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Abstract

Large Language Models (LLMs) are proficient
at retrieving single facts from extended con-
texts, yet they struggle with tasks requiring the
simultaneous retrieval of multiple facts, espe-
cially during generation. This paper identifies a
novel “lost-in-the-middle” phenomenon, where
LLMs progressively lose track of critical in-
formation throughout the generation process,
resulting in incomplete or inaccurate retrieval.
To address this challenge, we introduce Find
All Crucial Texts (FACT), an iterative retrieval
method that refines context through successive
rounds of rewriting. This approach enables
models to capture essential facts incrementally,
which are often overlooked in single-pass re-
trieval. Experiments demonstrate that FACT
substantially enhances multi-fact retrieval per-
formance across various tasks, though improve-
ments are less notable in general-purpose QA
scenarios. Our findings shed light on the limita-
tions of LLMs in multi-fact retrieval and under-
score the need for more resilient long-context
retrieval strategies.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive capabilities in various NLP tasks,
particularly in situations where single, salient facts
need to be retrieved from a long context (Shi et al.,
2023; Izacard and Grave, 2021b; Jiang et al., 2023b;
Lin et al., 2023; Jeong et al., 2024). These “needle-
in-a-haystack” (gkamradt, 2023) tasks highlight
the strength of modern LLMs in isolating critical
information (Hsieh et al., 2024; Yoran et al., 2023).
However, in tasks requiring the retrieval of multiple
facts simultaneously—referred to as multi-fact re-
trieval tasks—the performance of both open-source
and proprietary LLMs noticeably degrades (Hsieh
et al., 2024; Li et al., 2024a). This is particularly
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problematic in long-context scenarios (Liu et al.,
2023), where models struggle to retain and retrieve
multiple pieces of key information, leading to in-
complete or erroneous results.

To improve LLMs’ performance in multi-fact
retrieval tasks, we conducted an analysis of the
failure patterns specific to this context. Our find-
ings reveal that the core issue is not identifying
relevant information individually but the model’s
difficulty in focusing on multiple facts as they ac-
cumulate. Therefore, in multi-fact retrieval scenar-
ios, as the generation process goes on, the model
gradually loses track of the information to be re-
trieved and tends to retrieve incomplete or incorrect
information. This issue, which we term the “lost-
in-the-middle” in multi-fact retrieval generation,
occurs when multiple critical pieces of informa-
tion are distributed throughout the context. Con-
ventional retrieval techniques—whether relying on
LLM querying or vector-based methods—tend to
focus on isolated facts, missing the broader con-
text needed to retrieve all necessary information
for complete understanding or reasoning.

Based on this observation, we investigate
whether a multi-round retrieval scheme can miti-
gate performance drops in multi-fact retrieval tasks.
Specifically, we introduce Find All Crucial Texts
(FACT), an iterative approach tailored for multi-
fact retrieval. In our method, “context rewriting”
leverages previously retrieved information to itera-
tively refine the context, it’s different from “query-
rewriting” methods like (Ma et al., 2023; Wang
et al., 2023) which obtain additional information
by expanding the user’s query. . Single-pass re-
trieval often fails to capture multiple facts, as the
model’s attention tends to focus primarily on the
top-ranked fact. Our iterative process addresses
this limitation by progressively removing identified
facts from the context, allowing the model to con-
centrate on additional critical facts in subsequent
rounds.
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We empirically demonstrate that FACT signifi-
cantly outperforms baseline methods in retrieving
multiple important facts from long contexts. How-
ever, we also show mixed results when applying
FACT on general-purpose QA tasks, where we
analyze the influence of rewriting rounds, model
families, model sizes, and task types on the per-
formance of FACT-like iterative rewriting meth-
ods. We conclude that although the multi-round
retrieval method drastically benefits retrieval tasks,
this performance boost is not universally trans-
ferrable to other tasks or models. Our research
demonstrates that retrieval tasks themselves are not
enough for evaluating long-context scaling meth-
ods and calls for better context-building mech-
anisms, long-context reasoning approaches, and
more agentic long-context solutions.

2 The Challenge of Multi-fact Retrieval

In Hsieh et al. (2024), models demonstrate a con-
sistent decline in performance as the number of
required retrievals from context increases. This sec-
tion aims to explore the underlying mechanisms be-
hind this degradation: does the model prematurely
terminate its retrieval process, or does it struggle to
track and process the necessary information?

