
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 3173–3183

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Task-wrapped Continual Learning in Task-Oriented Dialogue Systems

Min Zeng1, Haiqin Yang2∗, Xi Chen1, Yike Guo1∗

1Hong Kong University of Science and Technology
2Independent Researcher

min.zeng.u@gmail.com, haiqin.yang@gmail.com

Abstract

Continual learning is vital for task-oriented
dialogue systems (ToDs), and AdapterCL,
equipped with residual adapters, has proven
effectiveness in this domain. However, its
performance is limited by training separate
adapters for each task, preventing global
knowledge sharing. To address this, we
propose Task-wrapped Continual Learning
(TCL), a novel framework that employs Task-
Wrapped Adapters (TWAs), to simultane-
ously learn both global and task-specific infor-
mation through parameter sharing. TCL lever-
ages task-conditioned hypernetworks to trans-
fer global knowledge across tasks, enabling
TWAs to start from more informed initializa-
tion, efficiently learning task-specific details
while reducing model parameters. Addition-
ally, the simple, linear structure of both hy-
pernetworks and TWAs ensure stable training,
with task-free inference supported through ef-
fective loss utilization. Across 37 ToD domains,
TCL consistently outperforms AdapterCL, sig-
nificantly reducing forgetting. Remarkably,
by setting the task embedding dimension to
1, TCL achieves a 4.76% improvement over
AdapterCL while using only 46% of the pa-
rameters. These findings position TWA as a
lightweight, powerful alternative to traditional
adapters, offering a promising solution for con-
tinual learning in ToDs. The code is available
at https://github.com/cloversjtu/TCL.

1 Introduction

Task-oriented dialogue systems (ToDs) play a cru-
cial role in natural language processing (NLP), en-
abling smart assistants to understand user intents
and facilitate task completion through natural lan-
guage interactions (Louvan and Magnini, 2020;
Balaraman et al., 2021; Algherairy and Ahmed,
2025). These systems typically comprise multi-
ple components, including natural language under-
standing (NLU), dialogue state tracking (DST), dia-

∗The corresponding author.

logue policy (DP) and natural language generation
(NLG), or are implemented end-to-end. ToDs must
be adaptable to new tasks and capable of continu-
ous learning (Biesialska et al., 2020; Zeng et al.,
2024). To meet this requirement, continual learning
(CL) methodologies have emerged, allowing mod-
els to seamlessly integrate new knowledge over
time (Mendez and Eaton, 2023). However, CL
faces the challenge of catastrophic forgetting (CF),
where performance on previously learned tasks de-
teriorates as new tasks are introduced, risking the
erasure of acquired knowledge.

To mitigate CF, researchers have explored
various approaches, including regularization-
based, rehearsal-based, and architectural-based
methods (Biesialska et al., 2020; Mendez and
Eaton, 2023; Wang et al., 2024). Among
these, architectural-based methods like
AdapterCL (Madotto et al., 2021) have shown
promise in ToDs. However, while effective,
AdapterCL tends to prioritize task-specific infor-
mation, potentially overlooking shared knowledge
across tasks, and its linear resource expansion
poses challenges for scalability.

To address these limitations, we propose Task-
wrapped Continual Learning (TCL), which intro-
duces a novel, lightweight module called the Task-
Wrapped Adapter (TWA) to jointly learn global
and local information. TCL places a TWA atop
each transformer layer of a pre-trained base model,
allowing it to capture task-specific (local) insights
while preserving core representations. Each TWA
consists of three key layers: down-projection, up-
projection, and normalization. Unlike conventional
residual adapters (Houlsby et al., 2019), which ini-
tialize parameters randomly, TCL leverages two
task-conditioned hypernetworks (Von Oswald et al.,
2019) to initialize the weights and biases of the pro-
jection and normalization layers. Different from
HyperFormer (Mahabadi et al., 2021), originally
designed for multi-task learning and facilitating

3173

https://github.com/cloversjtu/TCL

multiple embeddings (task, adapter position, and
layer ID), TCL employs only task embeddings to
drive the initialization process. The parameters
of both hypernetworks are trained across all tasks,
capturing global knowledge, while the parameters
of TWAs are initialized by the hypernetworks, en-
abling TWAs to start from more informed initializa-
tion to continually learn task-specific, fine-grained
information.

TCL is highly parameter-efficient, achieving
a 4.76% improvement over the state-of-the-art
(SOTA) AdapterCL (Madotto et al., 2021) using
only 46% of the parameters when the task embed-
ding hidden size is set to 1 for the Intent Recogni-
tion (INTENT) task. Moreover, TCL demonstrates
robust performance across multiple ToDs tasks
over 37 domains, including INTENT (Casanueva
et al., 2020; Coucke et al., 2018), DST (Mrkšić
et al., 2016; Xu and Hu, 2018), NLG (Press et al.,
2017), and building end-to-end (E2E) dialogue sys-
tems (Serban et al., 2016). Notably, TCL meets
or even exceeds the multi-task upper bound in IN-
TENT in high-capacity settings, benefiting from
positive transfer across tasks.

In summary, our key contributions include:
• We propose Task-wrapped Continual Learn-

ing (TCL), a novel framework employing TWAs
to jointly learn both global and local informa-
tion across tasks, addressing the limitations of
existing CL methods.

• TCL leverages TWAs, whose parameters are ini-
tialized by two task-conditioned hypernetworks,
enabling effective knowledge transfer across
tasks, learning task-specific information from
more well-informed starting points, and maintain-
ing parameter efficiency through a lightweight
design.

