is
-0.0465, indicating no strong correlation between
the statement order in the shuffled data and the orig-
inal data. After applying COP, the average Kendall
tau distance increases to 0.4268, demonstrating the
success of organized perception in COP.

A.5.5 Proof accuracy analysis
Table1 lists the label accuracy comparison, while
proof accuracy is a more stringent metric. Previous
studies have demonstrated that CoT predicts a cor-
rect label with incorrect reasoning chains (Saparov
and He, 2023). To validate if it is the case for COP,
we randomly selected 100 correctly answered sam-
ples from the Depth-5 setting of ProofWriter. We
manually checked the reasoning chain produced
by LLMs with COP. According to our observation,
only 7 out of 100 samples contain invalid reason-
ing steps, which indicates that the proposed COP
does arouse the reasoning ability of LLMs, and the
experimental results reported above are faithful.

A.5.6 Is COP beneficial to other methods ?
Based on easy to plan, our COP can be seamlessly
combined with methods that teach models how to
plan, such as LAMBADA. Since LAMBADA can-
not work on two real-world datasets, FOLIO and
DI-GSM, we use ProofWriter for testing. The per-
formance of LAMBADA and LAMBADA+COP
on the ProofWriter d5 subset with different infer-
ence depths are listed in Figure 6 (a). All the results
are based on the LAMBADA code we reproduced,
and the base model of this experiment is GPT-3.5-
turbo. Compared with the original LAMBADA
method, the performance of LAMBADA+COP un-
der different inference depths is improved, proving
the effectiveness of COP. In addition, Figure 6(b)
shows the proportion of correct reasoning and the
proportion of different types of incorrect reason-
ing. We randomly selected 100 test samples from
the ProofWriter d5 subset to manually check the
error types of incorrect reasoning examples. As
shown in the figure, equipped with COP, the pro-
portion of selection errors (including fact check and
rule selection modules in LAMBADA) drops sig-
nificantly. The proportion of goal decomposition
errors and sign agreement errors (goal decompo-
sition and sign agreement modules are unaffected
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by context redundancy and disorder) are almost
unchanged, proving that our COP can improve the
success rate of other methods in the steps that are
affected by context redundancy and disorder.
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A.6 Case study

Here we present three cases to show the effectiveness and limitations of our COP.

Case 1: Case 1 shows a case from Proofwriter dataset, where the input contains disorder and dis-
tractibility, making it difficult for LLM to perform reasoning. After applying COP, the input is concise
and organized based on the given question. Based on the input after applying COP, LLM reasons easily,
proving the effectiveness of COP.

Case 2: Case 2 shows a good case from DI-GSM dataset. Similar to case in Case 1, after applying COP,
the input is concise and organized based on the given question. The order of statements after applying
COP is different from the original order, and the changed order generated by COP is more suitable for
reasoning, demonstrating the success of organized perception in COP. This is a good case mentioned in
Section 5.2.2.

Case 3: As mentioned in Section 5.2.2 Failure Case Analysis, there are 13 cases where the premises are
not connected to other premises in the given context. Case 3 shows one of 13 cases. The key information
"It takes 75 large jelly beans to fill Grandpa up" is not connected to other premises in COP, resulting
in missing of this information in the final input after applying COP and further leading to reasoning
failure. We also discuss this issue in Section Limitations, performing robust capturing of locally-related
premises and generating more appropriate tree-like mind map structures require further exploration for
more general reasoning tasks. We plan to address these issues in future research.

Case 1: Input before and after applying our COP in Proofwriter

Input with disorder and distractibility: Context: If something eats the tiger then it eats the bear. The bear is young.
The bear chases the dog. The bear eats the tiger. If something eats the dog then the dog is young. The bald eagle is
green. The tiger chases the bear. The bear eats the bald eagle. The dog is young. If something is red and it eats the dog
then the dog eats the tiger. The bear is big. The bald eagle eats the tiger. If something is rough then it eats the bear. If
something visits the tiger then the tiger eats the bear. The tiger chases the dog. The bear is green. The bear chases the
bald eagle. The bear eats the dog. The dog is big. If something is green and it visits the bald eagle then it visits the dog.
If something eats the bear then it is red. Question: Based on the above information, is the following statement true, false,
or unknown? The bald eagle does not eat the bear.
Input after Applying COP: Context: The bald eagle eats the tiger. If something eats the tiger then it eats the bear.
Question: Based on the above information, is the following statement true, false, or unknown? The bald eagle does not
eat the bear.
Reasoning after Applying COP: The bald eagle eats the tiger. If something eats the tiger then it eats the bear. Therefore,
the bald eagle eats the bear. Therefore, the given statement ’The bald eagle does not eat the bear’ is False.