We approach this through a mechanistic analysis
inspired by Lu et al. (2024). Specifically, we adopt
the multi-query needle-in-a-haystack (MQ-NIAH)
task from RULER (Hsieh et al., 2024), where the
model is presented with a context of key-value pairs
and a question containing multiple keys, tasked
with retrieving the corresponding values sequen-
tially. To diagnose the model’s internal represen-
tations, we train a linear probe on each layer of a
LLaMA-3 8B Instruct model. The probe maps the
intermediate layer representation, x, correspond-
ing to an output position of a value, to an output
value token y. The probe’s accuracy reflects the de-
gree to which the model’s internal state retains the
necessary information to output the correct value,
allowing us to distinguish between cases where the
model “knows” the information but fails to out-
put it (high probe accuracy) and cases where the
model has entirely lost track of the required infor-
mation (low probe accuracy). For the details of
linear probe training, please refer to Appendix D.

Figure 1 plots the maximum probe ac-
curacy against output position for dif-
ferent query lengths in a 50-query MQ-
NIAH setting. The results reveal a clear
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Figure 1: Maximum probing accuracy in a multi-query
needle-in-a-haystack (MQ-NIAH) task across all layers
of a Llama-3 8B Instruct model. The figure shows
a “lost-in-the-middle” phenomenon for the generation
process in MQ-NIAH.

“lost-in-the-middle” pattern during generation:
when conducting multi-fact retrieval, the model
would progressively lose information of the current
retrieval target as the generation continues, until it
recovers only at the final few generated tokens.

Please note that this is different from the “lost-
in-the-middle in context” (Liu et al., 2024), where
it loses track of a single retrieval in the middle of
the context in single-fact retrieval. The “lost-in-the-
middle during generation” instead loses track of
the current information to be retrieved in the middle
of the generation process in multi-fact retrieval.

Notably, the position of the accuracy turning
point is largely invariant to the number of key to-
kens, suggesting that the performance degradation
is not due to an overloaded number of key tokens.
This pattern implies a fundamental constraint in the
model’s capacity: it appears unable to reliably
retrieve and track more than a certain number
of key pieces of information concurrently from
the context.

3 The FACT Method

As noted above, the facts are basic constituent units
within the context. They can be used to provide in-
formation in retrieval tasks and to generate answers
in QA tasks. The completeness of facts is cru-
cial to retrieval and QA performance. To this end,
we introduce an iterative rewriting method called
FACT, which significantly enhances fact retrieval
performance in common scenarios. This largely
addresses the challenges mentioned in Section 2.

3.1 Iterative Rewriting

To solve the problem of incomplete or inaccurate
facts, we employ an iterative rewriting approach
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Algorithm 1 FACT
Require: Q: the user query text, C: the context of the sam-

ple, n: number of iterations, Retrieve: the retrieval
function, Rewrite: the context rewriting function, Stop:
the iteration stop judgment function

Ensure: F : the set of final found facts
1: F = []
2: for i = 1 to n do
3: cand_facts = Retrieve(Q, C)
4: C = Rewrite(cand_facts, C)
5: F .extend(cand_facts)
6: if Stop(F , C) then
7: break
8: end if
9: end for

10: return F

for fact retrieval. Specifically, based on the user’s
query, candidate facts are retrieved through meth-
ods such as using LLMs as retrievers or vector-
based approaches. These candidate facts are then
located inside the context, where they are rewritten
by either removing or replaced with other noise
data, resulting in a new context. This process is
repeated until a stopping criteria is met. In our
implementation, the stopping criteria is defined as
reaching a predefined number of iterations. The
candidate facts found in each iteration are concate-
nated together to form the final set of facts to be
used for generating the final response. The algo-
rithm 1 describes the complete process in detail.

4 Experiments

4.1 Settings
We test the performance of FACT equipped with
closed-sourced GPT-4o and GPT-4o-mini (Ope-
nAI, 2024)§, and open-sourced Llama-3.1 8B In-
struct (Dubey et al., 2024). We report the perfor-
mance on two types of tasks:

• Retrieval Tasks, where the model directly re-
trieves multiple key information in the context.
This includes RULER (Hsieh et al., 2024) and
Counting Stars (Song et al., 2024a).

• QA Tasks, where answering the question re-
quires reasoning about the provided context.
This type of task includes: (1) Single-doc QA
tasks, including NarrativeQA (Kociský et al.,
2018), Qasper (Dasigi et al., 2021), and Mul-
tiFieldQA (Bai et al., 2024); (2) Multi-doc
QA tasks, including HotpotQA (Yang et al.,
2018), 2WikiMQA (Ho et al., 2020), and

§We adopt the gpt-4o-2024-08-06 and
gpt-4o-mini-2024-07-18 versions in our experiments.
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Figure 2: Retrieval Task performances under different
numbers of rewriting iterations. The red line denotes
the average performance across all tasks.