• Experimental results across 37 domains in ToDs
show that TCL consistently outperforms the state-
of-the-art AdapterCL. In particular, TCL attains
a 4.76% improvement in INTENT utilizing only
46% of the parameters and demonstrates robust
performance across tasks, including INTENT,
DST, NLG, and E2E dialogue systems.

2 Related Work

Continual learning (CL) aims to learn from new
tasks while retaining knowledge of previously
learned ones (Wang et al., 2024; Kirkpatrick et al.,
2017). Approaches to address CF in CL gener-
ally fall into three categories: regularization-based,

rehearsal-based, and architectural-based methods.

Regularization-based methods constrain model
updates to protect important parameters from pre-
vious tasks. For example, Elastic Weight Consol-
idation (EWC) (Kirkpatrick et al., 2017) prevents
significant updates to crucial parameters to main-
tain earlier performance. Adaptively Regularized
Prioritized Exemplar Replay (ARPER) (Mi et al.,
2020) combines prioritized replay with EWC-based
adaptive regularization to mitigate forgetting.

Rehearsal-based methods store examples from
past tasks in memory and replay them during the
new task training. For example, ICaRL (Rebuffi
et al., 2017) applies clustering techniques to man-
age memory constraints and select key examples.
Gradient episodic memory (GEM) (Lopez-Paz and
Ranzato, 2017) calculates losses from stored ex-
amples and prevents the loss increase when up-
dating. A-GEM (Chaudhry et al., 2018) refines
GEM by constraining the average loss across previ-
ous tasks rather than addressing them individually.
LAMOL (Sun et al., 2019) employs a language
model to generate pseudo-samples, avoiding the
need for memory storage. In DST, Cho et al. (2023)
reformulates the task into example-guided question-
answering and deploys dialogue-level replay to en-
hance continual learning performance. DCL (Zeng
et al., 2024) leverages a Dirichlet distribution-based
CVAE (Zeng et al., 2019), which offers greater flex-
ibility in modeling utterance-level characteristics
and generates more realistic pseudo samples com-
pared to the conventional Gaussian-based CVAE.

Architectural-based methods modify the net-
work by adding task-specific parameters to cap-
ture unique local information and reduce CF. For
example, AdapterCL (Madotto et al., 2021) in-
troduces residual adapters (Houlsby et al., 2019)
atop transformer layers to approximate tasks.
CPT4DST (Zhu et al., 2022) employs prompt tun-
ing for DST to reduce forgetting. ACM (Zhang
et al., 2022) reduces adapter numbers by incorpo-
rating LAMOL, but increasing training time in the
two-stage procedure. O-LoRA (Wang et al., 2023)
learns tasks in orthogonal low-rank subspaces to
minimize interference without requiring data stor-
age. MetaLTDS (Xu et al., 2023) combines ar-
chitectural and rehearsal techniques, using task-
specific masks and uncertainty-based sampling for
memory selection. SAPT (Zhao et al., 2024) in-
tegrates adapters and shared attention to enhance
knowledge transfer.

3174

RELU

Up-projection

Down-projection

Layer Normalization

Transformer

Hypernetworks

Embedding…Task !" Task !#

Frozen

Finetune

$%& , (%&

)%&

*%&

+%
ℎ-.
ℎ/

0 ×

Task !2

TWA

Layer l

Figure 1: Illustration of TCL at layer l for Task Tn: TCL places a TWA atop each transformer layer, which has
fixed pre-trained parameters and only fine-tunes the parameters in TWAs and two conditioned hyperparameters.
Each TWA is initialized by the hypernetworks, whose parameters are driven by the task embeddings, and learned
incrementally to capture both global and task-specific information. See the main text for more details.

Given the effectiveness of AdapterCL in mitigat-
ing forgetting in ToDs, there is strong motivation
to further optimize its efficiency and task general-
ization capabilities.

3 Methodology

3.1 Task Definition
Given a sequence of N tasks, T1, . . . , TN , each
task, Tn consists of Nn samples in Dn =
{(xi, yi)}Nn

i=1, where (xi, yi) represent a general
input-output pair. While learning on task Tn(n >
2), we have no access to examples from previous
tasks. The final goal is to train a model fθ, parame-
terized by θ, to predict the output response y such
that y = fθ(x) and optimize the model’s average
performance on all tasks after training on the entire
sequence of tasks. In this paper, we focus on tasks
in task-oriented dialogue systems; more detailed
task definitions are provided in Appendix A.

3.2 Overview
As illustrated in Fig. 1, TCL employs a pre-trained
language model as its backbone and integrates
a Task-Wrapped Adapter (TWA), a novel and
lightweight module, atop each transformer layer
(with L = 12 for GPT-2) to absorb both global
and local information. TWA consists of three
core layers: down-projection, up-projection, and
normalization. Traditional residual adapters train
each adapter independently (Madotto et al., 2021;

Houlsby et al., 2019), missing the opportunity to
leverage global knowledge shared across tasks. In
contrast, TCL utilizes TWA, which relies on two
linear task-conditioned hypernetworks–one for the
projection layers and another for the normalization
layer–to initialize their parameters, thereby enhanc-
ing the model’s ability while reducing the number
of parameters.

In summary, TCL offers several key advantages:
(1) A unified framework for capturing global
and local information: The hypernetworks’ pa-
rameters are solely driven by task embeddings
and are learned incrementally, enabling TCL to
efficiently absorb the global information across
tasks. Subsequently, the task-conditioned hypernet-
works globally initialize the parameters of TWAs at
each layer, transferring the global information into
TWAs for each task. This strategy allows TWAs
to continually fine-tune from more informed start-
ing points and adapt to absorb fine-grained and
task-specific (local) information, ensuring that each
task benefits from distinct, tailored TWA represen-
tations. (2) Parameter efficiency and training
stability: By reusing hypernetworks, TCL signifi-
cantly reduces the number of parameters required.
Additionally, the linear structure of both the hyper-
networks and TWAs ensures stable training while
effectively capturing available information. Train-
ing stability is crucial in continual learning, where
models are updated incrementally.

