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Abstract

3D scene understanding has gained significant
attention due to its wide range of applications.
However, existing methods for 3D scene un-
derstanding are limited to specific downstream
tasks, which hinders their practicality in real-
world applications. This paper presents Chat-
3D, which combines the 3D visual perceptual
ability of pre-trained 3D representations and
the impressive reasoning and conversation ca-
pabilities of advanced LLMs to achieve the
first universal dialogue systems for 3D scenes.
Specifically, we align 3D representations into
the feature space of LLMs, thus enabling LLMs
to perceive the 3D world. Given the scarcity of
3D scene-text data, we propose a three-stage
training strategy to efficiently utilize the avail-
able data for better alignment. To enhance the
reasoning ability and develop a user-friendly
interaction scheme, we further construct a high-
quality object-centric 3D instruction dataset
and design an associated object-centric prompt.
With limited data, Chat-3D achieves a 82.2%
relative score compared with GPT-4 on the
constructed instruction dataset, and compara-
ble performance to state-of-the-art LLM-based
methods.

1 Introduction

3D vision is an important way for robots to per-
ceive the rich semantic and spatial information of
the real world. 3D scene understanding (Azuma
et al., 2022; Ma et al., 2022; Chen et al., 2020;
Achlioptas et al., 2020; Chen et al., 2021) has gar-
nered increasing attention in recent years, owing
to its broad range of applications in human-robot
interaction, metaverse, robotics, and embodied in-
telligence. However, current methods (Wang et al.,
2023a,b; Yang et al., 2021; Jiao et al., 2022; Yuan
et al., 2022; Parelli et al., 2023) are limited in ad-
dressing specific downstream tasks, such as cap-
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tioning and question answering, while lacking the
ability to engage in general dialogue regarding a
3D scene, restricting their practicality in various
real-world tasks. A universal dialogue system for
3D scenes is an imperative component of high-level
intelligent robots.

The general dialogue system for 3D scenes re-
quires two kinds of abilities: 3D perception and rea-
soning. Recently, several studies (Yu et al., 2022;
Pang et al., 2022; Wang et al., 2021; Zhang et al.,
2022; Xue et al., 2023; Liu et al., 2023b) on pre-
trained 3D representations shows impressive perfor-
mance in 3D perception. However, the reasoning
ability for the 3D world remains constrained owing
to the scarcity of reasoning and describing data for
3D scenes.

Large language models (LLMs) (Chiang et al.,
2023; OpenAI, 2023; Touvron et al., 2023; Chowd-
hery et al., 2022), on the other hand, exhibit re-
markable prowess in complex reasoning and open-
domain conversations. Moreover, recent meth-
ods (Li et al., 2023b; Liu et al., 2023a; Zhao et al.,
2023; Zhang et al., 2023a; Zhu et al., 2023) attempt
to extend LLMs to image and video fields. These
works typically adopt a two-stage training scheme:
Firstly, the visual representations are aligned into
the word embedding space of LLMs by leveraging
large-scale image-text and video-text datasets (Lin
et al., 2014; Sharma et al., 2018; Changpinyo et al.,
2021; Schuhmann et al., 2021, 2022; Bain et al.,
2021; Miech et al., 2019; Xu et al., 2016). Sec-
ondly, they enhance the reasoning capabilities of
LLMs regarding visual concepts by fine-tuning on
the instruction datasets.

Despite the success of image and video under-
standing fields, introducing LLMs to perceive 3D
scenes faces two challenges: 1) Compared to the
millions or even billions of image-text and video-
text data (Sharma et al., 2018; Changpinyo et al.,
2021; Schuhmann et al., 2021, 2022; Bain et al.,
2021), the 3D scene-text data (Achlioptas et al.,
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2020; Chen et al., 2020) is limited. Consequently,
in the low-resource scenarios, the commonly used
two-stage training scheme in previous multi-modal
LLMs is less effective in aligning pre-trained 3D
representations to the feature space of LLMs. 2)
3D scenes always encompass a greater number of
objects compared to an image or a video clip. Thus,
the common questions or instructions in images
and videos are more susceptible to ambiguity in
3D scenes. Consider a simple question like "What
is in front of this chair?" on a 3D scene that con-
tains multiple chairs. The dialogue model cannot
understand which specific chair the user is asking
about, and uniquely describing an object (the chair)
in question is often difficult and user-unfriendly
due to the complex object relations.

In this paper, we propose Chat-3D, the first at-
tempt to extend the reasoning and conversation
capabilities of LLMs to 3D scene understanding.
We employ a three-stage training scheme to more
efficiently utilize the limited data. Specifically, in
the first stage, we directly align the features of 3D
objects with the word embeddings of their class
names. In the second stage, we learn a 3D object
relation module via 3D scene-text data to capture
semantic information about the whole 3D scene. Fi-
nally, in the third stage, we further tune the model
with a high-quality instruction dataset. To further
enhance the reasoning ability of Chat-3D, we con-
struct the instruction dataset via an object-centric
scheme, which means all instructions are related
to a specific object. Combining our object-centric
prompt, users can effortlessly select the object in
the scene they want to engage in a dialogue about,
without the need to uniquely describe the specific
object in their instructions.

In summary, our contributions can be summa-
rized as follows:

(1) We build the first universal dialogue system
for 3D scenes, leveraging the advanced visual per-
ception capabilities of 3D pre-trained models, in
conjunction with the powerful reasoning and open-
domain conversational abilities of LLMs.

