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Abstract

Large language models (LLMs) have demon-
strated impressive task-solving capabilities
through prompting techniques and system de-
signs, including solving planning tasks (e.g.,
math proofs, basic travel planning) when suf-
ficient data is available online and used dur-
ing pre-training. However, for planning tasks
with limited prior data (e.g., blocks world, ad-
vanced travel planning), the performance of
LLMs, including proprietary models like GPT
and Gemini, is poor. This paper investigates the
impact of fine-tuning on the planning capabili-
ties of LLMs, revealing that LLMs can achieve
strong performance in planning through sub-
stantial (tens of thousands of specific exam-
ples) fine-tuning. Yet, this process incurs high
economic, time, and computational costs for
each planning problem variation. To address
this, we propose Clustering-Based Maximum
Diversity Sampling (CMDS), which selects di-
verse and representative data to enhance sample
efficiency and the model’s generalization capa-
bility. Extensive evaluations demonstrate that
CMDS-l, a baseline method combining CMDS
with language embeddings, outperforms ran-
dom sampling. Furthermore, we introduce a
novel algorithm, CMDS-g, which encodes plan-
ning task instances with their graph represen-
tations into the embedding space. Empirical
results show that CMDS-g consistently outper-
forms baseline methods across various scales
and multiple benchmark domains.

1 Introduction

System 1 competencies are characterized by fast,
instinctive, and emotional responses, while System
2 competencies involve slower, more deliberate,
and logical thinking processes (Kahneman, 2011).
Prior studies (Valmeekam et al., 2024b; Pallagani
et al., 2023; Liu et al., 2023; Guan et al., 2023;
Kambhampati et al., 2024) have argued that LLMs
struggle to generate valid plans in the automated

planning domain due to weak System 2 compe-
tencies, despite demonstrating impressive planning
capabilities in tasks such as Minecraft (Wang et al.,
2024; Yuan et al., 2023) and household planning
(Huang et al., 2022; Yao et al., 2022), where their
System 1 competencies are more relevant (due to
availability of large datasets online). Our study
demonstrates that LLMs can indeed achieve Sys-
tem 2 competencies through fine-tuning with suffi-
ciently large datasets.

This paper focuses on enhancing the planning
capabilities of LLMs in rigorous, automated set-
tings—termed System 2 planning. We distinguish
this from System 1 planning, which covers tasks in
environments like Minecraft and household activi-
ties. There are two key differences between these
types of planning: 1) Complexity: System 2 plan-
ning is significantly more complex than System
1 planning, requiring deeper reasoning and more
steps to solve; 2) Data availability: The amount
of pre-training data available for System 1 tasks
far exceeds that for System 2 tasks. For instance,
the online data available for completing household
tasks is much greater than that for finding optimal
solutions to complex logistics problems.

Due to these challenges, LLMs initially ex-
hibit weaknesses in automated planning (System
2) and researchers have been focusing on design-
ing prompts and pipelines. However, these tech-
niques are proven to have little improvement in
improving LLM’s capabilities in automated plan-
ning (Valmeekam et al., 2024b,a). A detailed re-
lated work section is provided in Appendix A. In
this paper, we employ fine-tuning as a targeted
approach and demonstrate that fine-tuning with suf-
ficiently large datasets enables LLMs to achieve
robust planning capabilities. Moreover, we provide
an in-depth analysis of how different factors, such
as data scaling, diversity, and complexity, impact
the fine-tuning outcomes. We specifically examine
how these factors influence both the planning capa-
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Figure 1: Scaling effect of fine-tuning Llama-3-8b in
Blocksworld. Solved rate on hold-out (5-block) and
transfer (4-block and 6-block) testing. A clearer com-
parison is in Appendix B.2.

bilities and generalization performance of LLMs.
By addressing the gap in the current research, our
study offers valuable insights into how to fine-tune
LLMs more effectively and efficiently to enhance
their planning competencies.

Fine-tuning both closed-source models like Ope-
nAI’s GPT-x (Brown et al., 2020) and open-
source models such as Meta’s Llama-x (Tou-
vron et al., 2023) entails substantial time, eco-
nomic, and computational costs. For instance, fine-
tuning GPT-3.5-turbo on just 10,000 instances in
Blocksworld (domain details provided in Experi-
ment Setup) costs approximately 1,200 USD. Sim-
ilarly, fine-tuning Llama-3-8b on this amount of
data requires high-end GPUs and can take hundreds
of GPU hours. Given these constraints, sample ef-
ficiency in fine-tuning is particularly crucial, espe-
cially for applications where models need frequent
updates or rapid adaptation to new domains and
complex tasks that require huge amounts of fine-
tuning data. For example, housekeeping robots
must efficiently adapt to various home layouts and
furniture arrangements.

This paper aims to enhance the planning capa-
bilities of LLMs while maximizing the sample ef-
ficiency and the model’s generalization capabil-
ity. We introduce a simple yet effective approach
called Clustering-Based Maximum Diversity Sam-
pling (CMDS), which selects diverse and repre-
sentative data in the embedding space. Moreover,
we propose CMDS-g to encode planning instances
with their graph representations into the embedding
space. A motivating example is illustrated in Fig-
ure 1. We generated tens of thousands of 5-block
instances in Blocksworld and applied both Random

sampling and CMDS-g to select fine-tuning sam-
ples. CMDS-g consistently outperforms Random
at the same scale and demonstrated much higher
sample efficiency as the data size increased. To
achieve a 99% solved rate, Random sampling re-
quires around 20,000 samples, whereas CMDS-g
needs only about 7,500, effectively reducing the
training time and computational costs by more than
half (from 40 to 15 A100 GPU hours in our experi-
ment). More importantly, CMDS-g exhibits supe-
rior generalization capabilities when the fine-tuned
model is transferred to 4-block and 6-block test
instances. These advantages become even more
critical for large-scale planning tasks, where the
fine-tuning data required to achieve satisfactory
performance grows exponentially with task com-
plexity. For example, exponentially more samples
are needed for LLMs to perform equivalently on
6-block tasks as on 5-block tasks.

In summary, our research offers three key contri-
butions. First, we provide a comprehensive analy-
sis of how data scaling, diversity, and task complex-
ity influence the fine-tuning outcomes of LLMs,
particularly in automated planning. Our findings
show that LLMs can achieve System 2 compe-
tencies through fine-tuning with sufficiently large
datasets. Second, we introduce CMDS, a simple
yet effective method for selecting diverse and repre-
sentative data in the embedding space, thereby en-
hancing the sample efficiency of fine-tuning. Third,
we propose CMDS-g, a novel approach that lever-
ages graph representations to encode planning in-
stances. Extensive experiments demonstrate that
CMDS-g significantly boosts sample efficiency and
generalization, consistently outperforming existing
baseline methods.

2 Clustering-Based Maximum Diversity
Sampling

Fine-tuning data consists of two components:
queries and the associated responses. Previous
studies (Zhou et al., 2024; Zhao et al., 2024) have
shown that higher quality responses and more di-
verse queries lead to better LLM performance af-
ter fine-tuning. In automated planning, we can
achieve the highest quality in responses by employ-
ing traditional planning solvers (e.g., Fast Down-
ward (Helmert, 2006)) to find the optimal plans. As
a result, how to capture the diversity of queries in
fine-tuning data becomes the main challenge.

Unlike previous work, which relied on human
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Figure 2: Overview of CMDS. (a) Training samples in natural language. (b) Samples encoded in embedding space.
(c) A subset of samples selected by CMDS. The red stars are the selected ones. (d) Fine-tune LLMs with the subset
of samples.

