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Abstract

The recent advancements in Large Language
Models (LLMs) have greatly influenced the de-
velopment of Large Multi-modal Video Mod-
els (Video-LMMs), significantly enhancing our
ability to interpret and analyze video data.
Despite their impressive capabilities, current
Video-LMMs have not been evaluated for
anomaly detection tasks, which is critical to
their deployment in practical scenarios e.g.,
towards identifying deepfakes, manipulated
video content, traffic accidents and crimes.
In this paper, we introduce VANE-Bench, a
benchmark designed to assess the proficiency
of Video-LMMs in detecting and localizing
anomalies and inconsistencies in videos. Our
dataset comprises an array of videos syntheti-
cally generated using existing state-of-the-art
text-to-video generation models, encompass-
ing a variety of subtle anomalies and incon-
sistencies grouped into five categories: un-
natural transformations, unnatural appearance,
pass-through, disappearance and sudden ap-
pearance. Additionally, our benchmark fea-
tures real-world samples from existing anomaly
detection datasets, focusing on crime-related
irregularities, atypical pedestrian behavior, and
unusual events. The task is structured as a vi-
sual question-answering challenge to gauge the
models’ ability to accurately detect and local-
ize the anomalies within the videos. We evalu-
ate nine existing Video-LMMs, both open and
closed sources, on this benchmarking task and
find that most of the models encounter difficul-
ties in effectively identifying the subtle anoma-
lies. In conclusion, our research offers signif-
icant insights into the current capabilities of
Video-LMMs in the realm of anomaly detec-
tion, highlighting the importance of our work
in evaluating and improving these models for
real-world applications. Our code and data
is publicly available at https://github.com/
rohit901/VANE-Bench.

*Equal contribution

1 Introduction

Large Language Models (LLMs) like ChatGPT
have ushered in a new era of real-world AI appli-
cations in varied and diverse sectors like manu-
facturing, legal services, space exploration, trans-
portation, retail, healthcare, education, and tech-
nology (Abdullah et al., 2022; Marr, 2023). Fur-
ther, the current trend in the development of these
LLMs has been to introduce multi-modal capabil-
ities like vision and audio to these models along
with text (et al., 2024; OpenAI, 2024). This mo-
tivates us to ask the question whether the current
Large Multi-modal Models (LMMs) are capable
and accurate in tackling the problem statement
of Video Anomaly Detection (VAD) which has
immense practical applications in factories, au-
tonomous driving, crime warning, and traffic man-
agement (Liu et al., 2024a).

Further, we have recently observed superior vi-
sual quality of various AI-generated videos due
to the improvements in the underlying algorithms,
which are based on diffusion models, and trans-
formers (Brooks et al., 2024; HPCAI Tech, 2024;
Peebles and Xie, 2023). The current state-of-the-
art (SOTA) AI text-to-video model is SORA from
OpenAI (Brooks et al., 2024). The videos pro-
duced by SORA are of extremely high fidelity,
which makes them nearly indistinguishable from
real-life footage. Thus, SORA brings new chal-
lenges in tackling misinformation, identifying deep-
fakes, and distinguishing real from fake videos,
especially during crucial events like democratic
elections. Therefore, developing automated solu-
tions to identify AI-generated videos has become
the need of the hour.

Motivated by the above-mentioned points, we
propose a novel and challenging benchmark,
VANE-Bench: Video ANomaly Evaluation
Benchmark, to evaluate various closed-source and
open-source Video-LMMs on their ability to detect
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Figure 1: Samples showing the AI-Generated video category of VANE-Bench. We collect these synthetic videos
from SORA (Brooks et al., 2024), Open-Sora (HPCAI Tech, 2024), Runway Gen2 (Runway Research, 2024),
ModelScopeT2V (Wang et al., 2023a), and VideoLCM (Wang et al., 2023b). The correct option in each question is
highlighted in bold. Note that many of these anomalies are extremely subtle and difficult for humans to detect since
the changes happen in rapid succession, with the entire video played in under a second. Anomalies are identified
with red bounding boxes for clarity. Note that our actual dataset does not contain bounding box overlays.

anomalies in the videos. Our VANE-Bench con-
sists of both real-world video anomalies from di-
verse surveillance footage capturing unusual pedes-
trian behaviour, criminal activities, and unusual
events, as well as subtle and challenging anomalies
and inconsistencies present in various AI-generated
videos (See Fig 1). These AI-generated videos, es-
pecially from SOTA models like SORA, have sub-
tle and hard to detect anomalies, which makes this
a challenging task even for many humans. How-
ever, automatically detecting and identifying the
anomalies in these synthetic video clips serves as
an important step towards identifying AI-generated
videos in the wild. We reformulate the problem

statement of VAD into a visual question-answering
(VQA) task to facilitate easier evaluation of LMMs.
However, despite evaluating over nine recent Video-
LMMs on VANE-Bench, we find that most cur-
rent LMMs still struggle on this benchmark (see
Fig.2), making VANE-Bench a challenging and
a useful benchmark for tracking the progress of
Video-LMMs for the foreseeable future.

Our contributions can be summarized as follows:

1. We present VANE-Bench: Video ANomaly
Evaluation Benchmark, consisting of 325
video clips, and 559 challenging question-
answer pairs from both real-world video
surveillance, and AI-generated videos.
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2. We perform detailed evaluation of over nine
state-of-the-art closed-source and open-source
Video-LMMs on VANE-Bench, and show that
most models exhibit poor performance, high-
lighting the challenging nature of our pro-
posed benchmark.