Case 2: Good Case in DI-GSM

Original Input: Annabelle is saving for a phone that costs $400. She already has $80 in her savings. Her first job,
where she earns $10 per hour, pays her for 20 hours of work. She is also paid for 15 hours of work at her second job,
where she earns $5 an hour. In dollars, how much money does Annabelle still need to save?
Input with disorder and distractibility: Annabelle’s first job, where Annabelle earns $10 per hour, pays her for 20
hours of work. Annabelle already has $80 in her savings. Annabelle is also paid for 15 hours of work at her second job,
where Annabelle earns $5 an hour. Fern is checking IDs to get into an R-rated movie. Grandpa Lou enjoys watching
movies on the Hallmark channel, where every movie lasts 90 minutes. Annabelle is saving for a phone that costs $400.
In dollars, how much money does Annabelle still need to save?
Input after Applying COP: Annabelle’s first job, where Annabelle earns $10 per hour, pays her for 20 hours of work.
Annabelle already has $80 in her savings. Annabelle is also paid for 15 hours of work at her second job, where Annabelle
earns $5 an hour. Annabelle is saving for a phone that costs $400. In dollars, how much money does Annabelle still
need to save?
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Case 3: Bad Case in DI-GSM

Original Input: Grandpa loves to eat jelly beans, but how many jelly beans he can eat depends on the size of the
beans. It takes 75 large jelly beans to fill Grandpa up. He can eat twice as many medium-sized beans as large beans.
And eating 3 small beans is the same as eating 1 medium-sized bean. How many small beans can Grandpa eat?
Input with disorder and distractibility: There are 5 houses on a street, and each of the first four houses has 3 gnomes
in the garden. Grandpa can eat twice as many medium-sized beans as large beans. It takes 75 large jelly beans to fill
Grandpa up. Last year Jessica paid $1000 for rent, $200 for food, and $100 for car insurance each month. And eating 3
small be ans is the same as eating 1 medium-sized bean. Hans booked a room in a hotel. Grandpa loves to eat jelly beans,
but how many jelly beans Grandpa can eat depends on the size of the beans. How many small beans can Grandpa eat?
Input after Applying COP: Grandpa loves to eat jelly beans, but how many jelly beans Grandpa can eat depends on
the size of the beans. Grandpa can eat twice as many medium-sized beans as large beans. Eating 3 small beans is the
same as eating 1 medium-sized bean. How many small beans can Grandpa eat?

A.7 Prompts used in experiments

In this section, we give the prompts used in our experiments. The prompts used in PrOntoQA and
PrOntoQA-OOD are similar to that in ProofWriter.

3490



A.7.1 Prompts in capturing of locally-related premises

Prompts for DI-GSM [Capturing of locally-related premises]

Given multiple statements in a context, the task is to find relevant statements for each statement. Use "A -> B" to denote
statement B that is relevant after statement A. Use "A -> None" to denote that there is no statement that is relevant
after statement A. Each statement can have multiple relevant statements. Do not change the logic and content of the
statements in context.
——
Context:
James makes potatoes for a group.
For every 5 fruits that customers buy, the store offers a $1 discount.
Mary went to the store to buy fruit.
Each person eats 1.5 pounds of potatoes.
Apples cost $1, oranges cost $2, and bananas cost $3.
Mary buys 5 apples, 3 oranges, and 2 bananas.
Margaret wants to serve chicken salad sandwiches using mini croissants.