Figure 3: (a) An example task from Blocksworld. Left:
initial configuration. Right: goal configuration. (b) A
graph representation of the example task, where nodes
are objects and edges are predicates.

resources to capture diversity in queries, we aim
to automatically identify diverse and effective sam-
ples to achieve higher sample efficiency. The task
of maximizing diversity within a subset of sam-
ples is known as the Maximum Diversity Prob-
lem (MDP, (Ghosh, 1996; Martí et al., 2013)), a
well-studied NP-hard problem. This means that
finding the exact optimal solution is computation-
ally challenging for large datasets. In this paper,
we introduce a simple yet effective method called
Clustering-Based Maximum Diversity Sampling
(CMDS) to identify representative samples, thereby
ensuring diversity within the dataset.

2.1 Representing Planning Tasks as Graphs

MDP algorithms operate in numeric vector spaces,
so the first step is to convert planning tasks from
natural language into the embedding space.

Natural language can be efficiently encoded into
the embedding space using tools such as Universal
Sentence Encoder (Cer et al., 2018) and Sentence-
BERT (Reimers, 2019). However, due to the narra-
tive nature of planning tasks, tasks with distinct so-
lutions can only differ in a few words in the natural
language descriptions and result in highly similar
language embeddings. For example, in Figure 3(a),
switching the positions of the orange and green

blocks in the initial configuration while keeping
other conditions fixed changes the task descrip-
tions slightly. The original task description is, “As
initial conditions, I have that the orange block is
clear, the orange block is on top of the green block,
...", whereas the altered task description is, “As ini-
tial conditions, I have that the green block is clear,
the green block is on top of the orange block, ...".
Despite having different solutions, these two tasks
produce very similar language embeddings that are
close in vector space. This issue makes subsequent
diversity maximization ineffective. Additional re-
sults and analyses on the limitations of language
embeddings are presented in Appendix B.7.

Therefore, a more representative embedding ap-
proach specifically tailored for planning tasks is
necessary to capture the nuances between tasks. In-
spired by (Rivlin et al., 2020; Silver et al., 2021),
we use graph representations to encode planning
tasks. Each planning task consists of an initial con-
figuration and a goal configuration of objects. To
solve the task, LLMs need to perform sequential
actions to transform the initial configuration into
the goal configuration. In the graph representa-
tion, each object is a node, and each predicate is a
(directed) edge between two nodes. An example
task from Blocksworld and its graph representa-
tion is shown in Figure 3. Once the planning tasks
are converted into graphs, we can fully capture
the task information and efficiently encode these
graphs into vector embeddings by concatenating
the vectors of the initial configuration and the goal
configuration into a single graph representation.
Details are provided in Appendix C.

2.2 Selecting Maximum Diversity Data
To enhance the effectiveness of downstream fine-
tuning, we aim to select a subset of samples that
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Algorithm 1: CMDS
Input: N tasks, subset size k, embedding

method f(·), distance metric c(·, ·)
1 Initialize empty subset D, embeddings set E
2 for i = 1 to N do
3 Encode task ti as vector embedding,

ei = f(ti)
4 Insert ei into E
5 end
6 Dimension reduction in embedding space
7 Perform clustering with distance metric

c(·, ·) over the embeddings with k clusters
8 Obtain k centroids of the clusters
9 for i = 1 to k do

10 In each cluster, find the ei closest to the
cluster centroid

11 Retrieve the task instance associated
with ei and add it to D

12 end
Output: A subset of tasks, D

are not only diverse but also representative of the
overall dataset. We introduce a simple yet effective
method called Clustering-Based Maximum Diver-
sity Sampling (CMDS), designed to achieve this
balance by selecting diverse and representative sam-
ples in the embedding space.

Assume we have a total number of N tasks and
we want to find a subset of k tasks that maximize
the overall diversity, defined as the sum of all pair-
wise distances between the k samples. To make
the clustering more effective, we first perform di-
mension reduction (e.g., t-SNE (Van der Maaten
and Hinton, 2008)) in the embedding space. Sub-
sequently, we perform k-means clustering on the
entire set of data points, with k used as the number
of clusters. For each cluster, the data point closest
to the cluster centroid is selected to represent the
cluster in the final subset. When CMDS is applied
with graph embeddings, we refer to it as CMDS-g.

Additionally, we propose an improved baseline
method, CMDS-l, which combines CMDS with
language embeddings. While language embed-
dings have been widely used to estimate dataset
diversity, they have not previously been integrated
with an automatic sample selection algorithm. Our
extensive experiments demonstrate that CMDS-l
outperforms random sampling. Due to its general
applicability, CMDS-l is valuable for fine-tuning
LLMs in domains beyond automated planning.

Our clustering-based method is compatible with
any embedding approaches that can convert plan-
ning tasks from natural language to vector repre-
sentations. The effectiveness of clustering depends
on an appropriate distance metric; for example,
we used the L2 norm distance for language em-
beddings and edit distance for graph embeddings
in our experiments. The complete procedures of
CMDS-l and CMDS-g are detailed in Algorithm 1.

3 Experiment Setup

Benchmark Domains: We utilize two widely
adopted benchmark domains for automated plan-
ning from the International Planning Competition
(IPC, (Long and Fox, 2003)). Detailed informa-
tion about domain properties, actions, predicates,
dataset generation, prompts, and other specifics can
be found in Appendix C.

Blocksworld: This domain consists of blocks, a
table, and a robot hand. Blocks can be placed on
other blocks or on the table. A block with nothing
on top is clear, and the robot hand can hold one
block or be empty. The robot can perform four
actions: pick-up, put-down, stack, and unstack.
The goal is to transition from the initial to the goal
configuration of blocks, uniquely identified by their
colors. Task complexity mainly varies with the
number of blocks. We created random instances
with different block counts, separating training and
testing tasks to ensure LLMs do not see testing
tasks during fine-tuning. Detailed experimental
settings are provided with each table and figure.

Logistics: The goal is to transport packages to
specified locations. Locations are grouped by cities,
with trucks moving packages within a city and air-
planes moving packages between cities. Each city
has one truck and an airport, and there can be mul-
tiple airplanes and packages. The Logistics domain
is much more complex than Blocksworld, requiring
longer plans. We generated distinct instances with
varying numbers of cities, locations, packages, and
airplanes.

Base Models: We use GPT-3.5-turbo-0125
and Llama-3-8b for Research Question 1 (RQ-1),
and include Llama-2-7b (Touvron et al., 2023) for
Research Question 2 (RQ-2). GPT-4 (Achiam et al.,
2023) was omitted from our experiments due to
its limited experimental access and lack of public
availability for fine-tuning.

Baselines: We compare CMDS-g with two base-
lines: Random and CMDS-l. Random uniformly

3321



samples k instances from the entire training dataset.
CMDS-l differs from CMDS-g only in the embed-
ding method and distance metric, as described in
section 2 and Algorithm 1.

Evaluation: In our experiments, LLMs re-
spond in natural language, and the generated plans
are translated to PDDL and then verified using
VAL (Howey et al., 2004). A plan is considered
correct as long as it successfully transitions from
the initial configuration to the goal configuration.
An analysis of the optimality rate of the generated
plans is provided in Appendix B.5.

Prompt: We use two types of prompts: one-
shot and zero-shot. The one-shot prompt includes
domain instructions, an example task with its so-
lution, and a query task. The zero-shot prompt
contains only domain instructions and the query
task. Further details about the prompt settings are
available in Appendix C. We found that fine-tuned
models perform better with zero-shot prompts be-
cause they have seen many examples during fine-
tuning, enabling accurate and concise responses.
Conversely, un-fine-tuned models perform better
with one-shot prompts. Therefore, we evaluate
un-fine-tuned models with one-shot prompts and
fine-tuned models with zero-shot prompts.