3. We conduct detailed result analysis, and also
perform human evaluation on VANE-Bench
to set a reasonable benchmark target.

4. We will open-source our code, and describe
the data construction process of VANE-Bench
along with making our data publicly available.

We hope that VANE-Bench serves as a strong
benchmark to improve the performance and capa-
bilities of Video-LMMs on anomaly detection.

2 Related Work

Video-LMMs: LMMs integrate linguistic and vi-
sual data to process videos, leveraging LLMs like
Llama (Meta, 2024) and connecting them with
modality-specific encoders via interfaces like Q-
former (Zhang et al., 2024; Dai et al., 2023; Yin
et al., 2024). Notable open-source Video-LMMs
include VideoChat (Li et al., 2023b), which uses
a chat-centric system, and VideoChatGPT (Maaz
et al., 2023), which combines a visual encoder with
an LLM for detailed video conversations. Video-
LLaMA (Zhang et al., 2023a) integrates audio and
visual signals using Q-formers, while LLaMA-
VID (Li et al., 2023c) represents each frame with
context and content tokens for efficient processing.
Despite these advancements, our work shows cur-
rent LMMs perform poorly on VANE-Bench, high-
lighting the need for stronger models in anomaly
detection.
Video-LMMs Benchmarking: Benchmarks like
SEED-Bench (Li et al., 2023a) and MV-Bench (Li
et al., 2024b) assess general comprehension
through multiple-choice questions but lack fo-
cus on anomaly detection in AI-generated videos.
CVRR-ES (khattak et al., 2024) evaluates real-
world scenarios with open-ended questions but
doesn’t address AI-generated inconsistencies.
VANE-Bench specifically evaluates VAD in both
real-world and AI-generated videos, providing a
targeted benchmark for this task. While Percep-
tion Test (Pătrăucean et al., 2023) focuses on
lower-level perception in real-world videos, VANE-
Bench targets subtle anomalies in AI-generated

content, making it essential for assessing Video-
LMM robustness.
Video Anomaly Detection: Traditional VAD meth-
ods typically rely on hand-crafted features and sta-
tistical models to identify deviations from normal-
ity. CUVA (Du et al., 2024) is a comprehensive
benchmark that focuses on the causation of video
anomalies. A survey on generalized VAD (Liu
et al., 2024b) categorizes various methodologies
and highlights benchmark limitations. These meth-
ods often fail with complex AI-generated videos.
VANE-Bench addresses this by focusing on VAD in
such videos, complementing existing benchmarks
and targeting subtle inconsistencies in high-fidelity
AI-generated content.

3 Dataset & Benchmark

Recent advancements in multi-modal Large Lan-
guage Models (LLMs) have enabled these mod-
els to process text, image, and video data, pre-
senting new opportunities and challenges in Video
Anomaly Detection (VAD) (Liu et al., 2024a). Mo-
tivated by this progress, we aim to benchmark the
capabilities of these multi-modal models (LMMs)
on VAD.

To address VAD, we propose VANE-Bench:
Video ANomaly Evaluation Benchmark for Con-
versational LMMs, comprising 325 video clips
and 559 challenging ground-truth question-answer
(QA) pairs. We have adapted the VAD problem
into a Multiple-Choice Video Question Answering
(MC-Video QA) (Tapaswi et al., 2016; Lei et al.,
2019; Yu et al., 2019) task to facilitate the evalua-
tion of LMMs, allowing for a more granular assess-
ment of their video content understanding.

We evaluate the latest closed-source and open-
source LMMs on VANE-Bench. Sec. 3.1 provides
an overview of VANE-Bench, Sec. 3.2 describes
the dataset categories, and Sec. 3.3 outlines our
data collection methodology.

3.1 Overview

VANE-Bench consists of 325 video clips span-
ning real-world and synthetic video anomalies. We
adapted standard VAD surveillance datasets such as
CUHK Avenue (Lu et al., 2013), UCF-Crime (Sul-
tani et al., 2018), and UCSD Pedestrian (Li et al.,
2014) to our MC-Video QA problem. Additionally,
we included 197 video clips from various open-
source and state-of-the-art closed-source text-to-
video diffusion models (Brooks et al., 2024; HP-
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Figure 2: Left: Performance of Video-LMMs on five anomaly categories of SORA dataset. Right: Overall
performance of Video-LMMs averaged across all the benchmark datasets, including AI-generated and real-world
anomaly datasets.

CAI Tech, 2024; Runway Research, 2024; Wang
et al., 2023a,b).

The diverse data backgrounds and varied diffi-
culty levels in VANE-Bench make it ideal for eval-
uating the reasoning and understanding capabilities
of video LMMs. Benchmarking these models on a
range of real-world and synthetic anomalies helps
us understand their strengths and limitations, guid-
ing future multi-modal AI research.

Overall, VANE-Bench aims to push the bound-
aries of what LMMs can achieve in video anomaly
detection, providing a rigorous standard for evalu-
ating their performance on this challenging task.

3.2 Categories
The VANE-Bench dataset encompasses a variety
of categories derived from both real-world surveil-
lance footage and AI-generated video clips. Each
category represents a distinct source and type of
video anomaly. Below, we detail the different cate-
gories included in the dataset:
Real-World anomalies: The videos with these
anomalies are sourced from several established
real-world anomaly datasets, encompassing diverse
anomaly types. The distribution of these anoma-
lies is depicted in Fig. 3 (middle). Fig. 3 (right)
provides the total number of anomaly clips along
with corresponding QA pairs for each dataset in
this category. Detailed descriptions of each dataset
within this category follow below.