Answer:
James makes potatoes for a group. -> Each person eats 1.5 pounds of potatoes.
For every 5 fruits that customers buy, the store offers a $1 discount. -> None.
Mary went to the store to buy fruit. -> Mary buys 5 apples, 3 oranges, and 2 bananas.
Each person eats 1.5 pounds of potatoes. -> None.
Apples cost $1, oranges cost $2, and bananas cost $3. -> For every 5 fruits that customers buy, the store offers a $1
discount.
Mary buys 5 apples, 3 oranges, and 2 bananas. -> Apples cost $1, oranges cost $2, and bananas cost $3.
Margaret wants to serve chicken salad sandwiches using mini croissants. -> None.

——
Context:
...

——
Context:
The middle height tree is 2/3 the height of the tallest tree.
At the burger hut, you can buy a burger for $5, french fries for $3, and a soft drink for $3.
There are three trees in the town square.
The tallest tree is 150 feet tall.
George is about to celebrate his 25th birthday.
The shortest tree is half the size of the middle tree.

Answer:
The middle height tree is 2/3 the height of the tallest tree. -> The shortest tree is half the size of the middle tree.
At the burger hut, you can buy a burger for $5, french fries for $3, and a soft drink for $3. -> None.
There are three trees in the town square. -> The tallest tree is 150 feet tall.
The tallest tree is 150 feet tall. -> The middle height tree is 2/3 the height of the tallest tree.
George is about to celebrate his 25th birthday. -> None.
The shortest tree is half the size of the middle tree. -> None.

——
Context:
[[PREMISES]]

Answer:
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Prompts for FOLIO [Capturing of locally-related premises]

Given multiple statements in a context, the task is to find logically relevant statements for each statement. Use "A -> B"
to denote statement B that is logically relevant after statement A. Use "A -> None" to denote that there is no statement
that is logically relevant after statement A. Each statement can have multiple logically relevant statements. Do not
change the logic and content of the statements in context.
——
Context:
A thing is either a plant or animal.
If a sea eel is either an eel or a plant, then a sea eel is an eel or an animal.
No fish are plants.
All animals breathe.
Nothing that breathes is paper.
All eels are fish.

Answer:
A thing is either a plant or animal. -> All animals breathe.
If a sea eel is either an eel or a plant, then a sea eel is an eel or an animal. -> All eels are fish.
If a sea eel is either an eel or a plant, then a sea eel is an eel or an animal. -> All animals breathe.
No fish are plants. -> None.
All animals breathe. -> Nothing that breathes is paper.
Nothing that breathes is paper. -> None.
All eels are fish. -> No fish are plants.

——
Context:
...

——
Context:
All Instagram is entertainment.
All video applications are software.
If something is interesting, then it is good.
All YouTube-related applications are video applications.
All entertainments are interesting.
TikTok is not good.
All software is programmed.
An APP is either related to YouTube or Instagram.

Answer:
All Instagram is entertainment. -> All entertainments are interesting.
All video applications are software. -> All software is programmed.
If something is interesting, then it is good. -> TikTok is not good.
All YouTube-related applications are video applications. -> All video applications are software.
All entertainments are interesting. -> If something is interesting, then it is good.
TikTok is not good. -> None.
All software is programmed. -> None.
An APP is either related to YouTube or Instagram. -> All YouTube-related applications are video applications.
An APP is either related to YouTube or Instagram. -> All Instagram is entertainment.

——
Context:
[[PREMISES]]

Answer:
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Prompts for Proofwriter [Capturing of locally-related premises / Premises Unified Formats]

You are given some known rules. Extract the conditions and consequents of each rule and output follow the format of
the given examples:
Examples:
Rules:
If someone sees the cat and they are not green then they see the cow. If the rabbit is kind and the rabbit sees the squirrel
then the squirrel needs the rabbit. Rough people are cold. If someone sees the rabbit then they are not round. If someone
sees the squirrel and they are not green then they need the squirrel. If someone eats the cow then they see the rabbit.
Cold things are rough. If someone is cold then they eat the cow. Kind, rough people are round.
Output:
”Rule1”: ”conditions”: [”X(see, cat)”, ”X(is not, green)”], ”consequents”: [”X(see, cow)”], ”Rule2”: ”conditions”:
[”rabbit(is, kind)”, ”rabbit(see, squirrel)”], ”consequents”: [”squirrel(need, rabbit)”], [...], ”Rule9”: ”conditions”: [”X(is,
kind)”, ”X(is, rough)”], ”consequent”: [”X(is, round)”]

Rules:
...