4 Experiment Results

4.1 RQ-1. How does fine-tuning impact the
planning capabilities of LLMs?

To evaluate the planning capabilities and transfer-
ability of LLMs precisely, we prepared multiple
testing tasks with varying numbers of blocks in
Blocksworld. Specifically, there are 100, 500, 500,
and 500 testing tasks for 3-block, 4-block, 5-block,
and 6-block settings, respectively. Meanwhile, the
Logistics domain has too many variables (e.g., the
number of cities, locations, trucks, airplanes, etc.)
that affect task complexity, making it challenging
to identify which variable impacts task difficulty
the most. Therefore, we randomly selected 300
instances with varying numbers of variables as the
testing data for the Logistics domain.

4.1.1 Significant Improvement Achieved
Through Fine-tuning

We first assessed the planning capabilities of LLMs
prior to fine-tuning, with results shown in Table 1.
Notably, LLMs without fine-tuning exhibit weak
planning capabilities, and these results align with
existing criticisms of LLMs’ planning capabilities

in the literature.
Next, we evaluated the planning capabilities of

LLMs after fine-tuning them on planning tasks us-
ing two sample sizes: small (100 samples) and
large (1000 samples). Table 1 presents the test
performance of LLMs after fine-tuning. Remark-
ably, even with a small number of samples, fine-
tuning significantly enhanced the LLMs’ planning
capabilities. Additionally, we tested the fine-tuned
models on the dataset from (Valmeekam et al.,
2024b), where GPT-3.5-turbo and Llama-3-8b
achieved solved rates of 90.6% and 84.3%, respec-
tively. Humans are reported in (Valmeekam et al.,
2024b) to have a solved rate of 78%. These find-
ings challenge the prevailing notion that LLMs are
inherently weak at planning.

After closely investigating the failure cases of
pre-fine-tuning models, we found that the failures
were not due to poor instruction following or tem-
plate mismatches, but because the LLMs could not
provide correct plans. In contrast, fine-tuning even
on a small amount of data significantly unlocks
LLMs’ planning capabilities. This suggests that
LLMs’ poor initial performance is due to a lack
of exposure to automated planning tasks during
pre-training.

We believe that high-level planning skills can-
not be acquired through prompting techniques or
pipeline designs alone. Models fine-tuned on plan-
ning domains can serve as the backbone for devel-
oping more advanced applications. This strategy
is more effective than solely relying on prompt-
ing strategies or pipelines. This critical insight,
often overlooked in the community, provides valu-
able guidance on how to effectively enhance LLMs’
planning capabilities.

4.1.2 Data Scaling Effect
The empirical results of the data scaling effect in
both Blocksworld and Logistics are provided in
Appendix B.2 due to space limits. Overall, the scal-
ing effect is similar to what we have shown in the
motivation example. LLM’s planning capabilities
improve as the amount of fine-tuning data increases.
This is because the responses in fine-tuning data are
of optimal quality, regarding accuracy, efficiency,
and validity. However, this improvement follows
an asymptotic pattern – while initial increases in
sample size lead to substantial performance gains,
the rate of improvement (slope) diminishes as more
samples are added. This suggests that exponentially
increasing amounts of data are needed to further
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GPT-3.5-turbo Llama-3-8b

Domain Pre-FT Post-FT Pre-FT Post-FT

k = 100 k = 1000 k = 100 k = 1000

Blocksworld

3-block 8.0% (8/100) 65.0% 98.0% 0.0% 57.0% 85.0%
4-block 3.6% (18/500) 61.8% 91.9% 0.0% 43.9% 91.3%
5-block 1.2% (6/500) 36.4% 65.8% 0.0% 19.6% 46.4%
6-block 0.4% (2/500) 15.4% 34.0% 0.0% 3.6% 15.0%

Logistics 0.7% (2/300) 7.5% 73.0% 0.0% 2.8% 72.7%

Table 1: Task solved rate of pre-fine-tuning (Pre-FT) and post-fine-tuning (Post-FT) models in Blocksworld and
Logistics domain. k is the number of random samples used in fine-tuning. We use 4-block samples for fine-tuning
in Blocksworld and samples with varying numbers of variables for fine-tuning in Logistics. GPT and Llama results
are collected across three and five random seeds respectively.

enhance LLMs’ planning capabilities.

4.1.3 Transferability
We also examined the transfer performance of
LLMs across different tasks and domains after fine-
tuning. Due to space constraints, detailed cross-
domain transferability results are presented in Ap-
pendix B.3.

In-domain Transferability: We assessed
LLM’s transfer performance to different tasks
within the same domain after fine-tuning. Specifi-
cally, GPT-3.5-turbo and Llama-3-8b were fine-
tuned with 1,000 samples of 4-block, 5-block, and
6-block tasks, and then assessed on tasks with dif-
ferent block numbers than those used in fine-tuning.
Note that we did not fine-tune the base models with
1,000 3-block samples because the 3-block setting
does not provide enough distinct samples. The in-
domain transferability results are shown in Table 2,
and we make two key observations:

1. LLMs exhibit good in-domain transferability
and can apply their acquired planning capabil-
ities to new challenges. For example, GPT-3.5
fine-tuned with 5-block tasks transfers well
(68.0%) to 6-block tasks, even when the tasks
involve unseen block colors.

2. LLMs show better “strong-to-weak" transfer-
ability than “weak-to-strong" transferability.
Specifically, LLMs transfer more effectively
to less complex tasks. For instance, both GPT-
3.5-6block and Llama-3-6block demonstrate
better overall performance on tasks. This sug-
gests that fine-tuning LLMs on more complex
planning tasks can facilitate better transfer to
simpler tasks.

Model 3-block 4-block 5-block 6-block

GPT-4block 98.0% 91.9% 65.8% 34.0%
GPT-5block 81.0% 88.0% 84.8% 68.0%
GPT-6block 74.0% 75.4% 77.0% 70.6%

Llama-4block 85.0% 91.3% 46.4% 15.0%
Llama-5block 73.0% 82.3% 71.6% 39.2%
Llama-6block 63.0% 65.6% 69.2% 58.6%

Table 2: In-domain transferability of fine-tuned LLMs.
Models fine-tuned on x-block tasks are denoted as GPT-
xblock and Llama-xblock. Fine-tuned models are eval-
uated on x-block tasks within the Blocksworld domain.

Cross-domain Transferability: While LLMs
exhibit high in-domain transferability, our findings
indicate their cross-domain transferability remains
limited. We provide extensive results on this in
Appendix B.3. Acquiring generalizable capabili-
ties across different automated planning domains
is particularly challenging for LLMs due to the
substantial differences in actions, predicates, and
objects. To address this, we fine-tuned LLMs on
tasks from multiple domains collectively, aiming to
develop multi-task capabilities. A detailed analy-
sis of how data composition influences fine-tuning
outcomes is included in the extended experimental
section in Appendix B.4. In summary, although
fine-tuning on mixed data effectively equips LLMs
with multi-task planning capabilities, it introduces
slightly higher variance in performance outcomes.