MuSiQue (Trivedi et al., 2022). The QA tasks
adopt the contexts and prompt from Long-
Bench (Bai et al., 2024). Please refer to Ap-
pendix B for the statistics of the tasks.

In the experiments, we compare the results of
FACT against a baseline direct retrieval method
for each model. This direct retrieval setting returns
all the retrieved information or directly answers the
question in one shot with the default prompt for
each task. We include the prompts we used for the
retrieval task and the retrieval step of the QA tasks
in Appendix C.

4.2 Retrieval Tasks

We present the results of the retrieval tasks in Ta-
ble 1. The results demonstrate a significant im-
provement in retrieval performance when applying
our proposed method across both open-source and
closed-source models. Across all tasks, the method
consistently enhances the models’ ability to retrieve
as much relevant information as possible from long
contexts, outperforming the direct retrieval base-
lines substantially. This is particularly evident in
tasks with longer context lengths, where traditional
retrieval methods struggle. Moreover, for better-
performing models like GPT-4o and GPT-4o-mini,
FACT achieves nearly perfect results.

In Figure 2, we show the comparison of our
proposed FACT against baselines under varied
iterations with 16K context length in RULER
K1V10Q1. Note that the retrieval function, rewrit-
ing strategy, and stopping criteria in FACT are
closely intertwined, making it challenging to ab-
late any single component without fundamentally
altering the method. Instead, by varying the num-
ber of iterations, we gain indirect insight into the
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RULER Counting Stars
Overall

LLM Method
K1V10Q1 K5V10Q1 N32

4K 16K 4K 16K 4K 16K

L. 8B base. 70.0 46.2 80.2 61.0 98.6 80.9 72.8
FACT 98.4 83.8 100.0 98.6 100.0 99.2 96.7

4o-mini base. 73.4 60.6 81.6 59.6 96.7 72.2 70.0
FACT 99.8 99.2 100.0 99.6 98.0 99.9 99.4

gpt-4o base. 98.4 85.0 99.8 80.6 99.8 92.7 92.7
FACT 100.0 100.0 100.0 99.6 100.0 100.0 99.9

Table 1: Performance Comparison on Retrieval Tasks.
“KxVyQz” denotes adding x needles inside the con-
text and retrieving y values from a single query or z
queries. “Ny” denotes retrieving y needles from the
context. The best performances of each model on each
task are bolded. “L. 8B” denotes Llama-3.1 8B Instruct;
“4o-mini” denotes GPT-4o-mini.

impact of the iterative rewriting mechanism and its
interaction with the stopping criterion. As the itera-
tion increases, the overall scores steadily increase,
highlighting the benefit of our iterative rewriting
strategy. This is especially true for Llama-3.1 8B
Instruct: the model exhibits an increase of nearly
50 percentage points when the iteration count is
raised to 3.

4.3 Question Answering Tasks

We present the results of QA Tasks in Figure 3.

Effect of iterative context rewriting on different
model families. We include Qwen-2.5 7B (Yang
et al., 2024) into discussion in this section. The
performance impact of iterative context rewriting
varies significantly across model families. GPT-
4o and GPT-4o-mini consistently improve as the
number of rewriting iterations increases. However,
Llama-3.1 and Qwen-2.5 show a noticeable perfor-
mance decline with iterative retrieval, particularly
Llama-3.1, which struggles with retrieved context.
This difference likely comes from training differ-
ences: GPT-4o may have been specifically trained
on retrieval-augmented tasks, while Llama-3.1 and
Qwen-2.5 may lack such training, making them
more prone to hallucinations or errors.

Iterative rewriting versus one-shot retrieval.
Our results show that iterative rewriting outper-
forms one-shot retrieval, especially for models
suited to retrieval-based tasks. Iterative rewrit-
ing leads to continuous improvements across it-
erations, showing the benefits of gradual context
refinement. This supports our hypothesis in Sec-
tion 2, which suggests that repeated enhancement
of retrieved context improves model understanding
and response quality.