(2) We introduce a new three-stage training
scheme for multi-modal LLM, enabling the model
to progressively transition from learning individual
object attributes to capturing complex spatial ob-
ject relations. This approach effectively improves
the quality of dialogue with limited available data.

(3) We construct a high-quality object-centric
3D instruction dataset including diverse dialogues
about object attributes, positions, relationships,

functionalities, placement suggestions, and detailed
descriptions within 3D scenes. We propose a cor-
responding object-centric prompt approach to pro-
vide a user-friendly interaction method.

(4) Our experiments demonstrate that Chat-3D
exhibits remarkable capabilities in universal dia-
logue and spatial reasoning based on 3D scenes.
We also employ quantitative comparison to eval-
uate the effectiveness of our three-stage training
scheme and instruction dataset.

2 Related Work

3D Representation Learning 3D point cloud is
a fundamental visual modality. Recently, numerous
attempts are made to learn discriminative and ro-
bust representations for point cloud objects. Point-
BERT (Yu et al., 2022), Point-MAE (Pang et al.,
2022), Transformer-OcCo (Wang et al., 2021),
and point-m2ae (Zhang et al., 2022) employ self-
supervised learning approaches to extract meaning-
ful representations of 3D objects from unlabeled
point cloud data. Another series of works aims to
extend representation from other modalities to 3D.
For instance, ULIP (Xue et al., 2023) and open-
shape (Liu et al., 2023b) construct (3D-image-text)
triplets to align point clouds within the CLIP (Rad-
ford et al., 2021; Cherti et al., 2023) representation
space, while I2P-MAE (Zhang et al., 2023b) and
ACT (Dong et al., 2023) learn 3D representations
from image pre-trained models (Dosovitskiy et al.,
2020; He et al., 2016). These powerful 3D repre-
sentations can effectively capture the detailed in-
formation of a 3D object. In Chat-3D, we segment
the 3D scene into objects and extract features for
each object, which yields a set of object features to
represent the 3D scene and serves as a prerequisite
for an object-centric interactive approach.

3D-Language Tasks The interaction between 3D
point clouds and natural language has wild appli-
cations and has garnered increasing attention re-
cently. 3D captioning (Chen et al., 2021, 2020;
Achlioptas et al., 2020) focuses on generating de-
scriptions of a specific object in a 3D scene. In
3D visual question answering (Azuma et al., 2022),
the model is required to answer questions based on
the visual content of the 3D scene, while the more
complex 3D situated question answering (Ma et al.,
2022) requires the model to understand agent’s sit-
uation (position, orientation, etc.) in a 3D scene
as described by text, reason about the surround-
ing environment. Different from vision-language
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tasks (Kazemzadeh et al., 2014; Krishna et al.,
2017; Goyal et al., 2017; Antol et al., 2015; Lin
et al., 2014; Grauman et al., 2022) and methods (Li
et al., 2022, 2023a, 2021; Lin et al., 2022) based
on images and videos, these 3D-language tasks and
corresponding methods place more emphasis on
spatial reasoning and the possible interaction be-
tween agents and scenes. Despite the significant
progress made in this field, existing methods still
focus on improving isolated task-specific models,
without exploring a unified dialogue system.

Multi-modal Large Language Models Re-
cently, Large Language Models showcase remark-
able abilities in complex reasoning and conversa-
tional communication with humans. To extend
the knowledge, reasoning, and conversation abil-
ities acquired from vast amounts of text data to
more modalities, some studies (Li et al., 2023b;
Liu et al., 2023a; Zhao et al., 2023; Zhang et al.,
2023a; Zhu et al., 2023; Huang et al., 2024) attempt
to instruction tune LLMs for multimodal learn-
ing. Specifically, these works first use the caption
learning objective to learn the aligning of visual
features with pre-trained LLMs from large-scale
vision-language paired data. Then, a high-quality
instruction dataset is utilized to further enhance the
LLMs’ comprehension of the visual world. How-
ever, in the 3D-Language field, 3D scene-text pairs
are scarce. Thus the indirect aligning method is
unreliable and incomplete for 3D representations
and pre-trained LLMs. To mitigate this issue, we
propose a more data-efficient three-stage tuning
scheme that establishes a more direct learning stage
for alignment, reduces the annotation requirements,
and provides a smooth learning curve.

3 Methods

3.1 Architecture
Chat-3D aims to create a universal dialogue sys-
tem for 3D scenes by aligning 3D representations
with pre-trained LLM (Touvron et al., 2023). The
overall architecture is illustrated in Figure 1.

For the input 3D scene S, we first use a 3D ob-
ject segmentation model (Jiang et al., 2020; Misra
et al., 2021; Qi et al., 2019) or ground truth anno-
tations to segment it into objects. Then, users can
select the specific object they want to engage in
dialogue. The selected target object is denoted as
ot and other objects in the scene are represented
as Os = [o1, o2, . . . , ons ], where ns is the number
of other objects in the 3D scene. For each object,

Figure 1: The overall architecture of Chat-3D.

we use a pre-trained 3D point encoder g(·) to ex-
tract features, Besides, we further incorporate extra
object attributes (e.g. color, size, location) into
these object features by a projector fe(·) to enrich
semantic information. These 3D object features
are projected to the word embedding space of pre-
trained LLM via a projector fa(·). The process of
3D object feature extraction and mapping can be
expressed as:

zi = fa(g(oi)+ei), with ei = fe([ci; si; li]) (1)

where i ∈ [t, 1, 2, . . . , ns], and ci, si, li ∈ R3 re-
spectively represent the RGB value, bounding box
size, and location for the i-th object. The extracted
3D features of target object and other objects are
denoted as zt and Zs = [z1, z2, . . . , zns ].