1. CUHK Avenue (Lu et al., 2013): This cate-
gory consists of 11 video clips with 33 asso-
ciated question-answer (QA) pairs. The clips
capture anomalous events in a campus envi-
ronment, which shows individuals commut-
ing in a university campus, and walking in
and out of buildings. Anomaly types. The
anomalies include unusual pedestrian behav-

ior like randomly throwing bags and papers or
performing weird actions or dance moves.

2. UCF-Crime (Sultani et al., 2018): Compris-
ing 95 video clips with 95 QA pairs, this cate-
gory includes real-world surveillance footage.
Anomaly types. The videos depict various
criminal activities, such as arrest, assault, bur-
glary, robbery, stealing, and vandalism.

3. UCSD-Ped1 (Li et al., 2014): This category
contains 10 video clips with 30 QA pairs. The
videos focus on pedestrian walkways. The
Ped1 dataset is captured by a camera facing
perpendicular to the road. Anomaly types.
The anomalous events are due to the presence
of non pedestrian entities (i.e. bikers, skaters,
small carts, and wheelchairs) in the walkways.

4. UCSD-Ped2 (Li et al., 2014): Similar to
UCSD-Ped1, this category includes 12 video
clips with 36 QA pairs. In contrast with Ped1,
the Ped2 dataset uses camera which is paral-
lel to the road. Anomaly types. Abnormal
events are due to non pedestrian entities in
the walkways including bikers, skaters, small
carts, and people walking across a walkway.

AI-Generated anomalies: The videos with these
anomalies are obtained from various closed-source,
and open-source text-to-video diffusion models.
The anomalies in these clips are usually subtle,
and hard to detect, which makes our VANE-Bench
benchmark challenging. General anomaly types:
The anomalies include the sudden appearance of
objects, the unnatural transformation of solid phys-
ical objects, the disappearance of objects, objects
passing through other solids, and unnatural appear-
ance of objects (i.e., distorted and deformed facial
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Figure 3: VANE-Bench dataset statistics: Left and Middle: Composition and type of anomalies present in AI-
generated and real-world videos. Right: Number of samples and QA pairs present in each type of video dataset.

features, or other unnatural appearance like pres-
ence of extra fingers). The distribution of these
anomalies in the dataset is shown in Fig. 3 (left),
and statistics about the number of clips and corre-
sponding QA pairs are presented in Fig. 3 (right).
Below, we describe the type of video samples in
this category.

1. SORA (Brooks et al., 2024): This cate-
gory consists of 46 video clips with 138
QA pairs. The video clips are generated us-
ing SORA, a state-of-the-art AI text-to-video
model. Due to the high quality and almost
realistic-looking videos generated by SORA,
it becomes quite difficult to accurately iden-
tify the inconsistencies or anomalies present
in the videos.

2. OpenSora (HPCAI Tech, 2024): With 50
video clips and 50 QA pairs, this category
features AI-generated videos from the open-
source version of SORA.

3. Runway Gen2 (Runway Research, 2024):
This category includes 25 video clips with 25
QA pairs created using a commercial text-to-
video AI model.

4. ModelScopeT2V (Wang et al., 2023a): This
category comprises of 24 video clips with
48 QA pairs, leveraging the video diffusion
model trained by (Wang et al., 2023a) to pro-
duce videos from text captions. The videos
were generated with 50 diffusion steps with
16 fps.

5. VideoLCM (Wang et al., 2023b): This cat-
egory features 52 video clips with 104 QA
pairs, generated using latent consistency mod-
els (Wang et al., 2023b) designed to create
videos with high variability and with less la-
tency. We used 20 diffuson steps to generate

the videos with 16 fps. The videos were fur-
ther post-processed by an LCM model trained
on higher resolution videos to obtain better
quality videos.

By including a wide range of video sources and
anomaly types, the VANE-Bench dataset provides
a comprehensive benchmark for evaluating the ca-
pabilities of large multi-modal models in video
anomaly detection.

3.3 Constructing VANE-Bench
Fig. 4 describes the construction process of the
VANE-Bench dataset. Since the synthetic AI-
generated videos from state-of-the-art models like
SORA (Brooks et al., 2024) have subtle and hard-
to-detect inconsistencies, we require high-quality
captions describing all of the specific inconsisten-
cies present in the given video. Our pipeline first
annotates the anomalies using the frame annotation
module (FAM). The caption-generating module
(CGM) then utilizes these annotations to produce
captions, followed by the question-answer gener-
ation module (QAGM), creating QA pairs based
on the annotated frames and captions. Annotating
the clips before caption generation is crucial for
focusing the model on the specific anomaly regions
in the video (Shtedritski et al., 2023; Zhang et al.,
2023b; Yang et al., 2023). Without annotations,
the CGM often fails to reference the anomalies in
the captions, as demonstrated in Sec. C of sup-
plementary material. We briefly describe all the
three stages involved in the semi-automatic dataset
construction pipeline below.