Variability in task-specific performance with it-
erative rewriting. The impact of iterative rewrit-
ing varies significantly across tasks. For the GPT-
4o family, we see major gains for datasets like
2wikimqa and MuSiQue but minor declines for
Qasper and NarrativeQA. This is likely due to the
different characteristics of each dataset. 2wikimqa
and MuSiQue contain dense factual information,
which benefits from iterative rewriting by empha-
sizing key details and reducing noise, thereby im-
proving accuracy. On the other hand, Qasper and
NarrativeQA require nuanced reasoning and com-
plex knowledge, which are beyond mere retrieval.
Iterative rewriting in these cases may oversimplify
or alter essential information, leading to loss of
detail and increased ambiguity. Thus, while fac-
tual tasks benefit from FACT, highly structured or
narrative tasks may not.

Cause of Failure. Our analysis reveals that open-
sourced models fail primarily because they cannot
reliably execute atomic retrieval steps in scenarios
that require complex reasoning. Note that our pro-
posed method FACT is designed to minimize error
accumulation in iterative context rewriting: the out-
put of one round does not directly feed into the next,
ruling out the possibility that performance declines
arise from compounding errors. Rather, the in-
ability of open-sourced models to retrieve relevant
context in each single round consistently hurts their
performance, whereas closed-sourced models are
able to establish a stronger contextual foundation
for context retrieval, likely due to targeted training
on retrieval-oriented tasks. This gap in retrieval
capability thus stands as the most plausible expla-
nation for the weaker outcomes of open-sourced
models, reinforcing the importance of specialized
training on fine-grained context retrieval tasks for
reliable fact-centric reasoning based on iterative
context shortening.

5 Conclusion

This paper explored the challenges faced by Large
Language Models (LLMs) in multi-fact retrieval
tasks, particularly the “lost-in-the-middle” phe-
nomenon, where models progressively lose track
of key facts during generation. To address this, we
introduced FACT, an iterative context-rewriting
method designed to improve multi-fact retrieval by
progressively refining context. Our experiments
show that FACT significantly boosts retrieval per-
formance in long-context scenarios, though results
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Figure 3: QA Task performances under different numbers of rewriting iterations(retain ten sentences each iterative
retrieval)). The red line denotes the average performance across all tasks.

were mixed for general-purpose QA tasks.
These findings underscore the need for robust

retrieval mechanisms that go beyond single-pass
methods, highlighting the value of iterative re-
finement in complex retrieval settings. While
FACT proves effective for fact-intensive retrieval,
its mixed performance on QA tasks suggests fur-
ther research is needed to adapt iterative methods
for broader NLP contexts. Future work should ex-
plore dynamic rewriting techniques tailored to task
characteristics, balancing context enrichment with
the retention of essential information. This could
include dataset-aware rewriting strategies that ad-
just context modification based on task demands,
optimizing performance while minimizing trade-
offs. Additionally, task-specific training focused
on retrieval could enhance the efficacy of iterative
context rewriting. Overall, this work lays a foun-
dation for advancing context-building and long-
context reasoning methods, pushing the boundaries
of multi-fact retrieval capabilities in LLMs.

Limitations

This short paper includes the insights and findings
of our experiments to improve LLMs’ multi-fact
retrieval performance. While the FACT method
shows considerable promise in improving multi-
fact retrieval performance, there are several aspects
that warrant further exploration, which we believe
represent opportunities for future work rather than
critical shortcomings.

Task-specific Performance Variability. FACT
exhibits significant improvements in multi-fact re-
trieval tasks, but its performance gains in general-
purpose QA tasks are more mixed. This varia-
tion likely stems from the fundamental differences
in task requirements: FACT is particularly well-
suited to fact-heavy retrieval tasks, where it refines
the context over iterations. However, the iterative
approach may not always lead to optimal outcomes

in tasks requiring nuanced reasoning or compre-
hension, such as NarrativeQA or Qasper. Nonethe-
less, we see this as an opportunity to explore task-
adaptive strategies that fine-tune the number of
iterations or degree of context rewriting based on
specific task characteristics.

Model-specific Behavior. The effectiveness of
FACT can differ across model families. Although
closed-source models such as GPT-4o benefit sig-
nificantly from iterative rewriting, some open-
source models show smaller gains or sometimes
negative gains in retrieval tasks, likely due to dif-
ferences in training data, regimes and architectures.
However, these results highlight the potential to
improve the performance of open-source models
through targeted training in retrieval-augmented
tasks. Addressing this presents an exciting avenue
for future research, aiming to make FACT more
universally beneficial across various model types.

Computational Considerations. FACT intro-
duces additional computation due to its iterative
nature, which could increase latency in certain ap-
plications. In practice, this issue can be mitigated
by fine-tuning the number of iterations or applying
FACT selectively to tasks where its benefits justify
the additional cost. Further research on optimiz-
ing the efficiency of iterative processes could help
minimize this overhead.

