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Abstract

Open-set domain generalization (OSDG) aims
to enhance the robustness of the model when
facing both domain shift and label shift, high-
lighting a wide range of potential in real-world
applications. However, previous OSDG meth-
ods can only recognize seen objects and mark
all unseen objects as "unknown" categories
during inference, which is far from satisfac-
tory. In this paper, we explore the scenario
of referring video segmentation to study how
to make the model maintain good segmenta-
tion ability for unknown objects under OSDG
setting. To bridge the huge gap caused by
label shift, we propose CLIP-based Reason-
ing Prompt (CRPrompt), which can combine
text and visual prompts together to improve
text-object matching ability of CLIP, transfer-
ring the segmentation ability to unseen classes
based on the knowledge learned from seen
classes and large-scale text-image pairs, i.e.,
color, shape, spatial relationships. Meanwhile,
to improve the robustness of CRPrompt, we
propose Retrieval-augmented Instance Normal-
ization (RaIN), which can effectively enhance
the robustness of the model by retrieving vi-
sual objects with similar semantic concepts
through input query and performing Instance
Norm among them. Extensive experiments on
open-set and zero-shot domain generalization
tasks demonstrate the effectiveness of our ap-
proach.

1 Introduction

As one of the most important visual-language un-
derstanding tasks, question-based video segmen-
tation(Gavrilyuk et al., 2018; Wang et al., 2019,
2020) has been widely studied, aiming to predict
pixel-level masks for actors or objects in videos
based on the given natural language query. Nev-
ertheless, these works are all based on large-scale
manual labeling, human annotators must label ev-
ery possible pixel in thousands of frames. More-
over, real-world applications present a highly com-

plex scenario: models trained on the source domain
may not only encounter distribution deviations in
the target domain (domain generalization problem)
but also face previously unseen categories (open-
set problem). It is very unrealistic to rely on hu-
man annotation in every new situation. As we can
see in Figure 1 (a), compared with the source do-
main (A2D dataset), target domain (RVOS dataset)
contains novel nouns and objects, i.e., "frisbee".
And the visual features from different domains
also have domain shifts in many aspects, i.e., back-
ground, lighting, appearance, and action of actors.
These kinds of label shift and domain shift will
dramatically decrease the segmentation ability of
the model, as shown in Figure 1 (b).

To mitigate the aforementioned issues, two novel
paradigms have been introduced: open-set domain
adaptation (Bucci et al., 2020; Jang et al., 2022)
and open-set domain generalization (Zhu and Li,
2021; Yang et al., 2022). These works segregate
the target-unknown features while only aligning
the source and target-known distribution, success-
fully separating seen and unseen classes in target
domains. However, there is still an intrinsic limi-
tation of these methods, that is, all unseen objects
will be marked as "unknown" category, which ob-
viously cannot meet the requirements of referring
segmentation task. In this paper, our objective is to
develop a model that is not only robust enough to
resist domain shifts but also capable of maintaining
high segmentation performance when encountering
new categories.

Previous works (Wang et al., 2022; Zhong et al.,
2022) use CLIP’s (Radford et al., 2021) power-
ful text-image pairing capabilities to match words
with image regions, which can achieve zero-shot
segmentation results. However, these methods are
over-dependent on the pre-trained CLIP model,
yielding several shortcomings: 1) CLIP focuses
more on global information, while the referring
video segmentation requires fine-grained interac-
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an elephant with a man in a red shirt 
and a woman in a tank top on it

Query: a frisbee being 
held in the mouth of a 
dog

Query: the dog is walking
towards the woman on
the right

Source

Target

Seen Object: People, Dog

Seen Object: People, Dog

Unseen Object: Frisbee

Label 
Shift

Domain
Shift

Domain Divergence: Appearance, Background, Lighting, Action…

(a) (c)(b)

Figure 1: (a) The illustration of the label shift and domain shift in our task. (b) The necessity of introducing OSDG
methods (left: A2R, right: R2A). As we can see, the performance of the model drops a lot under domain shift and
label shift. (c) The illustration of our main idea in this work. Even though the object "elephant" is unknown, the
model can align the known text-object pairs together, combining these clues and spatial relationships to localize the
right region of the described elephant.

tion between visual regions and text fragments. 2)
These approaches overlook the use of relationships
among visual regions and reference contexts, and
lack effective multimodal alignment strategies (Xia
et al., 2024; Huang et al., 2024b,a), making them
unable to judge unseen categories. 3) Furthermore,
these CLIP-based methods do not consider the per-
formance degradation caused by domain shifts.