Rules:
If something visits the mouse and the mouse visits the dog then it is cold. If mouse likes the cat then it visits the dog. If
something is cold then it likes the cat. If something is green then it sees the dog. If something likes the mouse then it
sees the cat. If dog is green and cold then it likes the cat. If something is big and it visits the bear then the bear is green.
Round things are rough. Output:
”Rule1”: ”conditions”: [”X(visit, mouse)”, ”mouse(visit, dog)”], ”consequents”: [”X(is, cold)”], ”Rule2”: ”conditions”:
[”mouse(like, cat)”], ”consequents”: [”X(visit, dog)”], ”Rule8”: ”conditions”: [”X(is, round)”], ”consequents”: [”X(is,
rough)”]

Rules:
[[PREMISES]]

Output:

Prompts for Proofwriter [Capturing of locally-related premises / Premises Unified Formats]

You are given some known facts. Output the facts following the format of the given examples:
Examples:
Facts:
The bear is green. The bear likes the cat. The bear likes the dog. The bear visits the dog. The cat isyoung. The cat does
not see the bear. The cat sees the dog. The cat visits the bear. The dog is round. The mouse is not big. The mouse is
cold.
Output:
”Fact1”: [”bear(is, green)”], ”Fact2”: [”bear(like, cat)”], ”Fact3”: [”bear(like, dog)”], ”Fact4”: [”bear(visit, dog)”],
”Fact5”: [”cat(is, young)”], ”Fact6”: [”cat(not see, bear)”], ”Fact7”: [”cat(see, dog)”], ”Fact8”: [”cat(visit, bear)”],
”Fact9”: [”dog(is, round)”], ”Fact10”: [”mouse(is not, big”], ”Fact11”: [”mouse(is, cold)”]

Facts:
...

Facts: [[PREMISES]]

Output:
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A.7.2 Prompts in generation of mind map

Prompts for DI-GSM [Generation of Mind Map]

Given a question and multiple ordered relevant sentences in context, the task is to find in order all sentences in the
context that are required to answer the given question or are related to the information and subject in the given question.
——
Context:
Mary went to the store to buy fruit. Mary buys 5 apples, 3 oranges, and 2 bananas. Apples cost $1, oranges cost $2, and
bananas cost $3.
James makes potatoes for a group. Each person eats 1.5 pounds of potatoes.
For every 5 fruits that customers buy, the store offers a $1 discount.
Margaret wants to serve chicken salad sandwiches using mini croissants.

Question:
How much will Mary pay?

Inference:
All sentences in order that are required to answer the given question or are related to the information and subject in the
given question are: Mary went to the store to buy fruit. -> Mary buys 5 apples, 3 oranges, and 2 bananas. -> Apples cost
$1, oranges cost $2, and bananas cost $3. -> For every 5 fruits that customers buy, the store offers a $1 discount.

——
Context:
...

——
Context:
At the burger hut, you can buy a burger for $5, french fries for $3, and a soft drink for $3.
The tallest tree is 150 feet tall. The middle height tree is 2/3 the height of the tallest tree. The shortest tree is half the
size of the middle tree.
George is about to celebrate his 25th birthday.
There are three trees in the town square.

Question:
How tall is the shortest tree?

Inference:
All sentences in order that are required to answer the given question or are related to the information and subject in the
given question are: There are three trees in the town square. -> The tallest tree is 150 feet tall. -> The middle height tree
is 2/3 the height of the tallest tree. -> The shortest tree is half the size of the middle tree.

——
Context:
[[PREMISES]]

Question:
[[QUESTION]]

Inference:
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Prompts for FOLIO [Generation of Mind Map]

Given multiple ordered logical paths in context and a statement, the task is to find the most logically relevant paths for
the statement and remove irrelevant logical content in context for the statement.
——
Context:
If a sea eel is either an eel or a plant, then a sea eel is an eel or an animal. All eels are fish. No fish are plants.
If a sea eel is either an eel or a plant, then a sea eel is an eel or an animal. All animals breathe.
A thing is either a plant or animal. All animals breathe. Nothing that breathes is paper.

Statement:
Sea eel is a paper.