Generalization to Broader NLP Tasks. FACT
is designed primarily for multi-fact retrieval, and it
excels in this task. Its application to more complex
reasoning tasks, while promising, has room for
improvement. We do not see this as a fundamental
limitation of FACT, but rather a natural constraint
given its design focus. Adapting FACT to tasks
requiring deeper reasoning or synthesis remains
an exciting challenge for future research, which
could involve integrating more advanced reasoning
or agentic procedures into the iterative process.

3386



References

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2024. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. LongBench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3119–3137, Bangkok, Thailand.
Association for Computational Linguistics.

Xin Cheng, Xun Wang, Xingxing Zhang, Tao Ge, Si-
Qing Chen, Furu Wei, Huishuai Zhang, and Dongyan
Zhao. 2024. xrag: Extreme context compression
for retrieval-augmented generation with one token.
arXiv preprint arXiv: 2405.13792.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Danqi Chen. 2023. Adapting language models to
compress contexts. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3829–3846, Singapore. Associa-
tion for Computational Linguistics.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A dataset
of information-seeking questions and answers an-
chored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4599–4610, On-
line. Association for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

gkamradt. 2023. Needle in a haystack - pressure testing
llms. https://github.com/gkamradt/LLMTest_
NeedleInAHaystack.

Ralph Grishman and Beth M Sundheim. 1996. Mes-
sage understanding conference-6: A brief history.
In COLING 1996 volume 1: The 16th international
conference on computational linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: retrieval-
augmented language model pre-training. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A
large-scale supervised few-shot relation classifica-
tion dataset with state-of-the-art evaluation. arXiv
preprint arXiv:1810.10147.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora in proc. In 14th
International Conference Computational Linguistics,
Nantes France.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-
hop QA dataset for comprehensive evaluation of
reasoning steps. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6609–6625, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024. Ruler: What’s the real
context size of your long-context language models?
arXiv preprint arXiv: 2404.06654.

Gautier Izacard and Edouard Grave. 2021a. Distilling
knowledge from reader to retriever for question an-
swering. In International Conference on Learning
Representations.

Gautier Izacard and Edouard Grave. 2021b. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874–880, Online. Association for Computa-
tional Linguistics.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C Park. 2024. Adaptive-rag: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. arXiv preprint
arXiv:2403.14403.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023a.
Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression.
Preprint, arXiv:2310.06839.

Zhengbao Jiang, Antonios Anastasopoulos, Jun Araki,
Haibo Ding, and Graham Neubig. 2020. X-factr:
Multilingual factual knowledge retrieval from pre-
trained language models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5943–5959.

Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing
Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,

3387

https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2023.emnlp-main.232
https://doi.org/10.18653/v1/2023.emnlp-main.232
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://arxiv.org/abs/2310.06839
https://arxiv.org/abs/2310.06839


Jamie Callan, and Graham Neubig. 2023b. Ac-
tive retrieval augmented generation. arXiv preprint
arXiv:2305.06983.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, volume 1, page 2. Min-
neapolis, Minnesota.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modular
approach for solving complex tasks. In The Eleventh
International Conference on Learning Representa-
tions.

Tomás Kociský, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gábor Melis, and Ed-
ward Grefenstette. 2018. The narrativeqa reading
comprehension challenge. Trans. Assoc. Comput.
Linguistics, 6:317–328.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-Augmented Generation for knowledge-
intensive NLP tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459–
9474.

Mo Li, Songyang Zhang, Yunxin Liu, and Kai Chen.
2024a. Needlebench: Can llms do retrieval and rea-
soning in 1 million context window? arXiv preprint
arXiv:2407.11963.

Xiaonan Li, Changtai Zhu, Linyang Li, Zhangyue Yin,
Tianxiang Sun, and Xipeng Qiu. 2024b. LLatrieval:
LLM-verified retrieval for verifiable generation. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 5453–5471, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi,
Maria Lomeli, Rich James, Pedro Rodriguez, Jacob
Kahn, Gergely Szilvasy, Mike Lewis, et al. 2023.
Ra-dit: Retrieval-augmented dual instruction tuning.
arXiv preprint arXiv:2310.01352.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language mod-
els use long contexts. Preprint, arXiv:2307.03172.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Taiming Lu, Muhan Gao, Kuai Yu, Adam Byerly, and
Daniel Khashabi. 2024. Insights into llm long-
context failures: When transformers know but don’t
tell. arXiv preprint arXiv: 2406.14673.