4.2 RQ-2: Can we identify the most effective
samples to enhance sample efficiency?

In this section, we demonstrate that CMDS-g iden-
tifies the most representative and effective samples,
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Figure 4: Subset samples selected by (a) CMDS-g and (b) CMDS-l. Each point represents a planning task in
Blocksworld, encoded in the embedding space. The sample point closest to each cluster centroid is selected for the
subset. Note that clusters in CMDS-l appear to have only a few dots as the points within each cluster are so closely
packed together.

thereby enhancing sample efficiency during fine-
tuning and improving the model’s generalization
capability afterward. Additionally, we found that
CMDS-l also outperforms random sampling, high-
lighting the value of the CMDS approach. We sim-
plified testing data composition for Blocksworld,
as detailed performance on different types of tasks
is unnecessary for analysis in this section. We uni-
formly sampled from the four types of testing tasks
(i.e., 3-block, 4-block, 5-block, 6-block) to collec-
tively create a testing dataset with 1000 instances.
Testing data for Logistics remains consistent with
the previous sections.

First, we illustrate the effectiveness of the
clustering-based method in solving the maximum
diversity problem. Figure 4 shows the subsets of
samples identified by CMDS-g and CMDS-l. In
both plots, the selected samples (red stars) are lo-
cated nearest to the centroids of each cluster, ensur-
ing a diverse and broad coverage of the entire vec-
tor space. Notably, the data points in each cluster
for CMDS-l (Figure 4b) are very dense and closely
packed, reflecting the limitations of language em-
beddings in capturing the complexity and structure
of planning tasks. This results in clusters that are
more influenced by narrative differences than by
task structures, leading to a lack of diversity in the
selected samples regarding task structure. In con-
trast, CMDS-g (Figure 4a) utilizes graph embed-
dings to represent tasks with greater expressiveness.
This approach allows CMDS-g to capture the struc-
tural nuances of planning tasks more effectively,

resulting in more representative clustering and a
more diverse selection of samples.

Next, we empirically demonstrate the effec-
tiveness of CMDS-g at different scales. In
Blocksworld, we created five thousand instances
with varying numbers of blocks as the training
dataset. Using Random, CMDS-l, and CMDS-g,
we selected task subsets of varying sizes (k =100,
200, 400, and 1,000), fine-tuned the base models,
and then assessed their performance on the hold-
out testing data. The training and testing data for
Logistics are the same as in previous experiments.
Comprehensive results for both Blocksworld and
Logistics are provided in Tables 3.

Notably, CMDS-g consistently outperforms both
Random and CMDS-l across different scales in
both domains. CMDS-g significantly improves
sample efficiency in fine-tuning, particularly at
smaller scales. For instance, CMDS-g with k =
100 achieves a 71.7% solved rate, a performance
level that requires approximately 200 samples
when using Random or CMDS-l. While the per-
formance advantage of CMDS-g diminishes with
larger sample sizes—reflecting the diminishing re-
turns from additional samples—this is attributed
to the nature of fine-tuning rather than a limitation
of CMDS-g. Therefore, CMDS-g is particularly
advantageous in scenarios where fine-tuning in-
curs high economic and computational costs, mak-
ing it ideal for applications with limited resources
or strict efficiency requirements. Furthermore, as
highlighted in the motivation example, CMDS-g
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Subset Size

Domain Base Model Algorithm k = 100 k = 200 k = 400 k = 1000

Blocksworld

GPT-3.5-turbo
Random 61.8±1.9% 72.4±1.8% 81.9±1.5% 91.9±1.2%
CMDS-l 60.4±1.6% 73.2±1.4% 82.8±1.3% 92.5±1.0%
CMDS-g 71.7±1.7% 77.6±2.0% 85.8±1.3% 94.9±0.8%

Llama-2-7b
Random 28.8±3.6% 30.3±8.6% 50.0±1.0% 74.6±3.7%
CMDS-l 24.8±4.4% 32.6±3.8% 51.5±1.4% 74.2±2.9%
CMDS-g 32.5±2.1% 37.2±4.5% 52.9±1.3% 75.7±0.7%

Llama-3-8b
Random 43.9±2.9% 54.2±6.8% 67.6±3.3% 86.3±0.8%
CMDS-l 42.0±3.9% 53.6±5.4% 69.2±4.5% 87.1±0.7%
CMDS-g 51.2±5.3% 59.5±3.7% 71.6±2.4% 88.5±0.7%

Logistics

GPT-3.5-turbo
Random 7.5±2.5% 20.6±2.1% 45.8±3.8% 62.3±2.3%
CMDS-l 8.3±1.5% 19.3±2.7% 42.2±2.1% 66.3±1.7%
CMDS-g 11.1±1.6% 25.0±1.2% 51.8±1.2% 73.0±1.1%

Llama-2-7b
Random 0.4±0.1% 1.9±0.3% 11.9±1.3% 53.0±2.1%
CMDS-l 0.8±0.3% 2.0±0.4% 12.6±3.0% 54.1±2.4%
CMDS-g 0.4±0.2% 4.7±0.9% 15.5±1.5% 56.1±1.8%

Llama-3-8b
Random 2.8±1.1% 10.3±0.7% 44.4±1.5% 72.7±3.1%
CMDS-l 3.9±1.0% 8.8±1.5% 46.8±3.8% 73.2±1.8%
CMDS-g 5.3±1.0% 12.9±1.6% 49.8±2.6% 75.3±0.8%

Table 3: Task solved rate in the Blocksworld and Logistics domain. Results are presented as mean ± standard
deviation. GPT and Llama results are collected across three and five random seeds respectively.

remains valuable as task complexity increases, re-
quiring significantly less data to converge and gen-
eralize, thereby reducing costs substantially.

Figure 5: Performance comparison between CMDS-l
and Random.

Finally, we present a detailed comparison of the
performance between CMDS-l and Random. Fig-
ure 5 illustrates the win-tie-loss comparison be-
tween these methods in the Blocksworld and Lo-
gistics domains. CMDS-g is excluded from this
comparison because it consistently outperforms
both. The results indicate that CMDS-l achieves
more wins across both domains, further validating
the effectiveness of the CMDS approach. Addi-
tionally, due to its broad applicability of language
embeddings, CMDS-l is valuable for fine-tuning

LLMs in domains beyond automated planning.

5 Conclusion

In this paper, we extensively study how data scal-
ing, diversity, and task complexity affect fine-
tuning outcomes in automated planning domains.
Our findings show that LLMs can exhibit strong
planning capabilities through fine-tuning with suf-
ficiently large datasets, challenging the notion that
LLMs are inherently weak in System 2 planning.
To enhance sample efficiency and reduce fine-
tuning costs, we introduce the Clustering-Based
Maximum Diversity Sampling (CMDS) approach,
which ensures a broad and representative sample
set. Our methods, CMDS-g (using graph embed-
dings) and CMDS-l (using language embeddings),
consistently outperform random sampling. Notably,
CMDS-g significantly enhances both the sample
efficiency in fine-tuning and the generalization per-
formance of the fine-tuned models. This research
provides a thorough investigation of LLMs’ plan-
ning capabilities and offers insights into effectively
and efficiently developing these capabilities.
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6 Limitations

While the proposed algorithm enhances LLMs’
performance in automated planning with higher
sample efficiency and better generalization perfor-
mance, the planning capabilities acquired in one
domain can hardly transfer to new domains. Al-
though the mixed-data fine-tuning approach proves
effective, it also introduces slightly higher variance
in outcomes, indicating the need for further refine-
ment and stability enhancements. Addressing these
limitations will be the focus of our future work.
Cross-domain transferability in planning remains
an underexplored area, highlighting a significant
opportunity for further investigation.
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A Related Work

Enhancing LLMs’ Reasoning and Planning Capabilities with Prompting. Prompting involves
guiding the input to a Large Language Model (LLM) using templates or cues to produce the desired output.
Techniques like Chain of Thought (CoT, (Wei et al., 2022)) and Tree of Thoughts (ToT, (Yao et al., 2024))
have demonstrated the ability to enhance complex reasoning and planning by breaking down tasks into
intermediate reasoning steps. These prompting methods have proven effective in solving mathematical
problems (Huang et al., 2022; Yao et al., 2022) and household tasks (Wei et al., 2022; Yao et al., 2024).
However, their effectiveness in automated planning domains has been limited, largely due to the inherent
complexity of these tasks. For example, (Valmeekam et al., 2024b) showed that CoT prompting resulted
in only a 1% improvement in Blocksworld, with GPT-4 (Achiam et al., 2023) achieving a 34.6% solved
rate without CoT prompting and 35.6% with it.