For humans, a common practice is to combine
the spatial relationships described in the reference
and the visual concepts that have seen before to-
gether, to reason about which object region is the
unfamiliar noun in the question refers to. As we
can see in Figure 1 (c), although the model has not
seen "elephant" before, it still can use the known vi-
sual concepts "man" and "woman", and the learned
text-visual knowledge like "red" and "top on it", to
localize the right elephant. This process of using
existing knowledge as a prompt is similar to the
prompt learning in NLP (Lester et al., 2021; Shin
et al., 2020), and has also made progress in vision-
language tasks (Zhou et al., 2022; Yao et al., 2021).
Inspired by this, we develop CLIP-based Reason-
ing Prompt (CRPrompt), which combines CLIP
and prompt engineering together to reason unseen
object categories based on knowledge learned from
seen categories, effectively mitigating label shift
problems. We design two different reasoning ways
to train the text and visual prompts, implicit rea-
soning and explicit reasoning. Thereby, visual
concepts, text information and spatial logical re-
lationships can be aligned together in the latent
space. When facing new object categories during
test, the model can make use of the known objects
around that have been seen in source domains, or

the learned knowledge, i.e., color, shape, and spa-
tial relationships, to predict the right regions.

To further improve the robustness of the model
to resist domain shifts, we design a novel module
named Retrieval-augmented Instance Normaliza-
tion (RaIN). RaIN can retrieve several objects simi-
lar to the current visual concept from a dynamically
updated memory based on the reference text. Then
we extract the statistical style from these similar
visual features to update the current object, simulat-
ing the different styles that the current object may
have in the unknown domain. Compared with tra-
ditional Adaptive Instance Normalization (AdaIN)
(Huang and Belongie, 2017; Peng et al., 2022) that
can only update the feature style within the same
batch, our RaIN can introduce arbitrary external
knowledge to apply meaningful data augmentation.
To be summarized, our contribution is threefold:

• To the best of our knowledge, this work is the
first attempt to solve open-set domain gener-
alization problem on multi-modal task, which
is fundamentally more challenging.

• We bring up a novel framework named CR-
Prompt, which can make full use of learned
visual-language cues to predict unknown ob-
jects. Also our proposed RaIN can improve
the robustness of the main model against do-
main distribution divergence.

• The extensive experiments on open-set and
zero-shot domain generalization tasks demon-
strate that our methods can effectively mit-
igate the performance degradation problem
caused by label and domain shift.
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2 Preliminary and Related Work

2.1 CLIP for Semantic Segmentation

CRIS (Wang et al., 2022) modifies the vanilla CLIP,
enabling it with text-to-pixel interaction ability
however, it lacks the zero-shot segmentation ability.
(Lüddecke and Ecker, 2022) design three different
image operations which can improve the alignment
between the object and text prompts. RefCLIP
(Subramanian et al., 2022) employs a semantic tree
to analyze the spatial relationships of phrases in the
queries, then use these phrases to predict the cor-
responding regions of the images. These methods
(Lüddecke and Ecker, 2022; Subramanian et al.,
2022) have proven zero-shot ability in combination
with CLIP in referring image segmentation tasks.