3175

In the following, we outline the structure of
TWAs, the training process, and the task-free infer-
ence procedure in TCL.

3.3 TWA and Parameter Initialization
Architecture Building on the residual adapter
concept from AdapterCL (Madotto et al., 2021),
we place TWA atop each transformer to jointly
learn both global and local task-specific informa-
tion. TWA consists of three core layers: down-
projection, up-projection, and normalization.

Given an input hidden state x̂i ∈ Rh (where h is
the input dimension), the output of TWA at layer l
for task Tn, denoted as Al

n(·), is computed by:

Al
n(x̂i) = LNl

n(U
l
n(GELU(Dl

n(x̂i)))) + x̂i, (1)

where Dl
n ∈ Rh×b and U l

n ∈ Rb×h represent the
corresponding parameters for the down-projection
and up-projection layers, respectively, and LNl

n(·)
refers to layer normalization. Here, b denotes the
bottleneck dimension, and GELU is the activation
function. The initialization of Dl

n and U l
n and those

in LNl
n are detailed below.

In summary, TWA differs from AdapterCL in
two key aspects: (1) Parameter initialization:
In AdapterCL, the weights and biases of resid-
ual adapters for each task and layer are initialized
randomly. In contrast, the parameters of TWAs
are initialized using two task-conditioned, globally
learned hypernetworks (Von Oswald et al., 2019),
allowing TWAs to begin continual learning from
more informed starting points, with global knowl-
edge already embedded. (2) Normalization proce-
dure: TWA employs post-normalization (Post-N)
after the up-projection layer, whereas AdapterCL
applies pre-normalization (Pre-N) before the down-
projection layer. Post-normalization provides more
controllable outputs for the subsequent layer, po-
tentially improving performance (He et al., 2020).

Layer Normalization in TWA Following con-
ventional layer normalization (Ba et al., 2016), the
layer normalization in TWA is defined as:

LNl
n(x̂i) = γln ⊙ x̂i − µn

σn
+ βl

n, (2)

where ⊙ is the element-wise multiplication be-
tween two vectors, and µn and σn denote the mean
and standard deviation of the data in task Tn, re-
spectively. The learnable parameters γln and βl

n at
layer l have the same dimension as x̂i, representing
the scale and shift, respectively. The mechanism
for their initialization is explained below.

Hypernetworks for Initialization To initialize
the parameters in the three core layers of a TWA,
we employ two task-conditioned hypernetworks:
one for the projection layers and another for the nor-
malization layer. A hypernetwork is an auxiliary
network that generates weights for other networks,
offering rapid adaptation and robust performance
across diverse tasks (Ha et al., 2016). While this
setup is inspired by HyperFormer (Mahabadi et al.,
2021), it differs in two key aspects: (1) Hyper-
Former is designed for multi-task learning, whereas
our TCL is tailored for continual learning. (2) TCL
simplifies the hypernetwork configuration, driven
solely by task embeddings with a linear structure,
enabling incremental learning across tasks. This
design allows TCL to efficiently capture global
information within the hypernetwork parameters
while reducing the number of learnable parameters.

Let En ∈ Rd (d is the task embedding dimen-
sion) be the task embedding for task Tn. We initial-
ize it from a standard normal distribution.

The parameters for the projection layers are ini-
tialized by a hypernetwork, hP(·), defined as:

(U l
n, D

l
n) = hP(En) = (WU ,WD)En, (3)

where WU ∈ R(b×h)×d and WD ∈ R(h×b)×d are
the hypernetwork’s parameters, globally learned
across tasks, to initialize the up-projection and
down-projection layers in TWA, respectively.
These parameters serve to ensure that TWAs bene-
fit from global task knowledge while maintaining
the flexibility to adapt to task-specific nuances.

The hypernetwork for the normalization layer,
hLN(·), initializes the scale and shift parameters as:

(γln, β
l
n) = hLN(En) = (W γ ,W β)En, (4)

where W γ ∈ Rh×d and W β ∈ Rh×d represent the
hypernetwork parameters to initialize the scaling
and shifting parameters at each normalization layer.

The two task-conditioned hypernetworks offer
the following advantages: (1) Both hypernetworks
are linear networks, driven solely by task embed-
dings, which ensures simplicity and stability dur-
ing training. (2) The parameters of these hyper-
networks are shared and learned across all tasks,
enabling them to capture global information effi-
ciently. The global initialization allows TWAs can
begin from well-informed starting points and pro-
gressively absorb task-specific information.

3176

3.4 Model Training
Let θn be the learnable parameters of TCL for task
Tn:

θn =
{
En,W

U ,WD,W γ ,W β, (5)

{U l
n}Ll=1, {Dl

n}Ll=1, {γln}Ll=1, {βl
n}Ll=1

}
,

where En is the task embedding, WU , WD, W γ ,
and W β are the hypernetwork parameters, and U l

n,
Dl

n, γln, and βl
n (l = 1, . . . , L) are the task-specific

parameters for each layer l in TWA.
Given an input utterance x, we simplify its ex-

pansion as x = x1 . . . xM and define the corre-
sponding loss for task Tn as:

Ln(x) = −
M∑

j=1

log pθn(xj |x<j), (6)

where M is the number of tokens. We then expand
this loss to the (x, y)-pair as Ln(x⊙ y), where ⊙
denotes the concatenation of x and y.