3.3.1 Frame Annotation Module (FAM)
As described in Sec. 3.2, we first collect raw
videos from existing VAD datasets like CUHK
Avenue (Lu et al., 2013), UCF-Crime (Sultani
et al., 2018), UCSD-Ped (Li et al., 2014), and also
add additional challenging AI generated videos
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Figure 4: Flow diagram showing the semi-automatic construction process of our VANE-Bench dataset. The entire
process can be divided into 3 interconnected stages/modules, i.e., i. Frame Annotation Module (FAM), ii. Caption
Generation Module (CGM), iii. Question Answer Generation Module (QAGM).

to the mix. For the VAD datasets, the bounding
box annotations were already provided for a sub-
set of the videos from these datasets. Thus, we
only annotate the anomalies present in the AI-
generated videos. In this stage, we first break
down the raw videos into their constituent image
frames. Second, we select and filter 10 consec-
utive frames from the video that contain the in-
consistency. We annotate these selected frames
with a bounding box mentioning the type of in-
consistency. We consider the following inconsis-
tency types: ‘Sudden Appearance’, ‘Unnatural
Transform’, ‘Disappearance’, ‘Pass-through,
and ‘Unnatural Appearance’. Fig. 4 shows the
annotated ‘Unnatural Transform’ inconsistency
affecting the kangaroo’s legs and tails.

3.3.2 Caption Generation Module (CGM)

The second stage of our data collection process
involves the Caption Generation Module (CGM),
which uses the annotated video frames from FAM
to generate a high-quality and detailed caption
which describes the inconsistency, along with the
general events in the video. To generate the caption,
we design a specialised custom prompt (Sec. D.1),
and use the recently released GPT-4o (OpenAI,
2024) LMM, which has shown both impressive per-
formance gains and cost savings. Thus, GPT-4o
model takes in our custom prompt, along with the
annotated frames to generate the descriptive video
caption as shown in Fig. 4.

3.3.3 Question Answer Generation Module
(QAGM)

The final stage of our VANE-Bench construction
process involves using the generated caption from
CGM, and the annotated frames from FAM to out-
put the final high-quality, and challenging Ques-
tion and Answer (QA) pairs. We create another
custom prompt (Sec. D.2) which we pass to the
GPT-4o model, along with caption, and the anno-
tated frames as input to generate the QA pairs. The
selected raw frames containing the inconsistency,
and their corresponding generated QA pairs form
our VANE-Bench dataset.

4 Experiments and Results

Video-LMMs. We evaluate the anomaly detec-
tion and comprehension capabilities of both open-
source and closed-source models. Among the
open-source models, we evaluate 7 recent Video-
LMMs, including Video-LLaVA (Lin et al., 2023),
TimeChat (Ren et al., 2023), MovieChat (Song
et al., 2023), LLaMA-ViD (Li et al., 2023c),
VideoChat (Li et al., 2023b), Video-ChatGPT
(Maaz et al., 2023), and Video-LLaMA-2 (Zhang
et al., 2023a). For evaluating closed-source models,
we use Gemini-1.5 Pro (Google, 2023) and GPT-4o
(OpenAI, 2024).
Evaluation Protocol. For the evaluation of Gem-
ini and GPT-4o, we utilize their respective official
APIs, with each model receiving 10 video frames
as input. The 10 frames are selected in a manner
that encompasses all or the majority of the incon-
sistencies present in the video. In cases where an
anomaly spans a longer duration, we sample mul-

3128



Benchmark Category Vide
o-L

LaM
A

Vide
oC

ha
t

Vide
o-C

ha
tG

PT

Vide
o-L

LaV
A

M
ov

ieC
ha

t

LLaM
A-V

ID

Tim
eC

ha
t

Gem
ini

-1.
5 Pro

GPT4o

SORA 11.59 10.74 26.47 10.86 8.69 7.97 21.73 51.45 55.80

OpenSORA 18.00 28.00 22.00 18.00 10.00 14.00 26.00 84.00 68.00

Runway Gen2 16.00 4.00 12.00 16.00 1600 20.00 28.00 28.00 40.00

VideoLCM 10.57 17.64 18.26 19.23 14.42 19.23 22.11 49.04 50.96

Modelscope-T2V 10.41 20.83 16.66 16.66 6.25 14.58 20.83 75.00 64.58

Avenue 30.00 32.25 39.39 3.03 18.18 27.27 24.20 100.00 84.85

UCFCrime 9.47 11.57 31.57 10.52 18.51 15.78 7.30 76.84 83.16

UCSD-Ped1 16.66 13.33 40.00 2.77 6.66 6.66 27.58 96.67 93.33

UCSD-Ped2 5.55 13.88 19.44 6.06 11.11 19.44 11.11 94.44 86.11

Table 1: Evaluation results of Video-LMMs across different types of video samples on the VANE benchmark. We
present results for both open-source and closed-source models. The first five rows show results on AI-generated
videos and last four contain results on real world anomaly datasets.

tiple sets of 10 frames to ensure comprehensive
coverage. As GPT-4o does not inherently support
videos, we input the video clips as 10 frames to the
GPT API, accompanied by the corresponding Vi-
sual Question-Answering (VQA) query. For each
model under assessment, we generate responses
to the questions independently and without retain-
ing the conversation history. Few models, such
as Moviechat, output hallucinated responses when
instructed to answer the query. In such cases, we
consider the hallucinated responses as incorrect
answers due to the inability of the model to com-
prehend the situation in the video.
Evaluation metric. For the evaluation results of
the Video-LMMs on our proposed VANE-Bench
benchmark, we employ the standard VQA accuracy
measure, which assigns a score of 1 to each correct
answer and a score of 0 to each incorrect answer.