Furthermore, we further introduce a relation
module t(·) for capturing complex relations be-
tween objects. The features of objects then interact
with each other to provide additional object relation
information about the scene.

[ẑt, ẑ1, ẑ2, . . . , ẑns ] = r([zt, z1, z2, . . . , zns ])
(2)

The representations of a 3D scene are provided
as ẑt ∈ Rd, [ẑ1, ẑ2, . . . , ẑns ] ∈ Rns×d, and d is
the dimension of hidden states in the pre-trained
LLMs.

Lastly, to facilitate user-friendly interaction be-
tween our system and users, we design an object-
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centric prompt as: ###Human: [target] ẑt [/tar-
get], [scene] ẑ1, ẑ2, . . . , ẑns [/scene], [instruction]
###Assistant:. Through this prompt, the LLM can
comprehend the specific object the user wants to
discuss and generate responses based on the 3D
visual information and the given instructions.

3.2 Three-stage Training

Previous multi-modal LLMs (Li et al., 2023b; Liu
et al., 2023a; Zhao et al., 2023; Zhang et al., 2023a;
Zhu et al., 2023) primarily follow a two-stage train-
ing scheme. In the first stage, LLMs take inputs
from visual modality and learn to generate cor-
responding captions. The large-scale image- and
video-text datasets allow comprehensive alignment
between visual representations and the word em-
bedding space of LLM. In the second stage, the
model is fine-tuned with a high-quality instruction
dataset, thereby further enhancing the perceptual
and reasoning abilities.

However, in the 3D understanding field, the 3D
scene-text data is significantly less than image-
or video-text data. For example, the commonly
used ScanRefer (Chen et al., 2020) dataset, which
provides descriptions for ScanNet (Dai et al.,
2017), only contains 36,655 captions for train-
ing. In contrast, the datasets used for the first
stage training in previous multi-modal LLM meth-
ods are million-level or even billion-level, such as
CC3M (Sharma et al., 2018), CC12M (Changpinyo
et al., 2021), LAION-400M (Schuhmann et al.,
2021), LAION-5B (Schuhmann et al., 2022) and
WebVid-10M (Bain et al., 2021). Considering the
scarcity of 3D scene-text data, we propose a more
data-efficient three-stage training approach, which
divides the process of aligning 3D features with the
pre-trained LLM into two progressive stages: 3D
object alignment and 3D scene alignment.

Stage 1: 3D Object Alignment The first stage is
designed to learn the alignment between the repre-
sentation of individual 3D objects and pre-trained
LLM. Given a 3D object and its annotated cate-
gory, the 3D object is encoded into a representation
z ∈ Rd according to Equation 1. Its category name
is encoded into a word embedding y ∈ Rd using
the tokenizer of the pre-trained LLM. By maximiz-
ing the cosine similarity between the corresponding
z and y, we can learn projectors fe(·) and fa(·) that
effectively inject the 3D object representations into
the word embedding space of LLM.

The advantage of Stage 1 is three-fold: 1) Com-

pared to learning alignment through captioning ob-
jective, maximizing the similarity between repre-
sentations provides a more direct learning objective
for alignment, which can achieve more efficient
alignment in low-resource scenarios. 2) Stage 1
enables the utilization of 3D point cloud object
classification datasets, such as ShapeNet (Chang
et al., 2015), ScanObjectNN (Uy et al., 2019), and
Objaverse (Deitke et al., 2023), which enhances the
model’s generalization performance on diverse real-
world objects. 3) The introduction of Stage 1 of-
fers a smoother learning curve for comprehending
complex 3D scenes. The model progressively tran-
sitions from learning individual object attributes to
capturing intricate spatial object relations.

Stage 2: 3D Scene Alignment After aligning
individual 3D object feature with pre-trained LLM,
Stage 2 takes a step further by integrating the entire
3D scene into LLM. The training data is sourced
from the ScanRefer dataset, which provides an-
notations for objects in a scene primarily based
on their spatial relationships. Considering a 3D
scene, which can be segmented into object set
[o1, o2, . . . , on], we sequentially select each object
as target objects and construct the input for LLM
according to the methodology discussed in Sec-
tion 3.1. The instruction in prompts requests the
model to generate a brief description of the target
object within the 3D scene. The learning objec-
tive is to generate a description that aligns with the
description provided by the ScanRefer dataset for
the target object, and only the two projectors fe(·),
fa(·) and the relation module r(·) are learnable in
this stage.

Stage 3: Instruction Tuning For enhancing the
reasoning ability about 3D world, we curate a high-
quality instruction dataset which comprises rich
and detailed instructions. By tuning Chat-3D on
this dataset, we further enhance its capability to
comprehend diverse instructions, generate imagina-
tive and contextually appropriate responses, engage
in intricate spatial reasoning, and effectively incor-
porate external knowledge into its responses.