Answer:
A thing is either a plant or animal. All animals breathe. Nothing that breathes is paper. If a sea eel is either an eel or a
plant, then a sea eel is an eel or an animal. All animals breathe. All eels are fish. No fish are plants.

——
Context:
...

——
Context:
An APP is either related to YouTube or Instagram. All YouTube-related applications are video applications. All video
applications are software. All software is programmed.
An APP is either related to YouTube or Instagram. All Instagram is entertainment. All entertainments are interesting. If
something is interesting, then it is good. TikTok is not good.

Statement:
Tiktok is a program.

Answer:
An APP is either related to YouTube or Instagram. All Instagram is entertainment. All entertainments are interesting. If
something is interesting, then it is good. TikTok is not good. All YouTube-related applications are video applications.
All video applications are software. All software is programmed.

——
Context:
[[PREMISES]]

Statement
[[QUESTION]]

Answer:

Prompts for ProofWriter [Generation of Mind Map / Question Unified Formats]

You are given some known facts. Output the facts following the format of the given examples:
Examples:
Facts:
The bear is green.
Output:
[”bear(is, green)”, ”bear(is not, green)”]

Facts:
...

Facts:
The mouse is not big. Output:
[”mouse(is not, big)”, ”mouse(is, big)”]
Facts:
[[QUESTION]]

Output:
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A.7.3 Prompts in CoT

Prompts for DI-GSM [CoT Reasoning]

Question: Karen’s students are about to take a standardized test. Karen gets a $500 bonus if their average score is above
75, plus an extra $10 bonus for every additional point the average score increases above 75. So far, Karen has graded 8
tests, and the average is 70. Given that each student can have a maximum score of 150, what combined score do the last
two tests need to have for Karen to earn a $600 bonus?

Answer: First subtract $500 from Karen’s goal bonus amount to find how much she makes from the extra $10/point
bonus: $600 - $500 = $«600-500=100»100\nThen divide the extra bonus by the extra rate: $100 / $10/point =
«100/10=10»10 points\nThen add the 10 extra points to the baseline 75 point goal to find the students’ average test
score: 10 points + 75 points = «10+75=85»85 points\nThen added the 8 graded tests to the 2 ungraded tests to find the
total number of tests: 2 tests + 8 tests = «2+8=10»10 tests\nThen multiply the 85 point average by the number of tests
to find the total number of points the students need to earn: 85 points/test * 10 tests = 850 points\nThen multiply the
current average by the current number of graded tests to find how many points have been earned so far: 70 points/test
* 8 tests = «70*8=560»560 points\nThen subtract the number of points earned from the number of points needed
to find the combine score the last two tests need: 850 points - 560 points = «850-560=290»290 points. The answer is 290.

Question: Mr. Manuel is a campsite manager who’s been tasked with checking the number of tents set up in the
recreation area. On a particular day, he counted 100 tents in the northernmost part of the campsite and twice that number
on the east side of the grounds. The number of tents at the center of the camp was four times the number of tents in the
northernmost part of the campsite. If he also counted 200 tents in the southern part of the campsite, what is the total
number of tents in the recreation area?

Answer: On the eastern part of the campsite, Mr Manuel counted 2*100 = «2*100=200»200 tents\nThe total
number of tents in the eastern and the northern part of the campgrounds is 200+100 = «200+100=300»300\nThere
are four times as many tents as the northernmost part in the central part of the campsite, which means there
are 4*100 = «4*100=400»400 tents in the central part of the camp.\nThe total number of tents in the three
parts of the campsite is 400+300 = «400+300=700»700\nIf you add the number of tents Mr. Manuel counted at
the southern part of the campsite, you get 700+200 = «700+200=900»900 tents on the whole campsite. The answer is 900.

Question: [[PREMISES]][[QUESTION]]

Answer:

3496



Prompts for FOLIO [CoT Reasoning]

Given a problem statement as contexts, the task is to answer a logical reasoning question.
——
Context: The Blake McFall Company Building is a commercial warehouse listed on the National Register of
Historic Places. The Blake McFall Company Building was added to the National Register of Historic Places
in 1990. The Emmet Building is a five-story building in Portland, Oregon. The Emmet Building was built in
1915. The Emmet Building is another name for the Blake McFall Company Building. John works at the Emmet Building.