Kun Luo, Zheng Liu, Shitao Xiao, and Kang Liu. 2024.
Bge landark embedding: A chunking-free embedding
method for retrieval augmented long-context large
language models. Preprint, arXiv:2402.11573.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting for retrieval-
augmented large language models. arXiv preprint
arXiv:2305.14283.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extraction
without labeled data. In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 1003–
1011.

Jesse Mu, Xiang Li, and Noah Goodman. 2024. Learn-
ing to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36.

OpenAI. 2024. Gpt-4o system card.

Md Rizwan Parvez. 2024. Evidence to generate
(e2g): A single-agent two-step prompting for context
grounded and retrieval augmented reasoning. arXiv
preprint arXiv:2401.05787.

Hongjin Qian, Zheng Liu, Kelong Mao, Yujia Zhou, and
Zhicheng Dou. 2024. Grounding language model
with chunking-free in-context retrieval. Preprint,
arXiv:2402.09760.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen tau Yih. 2023. Replug: Retrieval-
augmented black-box language models. arXiv
preprint arXiv:2301.12652.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Mingyang Song, Mao Zheng, and Xuan Luo. 2024a.
Counting-stars: A multi-evidence, position-aware,
and scalable benchmark for evaluating long-context
large language models. arXiv preprint arXiv:
2403.11802.

Woomin Song, Seunghyuk Oh, Sangwoo Mo, Jaehyung
Kim, Sukmin Yun, Jung-Woo Ha, and Jinwoo Shin.
2024b. Hierarchical context merging: Better long
context understanding for pre-trained llms. arXiv
preprint arXiv:2404.10308.

3388

https://arxiv.org/pdf/2305.06983
https://arxiv.org/pdf/2305.06983
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://doi.org/10.1162/TACL_A_00023
https://doi.org/10.1162/TACL_A_00023
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.18653/v1/2024.naacl-long.305
https://doi.org/10.18653/v1/2024.naacl-long.305
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2402.11573
https://arxiv.org/abs/2402.11573
https://arxiv.org/abs/2402.11573
https://cdn.openai.com/gpt-4o-system-card.pdf
https://arxiv.org/abs/2402.09760
https://arxiv.org/abs/2402.09760
https://arxiv.org/pdf/2301.12652
https://arxiv.org/pdf/2301.12652
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html


Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. MuSiQue: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539–554.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2023. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 10014–10037, Toronto, Canada. Association
for Computational Linguistics.

Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen,
and Sercan Ö Arık. 2024. Astute rag: Overcom-
ing imperfect retrieval augmentation and knowledge
conflicts for large language models. arXiv preprint
arXiv:2410.07176.

Liang Wang, Nan Yang, and Furu Wei. 2023.
Query2doc: Query expansion with large language
models. arXiv preprint arXiv:2303.07678.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Chengmin Wu, Enrui Hu, Ke Zhan, Lan Luo, Xinyu
Zhang, Hao Jiang, Qirui Wang, Zhao Cao, Fan Yu,
and Lei Chen. 2022. Triple-fact retriever: An ex-
plainable reasoning retrieval model for multi-hop qa
problem. In 2022 IEEE 38th International Confer-
ence on Data Engineering (ICDE), pages 1206–1218.
IEEE.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee,
Chen Zhu, Zihan Liu, Sandeep Subramanian, Evelina
Bakhturina, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023. Retrieval meets long context large lan-
guage models. In The Twelfth International Confer-
ence on Learning Representations.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling.
2024. Corrective retrieval augmented generation.
arXiv preprint arXiv: 2401.15884.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,

Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni-
cal report. arXiv preprint arXiv: 2407.10671.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin,
Zhenghao Liu, Zhiyuan Liu, Lixin Huang, Jie Zhou,
and Maosong Sun. 2019. Docred: A large-scale
document-level relation extraction dataset. arXiv
preprint arXiv:1906.06127.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan
Berant. 2023. Making retrieval-augmented language
models robust to irrelevant context. arXiv preprint
arXiv:2310.01558.

Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf
Jagerman, Hansi Zeng, Zhen Qin, Dong Wang, Xuan-
hui Wang, and Michael Bendersky. 2024. Inference
scaling for long-context retrieval augmented genera-
tion. arXiv preprint arXiv:2410.04343.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng
Shen, Matei Zaharia, Ion Stoica, and Joseph E Gon-
zalez. 2024a. Raft: Adapting language model to do-
main specific rag. arXiv preprint arXiv:2403.10131.

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister,
Rui Zhang, and Sercan Ö. Arik. 2024b. Chain of
agents: Large language models collaborating on long-
context tasks. arXiv preprint arXiv: 2406.02818.