4 Object-centric Instruction Dataset

The complex object relationships and intricate in-
teractions between agents and scenes impose ele-
vated demands on reasoning capabilities. To en-
hance the reasoning ability pertaining to 3D world,
we construct a high-quality object-centric instruc-
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Caption of the target object:
Descriptions: ["There is a single white armchair. placed next to the window of the room.", "The
sofa chair is the corner chair. lying parallel to the wall. a small table with the lamp is present beside
the chair.", "This is a white sofa chair. it is under a window.", "This is a white armchair. is next to a
lamp.", "This is the corner sofa chair. a small table with a lamp can be seen near this chair."]
Categories and locations of target object and its 10 neighbors:
Described object: {sofa chair:[-1.31, 3.15, 0.59]}; Neighbor objects: {window:[-1.12, 4.12, 1.59],
table:[0.86, 1.61, 0.38], doorframe:[-2.25, 0.67, 1.27], windowsill:[0.88, 3.97, 0.98], windowsill:[-
1.32, 3.93, 0.91], sofa chair:[0.98, 3.35, 0.71], window:[1.16, 4.18, 1.73], pillow:[1.35, 0.29, 0.46],
table:[-0.15, -2.66, 0.26], tv:[-2.2, -0.55, 1.52]}

Table 1: An example of textualizing an object in a 3D scene

You are an AI 3D visual assistant, and you are seeing an object in a 3D scene. What you see is
provided with several sentences, describing the same object you are looking at, and the position
of surrounding objects in the 3D scene to represent the content of the 3D scene. Based on these
descriptions of this object and the location of surrounding objects in the 3D scene, summary and
describe the placement, function of this object, and how a person can access this object in detail as
if you are in the 3D scene.
Importantly, do not mention any specific spatial coordinate values. The description should be more
than 150 words and less than 200 words.

Table 2: Prompt for descriptive object-centric captions.

tion dataset based on the annotations in ScanRefer.
Specifically, we leverage the remarkable reasoning
and summarizing capabilities of ChatGPT to auto-
matically generate descriptive and detailed captions
as well as diverse conversations centered around
specific objects within 3D scenes.

Object-centric Descriptive Captions ScanRe-
fer annotates multiple captions for objects in a 3D
scene based on their attributes and spatial relation-
ships. We employ ChatGPT to summarize and
rewrite these short captions into imaginative para-
graphs. To facilitate ChatGPT’s comprehension
of the 3D scene, we also textualize the 3D scene
as shown in Table 1, providing the categories and
XYZ coordinates of the target object and its ten
nearest objects in the scene. Furthermore, we pro-
pose a prompt to request ChatGPT to focus on
perceiving and reasoning about the object relations
and agent interactions as exemplified in Table 2.
During dataset construction, we initially manually
annotated several examples and randomly selected
two of them as in-context examples to guide the
generation of ChatGPT. One example of the gener-
ated descriptive object-centric caption is shown in
Table 7.

Object-centric Conversations To enhance the
capability of handling diverse instructions and gen-
eral conversations, we further require ChatGPT to
autonomously generate multi-turn dialogues in a
self-questioning and self-answering format based
on the brief captions of the target object and the
textualized 3D scene.

5 Experiments

5.1 Implementation Details
During the training phase, we directly use ground
truth annotations (point cloud and extra attributes)
of each object in the 3D scene for better train-
ing quality. We employ the pre-trained Point-
Bind(Guo) model with Point-BERT(Yu et al., 2022)
architecture as g(·) to extract features for each ob-
ject. Meanwhile, we use a linear layer as fe(·)
to incorporate extra attributes (such as color, size,
and location) into the extracted features. Then, a
two-layer MLP serves as fa(·) to map these 3D
object features to the word embedding space of the
pre-trained LLM, and the relation module r(·) is
implemented using a one-layer vanilla transformer
encoder. It is worth mentioning that the relation
module is zero-initialized, thereby preserving the
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Design a conversation between you and a person asking about this object in the 3D scene. The
answers should be in a tone that a visual AI assistant is in the 3D scene and answering the question.
Ask diverse questions and give corresponding answers.
Include questions asking about the visual content of this object, including the object types, object
shape, object attribute, object functions, object locations, relative positions between objects, etc.
Only include questions that have definite answers:
(1) Questions whose contents can be confidently observed and answered based on the 3D scene.
(2) Questions whose absence from the 3D scene can be confidently determined.

Table 3: Prompt for object-centric conversations.

Training
scheme

Training Data Evaluate Set
Overall

Conversation Detailed Caption Conversation Detailed Caption

Three-Stage 88.2 76.2 82.2
Two-Stage 84.8 65.9 75.4

Three-Stage 85.7 53.9 69.8
Three-Stage 85.1 69.2 77.2
Three-Stage 56.8 55.0 55.9

Table 4: Relative scores on the object-centric dataset (rated by GPT-4).

information learned in Stage 1 when Stage 2 begins.
The chosen LLM for our experiment is a Vicuna
7B model(Chiang et al., 2023), which is fine-tuned
from the LLaMA base model(Touvron et al., 2023).