Given the training data Dn from task Tn, TCL is
trained to learn the parameters θn by minimizing
the following loss:

Ln(Dn) = −
Nn∑

i=1

Ln(xi ⊙ yi), (7)

where the sequence of x ⊙ y is padded to ensure
uniform length if necessary.

3.5 Task-free Inference
Subsequent methods (Zhu et al., 2022; Zhang et al.,
2022) developed after AdapterCL (Madotto et al.,
2021) typically assume the task-ID is provided dur-
ing inference to reduce task complexity. However,
in real-world scenarios, the task-ID is usually un-
known, and labeling can be expensive. To better
mimic real-world situations, we predict the task-ID
before generating the output. Specifically, given
an input utterance x, we determine the task-ID by
selecting the one with the least loss as

n̂ = argmin
n

Ln(x), (8)

where Ln is defined in Eq. (6).
For example, given an input utterance x

(e.g., “I’m looking for a restaurant
in San Francisco”), TCL enumerates all
Ln on x, calculating the losses by Eq. (6),
and yields results: (“TM19_coffee”, 1.8),
(“TM19_restaurant”, 0.12), . . ., (“MWOZ_train”,
2.1). TCL then identifies the task as
“TM19_restaurant” for x because it has the
least loss.

4 Experiments

4.1 Datasets
Following the datasets used in AdapterCL, as de-
scribed in Appendix B, we conduct experiments on
four datasets spanning 37 domains: Task-Master
2019 (TM19) (Byrne et al., 2019), Task-Master
2020 (TM20) (Byrne et al., 2019), Schema Guided
Dialogue (SGD) (Rastogi et al., 2020), and Multi-
domain WoZ (MultiWOZ) (Budzianowski et al.,
2018). These datasets are continually learned
in the E2E setting. To ensure a fair compari-
son, we follow the experimental setup used in
AdapterCL (Madotto et al., 2021) and create 5
learning curriculum by randomly permuting the 37
domains. The datasets’ statistics and descriptions
are provided in Appendix C.

4.2 Baselines
To demonstrate the efficiency of our method, we
conduct a comparative analysis with the follow-
ing strong baselines: (1) Finetune (Yogatama
et al., 2019): Directly fine-tunes on sequential
tasks without addressing catastrophic forgetting;
(2) L2 (Yoon et al., 2017): Regularizes the net-
work with a fixed quadratic constraint for each
weight; (3) EWC (Kirkpatrick et al., 2017): Im-
poses constraints on the loss to minimize updates
of crucial parameters in previous tasks; (4) A-
GEM (Chaudhry et al., 2018): Applies gradient-
based constraints, effectively preserving knowl-
edge of previous tasks; (5) LAMOL (Sun et al.,
2019): Uses the language model as both a learner
and generator, replaying pseudo-samples from
previous tasks; (6) AdapterCL (Madotto et al.,
2021): An architectural method that inserts resid-
ual adapters (Houlsby et al., 2019) atop each trans-
former layer, training task-specific adapters; (7) O-
LoRA (Wang et al., 2023): A parameter-efficient
architectural method that learns tasks in different
low-rank vector subspaces ensuring orthogonality
to reduce catastrophic forgetting; (8) SAPT (Zhao
et al., 2024): Incorporates an adapter for each
new task and leverages a shared attention frame-
work to enhance knowledge transfer across tasks;
(9) MULTI (Caruana, 1997): Multi-task learning,
serving as the upper bound.

4.3 Experimental Settings
Following the setup in AdapterCL (Madotto et al.,
2021), we apply the same hyperparameters to guar-
antee a fair comparison. The batch size is set to

3177

Models INTENT DST NLG NLG
Accuracy ↑ JGA ↑ EER ↓ BLEU ↑

Finetune (Yogatama et al., 2019) 4.08 ± 1.4 4.91 ± 4.46 48.73± 3.81 6.38 ± 0.6
L2 (Yoon et al., 2017) 3.74 ± 1.4 3.81 ± 3.44 55.68 ± 7.09 5.4 ± 0.9
EWC (Kirkpatrick et al., 2017) 3.95 ± 1.3 5.22 ± 4.46 58.2 ± 3.66 5.06 ± 0.5
A-GEM (Chaudhry et al., 2018) 34.04 ± 6.36 6.37 ± 4.0 62.09 ± 6.88 4.54 ± 0.6
LAMOL (Sun et al., 2019) 7.49 ± 6.35 4.55 ± 3.48 66.11 ± 6.97 3.0 ± 0.9
AdapterCL (Madotto et al., 2021) 90.46 ± 0.6 35.06± 0.52 31.78 ± 1.28 16.76 ± 0.34
O-LoRA (Wang et al., 2023) 32.26 ± 8.35 11.61 ± 1.29 47.75 ± 0.69 14.6 ± 0.72
SAPT (Zhao et al., 2024) 53.98 ± 3.86 22.17 ± 0.79 48.63 ± 0.68 14.47 ± 0.28
TCL 95.22 ± 0.6 33.45 ± 0.59 28.64 ± 1.29 17.85 ± 0.41
MULTI (Upper Bound) (Caruana, 1997) 95.45 ± 0.1 48.9 ± 0.2 12.56 ± 0.2 23.61 ± 0.1

Table 1: Comparison results of TCL and baselines. The best results are highlighted in bold.

10, and the learning rate is 6.25e-3. The gradient
accumulation step is 8 and AdamW (Loshchilov
and Hutter, 2017) is employed as the optimizer.
The hidden state dimension is 768, the task em-
bedding dimension is 1, and the bottleneck size is
24. All experiments are conducted on an NVIDIA
A100-80G GPU. We train TCL for 10 epochs, with
a training time of approximately 24 hours.