Yun Zhu, Jia-Chen Gu, Caitlin Sikora, Ho Ko, Yinxiao
Liu, Chu-Cheng Lin, Lei Shu, Liangchen Luo, Lei
Meng, Bang Liu, et al. 2024. Accelerating inference
of retrieval-augmented generation via sparse context
selection. arXiv preprint arXiv:2405.16178.

3389

https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259


A Related Work

A.1 Information Extraction

Information Extraction (IE) has evolved signif-
icantly from rule-based approaches (Grishman
and Sundheim, 1996) to modern neural methods.
Early work focused on pattern matching and hand-
crafted features (Hearst, 1992), while recent ad-
vances leverage pre-trained language models like
BERT (Kenton and Toutanova, 2019) for better per-
formance. Distant supervision (Mintz et al., 2009)
has enabled large-scale IE by automatically gener-
ating training data. Current research emphasizes
few-shot learning (Han et al., 2018) and document-
level IE (Yao et al., 2019) to capture complex rela-
tions across longer contexts.

A.2 Retrieval-Augmented Generation (RAG)

RAG has been shown to be effective in improving
LLM by integrating relevant information retrieved
from external sources (Lewis et al., 2020; Guu et al.,
2020). This method, notably less computationally
costly, has shown success in various tasks such as
language modeling and question answering (Shi
et al., 2023; Izacard and Grave, 2021b; Jiang et al.,
2023b; Lin et al., 2023; Jeong et al., 2024). Despite
their effectiveness, traditional RAG methods of-
ten suffer from the loss of semantic coherence due
to context chunking (Izacard and Grave, 2021a;
Xu et al., 2023). Recent approaches aim to mit-
igate these issues by improving retrieval quality
through correction, critique, or verification mecha-
nism (Yan et al., 2024; Asai et al., 2024; Li et al.,
2024b; Yoran et al., 2023; Zhang et al., 2024a; Zhu
et al., 2024).

The integration of chunking-free methods has
further refined the process, enabling more coherent
surrogate contexts (Qian et al., 2024; Luo et al.,
2024). Techniques such as sequential processing
and decision-making frameworks add an additional
layer of sophistication, allowing dynamic context
handling and improving overall performance in
long-context tasks (Wei et al., 2022; Shinn et al.,
2023).

A.3 Context Rewriting Methods

Context compression techniques play a crucial role
in managing long-context input by reducing the
cost of inference while preserving essential infor-
mation. Methods such as gisting and selective con-
text evaluation have shown the potential to main-
tain core information through compression (Mu

et al., 2024; Jiang et al., 2023a; Wang et al., 2024).
xRAG and AutoCompressors further enhance these
capabilities by embedding and transforming seg-
ments into more compact forms (Cheng et al., 2024;
Chevalier et al., 2023), while (Song et al., 2024b)
propose to use a divide-and-conquer strategy to
hierarchically merge context embeddings across
transformer layer. Other works such as (Ma et al.,
2023; Wang et al., 2023; Jiang et al., 2020; Wu
et al., 2022) focuses on improving LLM’s ability
to acquire more knowledge from the perspective
of query optimization. Moreover, iterative frame-
works (Zhang et al., 2024b; Trivedi et al., 2023;
Yue et al., 2024; Parvez, 2024) retrieves relevant
information iteratively throughout the reasoning
steps, and facilitate information aggregation and
reasoning over extended contexts. These methods
aim to retain valuable information by linking and
synthesizing pivotal segments, thus improving the
efficiency and effectiveness of long-context LLMs
in multi-hop reasoning tasks (Khot et al., 2023;
Trivedi et al., 2023).

B Dataset Statistics

Dataset NQA Qasper MFQA HotpotQA 2Wiki MuSiQue

#Samples 200 200 150 200 200 200
Avg Length 18,409 3,619 4,559 9,151 4,887 11,214

Metric F1 F1 F1 F1 F1 F1

Table 2: Statistics of the QA datasets.

In this section, we provide the dataset statistics
for the QA datasets we used in Section 4 in Table 2.
These datasets are derived from LongBench (Bai
et al., 2024). For the retrieval datasets, please refer
to the configurations specified in Table 1.

C Prompts

For the retrieval tasks and QA tasks, we use the
official prompt provied by RULER (Hsieh et al.,
2024) or Counting Stars (Song et al., 2024a), and
LongBench (Bai et al., 2024), respectively. We
provide the prompt template we used for FACT’s
retrieval step for all the evaluated tasks below.