5.2 Evaluation on Object-centric Dataset
Relative Score rated by GPT-4 In order to quan-
titatively evaluate the universal dialogue ability of
Chat-3D and analyze the effect of the three-stage
training scheme and our instruction dataset, we
adopt GPT-4 (OpenAI, 2023) to measure the qual-
ity of our Chat-3D’s generated responses following
LLaVA (Liu et al., 2023a) and miniGPT4 (Zhu
et al., 2023). Specifically, we randomly select 30
scenes from the ScanRefer validation set and ran-
domly choose one object as the target object for
each scene. We employ the instruction dataset con-
struction methodology described in Section 4 and
Chat-3D respectively to generate responses under
the same scene and instruction inputs. After that,
we input the textualized scene, instructions, and
the two kinds of generated responses into GPT-4
and request GPT-4 to provide an overall score on a
scale of 1 to 10 for each response based on its help-
fulness, relevance, accuracy, and level of detail. A
higher score indicates a higher quality of response.

In Table 4, we study the effectiveness of the in-
struction dataset and compare the Chat-3D trained
via our three-stage training scheme and the two-

stage training method used in previous methods (Li
et al., 2023b; Liu et al., 2023a; Zhao et al., 2023;
Zhang et al., 2023a; Zhu et al., 2023). First, our
three-stage training scheme significantly outper-
forms the previous two-stage method by 6.8 points,
demonstrating the data efficiency of our three-stage
training method in the low-resource setting. Sec-
ond, by comparing different combination settings
of the instruction dataset, we observe that incor-
porating conversation data leads to a higher im-
provement in conversation tests, while integrating
detailed caption data enhances performance in de-
tailed caption tests. By utilizing all the data to-
gether, our model demonstrates proficiency in both
conversation and detailed caption tasks, ultimately
achieving the highest overall score.

Caption Score In Table 5, we evaluate the cap-
tion metrics BLEU, METEOR, and ROUGE-L un-
der various conditions. This evaluation covers the
entire dataset, including all conversations and de-
tailed captions, offering a more comprehensive un-
derstanding of the significance of different compo-
nents. It is clear from the table that excluding either
conversation data or detailed caption data leads to a
significant decrease in performance. Without stage
three, performance deteriorates even more dramati-
cally. These results highlight the effectiveness of
our proposed three-stage training architecture.
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Training
Scheme

Training Data
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Conv. Detail.

Three-Stage 38.19 22.71 13.80 8.81 19.83 35.41
Two-Stage 36.54 21.31 12.69 7.95 19.59 34.95

Three-Stage 10.63 6.79 4.51 3.12 9.84 34.57
Three-Stage 18.28 10.54 6.00 3.54 18.12 15.92
Three-Stage 1.31 0.76 0.39 0.21 3.89 17.71

Table 5: Caption scores on the object-centric dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

VoteNet+MCAN 28.0 16.7 10.8 6.2 11.4 29.8 54.7
ScanRefer+MCAN 26.9 16.6 11.6 7.9 11.5 30.0 55.4

ScanQA 30.2 20.4 15.1 10.1 13.1 33.3 64.9

LLaVA (zero-shot) 7.1 2.6 0.9 0.3 10.5 12.3 5.7
3D-LLM (flamingo) 30.3 17.8 12.0 7.2 12.2 32.3 59.2

3D-LLM (BLIP2-flant5) 39.3 25.2 18.4 12.0 14.5 35.7 69.4

Chat-3D 29.1 16.3 10.1 6.4 11.9 28.5 53.2

Table 6: Evaluation results on ScanQA validation set.

5.3 Evaluation on ScanQA

In order to evaluate on the ScanQA dataset, we
finetune the pretrained Chat-3D to fit the answer
format of this dataset.

Baselines We include representative base-
line models on the benchmark. Specifically,
ScanQA (Azuma et al., 2022) utilizes VoteNet
to generate object proposals and then in-
tegrates them with language embeddings.
ScanRefer+MCAN (Chen et al., 2020) and
VoteNet+MCAN (Ding et al., 2019) detect 3D
objects and incorporate them into a standard
VQA model known as MCAN (Yu et al., 2019).
LLaVA (Liu et al., 2023a) proposes the visual
instruction tuning method, which establishes a
connection between a vision encoder and LLM
to enable general-purpose visual and language
understanding. 3D-LLM (Hong et al., 2023) relies
on 2D Vision-Language Models (VLMs) as their
backbone, such as flamingo and BLIP-2. It extracts
meaningful 3D features from rendered multi-view
images, which serve as the input for the VLM.

Analysis Essentially, Chat-3D achieves competi-
tive results compared to fully supervised methods
such as ScanQA. The most intriguing aspect is the
performance gap between 3D-LLM and Chat-3D.
When changing the backbone from Flamingo to
BLIP2-flant5, 3D-LLM experiences a significant
performance boost across all metrics. This sug-

gests that 3D-LLM heavily relies on the robust 2D
VLM, which is pretrained on billion-level data. In
contrast, Chat-3D solely utilizes 3D data for pre-
training and fine-tuning, which is based on a much
smaller data set. Nevertheless, it still manages to
achieve competitive results compared to 3D-LLM
(Flamingo), highlighting the effectiveness of our
training architecture.

5.4 Qualitative Comparisons & Analysis

In section, we provide visualization examples of
conversations about 3D scenes with Chat-3D. From
these cases, we mainly study the perception, reason-
ing, and dialogue capabilities of Chat-3D. Besides,
we further compare Chat-3D with 2D multimodal
LLM methods such as MiniGPT-4 (Zhu et al.,
2023), LLaVA (Liu et al., 2023a), and mPLUG-
owl (Ye et al., 2023) to demonstrate the advantages
and necessity of developing a specific multi-modal
LLM for 3D scenes.