4.1 Main Evaluation Results

4.1.1 Evaluation on Video-LLMs

AI-Generated anomalies. The AI-generated
videos in our dataset are derived from five dis-
tinct models: SORA, OpenSORA, Runaway Gen-2,
VideoLCM, and Modelscope-T2V. In the majority
of these videos, the anomalies are subtle and not
readily apparent, even to the human eye. As previ-
ously stated in section 3.2, the synthetic anomalies
can manifest in five different forms. As shown in
Table 1, the performance of open-source models
in detecting anomalies in these videos is subpar.
Although closed-source models outperform their
open-source counterparts, their overall comprehen-
sion and detection of anomalies in the videos re-

main inadequate. This indicates that even robust
closed-source models encounter difficulties in iden-
tifying subtle anomalies within the videos.
Real-world anomalies. Our real-world anomaly
datasets benchmark, as discussed in section 3.2,
comprises four real-world datasets and focuses
on detecting crime-related irregularities, atypical
pedestrian behavior, and unusual events. These
anomalies are prevalent in real-world scenarios. In
our analysis, we find that open-source models en-
counter difficulties in locating and identifying these
anomalies. As shown in Table 1, these models per-
form poorly on these datasets. Conversely, we ob-
serve that closed-source models excel at detecting
such real-world anomalies, indicating that they can
effectively differentiate between unusual events in
real-world scenarios. This can be attributed to the
fact that these models are trained on a vast amount
of existing real-world, internet-scale data.

We provide results on additional latest Video-
LMMs in Section A.1 of Supplementary.

4.1.2 Human Evaluation
We conducted a human evaluation on SORA-
generated videos, which contain subtle and chal-
lenging anomalies that are difficult for humans to
detect (see Fig. 1 top row) in a single viewing.
Moreover, most of the video clips contain a mul-
titude of foreground and background characters
and elements, which makes it difficult for humans
to focus on the inconsistencies within the short
time frame. Some of the questions also specifically
inquire about inconsistencies present in the back-
ground characters of the clips rather than the fore-
ground ones. To ensure fairness, our human eval-
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Figure 5: Human vs Video-LMMs’ performance on
SORA. Performance comparison of humans vs Video-
LMMs on VQA task of detecting anomalies in SORA
dataset. We find that closed-source Video-LMMs per-
form comparably to humans while open-source Video-
LMMs struggle to detect subtle anomalies.

uation was conducted under a set of rules, which
include showing all 10 frames of the video to the hu-
man evaluator only once, followed by the question.
Our human evaluation comparisons are presented
in Fig 5. While humans outperform open-source
models in detecting these subtle anomalies, their
performance remains sub-optimal. This indicates
that, with the advancements in video generation
techniques, there is a pressing need for more so-
phisticated and effective Video-LMMs capable of
assisting in the detection of such challenging cases
capable of evading human eyes as well.

4.2 Additional Analysis

Inconsistencies in Predictions. We find that, in
the majority of cases, open-source Video-LMMs
generate different results when prompted to answer
the same query multiple times. Fig. 6 illustrates
a sample example where the same questions were
posed twice to the corresponding Video-LMMs,
yielding different responses. In some instances,
the answers generated by the Video-LMMs in both
rounds were dissimilar and incorrect. However, we
also found cases where Video-LMMs initially pro-
duced the correct answer, followed by an incorrect
answer to the same query, albeit phrased slightly
differently. This suggests that the majority of these
open-source Video-LMMs struggle to comprehend
the same query when presented in a different man-
ner, leading to inconsistent and paradoxical pre-
dictions. In contrast, closed-source Video-LMMs
are less prone to such inconsistent predictions and
consistently produce the same output for the same
queries, regardless of how they are phrased, indicat-
ing a superior comprehension of language. Refer
to supplementary Section B for additional results.
Performance Analysis on SORA anomalies. The

overall performance of open-source Video-LMMs
on anomaly categories in synthetically generated
SORA videos is subpar. To gain further insights, as
depicted in Figure 2 (left), all open-source Video-
LMMs exhibit less than 10% accuracy in detect-
ing the “disappearance" anomaly, indicating that
this particular type is the most difficult to iden-
tify for the majority of Video-LMMs. Among
the open-source models, Videochat demonstrates
above par performance compared to its open-source
counterparts on most anomaly types, with the ex-
ception of the "unnatural appearance" category,
where Timechat outperforms it. The remaining
models display a fluctuating trend, with accu-
racy levels ranging from extremely low to mod-
erately low across all anomaly types. The closed
source-models, on the other hand, demonstrate su-
perior performance compared to open-source mod-
els across all anomaly types.

We provide more insights and discussions in
Section A.4 of Supplementary material.

5 Conclusion

We introduced VANE-Bench, a comprehensive
benchmark for evaluating Video LMMs in VAD
tasks, featuring real-world and AI-generated video
clips. The AI-generated content, especially from
advanced models like SORA, includes subtle in-
consistencies, making VANE-Bench particularly
challenging. Our evaluation of nine recent Video-
LMMs on VANE-Bench shows significant gaps in
detecting video anomalies, with even robust closed-
source models struggling with nuanced discrep-
ancies. Human assessments on SORA-generated
videos confirm these subtle anomalies are challeng-
ing to identify, highlighting the need for advanced
Video-LMMs. VANE-Bench is vital for advanc-
ing Video-LMMs in anomaly detection. As high-
fidelity AI-generated content rises, our benchmark
is crucial for developing models to identify subtle
inconsistencies, aiding in the fight against misinfor-
mation and deepfakes. We hope VANE-Bench will
guide future research to enhance the robustness and
capability of Video-LMMs in this critical area.