LLMs with access to external tools. Due to LLMs’ tendency to generate responses with hallucinations
and their lack of strict adherence to actions and predicates, some approaches integrate external tools to
provide feedback. For example, (Liu et al., 2023) and (Guan et al., 2023) utilize the Planning Domain
Definition Language (PDDL) executor to verify the validity of generated plans and provide feedback
(such as explanations for why plans are not executable) to aid LLMs in reflection and plan refinement.
However, these methods do not fundamentally enhance the LLMs’ inherent planning capabilities and
result in complex integration engineering and potential high latency. Furthermore, frequent use of external
tools can be costly and prone to reliability issues. For instance, the effectiveness of traditional planners
depends heavily on the accuracy of translating natural language to PDDL; inaccuracies in this translation
can lead to incorrect plans or failed validations.

Enhancing LLM’s task-specific capabilities with fine-tuning. Fine-tuning refers to the process of
updating the parameters of a pre-trained model using task-specific data. Initial studies, such as Less Is
More for Alignment (LIMA, (Zhou et al., 2024)), have investigated the effects of training data quantity
and quality on fine-tuning outcomes in typical natural language processing tasks like Q&A and creative
writing. However, to the best of our knowledge, there has been no comprehensive study on how fine-tuning
data (considering aspects like quantity, diversity, composition, etc.) affects the planning capabilities of
LLMs. This paper pioneers the exploration of these research questions.

Large Reasoning Models. Recently, OpenAI released o1-preview (OpenAI, 2024), a model trained
to generate an internal thought before answering questions using effective reinforcement learning with
human feedback (RLHF) techniques. o1 pioneers the application of scaling laws during inference and
showcases a notable improvement in reasoning and planning capabilities compared to existing LLMs. Our
proposed method focuses on enhancing the base model during the supervised fine-tuning (SFT) stage, a
critical step in preparing a strong initial model for RLHF. Given the proven effectiveness of CMDS in the
SFT stage, we believe that combining CMDS with advanced RLHF techniques could further enhance the
model’s reasoning and planning performance and potentially reduce overall training costs. We consider
this integration a potential direction for future work.

Data Selection. Existing work on data selection for training LLMs, such as (Yu et al., 2023) and (Zhu
and Hauff, 2022), addresses related challenges but differs from ours in two key ways. First, our work
focuses specifically on enhancing logical reasoning and planning capabilities in LLMs, a critical and
increasingly important domain. Our data selection method has the potential to be applied to training
large reasoning models like o1, whereas (Yu et al., 2023) centers on text classification and (Zhu and
Hauff, 2022) targets question generation from text passages. Second, and more importantly, our approach
differs fundamentally in methodology. Both (Yu et al., 2023) and (Zhu and Hauff, 2022) rely on natural
language embeddings, similar to our baseline method, CMDS-l. However, as demonstrated in Section
4.2, language embedding-based methods struggle to effectively distinguish nuanced planning instances,
highlighting the limitations of these approaches in our targeted domain.
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B Extended Experiment Results

In this section, we present extended experimental results, covering various aspects of our proposed method
and details about the planning capabilities of LLMs. These include its performance on imbalanced
datasets (B.1), the detailed effects of dataset scaling (B.2), cross-domain transferability (B.3), the impact
of data composition on fine-tuning outcomes (B.4), an analysis of the optimality of plans generated by
LLMs (B.5), a detailed performance analysis (B.6), further investigation into the limitations of language
embeddings (B.7), and a visualized evaluation via attention (B.8).

B.1 Imbalanced Dataset

The fine-tuning data in the previous experiments were collected through randomization with unique
checking, ensuring a uniform and balanced training dataset. However, in real-world scenarios, fine-tuning
data often varies in quality and distribution. To simulate this, we conducted additional experiments using
imbalanced fine-tuning data. Since no standard metric exists to measure dataset imbalance in automated
planning, we devised a heuristic imbalance coefficient to control the level of imbalance. Specifically,
we randomly removed data points from p*100% of all clusters (identified by CMDS-g such that the
samples represent diverse planning instances based on task structures) to create datasets with imbalanced
distributions. Within the clusters selected for data removal, we retained j ∈ [1, 5] points. As shown in
Figure 6, this process resulted in areas with dense examples and others with sparse examples.

Figure 6: Imbalanced data distribution in the Blocksworld domain.

We created datasets with varying degrees of imbalance by adjusting the percentage of clusters removed
from the training dataset. Note that this imbalance coefficient is an approximate metric designed to control
the dataset’s imbalance level, and it does not strictly scale linearly with the degree of imbalance.

We employed Random, CMDS-l, and CMDS-g sampling methods on the imbalanced datasets and
conducted experiments using Llama-3-8b. The results, depicted in Figure 7, lead to two key observations:
(1) CMDS-g consistently outperforms both Random and CMDS-l by a significant margin; (2) generally,
CMDS-l outperforms Random, winning in 9 out of 11 imbalance coefficient scales. Additionally, the
results shown in Figure 7 are worse compared to those obtained with a balanced dataset, indicating that a
balanced dataset is beneficial for enhancing model capabilities.

B.2 Data Scaling Effect

In this section, we first assess the scaling effect on the model’s in-domain transferability. Specifically, we
evaluate models trained on 5-block tasks (as shown in the motivation example) using held-out 4-block
and 6-block test tasks, with the results presented in Figure 8b. We make three key observations: (1)
Transfer performance follows the same scaling effect, exhibiting an asymptotic pattern—initial increases
in sample size result in significant performance gains, but the rate of improvement diminishes as more
samples are added; (2) Transfer performance is generally worse than standard performance, i.e., test
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Figure 7: Fine-tuning performance vs imbalance coefficient when k = 100 in Blocksworld. Results are collected
with Llama-3-8b and averaged across five independent runs.

Figure 8: Scaling effect of fine-tuning Llama-3-8b in Blocksworld. (a) Model fine-tuned on 5-block samples and
evaluated on hold-out 5-block test tasks. (b) Model fine-tuned on 5-block samples and evaluated on hold-out 4-block
and 6-block test tasks.

performance on tasks that match the training settings; (3) CMDS-g achieves higher sample efficiency in
transfer performance. For instance, CMDS-g attains a 99% solved rate with approximately 7,500 samples,
whereas Random requires around 20,000 samples to reach this performance. More importantly, using
fine-tuning data selected by CMDS-g enables the model to generalize better to different tasks. These
advantages underscore the value of our proposed method, particularly as task complexity increases and
the data requirements rise exponentially. Our approach significantly enhances sample efficiency and
generalization capability while reducing the substantial time, economic, and computational costs involved.