Perception, Reasoning and Dialogue We pro-
vide several examples of conversations with Chat-
3D in Figure 2-7 covering various commonly-seen
object types (e.g., table, chair, and bed). In Figure
2(a), Chat-3D shows strong perception capabilities
by accurately counting objects, recognizing shapes,
and precisely localizing them within the 3D space.
In Figure 4, Chat-3D demonstrates impressive rea-
soning capabilities by deducing the cabinet’s pur-
pose and evaluating its practicality based on its
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The objects in the room are arranged in a rectangular shape, 
with chairs and tables positioned along the wall. The position of 
the chair and table near the wall suggests that it is meant for 
sitting, providing an area for individuals to relax or engage in 
conversation. Adjusting the placement of the chairs and tables in 
the room may help optimize the use of space, providing a more 
comfortable and efficient seating arrangement. Additionally, 
placing the tables strategically near the windows can create a 
pleasant and inviting atmosphere, allowing individuals to enjoy 
the view while engaging in conversation or activities.

There are four chairs positioned around the table.

The table is rectangular in shape, specifically a long rectangular 
shape.

Yes, the table is pushed against the wall on the left side.

How many chairs are set around this table?

What is the shape of this table?

Is the table pushed against the wall on one end?

What would you recommend in terms of rearranging the objects 
in the room to create a more functional and pleasing space? The bathroom cabinet is designed for storing items within the 

bathroom, such as towels, hair dryers, or cosmetics. Its location 
between the toilet and sink suggests a convenient location for 
accessing these items while using the bathroom. The inclusion 
of multiple drawers and doors provides ample storage space for 
a variety of bathroom essentials. Placing it to the left of the 
toilet allows for easy access while sitting down to use the toilet. 
The inclusion of a mirror above the sink complements the 
bathroom vanity and provides a convenient place for grooming 
or checking makeup. The cabinets' placement near the vanity, 
sink, toilet, and the bathroom's sink drawer adds functionality to 
the bathroom decor and organization. Overall, the bathroom 
cabinet serves as a practical storage solution for bathroom 
essentials, making the space more organized and efficient. "

What's the purpose of this bathroom cabinet?

The purpose of this bathroom cabinet is to store toiletries and
other items in the bathroom. It could be used to store towels,
toilet paper, soap, shampoo, conditioner, and other items that are
commonly found in a bathroom.

The purpose of this bathroom cabinet is to provide storage space 
for various bathroom items, such as toiletries, towels, and other 
personal belongings. It is designed to fit into the bathroom's 
limited space and make the most of the available storage options.

The purpose of this bathroom cabinet is to store and organize 
various items, such as toiletries, bath accessories, and cleaning 
supplies. The cabinet features a mirror on the top, which allows 
for convenient self-grooming and grooming activities in the bath 
area. 

(a) Example 1 of Chat-3D conversation. (b) Example 1 of comparison between Chat-3D and 2D Multi-modal LLMs.

Figure 2: Qualitative examples of Chat-3D. 1

placement and spatial relationships with surround-
ing objects. Guided by the object-centric prompt
outlined in Section 3.1, Chat-3D adeptly directs its
attention to the specific target object indicated by
the user. This enables Chat-3D to maintain focus on
the intended subject without being diverted by other
similar objects present in the scene. Moreover, the
conversational exchanges consistently demonstrate
the high-quality dialogue delivered by Chat-3D.

Comparisons with 2D Multi-modal LLMs We
compare Chat-3D with MiniGPT-4 (Zhu et al.,
2023), LLaVA (Liu et al., 2023a), and mPLUG-
owl (Ye et al., 2023) in Figure 2, 8, 9 and 10. As
illustrated in Figure 2(b), Chat-3D demonstrates its
capability to provide a clear and meticulous analy-
sis of the given question. In Example 2, depicted in
Figure 8, we assess the model’s spatial perception
ability in determining whether both monitors are of
identical size. Chat-3D showcases accurate identifi-
cation, while the other 2D models provide incorrect
answers due to their limitations in grasping depth
and perspective relationships within the 2D image.
In Example 3, presented in Figure 9, the constraints
of 2D models become more apparent as they strug-
gle to accurately identify the spatial relationships
between the target object and its surrounding ob-

jects. Compared to 2D models, Chat-3D’s analyti-
cal prowess shines brightly due to its remarkable
aptitude for perceiving and comprehending con-
cepts within the 3D space.

6 Conclusion

In this paper, we build the first universal dialogue
system for 3D scenes, leveraging the advanced vi-
sual perception capabilities of 3D pre-trained mod-
els, in conjunction with the powerful reasoning and
open-domain conversational abilities of LLMs. To
overcome the challenge of limited 3D data avail-
ability, we introduce a three-stage training scheme
for multi-modal LLMs to progressively transition
from learning individual object attributes to cap-
turing complex spatial object relations. Further-
more, we construct a high-quality object-centric
3D instruction dataset and propose a corresponding
object-centric prompt approach to facilitate a user-
friendly interaction method. Experimental results
demonstrate that Chat-3D showcases remarkable
capabilities in universal dialogue, spatial reasoning,
and the enhancement of external knowledge based
on 3D scenes.