2.2 Open-set Single Domain Generalization

Single domain generalization aims to improve the
model’s generalization ability learned from just one
single source domain. Previous works only assume
the label spaces of source and target domains are
the same (Wang et al., 2021; Qiao et al., 2020),
while in realistic scenarios, different scenes often
contain different object categories. To alleviate this
problem, (Zhu and Li, 2021) bring up a new setting,
open-set single domain generalization (OS-SDG).
They introduce a CrossMatch approach to generate
auxiliary unknown class samples with adversarial
data augmentation strategy. (Yang et al., 2022)
think the unknown class is the closest class to any
known class. Thus they propose an (n+1)-way clas-
sifier for n known classes where the second-largest
prediction score is for unknown class. These works
aim to separate the unseen objects from the seen ob-
jects during test, only classifying the seen objects.
However, in this work, we hope that the model can
not only recognize the unknown categories but also
accurately segment them, even though the target
word in the query and the object in the frame have
not been learned before.

2.3 Open-Vocabulary and Zero-Shot
Visual-Language Understanding

Open-vocabulary and zero-shot learning have been
extensively explored in various visual-language
tasks, such as image recognition, object detection,
and retrieval. However, these approaches have
primarily targeted other domains, with limited at-
tention given to semantic segmentation, which re-
mains relatively unexplored in this setting. Re-
cent works like CLIP (Radford et al., 2021) and

ALIGN (Jia et al., 2021) have demonstrated im-
pressive zero-shot capabilities in vision-language
alignment tasks, but they are designed mainly for
image-level classification and retrieval rather than
fine-grained, pixel-level tasks like segmentation.
Gu et al. (2021) extend zero-shot learning to object
detection but do not focus on segmentation. Meth-
ods such as Ghiasi et al. (2022) and Chen et al.
(2023) have explored open-vocabulary recognition,
but they rarely address the specific challenges of
pixel-wise segmentation, where accurate boundary
delineation is critical. In summary, while open-
vocabulary and zero-shot learning have made sig-
nificant strides in broader vision-language tasks,
their application to semantic segmentation is still
in its early stages, offering room for further explo-
ration.

3 Method

3.1 Problem Setting and Model Overview

First we give a detailed description of referring
video segmentation problem: given a natural lan-
guage query Q and its counterpart video frames V ,
the model is required to generate accurate segment
masks on the objects related to the input query. Un-
der open-set single domain generalization setting,
the model should improve its generalization ability
against both domain shift and label space shift on
unseen target domains T ∈ {T1, ...TW } with the
segmentation model trained only on single source
domain S . The label space Ct of the target domain
has novel classes that do not belong to the source
domain Cs, Cu

t = Ct\Cs, C
u
t ̸= Ct. Following

(Zhu and Li, 2021), we formulate the worst-case
problem in our problem as follows:

min
ϕ

supE[Lseg(ϕ;Qk, Vk; Tk) + Lseg(ϕ;

Qu, Vu; Tu) : D (S, Tk) ≤ ρ1, D (Tk, Tu) ≤ ρ2],

(1)

where Qk, Vk are query and visual representations
in known classes domain Tk; Qu, Vu are query and
visual representations in unknown classes domain
Tu. To bridge this gap, we propose a CRPrompt to
transfer the segmentation ability to unseen classes
against label shift based on the knowledge learned
from seen classes and large-scale text-image pairs
used in pre-trained CLIP model(Section 3.3), and
design a RaIN to improve the robustness of the
model to against domain shift(Section 3.4).
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Figure 2: The overview of our proposed CRPrompt. We first divide the given query Q into two parts: the subject part
Q1 to be identified, and the remaining part Q2 that describes Q1. We use CoCoOp to perform prompt engineering
on Q1 and Q2, and then design two kinds of reasoning: (a) in the implicit reasoning, we incorporate Q2 into
pre-extracted class-agnostic mask proposals to perform contrastive predict learning with the subject part Q1; (b) in
the explicit reasoning, we select the most matching proposal corresponding to the subject, then integrate the selected
proposal into the backbone network.