4.4 Evaluation Metrics

We employ four well-defined metrics to evaluate
model performance (Madotto et al., 2021):
• Accuracy measures the exact match between

generated intents and the gold labels, evaluating
the model’s performance on the INTENT recog-
nition task.

• Average Joint Generalization Accuracy
(JGA) (Wu et al., 2019) is the primary evalua-
tion metric in DST, assessing the correctness of
slot-value pairs across all tasks. It is calculated as

JGA = 1
N

N∑
i=1

RN,i, where Ri,j is the evaluation

metric achieved on task Tj after training on task
Ti.

• Slot Error Rate (EER) (Wen et al., 2015) mea-
sures the ratio of missing slots in the response to
the total number of slots in NLG.

• BLEU (Papineni et al., 2002) evaluates the simi-
larity between generated texts and the reference
texts based on n-gram overlap in NLG. Higher
BLEU scores indicate better performance.

5 Results and Analysis

5.1 Overall Evaluation Results

To assess the overall performance of our proposed
TCL across all tasks, we conduct experiments in

Models Size Task Dim. INTENT
Accuracy ↑

AdapterCL 346M (100%) - 90.46± 0.6
TCL 162M (46%) 1 95.22± 0.6
TCL 218M (63%) 4 95.49± 0.52
TCL 293M (85%) 8 95.55± 0.31

Table 2: Comparison results of TCL and AdapterCL in
INTENT with varying task embedding dimensions (in
short Task Dim.).

the E2E setting and evaluate performance on three
specific tasks: INTENT, DST, NLG. The average
score across all tasks is adopted as an overarch-
ing metric for reliability consideration. Results in
Table 1 show that
• TCL significantly surpasses the state-of-the-art

(SOTA) model, AdapterCL: (1) In INTENT, TCL
improves upon AdapterCL by 4.76%; (2) In
DST, both TCL and AdapterCL show signif-
icant improvement over the baselines. How-
ever, TCL’s JGA slightly trails behind AdapterCL
due to TCL’s tendency to generate more di-
verse and comprehensive responses. For ex-
ample, the predicted response: “FindTrains
(date_of_journey=12th of this month,
journey_start_time=6:20am)” contains the
correct intent. However, it is marked incorrect
for JGA since the golden label, “FindTrains
(date_of_journey=12th of this month)”,
does not include the second slot-value pair,
“(journey_start_time=6:20am), which is also cor-
rect from the context. JGA requires exact
matches of slot-value pairs, treating minor dis-
crepancies as errors. Thus, although TCL may
produce more informative responses, it may fail
to achieve perfect alignment with the golden
truth. (3) For NLG, TCL outperforms AdapterCL

3178

Model Bottleneck Size INTENT DST NLG NLG
Accuracy ↑ JGA ↑ EER ↓ BLEU ↑

AdapterCL 24 162M (46%) 89.91± 0.23 29.47± 0.58 32.51± 0.97 15.51± 0.45
TCL 24 162M (46%) 95.22± 0.6 33.45± 0.59 28.64± 1.29 17.85± 0.41
TCL 32 173M (50%) 95.45± 0.18 33.5± 0.36 28.15± 0.43 17.63± 0.19
TCL 48 197M (57%) 95.75± 0.42 35.24± 0.51 26.1± 0.38 17.88± 0.23

Table 3: Comparison of AdapterCL (bottleneck size 24) and TCL with varying bottleneck dimensions (b = 24, 32,
and 48)

with improvements of 3.14% in EER and 1.09
in BLEU. Lower EER indicates more compre-
hensive and complete generated responses, with
fewer missing slots and values. A higher BLEU
score reflects better alignment between gener-
ated and reference text, with the 1.09 increase
highlighting TCL’s strength in generating linguis-
tically accurate and content-rich responses.

• TCL achieves an accuracy of 95.22%, closely
approaching the upper bound set by MULTI
at 95.45%. This remarkable performance is
achieved without seeing all available data simul-
taneously, highlighting TCL’s potential for con-
tinual learning.

5.2 Ablation Study

Dimension of Task Embedding We conduct ex-
periments in INTENT with varying task embed-
ding dimensions in the hypernetworks to evaluate
parameter efficiency. The results, reported in Ta-
ble 2, show that: (1) TCL consistently outperforms
AdapterCL across all settings, with task embed-
ding dimensions of 1, 4, and 8. As the dimension
increases, TCL’s performance gradually improves,
attributed to the increased information carried by
larger task embeddings. (2) TCL yields even bet-
ter performance than MULTI (95.49% and 95.55%
vs. 95.45%) when the dimension is set to 4 and
8, respectively. (3) When the dimension is set
to 1, TCL contains 162M parameters, only 46%
of AdapterCL’s 346M. This demonstrates TCL’s
higher computational efficiency, driven by its abil-
ity to share information across tasks.

Dimension of Bottleneck Table 3 reports the re-
sults assessing the effect of the bottleneck size in
{24, 32, 48}. The findings show that as the bottle-
neck size increases, TCL’s performance improves
accordingly with a slight increase in model size.
Notably, when the bottleneck size is 48, TCL at-
tains the best performance in all cases, compared
to a bottleneck size of 24: In INTENT, a 0.53%

improvement in accuracy; In DST, a 1.79% im-
provement in JGA; and in NLG, a 2.54% decrease
in EER and 0.03 improvement BLEU score. This
suggests that larger bottleneck sizes allow TCL
to capture more information, enhancing perfor-
mance. Nevertheless, a trade-off exists between
performance and computational cost. Overall, our
TCL attains favorite performance when the size is
24, a small scale.