Furthermore, we closely examine the impact of data scaling on the planning capabilities of LLMs using
a smaller-scale experiment. We conducted tests in the 4-blocks setting of Blocksworld with GPT-3.5-turbo-
0125 and Llama-3-8b. The results are summarized in Figure 9. Our findings indicate that GPT-3.5-turbo
exhibits superior planning capabilities compared to the Llama models, both before and after fine-tuning.
However, when fine-tuned with 4000 samples, Llama-3-8b outperforms GPT-3.5-turbo. This discrepancy
is largely due to the limited number of fine-tuning epochs applied to GPT-3.5-turbo, driven by the high
economic costs, while the Llama models were fine-tuned over significantly more epochs.

As observed consistently, LLMs’ planning capabilities improve with increased fine-tuning data, due to
the high quality of responses in terms of accuracy, efficiency, and validity. However, this improvement
follows an asymptotic pattern, where the rate of performance gains diminishes as more samples are added.
This indicates that substantial data is needed to fine-tune LLMs effectively for complex System 2 planning
tasks, with data requirements growing exponentially with task complexity. In such cases, our proposed
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method can significantly reduce the time, economic, and computational costs associated with fine-tuning.

Figure 9: Model performance versus the number of fine-tuning samples. GPT-3.5-turbo finetuned with 4000
Logistics samples is omitted in this experiment due to high economic costs.

B.3 Cross-domain Transferability

To evaluate cross-domain transferability, we fine-tuned the base models in one domain and then tested
their performance in another. Specifically, we fine-tuned the models on 200 tasks from the Blocksworld
domain and evaluated their performance in the Logistics domain. Conversely, we fine-tuned the models
on 400 tasks from the Logistics domain and assessed their performance in the Blocksworld domain.
We intentionally used relatively small sample sizes in this experiment to avoid overfitting the LLMs
to the specific response patterns and dynamics of a single domain. The results of these cross-domain
transferability tests are presented in Table 4.

Fine-tuning Tasks

Test Domain Model un-finetuned Blocksworld Logistics

Blocksworld
GPT-3.5 3.7% 72.4% 3.1%
Llama-3 0% 54.2% 0.3%

Logistics
GPT-3.5 0.7% 0.3% 45.8%
Llama-3 0% 0% 44.4%

Table 4: LLM’s transferability across domains.

The findings reveal that LLMs exhibit poor transferability across different planning domains after fine-
tuning, in some cases performing worse than models that were not fine-tuned. This is due to the substantial
differences between automated planning domains in terms of actions, predicates, and objects, which hinder
the LLMs’ ability to generalize across domains. To develop LLMs with effective multi-task capabilities, it
is therefore necessary to fine-tune them on tasks drawn from multiple domains simultaneously. In the next
section, we provide a detailed analysis of how data composition influences fine-tuning outcomes.

B.4 Data Composition

To assess the impact of data composition on fine-tuning, we created a mixed dataset by randomly sampling
task instances from both the Blocksworld and Logistics domains. This mixed dataset was used to fine-tune
GPT-3.5-turbo and Llama-3-8b models. The dataset was composed of an equal number of samples from
each domain, which were randomly shuffled before fine-tuning. For example, a dataset with k = 100
includes 100 samples from Blocksworld and 100 samples from Logistics, making it directly comparable
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to a dataset of k = 100 pure samples from a single domain. The effects of data composition on fine-tuning
outcomes are summarized in Table 5.

Our key finding is that fine-tuning on mixed-domain data does not degrade model performance; in fact,
it slightly improves it. Statistically, mixed data outperforms pure data in 5 out of 7 settings in both the
Blocksworld and Logistics domains. This result is significant because, despite the poor cross-domain
transferability of LLMs, we can enhance their planning capabilities across different domains by fine-tuning
on a combined dataset. This conclusion is both crucial and promising, indicating that LLMs can acquire
strong cross-domain planning capabilities through fine-tuning on sufficiently large and diverse datasets
from multiple domains. These findings underscore the potential of using mixed planning tasks to fine-tune
LLMs for multi-task proficiency.

Subset Size

Domain Model Composition k = 100 k = 200 k = 400 k = 1000

Blocksworld

GPT
pure data 61.8±1.9% 72.4±1.8% 81.9±1.5% 91.9±1.2%

mixed data 58.8±1.6% 75.4±0.6% 85.0±0.5% –

Llama
pure data 43.9±2.9% 54.2±6.8% 67.6±3.3% 86.3±0.8%

mixed data 35.1±11.6% 58.7±4.8% 79.6±3.3% 89.6±1.5%

Logistics

GPT
pure data 7.5±2.5% 20.6±2.1% 45.8±3.8% 62.3±2.3%

mixed data 10.4±0.1% 22.1±3.5% 36.4±2.8% –

Llama
pure data 0.4±0.1% 10.3±0.7% 45.4±0.5% 72.7±3.1%

mixed data 5.9±1.4% 19.1±1.6% 54.0±6.4% 68.0±5.1%

Table 5: Task solved rate in the Blocksworld and Logistics domain. k is the number of fine-tuning samples selected
from one domain. E.g., k = 100 indicates 100 samples from Blocksworld and 100 samples from Logistics. Results
are presented as mean ± standard deviation. GPT and Llama represent GPT-3.5-turbo and Llama-3-8b and their
results are collected across three and five random seeds respectively. Results for GPT-3.5-turbo with k = 1000 are
omitted in this experiment due to the high economic cost.

Combining these findings with those discussed in Section A.2 on the Data Scaling Effect, we conclude
that LLMs can achieve robust System 2 planning capabilities by being fine-tuned on sufficiently large
datasets composed of diverse samples from various planning domains. Our research offers valuable
insights to both the research community and industry on how to effectively and efficiently train LLMs to
develop strong planning capabilities.

B.5 Plan Optimality
We evaluated the optimality of the plans generated by LLMs and found that they have a high likelihood of
being optimal. As shown in Table 6, GPT-3.5-turbo and Llama-3-8b achieved near-optimal performance
when fine-tuned with 4,000 samples in both the Blocksworld and Logistics domains. For comparison,
a human baseline in the Blocksworld domain, as reported by (Valmeekam et al., 2024b), showed that
50 human participants had a task success rate of 78.0% and a plan optimality rate of 89.7%. Given
the higher complexity of the Logistics domain, the human baseline there would likely be lower than in
Blocksworld. Remarkably, LLMs maintained high optimality rates—over 90% in Blocksworld and over
80% in Logistics—even when fine-tuned with just 100 samples. This result is notable and particularly
relevant in the planning domain, where the optimal plan, often being the shortest, is likely to be the
easiest for LLMs to identify. Achieving such superior optimality rates is challenging through prompting
techniques or system designs alone, further emphasizing the importance of extensive fine-tuning. These
results underscore the strong potential of LLMs in achieving System 2 planning capabilities.

B.6 Detailed Performance
Figure 10 and Figure 11 provide a detailed analysis of the LLMs’ planning capabilities in the Blocksworld
and Logistics domains.
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Subset Size

Domain Base Model Data Composition k = 100 k = 400 k = 4000

Blocksworld

GPT-3.5-turbo
Solved Rate 61.8% 81.9% 96.5%

Optimality Rate 89.3% 92.4% 98.4%

Llama-3-8b
Solved Rate 43.9% 67.6% 99.3%

Optimality Rate 90.0% 92.6% 100%

Logistics

GPT-3.5-turbo
Solved Rate 7.5% 45.8% –

Optimality Rate 78.3% 98.1% –

Llama-3-8b
Solved Rate 43.9% 67.6% 94.7%

Optimality Rate 81.2% 91.2% 99.3%

Table 6: Analysis of the optimality rate of generated plans in Blocksworld and Logistics domain. The samples are
all randomly sampled in this experiment. The Optimality rate is calculated based on the correct plans, optimality
rate = (number of optimal plans)/(number of correct plans). GPT and Llama results are averaged across three and
five random seeds. Results for GPT-3.5-turbo with k = 4000 in Logistics are omitted in this experiment due to the
high economic cost.