3.2 Baseline Model
Different from previous work using Maskformer
(Cheng et al., 2021) as a backbone to segment all
objects in the image, we need to locate the spe-
cific object that matches the text description in the
video. Therefore, following with previous work
(Hui et al., 2021), we use an I3D layer (Carreira
and Zisserman, 2017) as our encoder and decoder,
we divide the visual features in the encoder and
decoder layers into K different scales respectively,
denoted as V̂k ∈ RHk×Wk×C , where Hk, Wk and
C are height, width and channel number of the
i-th visual feature, respectively. We use Bert to en-
code question as Q̂, since Bert can extract semantic
features more robustly when encoding texts with
different styles from different domains. We use the
visual-language cross-attention network on each vi-
sual scale following (Wang et al., 2019) to achieve
cross-modal interaction. Besides, to reduce the gap
between seen and unseen classes, we extract M
mask proposals {v1, v2, ..., vm} for each video us-
ing pre-trained models such as Mask-RCNN(He
et al., 2017), then we use our proposed CRPrompt
to select the most relevant proposal from these
mask proposals, and integrate it into the main seg-
mentation backbone network.

3.3 CLIP-based Reasoning Prompt
Prompt Engineering. Prompt is an ideal handle to
exhaustively leverage the pre-trained knowledge of
CLIP, which has been proven useful for boosting
CLIP’s generalization ability in a zero-shot manner
(Shu et al.; Zhou et al., 2022). In this work, we try

to combine language and visual cues together to
design prompts for input questions. Specifically,
given a natural language query Q, which consists of
two parts, the subject part Q1 to be located and the
remaining part Q2 describing Q1. Following (Sub-
ramanian et al., 2022), we use spaCy (Honnibal
and Johnson, 2015) to split the input reference into
several independent phrase fragments, the subject
part Q1 is always at the beginning, then we con-
nect the following descriptive phrases with "and"
as Q2 (see Appendix for more details). We intro-
duce text prompts and visual prompts in Q1 and
Q2, respectively:

P1 = CLIPtext[L1;Q1;L2]⊕ Pv (2)

P2 = CLIPtext[L3;Q2]⊕ Pv, (3)

where L1 is "Localizing ", L2 is ", which is the
main object to be segmented.", L3 is "Find clues
to locate the previously mentioned subject from the
following objects and relationships, ", Pv is the
visual prompt generated from video frame features
using CoCoOp. The natural language prompt can
let the model know which phrase is the subject
to be recognized and which phrases can provide
useful clues to help identify the subject. The vi-
sual prompt can allow the model to dynamically
adjust the prompt according to the visual content,
improving the generalization ability to unknown
categories.

Reasoning. We design two kinds of reasoning
to fine-tune the prompt, explicit reasoning and im-
plicit reasoning. For the implicit reasoning, we
first resize the visual frames and M mask proposals
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to CLIP resolution, and connect them together with
a [CLS] token: V̂ = {vcls, v, v1, v2, ...vm}. The
introduction of the entire video frame embedding
v can facilitate the model to get a holistic under-
standing of the spatial relationship among these
object proposals. We feed P2 and V̂ into an En-
coder layer that maps text-visual modalities to a
shared semantic space, which consists of two lay-
ers of cross-attention and self-attention (see Figure
2 for more details). We use a Bidirectional GRU
to compress P1 as p ∈ RD, and choose vcls as an
overall representation of visual contents, then we
use vcls to predict p:

Lconst = −log
exp(sim(vcls · pi)/τ)∑N

n=0 exp(sim(vcls · pn)/τ)
,

(4)
where sim(, ) denotes the cosine similarity, N is
the batch size, τ is the temperature of the softmax
function. In this way, the knowledge related to
the main object will be extracted from P2 and V̂
to predict the right subject, which in turn makes
the model prone to find the most relevant mask
proposal through P1 during explicit reasoning.

In the explicit reasoning stage, the model needs
to select the most matching mask proposal ac-
cording to the subject, then incorporate it into the
main segmentation network as auxiliary informa-
tion, which is also an important step to achieve
zero-shot referring segmentation ability. We first
integrate the information related to the subject from
P2 into P1 with cross-attention, such as surround-
ing objects, spatial relationships, etc. Therefore,
the model has a more comprehensive understand-
ing of the context information around the subject,
promoting the performance when predicting the
corresponding object proposal. Then we use Bidi-
rectional GRU to compress P1 as p̂, and compute
the similarity scores S = {s1, s2, ..., sM} between
p̂ and the mask proposal lists:

S = Softmax[sim(p̂, v1)/τ, ..., sim(p̂, vM )/τ ],
(5)

then we multiplied these scores with the corre-
sponding proposals to get a new combined heat
map: H = s1 ∗ v1 + s2 ∗ v2 + ...sM ∗ vM , where
the region matching the subject has a larger weight.
The utilization of H is introduced in section 3.5.