Question: Based on the above information, is the following statement true, false, or uncertain? The Blake McFall
Company Building is located in Portland, Oregon.

Options: A) True B) False C) Uncertain

Reasoning: The Blake McFall Company Building is another name for the Emmet Building. The Emmet Building is
located in Portland, Oregon. Therefore, the Blake McFall Company Building is located in Portland, Oregon.

The correct option is: A
——
Context: People eat meat regularly or are vegetation. If people eat meat regularly, then they enjoy eating hamburgers
and steaks. All people who are vegetarian are conscious of the environment or their health. If people are conscious
about the environment or their health, then they do not go to fast food places often. If people have busy schedules
without time to cook, then they go to fast food places often. If Jeremy does not both go to fast food places often and is
conscious about the environment or their health, then he goes to fast food places often.

Question: Based on the above information, is the following statement true, false, or uncertain? If Jeremy has a busy
schedule without time to cook, then Jeremy does not enjoy eating hamburgers and steaks.

Options: A) True B) False C) Uncertain

Reasoning: If Jeremy has a busy schedule without time to cook or enjoy eating hamburgers and steaks, then
Jeremy goes to fast food places often. If people are conscious about the environment or their health, then they
do not go to fast food places often. This means that Jeremy is not conscious about the environment or his
health. All people who are vegetarian are conscious of the environment or their health. Therefore, Jeremy is
not vegetarian. People eat meat regularly or are vegetation. Therefore, Jeremy eats meat regularly. If people
eat meat regularly, then they enjoy eating hamburgers and steaks. Therefore, Jeremy enjoys eating hamburgers and steaks.

The correct option is: B
——
Context: [[PREMISES]]

Question: [[QUESTION]]

Options: A) True B) False C) Uncertain

Reasoning:

3497



Prompts for ProofWriter [CoT Reasoning]

Given a problem statement as contexts, the task is to answer a logical reasoning question.
——
Context: The cow is blue. The cow is round. The cow likes the lion. The cow visits the tiger. The lion is cold. The lion
is nice. The lion likes the squirrel. The squirrel is round. The squirrel sees the lion. The squirrel visits the cow. The tiger
likes the cow. The tiger likes the squirrel. If something is cold then it visits the tiger. If something visits the tiger then it
is nice. If something sees the tiger and it is young then it is blue. If something is nice then it sees the tiger. If something
likes the squirrel and it likes the cow then it visits the tiger. If something is nice and it sees the tiger then it is young. If
the cow is cold and the cow visits the lion then the lion sees the squirrel.

Question: Based on the above information, is the following statement true, false, or unknown? The tiger is not young.

Options: A) True B) False C) Unknown

Reasoning: The tiger likes the cow. The tiger likes the squirrel. If something likes the squirrel and it likes the cow,
then it visits the tiger. So the tiger visits the tiger. If something visits the tiger then it is nice. So the tiger is nice. If
something is nice and it sees the tiger then it is young. So the tiger is young.

The correct option is: B
——
Context: The dog sees the rabbit. The dog sees the squirrel. The dog sees the tiger. The rabbit eats the dog. The rabbit
does not eat the tiger. The rabbit does not like the tiger. The squirrel does not see the rabbit. The tiger does not eat the
rabbit. The tiger is not kind. The tiger likes the dog. The tiger sees the dog. If something is cold then it likes the rabbit.
If something eats the tiger and it is nice then it likes the rabbit. If something likes the squirrel then the squirrel likes the
rabbit. If something likes the rabbit and the rabbit is kind then it sees the tiger. If something likes the tiger then the
tiger is young. If something is young and it eats the rabbit then it likes the tiger. If something sees the rabbit then the
rabbit is cold. If something likes the rabbit then it likes the squirrel. If something likes the squirrel then the squirrel is cold.

Question: Based on the above information, is the following statement true, false, or unknown? The rabbit is cold.

Options: A) True B) False C) Uncertain

Reasoning: The dog sees the rabbit. If something sees the rabbit then the rabbit is cold. So the rabbit is cold.

The correct option is: A
——
Context: [[PREMISES]]

Question: [[QUESTION]]

Options: A) True B) False C) Uncertain

Reasoning:

3498