6 Limitations

Our VANE-Bench is the first benchmark for eval-
uating Video-LMMs on anomalous videos from
both AI-generated and real-world sources. While
we have done our best to ensure a high-quality eval-
uation of these Video-LMMs, certain limitations
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Figure 6: Inconsistency in Predictions: Left: Video-ChatGPT and VideoChat predict accurately, while Video-
LLAMA selects incorrectly. Right: With a rephrased query, predictions shift. Video-ChatGPT and VideoChat err,
whereas Video-LLAMA predicts correctly. This indicates the sensitivity of Video-LMMs towards query rephrasing.

still manifest.
Our Question-answer pairs are designed to have

4 options. We design the instruct prompt to ensure
that each Video-LMM outputs one out of 4 options.
However, in some instances, the model outputs a
hallucinated response and does not follow the in-
structions. As a result, we employ a post-response
human-based filtration process, which involves an
exhaustive verification and rectification of these
errors. In our current setup, we mark these cases
as wrong. We believe that future Video-LLMs will
be more aligned with human intent and will follow
human instructions appropriately.

Additionally, the video samples from the SORA
are limited in VANE-Bench. This is due to the fact
that SORA model is not open-source yet, hence
we rely on publicly available samples of SORA for
evaluation.
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Appendix
In the following sections, we provide additional

information for the paper: VANE-Bench: Video
Anomaly Evaluation Benchmark for Conversa-
tional LMMs. The contents are organized in the
following order.

• Additional Findings and Results (Ap-
pendix A)

• Additional Results on Prediction Inconsis-
tency (Appendix B)

• Importance of Frame Annotation Module
(FAM) (Appendix C)

• Implementation Details (Appendix D)

• Distribution of VANE-Bench dataset (Ap-
pendix E)

A Additional Findings and Qualitative
Results

A.1 Additional Quantitative Results
Video-LMMs are fewer in number compared to
image-based multi-modal models, which limits the
range of options available for evaluation. Given this
scarcity, we selected 7 open-source and 2 closed-
source LMMs that are currently among the most
widely used. To ensure that our benchmark remains
representative, we have also included additional re-
sults from other latest open-source LMMs: (Ataal-
lah et al., 2024a,b; Li et al., 2024a), as shown in
Table 2. Our findings reveal that open-source mod-
els still lag behind their closed-source counterparts
in performance, indicating that simply adding more
models wouldn’t necessarily improve the overall
representativeness of our benchmark. Our selected
set, which includes both open-source and closed-
source models, is already comprehensive, featuring
state-of-the-art models like GPT-4o and Gemini-
1.5 Pro. Given the limited number of Video-LMMs
available, our reliance on this specific set of models
is justified, as it accurately represents the current
landscape of Video-LMM capabilities.

A.2 Qualitative Results
In Fig. 8, we showcase the response of both open-
source and closed-source Video-LMMs on anoma-
lous video samples from our VANE-benchmark.
The query to the Video-LMMs contains the video
and a question with multiple options associated

Benchmark Category LLaVA-NeXT MiniGPT4-Video Goldfish

SORA 11.59 10.74 26.47

OpenSORA 18.00 28.00 22.00

Runway Gen2 16.00 4.00 12.00

VideoLCM 10.57 17.64 18.26

Modelscope-T2V 10.41 20.83 16.66

UCFCrime 9.47 11.57 31.57

UCSD-Ped1 16.66 13.33 40.00

UCSD-Ped2 5.55 13.88 19.44

Table 2: Evaluation results of additional latest Video-LMMs
across different types of video samples on the VANE bench-
mark. We present results for both open-source and closed-
source models. The first five rows show results on AI-
generated videos and last three contain results on real world
anomaly datasets.

with the specific anomaly present in the video. The
anomalies in Fig. 8 constitute pass through (first
row), unnatural appearance (second row), sudden
appearance (third row), disappearance (fourth row)
and unnatural transformation (fifth row).

A.3 VANE-Bench frequent instances

Figure 7: Frequent keywords: Illustration of the
most frequent keywords in the correct option set of
VANE benchmark. These keywords signify the objects
or human attributes in the videos that are most likely to
exhibit anomalous behavior

Figure 7 presents a word cloud visualization,
highlighting the most frequently occurring key-
words within the correct option set of the VANE-
Benchmark dataset. These prominent words are
indicative of objects or human attributes in the
videos that are most likely to exhibit anomalous
behavior. From the figure, the most frequently oc-
curring keyword is "Face" which indicates that the
synthetically generated videos most likely struggle
to generate a perfect human face.

3134



A.4 Additional Discussions on Experimental
Results

Per anomaly performance: To give further in-
sights, Figure 2 (left) of the main paper illustrates
the performance of LMMs on each type of anomaly
present in the AI-generated videos. We can ob-
serve that closed-source models like GPT-4o and
Gemini-1.5 Pro consistently exhibit strong perfor-
mance across all five anomaly categories compared
to their open-source counterparts. This likely stems
from their access to significantly larger training
datasets and model parameters, allowing for a more
robust understanding of visual anomalies. Con-
versely, open-source models exhibit fluctuating per-
formance depending on the anomaly type. We also
note that open-source models struggle, especially
with the “disappearance” anomaly. We believe that
it might be because of the fact that these models
are trained on datasets focusing on the presence
of objects and actions, and hence being more bi-
ased towards presence. Further, we believe that
open-source models suffers from limited tempo-
ral reasoning capability and often use short-term
mechanisms that limit their ability to track objects
over time. The lack of datasets focusing on anoma-
lies like “disappearance” also limits the model’s
capability to detect such patterns.