1More examples can be found in the appendix.
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7 Limitations

Universal dialogue in 3D scenes is still an emerging
field, and there is currently a lack of standard and
diverse test datasets for evaluating 3D universal
dialogue capabilities. Therefore, Chat-3D can only
be tested on some academic datasets, which may
not fully demonstrate the generalized and general
dialogue reasoning capabilities of Chat-3D. More
diverse 3D universal evaluation datasets are impor-
tant and promising research directions.
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Detailed description: The object is a brown couch with three seats, positioned on the left corner
of the room. It is next to a gold lamp, which serves as a source of lighting and complements
the overall aesthetics of the area. The couch is accompanied by an ottoman placed in front of it,
providing a comfortable footrest and enhancing the seating experience.
The presence of two armchairs nearby indicates that this space is designed for relaxation and
socializing. The grey-colored couch with three cushions exudes a modern and stylish vibe, adding
to the room’s visual appeal. The strategic placement of the couch and ottoman encourages a cozy
and inviting atmosphere, ideal for leisurely activities and gatherings.
This setup creates a comfortable seating arrangement, promoting interaction and conversation
among individuals using the couch and armchairs. The nearby window adds natural light to the area,
enhancing the ambiance. The presence of an end table with a lamp contributes to the functionality
of the space by providing a convenient spot for placing items and lighting.
In summary, the brown couch with its ottoman and neighboring armchairs forms a functional and
aesthetically pleasing seating arrangement. The combination of the couch’s design, the presence of
the ottoman, and the proximity to the end table with a lamp ensures a comfortable and enjoyable
experience for individuals using this part of the room.

Table 7: Example of descriptive object-centric caption.
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The chair is located strategically positioned near the center of 
the room, making it easily accessible for use. It is also close to 
the desk, providing convenience for individuals sitting at the 
desk to easily reach and use the chair. Additionally, its proximity 
to the monitor suggests that it may be used for viewing or 
working purposes. The positioning of the chair also suggests 
that it is positioned at a height for optimal ergonomic comfort 
and ease of use.

Is the chair's location practical and well-thought-out?

The chair is surrounded by a computer desk, computer, wall, 
floor, and office supplies. The chair is placed against the desk 
and is positioned towards the left side. It is next to the computer 
monitor and adjacent to a printer. The object closest to the chair 
is another computer, which is to the left.

What are the surrounding objects around the chair?

What type of chair is this?

This chair is a desk chair. The chair is placed near a desk and in 
front of the monitor. It is gray and rectangular in shape, with an 
armrest and a wheeled base. The presence of another chair next 
to it indicates that it is commonly used in an office or work 
environment.

Figure 3: Example 2 of Chat-3D conversation.
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Yes, the placement of the cabinet at the end of the countertop 
makes it easy to access from multiple angles. The cabinet is 
located in the center of a large room, providing ample room for 
storage and organization of items. Its positioning makes it 
convenient for people using the kitchen counter and nearby 
tables, enabling easy access to various items. The positioning of 
the cabinet suggests that it is a central aspect of the kitchen, 
serving as a focal point for storage and organization. The 
multiple containers and drawers suggest that it is a versatile and 
functional cabinet for storing various kitchen items. Overall, the 
placement of this cabinet is suitable and provides easy access to 
various items in the kitchen area.

This cabinet is positioned near a trash can. It likely serves as a 
storage area or closet for personal items.

It is a brown cabinet.

This cabinet is tall. It is made of a light-colored wood with black 
accents.

What is the target object?

How does this cabinet look like?

What might this cabinet be used for?

Is the placement of this cabinet practical and reasonable?

The cabinet is placed on the right side of the entrance to the 
kitchen, so someone can easily access it by walking straight 
through the doorway.

Can you describe the path a person would take to access this 
cabinet from the entrance of the kitchen?

Figure 4: Example 3 of Chat-3D conversation.
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The monitors are close to the window, which could potentially 
affect the quality of the displayed images, particularly if the 
window is too bright or reflective. This could cause glare on the 
screens or difficulty seeing the content.

Are there any potential risks or challenges associated with 
having the monitors close to the window?

This placement likely maximizes visibility for the users seated 
in the center of the room. They can easily access both monitors 
by looking up at them from their desks. The placement also 
allows for optimal use of the space, with the monitors 
positioned close to the wall to free up floor space for other 
furniture or activities in the room.

Can you explain the reasoning behind placing the two monitors 
in this way?

There are two monitors in the room. One is on the right side of 
the desk, next to the leftmost window, and the other identical 
monitor is at the left edge of the long table.

How many monitors are there in the room, and where are they 
located?

The monitor is rectangular and black.

Can you describe the shape and color of the monitor?

What is the position of the monitor relative to the window?

The monitor is located on the desk on the left side of the window.

Figure 5: Example 4 of Chat-3D conversation.
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The bed and the pillow are located next to the wall, indicating 
that it is part of a functional sleeping space. The placement of 
the bed and pillow under the window suggests that they are 
positioned for maximum comfort and convenience. This 
arrangement likely promotes a relaxing and comfortable 
sleeping experience with minimal disturbance from external 
factors such as light or noise. The room layout appears to be 
organized, with the table, TV, and closet positioned around the 
bed, providing a comfortable and well-defined space for daily 
activities such as watching TV, eating, and dressing. The 
arrangement of objects within the room and the presence of a 
bookshelf suggest that the space is well-organized and offers a 
minimalist, yet cozy environment for relaxation or leisure 
activities. The overall style of the room is likely comfortable 
and functional, with attention to details that promote a peaceful 
and convenient lifestyle.