Prompt used for FACT’s retrieval step for the RULER
Retrieval tasks

Some special magic numbers are hidden within
the following text. Make sure to memorize
it. I will quiz you about the numbers afterwards.
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{context}

What are all the special magic numbers for
{query} mentioned in the provided text? The
special magic numbers for {query} mentioned
in the provided text are

Prompt used for FACT’s retrieval step for the
Counting-Stars tasks

{context1}
The little penguin counted {number1} *
{context2}
The little penguin counted {number2} *

On this moonlit and misty night, the little pen-
guin is looking up at the sky and concentrating
on counting *. Please help the little penguin
collect the number of *, for example: {"lit-
tle_penguin": [x, x, x,...]}. The summation is
not required, and the numbers in [x, x, x,...]
represent the counted number of *by the lit-
tle penguin. Only output the results in JSON
format without any explanation.

Prompt used for FACT’s retrieval step for the QA
tasks

Please retrieve all the sentences in the given
documents that are important and relevant to
answer the question.

Question: {question}

The following are given documents.

{context}

Please retrieve the sentences from the given
documents that are relevant to answer the
question. Do not repeat your generation. The
question is highlighted again at below.

Question: {question}

Retrieved sentences:

(For each retrieved sentence, please start from
the bullet symbol "-", if no results, just return a
single "-")

D Linear Probe Training Details

This section describes the training process for the
linear probes used in Section 2, specifically for the
MQ-NIAH task. This linear probe is a multi-fact
retrieval extension of the one proposed by Lu et al.
(2024).

For the MQ-NIAH task introduced in Section 2,
the model receives nq queries and must retrieve
corresponding values from nk key-value pairs in
the prompt, where each value consists of a single
token. We define V as the set of all possible single-
token values. Given a prompt, we define the index
of the token corresponding to the i-th output value
as ti ∈ R, and the value token itself as vi ∈ V.

Assume the LLM consists of L layers. For each
Transformer layer, we randomly initialize a linear
classifier C ∈ Rd×v, where d is the hidden dimen-
sion of the LLM, and v = |V| is the number of
possible values. Given the output from the l-th
layer, denoted as Hl ∈ RL×d (with L representing
the sequence length), the linear classifier Cl pre-
dicts the value vi using the hidden state Hl,[ti,:] for
each i ∈ {1, · · · , nq}.

We collect training data and conduct inference
using a specifically designed prompt. During train-
ing, we concatenate the ground-truth values to the
prompt and record vi and Hl,[ti,:] for all layers
l ∈ {1, · · · , L} and queries i ∈ {1, · · · , nq} in
a single forward pass. The training prompt is struc-
tured as follows:

Prompt used for MQ-NIAH task in Section 2

Extract the value corresponding to the specified
key in the JSON object below.

{“|”_separated_keys}

JSON data: {json_formatted_key_value_pairs}

Keys: {“|”_separated_keys}

Corresponding Value:

In our experiments, we use Llama-3 8B In-
struct (Dubey et al., 2024) as the LLM, and we
assign nq = 50, nk = 200. The linear classifiers
are trained with the hyperparameters specified in
Table 3. All experiments are done with either a
single NVIDIA RTX3090 24G or a single NVIDIA
A100 40G.
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Key #Samples Epoch Learning Rate

Value 2000 150 0.005

Table 3: Hyperparameters of Linear Probe Training.

E Cost Analysis

In this section, we present additional experiments
measuring the total token throughput in various
retrieval scenarios. The results summarized in Ta-
ble 4 compare the computational efficiency of the
Base and FACT methods across different LLM con-
figurations and benchmarks (RULER K1V10Q1,
RULER K5V10Q1, and Counting Stars N32). Al-
though the iterative procedure of FACT introduces
some computational overhead, the overall token
throughput remains within acceptable ranges for
practical applications compared to the performance
gains it brings. These findings provide further in-
sight into the efficiency trade-offs associated with
FACT.

RULER Counting Stars

LLM Method K1V10Q1 Ratio K5V10Q1 Ratio Counting Stars Ratio

4o-mini Base 3853.2 / 3674.02 / 3412.18 /
4o-mini FACT 10446.68 2.71 11152.86 3.04 8596.38 2.52
4o Base 3860.52 / 3676.81 / 3414.64 /
4o FACT 7982.52 2.07 7252.69 1.97 9084.18 2.66

Table 4: Average Token Throughput in Retrieval Scenar-
ios for Base and FACT when applying FACT for three
iterations. Ratio: the token throughput ratio of FACT
to the baseline method.
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