Higher performance of some LMMs: As seen
in Table 1 and Figure 5 of main paper, we notice
that some open-source LMMs perform better than
their counterparts. For instance, we notice Video-
ChatGPT achieves higher performance compared
to other open-source models. We believe that it
might be because of the following two reasons: 1.
Training Data: While most open-source models
rely solely on web-scraped video captioning data,
Video-ChatGPT incorporates a manually annotated
video instruction dataset specifically designed for
video understanding. This provides the model with
a more direct and targeted learning experience, po-
tentially enhancing its sensitivity to anomalies. 2.
Two-Stage Training: Video-ChatGPT employs a
two-stage training process involving both video-
language pre-training and instruction tuning. This
enables the model to first develop a strong under-
standing of general video semantics and then refine
its ability to follow user instructions and reason
about specific events within videos.

B Additional results on Prediction
inconsistency

As discussed in section 4.2 almost all Video-LMMs
generate different results when prompted to answer
the same query rephrased multiple times. While
it is most common in open-source Video-LMMs,
we found that closed-source Video-LMMs occa-
sionally suffer from this problem as well. Fig. 9
illustrates additional sample examples where the
same questions (phrased slightly differently) were
posed twice to the corresponding Video-LMMs,
yielding different responses.

We find that, in the majority of cases, open-
source Video-LMMs generate different results
when prompted to answer the same query mul-
tiple times. Fig. 6 illustrates a sample example
where the same questions were posed twice to the
corresponding Video-LMMs, yielding different re-
sponses. In some instances, the answers gener-
ated by the Video-LMMs in both rounds were dis-
similar and incorrect. However, we also found
cases where Video-LMMs initially produced the
correct answer, followed by an incorrect answer
to the same query, albeit phrased slightly differ-
ently. This suggests that the majority of these open-
source Video-LMMs struggle to comprehend the
same query when presented in a different manner,
leading to inconsistent and paradoxical predictions.
In contrast, closed-source Video-LMMs are less
prone to such inconsistent predictions and consis-
tently produce the same output for the same queries,
regardless of how they are phrased, indicating a su-
perior comprehension of language.

C Importance of Frame annotation
module

Since the video inconsistencies present in state
of the art AI models like SORA are quite subtle,
and hard to detect, our Frame Annotation Module
(FAM) ensures that we are able to generate high-
quality and accurate captions for these videos. As
shown in Fig. 10, without FAM, the generated cap-
tion is not able to describe the sudden appearance
of the kangaroo’s right foot near its tail. Further,
the caption generated without our FAM is also not
able to describe the extra set of paws that appear
suddenly from the legs of the cat. Thus, FAM plays
an important role in curating high-quality and ac-
curate video captions.
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D Implementation Details

We use the official code of each open-source Video-
LMM for evaluation. Each of these codes are im-
plemented in pytorch framework. We evaluate each
one of them on a single NVIDIA A100 40GB GPU.
For closed source Video-LMMs, we use their re-
spective API for evaluation. We use GPT-4o (Ope-
nAI, 2024) as our LMM to generate the captions
and the final QA pairs in VANE-Bench. Next, we
describe the prompts used in our Caption Gener-
ation Module (CGM), Question Answer Genera-
tion Module (QAGM), and in evaluating various
Video-LMMs on VANE-Bench in the subsequent
subsections.

D.1 Caption Generation Module (CGM)

System Prompt: You are a helpful and intelli-
gent AI assistant which can generate informative
captions for a given input of 10 consecutive im-
ages/frames from a video. The video is generated
from an AI text-to-video diffusion model and has
some obvious inconsistencies or anomalies in the
form of various deformations, unrealistic physical
transformations, unnatural appearance of objects,
human faces, body parts, or sudden appearance,
disappearance, or merging of objects. Your task is
to generate a descriptive caption for the given input
video, highlighting the inconsistencies or anoma-
lies present in the video.
Text Prompt: Please generate a detailed caption
which describes all the given frames. Some of the
frames may contain inconsistencies which are anno-
tated with a green bounding box around them with
the type/name of the inconsistency. Your gener-
ated caption should capture the details of the entire
video, while also describing all the inconsistencies.
Thus, properly look at all the given frames and
the region marked by the green bounding boxes
when describing the inconsistencies. Further, make
sure to mention specific details about each of the
inconsistencies, and mention the exact names of
the inconsistencies from the marked green bound-
ing box. Also, while describing the inconsistency
please be as specific and detailed as possible, don’t
be vague or general about the inconsistency. The
reader of the caption should perfectly understand
what inconsistencies/anomalies are in the video and
what the video is about. Do not mention the green
bounding box in your response; it is only for you to
identify the inconsistencies. Make sure to describe
all the inconsistencies in your caption. Do not ana-

lyze the impact of the inconsistencies; you should
only describe them. There is no need to mention
when the inconsistencies start or end, just describe
them.