Models task-ID INTENT
Accuracy ↑

AdapterCL without 90.46± 0.60
TCL without 95.22± 0.60
TCL with 95.56± 0.25

Table 4: Comparison results of TCL in INTENT with
or without given task-ID during inference.

Task-free Inference Table 4 shows the impact
of with or without task-ID during inference. The
results show that when the task-ID is not provided,
TCL consistently outperforms AdapterCL in IN-
TENT, demonstrating TCL’s superior model ca-
pability. Notably, performance further improves
when the task-ID is given. When TCL is equipped
with a task-ID during inference, the accuracy in IN-
TENT reaches 95.56%, reflecting a 0.34% improve-
ment compared to scenarios without providing the
task-ID. This underscores TCL’s versatility in han-
dling both scenarios and highlights its potential for
real-world applications.

Models
INTENT DST NLG NLG

Accuracy ↑ JGA ↑ EER ↓ BLEU ↑
TCL (Pre-N) 94.96± 0.22 33.7± 0.43 28.28± 1.36 17.74± 0.57
TCL (Post-N) 95.22± 0.60 33.45± 0.59 28.64± 1.29 17.85± 0.41

Table 5: Comparison of TCL with Pre-N vs. Post-N.

Pre-N vs. Post-N We conduct experiments to as-
sess the impact of Pre-N vs. Post-N configurations
in TCL. Table 5 shows that TCL with Post-N per-
forms better in INTENT and NLG (BLEU) while

3179

Ex.1: USER: I’d like to see a romantic comedy.

Reference movie_search (genre="romantic comedy.")
AdapterCL movie_ticket (name_movie="a romantic comedy")
TCL movie_search (genre="romantic comedy")

Ex.2: Perfect and do you know where the shop is located? USER: Yes, I do. API-OUT:

Reference Thanks for confirming. Please note There is an $89 fee for inspection that could go
towards repair if you choose to use their services.

AdapterCL great. I’ve booked your appointment. do you know where the shop is located?
TCL ok, I’ll book that appointment. please note that there is a $89 service fee but that can

be applied to the cost of repairs.

Table 6: Comparison of generated outputs for TCL and AdapterCL with the Ground Truth (Reference).

showing a slight lag in DST and NLG (EER) com-
pared to Pre-N. It is important to note that although
Post-N shows lower JGA compared to Pre-N in
DST, this does not necessarily indicate poor per-
formance. Instead, it might be attributed to TCL’s
preference for generating more comprehensive re-
sponses when using Post-N. Similar issues occur
for evaluating EER in NLG.

5.3 Case Study

Table 6 illustrates two cases to compare the gener-
ated results of TCL and AdapterCL with respect to
the ground truth (reference).

In Ex. 1, given the input utterance “USER:
I’d like to see a romantic comedy.”,
TCL accurately predicts the correct task-ID,
“movie_search”, and generates the correspond-
ing output, “genre = romantic comedy”. As a
comparison, AdapterCL wrongly predicts the task-
ID to “movie_ticket” and yields a wrong slot,
“name_movie”, though the filling “a romantic
comedy” is partially correct. This implies a failure
of AdapterCL to capture the true intent.

In Ex. 2, given the input utterance, “Perfect
and do you know where the shop is located?
USER: Yes, I do. API-OUT”, AdapterCL en-
counters challenges in accurately generating output
response. The generated response “do you know
where the shop is located?” by AdapterCL
is redundant since the user already provided in the
input utterance. As a comparison, TCL accurately
confirms the appointment and reminds that “there
is $89 service fee”, which adds information
that this fee can be applied to the cost of repairs.
This example highlights TCL’s capability of pro-
viding more relevant and informative responses.

6 Conclusion

In this paper, we propose Task-wrapped Continual
Learning (TCL), a novel continual learning frame-
work to mitigate forgetting in Task-oriented Dia-
logue systems (ToDs) by utilizing Task-wrapped
Adapters (TWAs) to capture both global and task-
specific information. TCL employs two task-
conditioned hypernetworks, driven by task embed-
dings, to initialize the parameters of TWAs. The
hypernetwork parameters are shared across tasks
and learned incrementally, allowing TCL to absorb
the global information while reducing the model
size. Meanwhile, TWAs continually learn from
the globally initialized parameters, providing more
informed starting points to capture task-specific
information. The simple structure of both hypernet-
works and TWAs ensures stable training in TCL,
while the effective loss function supports task-free
inference, favoring real-world applications. Exper-
imental results across 37 domains in ToDs show
that TCL consistently outperforms the state-of-the-
art AdapterCL. Notably, TCL achieves a 4.76%
improvement in INTENT while utilizing only 46%
of the parameters, and demonstrates robust perfor-
mance across all tested ToDs tasks.

7 Limitations

The limitations of this work can be summarized as
follows:

1. Scope of applications: Our experiments are
confined to Task-oriented Dialogue systems,
in line with the scope of existing baselines.
Future work should explore the generalizabil-
ity of our TCL by applying it to a broader
range of applications.

2. Architecture variation: Within our TCL, we
utilize straightforward linear network architec-

3180

tures for both hypernetworks and TWAs. De-
spite achieving significant improvements with
a stable training process, it would be valuable
to investigate the performance of TCL with
more complex network architectures.