From Figure 10, we observe that GPT’s performance, as measured by the solved rate, remains consistent
even as the optimal plan length increases, demonstrating robust and reliable planning capabilities. In
contrast, Llama shows diminished performance on more complex tasks.

Figure 10: Distribution of the solved tasks in the Blocksworld domain. (a) GPT-3.5-turbo and (b) Llama-3-8b
fine-tuned on 1000 4-block tasks and tested on 4-block tasks.

Figure 11 further reveals that LLMs can have good planning capabilities across tasks of varying
complexity (i.e., they can effectively solve both short and long planning tasks). GPT’s performance is
worse than Llama’s because it is fine-tuned on less amount of data. We do not observe a clear pattern
indicating that LLMs perform better on simpler tasks (i.e., those requiring fewer steps) than on more
complex tasks (i.e., those requiring more steps). These findings suggest that once LLMs are fine-tuned on
sufficiently large datasets, they can perform consistently well across tasks of varying complexity in terms
of plan lengths.

B.7 Language Embeddings

To generate language embeddings for planning tasks, we simplify the prompts by removing redundant
information and only converting the initial and goal configurations into the embedding space to calculate
the distance between tasks. Domain instructions are omitted since they are identical for all tasks. In
our experiments, we used the RoBERTa (Liu, 2019) to transform natural language descriptions into the
language embedding space.
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Figure 11: Distribution of the solved tasks in the Logistics domain. (a) GPT-3.5-turbo is fine-tuned on 1000 tasks,
and (b) Llama-3-8b is fine-tuned on 4000 tasks.

Below is an example task in the Blocksworld domain and its altered version. The altered task slightly
differs from the original task, with only the positions of the blue and yellow blocks switched. The L2
norm distance between the embeddings of these two tasks is 3.6e-07, which is too small to be effective in
the downstream clustering process. This results in points within a cluster being closely packed, making
it difficult to identify multiple representative points from a single cluster. This example highlights the
phenomenon illustrated in Figure 4, where planning tasks converted into the language embedding space
are densely packed, with clusters far apart from each other. This occurs because language embeddings are
influenced more by narrative differences than by task structure.

Despite this shortcoming, CMDS-l still outperforms the Random selection, indicating the effectiveness
of the Clustering-Based Maximum Diversity Sampling. Our results further validate that diversity plays an
important role in automated planning, as it does in many other tasks involving the fine-tuning of LLMs.

An Example Task in the Blocksworld

Original Task

As initial conditions I have that, the red block is clear, the orange block is clear, the yellow
block is clear, the hand is empty, the yellow block is on top of the blue block, the red block
is on the table, the blue block is on the table and the orange block is on the table. My goal
is to have that the red block is on top of the orange block and the orange block is on top of
the yellow block.

Altered Task

As initial conditions I have that, the red block is clear, the orange block is clear, the blue
block is clear, the hand is empty, the blue block is on top of the yellow block, the red block
is on the table, the yellow block is on the table and the orange block is on the table. My
goal is to have that the red block is on top of the orange block and the orange block is on
top of the yellow block.

B.8 Visualized Evaluations via Attention

Beyond using task solved rates as a primary metric for evaluating model performance, we also analyze
the attention mechanisms of transformers, offering a visual comparison between pre-finetuning and
post-finetuning models. This analysis utilizes the Layer-wise Relevance Propagation (LRP, (Achtibat
et al., 2024)) method, which integrates attention layers to provide a more detailed interpretation of the
performance differences between models. An example of this visualization is shown in Figure 12. It is
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evident that after fine-tuning, LLMs focus more on the correct tokens, thereby increasing the likelihood of
making correct decisions from the very first step.

Figure 12: Attention visualization. The correct next token in the example is “red". The normalized attention on token
‘red’ for the pre-finetuning model is sum[′red′] = 0.55 and for the post-finetuning model is sum[′red′] = 0.85.

We then investigate how the model’s attention is affected by fine-tuning on datasets selected through
different methods, namely Random, CMDS-l, and CMDS-g. We randomly selected 10 examples from the
hold-out test tasks, with the results summarized in Table 7. Among these examples, CMDS-g enabled the
model to achieve the highest attention on the correct next token in 8 out of 10 test cases, while CMDS-l
led in 2 out of 10 cases. These outcomes are consistent with the model’s solved rate performance reported
in previous sections. This attention visualization serves as additional evidence supporting the effectiveness
of the fine-tuning process.

Post-Finetuning

Correct Next Token Pre-Finetuning Random CMDS-l CMDS-g

sum[′red′] 0.554 0.845 0.873 0.928
sum[′blue′] 0.880 0.937 0.976 0.967
sum[′red′] 0.602 0.881 0.936 1.02
sum[′blue′] 0.936 0.944 0.953 0.998
sum[′red′] 0.596 0.944 0.987 1.053

sum[′yellow′] 0.910 0.954 0.957 0.980
sum[′yellow′] 0.234 0.786 0.862 0.872
sum[′orange′] 0.317 1.117 1.166 1.128
sum[′orange′] 0.319 1.180 1.172 1.187

sum[′blue′] 0.217 0.913 0.945 0.966

Table 7: Attention on the correct next word for each sample index before and after fine-tuning. Base model is
Llama-2-7b in this experiment.
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C Domain Details and Prompts

Our implementations are based on the codebase from (Valmeekam et al., 2024b). In this section, we
provide the domain properties, instructions, actions, predicates, and prompts used in our experiments.

C.1 Blocksworld Domain

C.1.1 Domain Properties

The Blocksworld domain focuses on stacking blocks on a table. One hand is available to move blocks,
and only one block may be moved by the hand at a time. Blocks cannot be moved if there are blocks on
top of them, and blocks cannot be stacked on a block that already has another block on top of it. The goals
specify the order in which blocks within a stack should be stacked but may include multiple stacks or
request that blocks be left on the table. We adopt the 4-operator version of the classic Blocksworld.

Below is the domain instruction included in the prompts to the LLMs. For one-shot prompting, the
prompt contains three components: the domain instruction, an example task and its solution, the query
task. For zero-shot prompting, the prompt contains two components: the domain instruction and the query
task.

Domain Instruction

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the
actions I can do:

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block is clear.
A block is clear if the block has no other blocks on top of it and if the block is not picked up.
I can only unstack a block from on top of another block if the block I am unstacking was really on
top of the other block.
I can only unstack a block from on top of another block if the block I am unstacking is clear.
Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the block is
clear.
Once I put down or stack a block, my hand becomes empty.
Once you stack a block on top of a second block, the second block is no longer clear.

Actions

1. pick-up: pick up the {}.

2. put-down: put down the {}.

3. stack: stack the {} on top of the {}.

4. unstack: unstack the {} from on top of the {}.
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Predicates

1. ontable: the {} is on the table.

2. clear: the {} is clear.

3. handempty: the hand is empty.

4. holding: the hand is currently holding {}.

5. on: the {} is on top of the {}.

An Example Task and Its Solution in the Blocksworld Domain

[STATEMENT]
As initial conditions I have that, the blue block is clear, the hand is empty, the blue block is on top
of the yellow block, the orange block is on top of the red block, the yellow block is on top of the
orange block and the red block is on the table.
My goal is to have that the red block is on top of the blue block, the blue block is on top of the
orange block and the yellow block is on top of the red block.