D.2 Question Answer Generation Module
(QAGM)

System Prompt: You are a helpful and intelligent
AI assistant which can curate high-quality and chal-
lenging question and their corresponding answers,
which are used to test the video understanding ca-
pabilities of an multi-modal LLM model capable
of taking videos as their inputs.
Text Prompt: You are given a video input, which is
generated by a state-of-the-art AI algorithm. Thus,
these videos look very natural and almost realistic,
but they are actually synthetic and generated by
an AI algorithm. The videos may have some in-
consistencies or anomalies present in them, which
are generally localized to only a specific location
in the video as identified by the green bounding
boxes in the video. The rest of the video appears
completely natural or realistic. This specific in-
consistency may last for only a few frames of the
video or may last for the entire video itself. The
inconsistency or anomalies in the video are gener-
ally events and phenomena which is not observed
in real-world and physical scenarios. You will also
be given a caption as input that describes the video,
along with the specific inconsistency present in the
video. Based on the given video and caption input,
your task is to formulate 3 diverse and misleading
questions to test whether the multi-modal LLM
model can correctly identify the options based on
the inconsistencies present in the video or not. So,
your generated questions should give the model
few options to choose from to make its answer, and
these options should be of high quality and also
have misleading choices so that you can test deeper
level of understanding of these multi-modal LLM
models. Thus, the goal of these questions is to ac-
curately assess the multi-modal LLM’s ability to
accurately identify the inconsistencies present in
the video. Generate questions that comprise both
interrogative and declarative sentences, utilizing
different language styles, and provide an explana-
tion for each. Your response should be presented as
a list of dictionary strings with keys ’Q’ for ques-
tions and ’A’ for the answer. Follow these rules
while generating question and answers:

1. Do not provide answers in the question itself.
For example, the ground-truth attribute or compo-
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nent that makes the video scene unusual should
never be mentioned in the question itself.

2. Ensure the questions are concrete and specific,
and not vague or ambiguous.

3. The questions should be formed based on your
deep understanding of the video and the caption.
Thus, properly read the caption and look at the
given video to generate the questions.

4. The questions should only pertain to the in-
consistencies present in the video, and not about
the video in general.

5. You may also ask the model some mislead-
ing questions talking about non-existent inconsis-
tencies in the video, to test the model’s ability to
differentiate between real and fake inconsistencies.

6. Do not ask vague questions, and the answer
should only contain one of the correct option men-
tioned in the question.

7. In your question itself you must provide mul-
tiple choice options for the answer, and the answer
should be one of the options provided in the ques-
tion. Please ensure you provide option choices and
their corresponding letters in the question itself.

8. In your answer, only mention the correct
option letter from the question. Make sure that the
correct option letter is not always the same, and
randomly shuffle the correct option letter for each
question.

9. You must only follow the below output format
and strictly must not output any other extra informa-
tion or text. Your output format should be strictly
as follows, without any additional information or
text:

["Q": ’first question A) <option1> B) <option2>
C) <option3> D) <option4>’, "A": ’Pick the cor-
rect option letter from A) B) C) D)’, "Q": ’second
question A) <option1> B) <option2> C) <option3>
D) <option4>’, "A": ’Pick the correct option letter
from A) B) C) D)’, ... }]

Given below is the caption input which describes
the given video along with the specific inconsis-
tency present in the video. The caption is: {cap-
tion}

D.3 Evaluating Video-LMMs
System Prompt: You are a helpful and intelligent
multi-modal AI assistant, capable of performing
visual question-answering (VQA) tasks. You will
be given as input 10 consecutive frames from a
video, and a corresponding question related to the
video, you have to answer the given question after
analyzing and understanding the given input video.

The question itself will present you with 4 lettered
options like A) B) C) D), your task is to only output
single letter corresponding to the correct answer
(i.e. string literal ’A’, ’B’, ’C’, or ’D’), and you
should not output anything else.
Text Prompt: {question}

E Distribution of VANE-Bench dataset

How to view the dataset? The dataset alongside
metadata will be hosted on the Hugging Face plat-
form for download post acceptance of the paper.
Users can directly load the dataset using Hugging
Face Datasets library or download the zip file in
the same Hugging Face repository. All instructions
and code files to reproduce the experiments of the
paper will be provided in a github repository.
How will the dataset be distributed? The dataset
will be distributed to the public using the Hugging
Face Dataset Hub. We have publicly released the
codebase alongside instructions to reproduce and
evaluate models on GitHub.
Dataset License. This work and dataset is li-
censed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International Li-
cense. The videos in the VANE-Bench dataset are
collected from publicly available sources and ex-
isting real-world datasets and are for academic re-
search use only. The video generative models used
to synthesize data samples in our VANE-Bench
benchmark are open to use publicly and do not
pose any privacy concerns as the persons or ob-
jects present in the generated videos are synthetic
and do not exist in the real world. The real-world
surveillance datasets - UCFCrime (Sultani et al.,
2018), UCSD Pedestrian (Li et al., 2014), Avenue
(Lu et al., 2013); on the other hand, used in our
work are all existing well-known and publicly avail-
able datasets that are released under open-source li-
censes. Thus, the original creators of these datasets
have collected the data after taking informed con-
sent from the stakeholders. By using VANE-Bench,
you agree not to use the dataset for any harm or un-
fair discrimination. Please note that the data in this
dataset may be subject to other agreements. Video
copyrights belong to the original dataset providers,
video creators, or platforms.
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Figure 8: Qualitative examples: Figure shows the response of Video-LMMs to the VQA task of detecting anomalies
in the video. The correct answer is written in bold in the user query. We find that majority of Video-LMMs struggle
to answer the questions correctly.
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Figure 9: Prediction Inconsistency: Figure shows the response of Video-LMMs to the VQA task of detecting
anomalies in the video. The correct answer is written in bold in the user query. We find that the majority of
Video-LMMs struggle to answer the questions correctly.
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Figure 10: Example showcasing the importance of our Frame Annotation Module (FAM). We note that without
FAM, the LMM responsible for generating the captions is not able to identify or describe the accurate anomaly
present in the video. However, by providing the bounding box annotation for the inconsistency, we are able to
ensure that the generated caption accurately describes the anomaly in the video.
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