References
Atheer Algherairy and Moataz Ahmed. 2025. Prompt-

ing large language models for user simulation in task-
oriented dialogue systems. Comput. Speech Lang.,
89:101697.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Vevake Balaraman, Seyedmostafa Sheikhalishahi, and
Bernardo Magnini. 2021. Recent neural methods on
dialogue state tracking for task-oriented dialogue sys-
tems: A survey. In Proceedings of the 22nd Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, SIGdial 2021, Singapore and Online,
July 29-31, 2021, pages 239–251. Association for
Computational Linguistics.

Magdalena Biesialska, Katarzyna Biesialska, and
Marta R. Costa-jussà. 2020. Continual lifelong
learning in natural language processing: A survey.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, COLING 2020,
Barcelona, Spain (Online), December 8-13, 2020,
pages 6523–6541. International Committee on Com-
putational Linguistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz–a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai
Sankar, Arvind Neelakantan, Daniel Duckworth,
Semih Yavuz, Ben Goodrich, Amit Dubey, Andy
Cedilnik, and Kyu-Young Kim. 2019. Taskmaster-1:
Toward a realistic and diverse dialog dataset. arXiv
preprint arXiv:1909.05358.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28:41–75.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulić. 2020. Efficient
intent detection with dual sentence encoders. arXiv
preprint arXiv:2003.04807.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2018. Effi-
cient lifelong learning with a-gem. arXiv preprint
arXiv:1812.00420.

Hyundong Cho, Andrea Madotto, Zhaojiang Lin, Khy-
athi Raghavi Chandu, Satwik Kottur, Jing Xu,
Jonathan May, and Chinnadhurai Sankar. 2023. Con-
tinual dialogue state tracking via example-guided
question answering. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-
10, 2023, pages 3873–3886. Association for Compu-
tational Linguistics.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

David Ha, Andrew Dai, and Quoc V Le. 2016. Hyper-
networks. arXiv preprint arXiv:1609.09106.

Ruining He, Anirudh Ravula, Bhargav Kanagal, and
Joshua Ainslie. 2020. Realformer: Transformer likes
residual attention. arXiv preprint arXiv:2012.11747.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Proc.
Intl. Conf. Machine Learning (ICML), pages 2790–
2799.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. In
Proc. Advances in Neural Information Processing
Systems (NIPS), volume 30.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Samuel Louvan and Bernardo Magnini. 2020. Recent
neural methods on slot filling and intent classifica-
tion for task-oriented dialogue systems: A survey.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, COLING 2020,
Barcelona, Spain (Online), December 8-13, 2020,
pages 480–496. International Committee on Compu-
tational Linguistics.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu,
Eunjoon Cho, Pascale Fung, and Zhiguang Wang.
2021. Continual learning in task-oriented dialogue
systems. In Proc. Conf. on Empirical Methods in
Natural Language Processing (EMNLP).

3181

https://doi.org/10.1016/J.CSL.2024.101697
https://doi.org/10.1016/J.CSL.2024.101697
https://doi.org/10.1016/J.CSL.2024.101697
http://arxiv.org/abs/1607.06450
https://doi.org/10.18653/V1/2021.SIGDIAL-1.25
https://doi.org/10.18653/V1/2021.SIGDIAL-1.25
https://doi.org/10.18653/V1/2021.SIGDIAL-1.25
https://doi.org/10.18653/V1/2020.COLING-MAIN.574
https://doi.org/10.18653/V1/2020.COLING-MAIN.574
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.235
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.235
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.235
https://doi.org/10.18653/V1/2020.COLING-MAIN.42
https://doi.org/10.18653/V1/2020.COLING-MAIN.42
https://doi.org/10.18653/V1/2020.COLING-MAIN.42

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transform-
ers via shared hypernetworks. arXiv preprint
arXiv:2106.04489.

Jorge A. Mendez and Eric Eaton. 2023. How to reuse
and compose knowledge for a lifetime of tasks: A sur-
vey on continual learning and functional composition.
Trans. Mach. Learn. Res., 2023.

Fei Mi, Liangwei Chen, Mengjie Zhao, Minlie Huang,
and Boi Faltings. 2020. Continual learning for natu-
ral language generation in task-oriented dialog sys-
tems. In Proc. Conf. on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 3461–
3474.

Nikola Mrkšić, Diarmuid O Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2016. Neu-
ral belief tracker: Data-driven dialogue state tracking.
arXiv preprint arXiv:1606.03777.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, and
Lior Wolf. 2017. Language generation with recurrent
generative adversarial networks without pre-training.
arXiv preprint arXiv:1706.01399.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI conference on artificial intelligence, 05,
pages 8689–8696.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In Proc.
AAAI Conf. on Artificial Intelligence, pages 3776–
3784.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2019.
Lamol: Language modeling for lifelong language
learning. arXiv preprint arXiv:1909.03329.

Johannes Von Oswald, Christian Henning, Benjamin F
Grewe, and João Sacramento. 2019. Contin-
ual learning with hypernetworks. arXiv preprint
arXiv:1906.00695.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu.
2024. A comprehensive survey of continual learning:
Theory, method and application. IEEE Trans. Pattern
Anal. Mach. Intell., 46(8):5362–5383.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong
Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xuanjing
Huang. 2023. Orthogonal subspace learning for lan-
guage model continual learning. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 10658–10671, Singapore. Association
for Computational Linguistics.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. arXiv
preprint arXiv:1508.01745.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state genera-
tor for task-oriented dialogue systems. arXiv preprint
arXiv:1905.08743.

Puyang Xu and Qi Hu. 2018. An end-to-end approach
for handling unknown slot values in dialogue state
tracking. arXiv preprint arXiv:1805.01555.