My plan is as follows:
[PLAN]
unstack the blue block from on top of the yellow block
put down the blue block
unstack the yellow block from on top of the orange block
put down the yellow block
unstack the orange block from on top of the red block
put down the orange block
pick up the blue block
stack the blue block on top of the orange block
pick up the red block
stack the red block on top of the blue block
pick up the yellow block
stack the yellow block on top of the red block
[PLAN END]

An Example Query in the Blocksworld Domain

[STATEMENT]
As initial conditions I have that, the yellow block is clear, the hand is empty, the red block is on
top of the blue block, the blue block is on top of the orange block, the yellow block is on top of the
red block and the orange block is on the table.
My goal is to have that the blue block is on top of the orange block, the orange block is on top of
the red block and the yellow block is on top of the blue block.

My plan is as follows:
[PLAN END]

C.1.2 Graph Encoding

After representing the planning tasks using their graph structures, we proceed to encode these graphs into
vectors. Below, we describe the graph encoding function employed for the Blocksworld domain in this
paper. It’s important to note that there are various methods to perform graph encoding, and our approach
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is just one of many possibilities. Drawing inspiration from (Rivlin et al., 2020; Silver et al., 2021), we
designed our own graph encoding function.

As illustrated in Figure 13, our encoding converts the graph representation into a 10-dimensional vector,
where a value of 1 represents a directed edge between two nodes and a value of 0 indicates no edge
between the nodes. In this manner, both the initial configuration and the goal configuration are encoded
as 10-dimensional vectors. To encapsulate the complete task information from both the initial and goal
configurations, we concatenate these two vectors, resulting in the full vector representation of the planning
task. This process converts a planning task from a natural language description to a graph representation,
and finally, to a vector encoding.

Figure 13 provides the encoding method for 5-block tasks. For Blocksworld tasks with fewer blocks,
we pad the non-existing nodes and edges with 0 and then add 1 to all elements in the vector. Thus,
non-existing nodes and edges will have a value of 0, nodes that exist but have no edge between them will
have a value of 1, and nodes with an existing edge will have a value of 2.

We have omitted the specific graph encoding method for the Logistics domain here, as it functions
similarly to the approach shown in Figure 13. Readers are encouraged to design their own encoding
functions tailored to their specific needs.

Figure 13: Encoding graphs into vectors. (a) An example task in Blocksworld. (b) Vector encoding of the example
task.

C.1.3 Dataset Generation
In this section, we outline the process used to generate the dataset of planning tasks, as well as the
procedures for splitting and preparing the training and testing data.

For the motivation example, which requires a large number of instances, we employed a randomization
method with uniqueness checking to generate 50,000 distinct instances. For other experiments, we employ
randomization to generate 128, 5000, 5000, and 5000 instances for 3-block, 4-block, 5-block, and 6-block
tasks, respectively. The initial and goal configurations are randomly generated, and we ensure that each
task in a dataset is distinct. For research question 1, we randomly select 100, 500, 500, and 500 tasks from
each group as the test data for each task setting. Note that the test data are separated from the training
data. For test data in research question 2, we uniformly sample from the four types of task settings to
collectively create a testing dataset with 1000 instances, as detailed performance on different types of tasks
was unnecessary for this analysis. For train data in research question 2, we sample from the remaining
data to create the fine-tuning datasets, either according to CMDS algorithms or Random.

C.2 Logistics Domain

In the Logistics domain, the goal is to transport the packages to designated locations with trucks and
airplanes, where trucks can only move between locations within the same city and airplanes can only fly
between cities. Locations are grouped by cities. Note that there are no restrictions on the positions of the
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trucks and airplanes in the goal configuration. Similarly, we provide an example task and its solution from
the Logistics domain below.

Domain Instruction

I have to plan logistics to transport packages within cities via trucks and between cities via
airplanes. Locations within a city are directly connected (trucks can move between any two such
locations), and so are the cities. In each city, there is exactly one truck and each city has one
location that serves as an airport.

Here are the actions that can be performed:
Load a package into a truck.
Load a package into an airplane.
Unload a package from a truck.
Unload a package from an airplane.
Drive a truck from one location to another location.
Fly an airplane from one city to another city.

The following are the restrictions on the actions:
A package can be loaded into a truck only if the package and the truck are in the same location.
Once a package is loaded into a truck, the package is not at the location and is in the truck.
A package can be loaded into an airplane only if the package and the airplane are in the same
location.
Once a package is loaded into an airplane, the package is not at the location and is in the airplane.
A package can be unloaded from a truck only if the package is in the truck.
Once a package is unloaded from a truck, the package is not in the truck and is at the location of
the truck.
A package can be unloaded from an airplane only if the package in the airplane.
Once a package is unloaded from an airplane, the package is not in the airplane and is at the
location of the airplane.
A truck can be driven from one location to another if the truck is at the from-location and both
from-location and to-location are locations in the same city.
Once a truck is driven from one location to another, it is not at the from-location and is at the
to-location.
An airplane can be flown from one city to another if the from-location and the to-location are
airports and the airplane is at the from-location.
Once an airplane is flown from one city to another the airplane is not at the from-location and is at
the to-location.

Actions

1. load-truck: load {} into {} at {}.

2. load-airplane: load {} into {} at {}.

3. unload-truck: unload {} from {} at {}.

4. unload-airplane: unload {} from {} at {}.

5. drive-truck: drive {} from {} to {} in {}.

6. fly-airplane: fly {} from {} to {}.

7. drive-truck : unstack the {} from on top of the {}.

3339



Predicates

1. airport: {} is an airport.

2. at: {} is at {}.

3. in: {} is in {}.

4. in-city: {} is in the city {}.

An Example Task and Its Solution in the Logistics Domain

[STATEMENT]
As initial conditions I have that, location_0_0 is an airport, location_1_0 is an airport, airplane_0
is at location_0_0, package_0 is at location_1_1, truck_0 is at location_0_1, truck_1 is at
location_1_0, location_0_0 is in the city city_0, location_0_1 is in the city city_0, location_1_0 is
in the city city_1 and location_1_1 is in the city city_1.

My goal is to have that package_0 is at location_0_0.

My plan is as follows:
[PLAN]
drive truck_1 from location_1_0 to location_1_1 in city_1
load package_0 into truck_1 at location_1_1
drive truck_1 from location_1_1 to location_1_0 in city_1
unload package_0 from truck_1 at location_1_0
fly airplane_0 from location_0_0 to location_1_0
load package_0 into airplane_0 at location_1_0
fly airplane_0 from location_1_0 to location_0_0
unload package_0 from airplane_0 at location_0_0
[PLAN END]

An Example Query in the Logistics Domain

[STATEMENT]
As initial conditions I have that, location_0_0 is an airport, location_1_0 is an airport, airplane_0
is at location_1_0, package_0 is at location_1_1, truck_0 is at location_0_1, truck_1 is at
location_1_1, location_0_0 is in the city city_0, location_0_1 is in the city city_0, location_1_0 is
in the city city_1 and location_1_1 is in the city city_1.

My goal is to have that package_0 is at location_0_0.

My plan is as follows:
[PLAN]

C.3 Dataset Generation
In Logistics, four variables—number of cities, locations within a city, airplanes, and packages—affect task
complexity. However, determining which of these variables has the greatest impact on task complexity and
difficulty is challenging. To address this, we generated a dataset of six thousand instances with varying
values for these variables. The ranges for the variables are as follows: number of cities: [2], number of
locations: [2, 3], number of airplanes: [1, 2], and number of packages: [1, 2]. From this dataset, we
randomly sampled three hundred instances as the test data, while the remaining instances were used as the
training dataset. The test data were kept separate from the training data to ensure a clear evaluation.
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