Can you provide any insights into the overall style or theme of 
the room based on the positioning of the bed and the pillow?

Is there any other pillow in the room?

The pillow is positioned at the head of the bed. It is located 
under the bed pillow.

Can you describe the position of the pillow on the bed?

What is the color of this pillow?

The pillow is blue.

Yes, there are two gray pillow placed on the couch.

Figure 6: Example 5 of Chat-3D conversation.

329



Is the location of the bed optimal in terms of natural lighting and 
airflow?

Considering the location of the bed, the nightstand, and the door, 
is it easy for someone to get in and out of bed comfortably?

Yes, the bed is positioned between two nightstands.

Is the placement of the bed between the two nightstands?

The bed faces the middle of the wall and is located at the center 
of the bedroom.

Yes, it is possible to easily get in and out of bed due to the 
location and accessibility of the nightstand and the door. The 
nightstand and door are positioned near the bed, allowing for 
easy access without having to walk too far or struggle with 
reaching the nightstand. The bed is located between the 
nightstand and the door, providing a clear and direct pathway to 
and from the bed. Additionally, the door is close to the bed, 
making it easy to exit and enter the room. Overall, this design 
allows for smooth and easy movement in and out of the bed, 
providing a comfortable and convenient experience for the user.

It is a double bed.

What type of bed is this?

How is the bed positioned in the room?

Yes, the bed is placed in a corner of the room, maximizing its 
accessibility and light exposure. It is also located near the 
window, which allows for natural light and potentially fresh 
airflow. Additionally, the bed is surrounded by minimal 
distractions and obstacles, such as chairs or other furniture, 
indicating that it is situated in a relatively peaceful and 
organized area of the room. The presence of the curtains on the 
windows suggests that privacy may be a concern, but the bed's 
location near the window may also provide some natural light 
during the day. Overall, the placement of the bed is 
advantageous for optimal sleeping conditions.

Figure 7: Example 6 of Chat-3D conversation.
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The image shows a desk with two computer monitors on it. The 
monitors are different sizes, with one being larger than the other. 
The smaller monitor appears to be a MacBook Pro, while the 
larger monitor is a standard desktop computer monitor.

Yes, the two monitors are identical. 

Are the two monitors identical in size, and if not, how do they differ?

The two monitors in the image are not identical in size. One 
monitor is larger than the other, with the larger monitor being 
placed on top of the smaller one.

Yes, the two monitors are different in size. The larger monitor is
positioned on the left side of the image, while the smaller
monitor can be seen on top of it.

Figure 8: Example 2 of comparison between Chat-3D and 2D Multi-modal LLMs.
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The kitchen cabinet is positioned next to the refrigerator and the
dishwasher. The refrigerator is on the left side of the kitchen and
the dishwasher is on the right side of the kitchen.

How is the kitchen cabinet positioned concerning the refrigerator
and the dishwasher?

The kitchen cabinet is positioned between the refrigerator and 
the dishwasher.

The kitchen cabinet is positioned next to the dishwasher and in 
front of the refrigerator.

The kitchen cabinet is positioned to the left of the refrigerator 
and situated beneath the dishwasher.

Figure 9: Example 3 of comparison between Chat-3D and 2D Multi-modal LLMs.
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The faucet, a rectangular white object, is located on the left side 
of the kitchen cabinets. It is connected to the kitchen sink, a sink 
located in the center of the kitchen. The kitchen cabinets are 
made of white material, contributing to a clean and modern 
look. The hanging picture frame is placed on the wall, 
enhancing the overall aesthetic of the room. This setup provides 
a functional and visually pleasing kitchen environment. The 
placement of the faucet, sink, cabinets, and picture frame 
creates a logical flow for using the kitchen. It is easy to access 
the faucet and sink while preparing meals or washing dishes. 
The cabinet, which is in the center of the kitchen, can store 
various kitchen items. The proximity of the picture frame to the 
sink suggests that it may be hung as a decorative element, 
adding a touch of artistic flair to the kitchen. This arrangement 
of objects within the kitchen provides a practical and attractive 
space for daily activities.

How is the faucet related to the kitchen cabinets and the hanging 
picture frame?

The faucet is related to the kitchen cabinets because it is
mounted on the wall next to the sink. The hanging picture frame
is not related to the kitchen cabinets or the faucet.

The faucet is related to the kitchen cabinets and the hanging 
picture frame in the image because it is located in the kitchen, 
and it is part of the sink. The sink is positioned under the 
hanging picture frame, which is mounted on the wall above the 
sink. The kitchen cabinets are also present in the scene, 
providing storage and organization for the kitchen items. The 
faucet is an essential component of the sink, allowing water to 
flow and be used for various tasks in the kitchen.

The faucet is related to the kitchen cabinets and the hanging
picture frame in that it is located in the same room. It is
positioned near the cabinet and hinges from the wall, suggesting
that they are all part of the interior design of a kitchen. The
presence of these elements in close proximity to each other
creates a cohesive and visually appealing space.

Figure 10: Example 4 of comparison between Chat-3D and 2D Multi-modal LLMs.
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