Qiancheng Xu, Min Yang, and Ruifeng Xu. 2023. Bal-
anced meta learning and diverse sampling for life-
long task-oriented dialogue systems. In AAAI, pages
13843–13852.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei
Yu, Chris Dyer, et al. 2019. Learning and evaluat-
ing general linguistic intelligence. arXiv preprint
arXiv:1901.11373.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and
Sung Ju Hwang. 2017. Lifelong learning with dy-
namically expandable networks. arXiv preprint
arXiv:1708.01547.

Min Zeng, Haiqin Yang, Wei Xue, Qifeng Liu, and Yike
Guo. 2024. Dirichlet continual learning: Tackling
catastrophic forgetting in nlp. In UAI.

Min Zeng, Yisen Wang, and Yuan Luo. 2019. Dirichlet
latent variable hierarchical recurrent encoder-decoder
in dialogue generation. In Proc. Conf. on Empirical
Methods in Natural Language Processing and Joint
Conf. on Natural Language Processing (EMNLP-
IJCNLP), pages 1267–1272.

Yanzhe Zhang, Xuezhi Wang, and Diyi Yang. 2022.
Continual sequence generation with adaptive compo-
sitional modules. In Proc. Conf. of the Association
for Computational Linguistics (ACL).

Weixiang Zhao, Shilong Wang, Yulin Hu, Yanyan Zhao,
Bing Qin, Xuanyu Zhang, Qing Yang, Dongliang Xu,
and Wanxiang Che. 2024. Sapt: A shared attention
framework for parameter-efficient continual learning
of large language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11641–
11661.

3182

https://openreview.net/forum?id=VynY6Bk03b
https://openreview.net/forum?id=VynY6Bk03b
https://openreview.net/forum?id=VynY6Bk03b
https://doi.org/10.1109/TPAMI.2024.3367329
https://doi.org/10.1109/TPAMI.2024.3367329
https://doi.org/10.18653/v1/2023.findings-emnlp.715
https://doi.org/10.18653/v1/2023.findings-emnlp.715

Qi Zhu, Bing Li, Fei Mi, Xiaoyan Zhu, and Minlie
Huang. 2022. Continual prompt tuning for dialog
state tracking. In Proc. Conf. of the Association for
Computational Linguistics (ACL), pages 1124–1137.

A Task Description

The tasks in task-oriented dialogue systems in-
clude:
• The INTENT task aims to recognize user queries

into specific intents. For example, the query Q
of “I would like to book a flight to Los
Angeles on Dec. 26th.” would be categorized
as the “flight_booking” intent. By accurately
classifying intents, systems can efficiently route
queries and generate appropriate responses.

• The Dialogue State Tracking (DST) task aims
to interpret and manage users’ intents and contex-
tual information in conversations. For instance,
in a conversation about flight booking, a user
might raise a query Q, “I would like to
book a flight to Los Angeles on Dec.
26th.” Then DST identifies key entities such
as the “flight_booking(destination = Los
Angeles, date = Dec. 26th)” to comprehend
the user’s travel request. The extracted entities
enable the system to generate relevant responses
aligned with the user’s preferences.

• The Natural Language Generation (NLG)
task utilizes the extracted information
“flight_booking(destination = Los
Angeles, date = Dec. 26th)” from DST
to generate a response to the user’s query. The
system might respond “American Airlines
- Departure: 11:30 AM, Arrival: 2:30 PM,
Price: $280. Would this flight meet your
requirements?”

• The End-to-End (E2E) task refers to a unified
approach where the system processes users’ in-
put and generates responses without component
segmentation. For query Q of “I would like
to book a flight to Los Angeles on Dec.
26th.”, an E2E system directly interprets the re-
quest and generates a tailored response, “I found
a few flights to Los Angeles on Dec. 26th. One
option is a flight departing at 11:30 AM, arriving
at 2:30 PM, with American Airlines for $280.
Would you like to book this flight, or should I
look for other options?” without task-specific
modules like INTENT or DST. This approach
can simplify architecture and thus enhance sys-
tem efficiency.

B Dataset Description

We describe the details of the datasets as follows:
• The Task-Master (TM19) dataset introduces task-

oriented dialogues across six domains (Byrne
et al., 2019): ordering pizza, creating auto repair
appointments, setting up ride service, ordering
movie tickets, ordering coffee drinks, and making
restaurant reservations. TM19 has a richer and
more diverse language than MultiWOZ.

• The Task-Master 2020 (TM20) dataset consists
of dialogues in seven domains (Byrne et al.,
2019): restaurants, food ordering, movies, ho-
tels, flights, music, and sports, which encompass
a wider range of themes and contexts. TM19
includes written “self-dialogues” and two-person
spoken dialogues, whereas TM20 solely com-
prises two-person spoken dialogues. Further-
more, TM19 primarily focuses on task-oriented
dialogues, while TM20 features many search-
oriented and recommendation-oriented dialogues,
spanning various domains.

• The Schema-Guided Dialogue (SGD)
dataset (Rastogi et al., 2020) contains over multi-
domain conversations spanning 16 domains such
as movies, music, banks, etc.

• The Multi-Domain Wizard-of-Oz (MultiWOZ)
dataset (Budzianowski et al., 2018) is a multi-
domain dialogue dataset including 5 domains:
attraction, hotel, restaurant, taxi and train.

C Dataset Statistics

Table 7 summarizes the dataset statistics.

Name Train Valid Test Dom. Intent Turns
TM19 4,403 551 553 6 112 19.97
TM20 13,839 1,731 1,734 7 128 16.92
MultiWOZ 7,906 1,000 1,000 5 15 13.93
SGD 5,278 761 1,531 19 43 14.71
Total 31,426 4,043 4,818 37 280 16.23

Table 7: Dataset Statistics

3183