3.4 Retrieval-Augmented Instance
Normalization

As we can see from Figure 1 (a), divergences in the
appearance, action mode, shape, and background

distribution of the same type of objects in differ-
ent domains are the main reason causing domain
shift, making it difficult to associate the correct
text-object region when the model trained in the
source domain migrates to the target. Previous
works (Nam et al., 2021; Peng et al., 2022) use
AdaIN to introduce statistics from other data within
the same mini-batch, increasing the style diversity
of samples while keeping their content unchanged,
which can enhance the robustness of the model.
However, the style introduced by these methods
is limited into a mini-batch, and it is difficult to
select appropriate data to effectively enhance the
samples. Thus in this work, we propose Retrieval-
Augmented Instance Normalization (RaIN), which
can use the powerful text-image matching ability of
the CLIP model to select a series of similar objects
that are most consistent with the semantics of the
current questions, and extract statistical styles from
them to enhance the current sample. Specifically,
similar to Moco (He et al., 2020), we maintain the
dictionary D as a queue of object mask proposals,
the objects in the dictionary can be replaced pro-
gressively. Then we use CLIP model to select Top
k objects from D to update the current object lists.
After RaIN, we can obtain the enhanced visual fea-
ture Ṽ , we replace V̂ with Ṽ to do CRPrompt in
Section 3.3: Ṽ = {vcls, v, ṽ1, ṽ2, ...ṽm}.

3.5 Training

Following (Hui et al., 2021), we use multi-scale
encoder-decoder architecture as our backbone net-
work, the shape in each scale layer can be denoted
as V̂k ∈ RHk×Wk×C(k ∈ {1,K}), in this work,
we set K as 5. We use two convolution layer to
compress the heat map H into the same size as
Ĥ ∈ RH2×W2×C , and integrate Ĥ into V̂2 with
a feed-forward layer: V̂2 = FF (Ĥ ⊕ V̂2). We
also introduce a feed-forward layer to integrate the
query prompt P = [P1;P2] into the Bert encoding
result Q̂. After training, we can obtain multi-scale

response map {{ski,j}
Hk

i ×Wk
j

i=1,j=1 }(k ∈ [1,K])) from
the output of each decoder layer, and the ground-

truth pixel-level annotations {{yki,j}
Hk

i ×Wk
j

i=1,j=1 }(k ∈
[1,K]), yki,j ∈ {0, 1}), we can compute the multi-
scale segment loss with binary cross-entropy loss:

Lseg = − 1

K

1

HkWk

Hk∑

h=1

Wk∑

w=1

(CE(yi,j , si,j)) (6)

The total loss function is L = Lseg + Lconst.
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Figure 3: The RaIN can align the distribution between
S and Tk, then the CRPrompt can transfer knowledge
learned from seen objects in S and Tk to unseen objects
in Tu.

3.6 Remark

As illustrated in Figure 3, our model uses two
steps to gradually minimize the distance between
the source domain S and the target unknown do-
main Tu. First, we use the proposed RaIN to
constraint the distribution divergence between S
and Tk: D (S, Tk) ≤ ρ1. Then we use the knowl-
edge learned from S to facilitate CLIP model
to align the unknown words Qu and unseen vi-
sual regions Vu. The seen objects Qk and Vk in
Tk, and the large-scale text-image paired knowl-
edge existing in CLIP, can serve as a bridge to
transfer the segmentation ability from S to Tk.
Thus we can minimize the distance between S
and Tk: D (S, Tu) ≤ [D (S, Tk) +D (Tk, Tu)] ≤
(ρ1 + ρ2).

4 Experiments

4.1 Datasets and Generalization Tasks

A2D Sentences is first released by (Gavrilyuk et al.,
2018), they provide corresponding natural lan-
guage descriptions for each video in Actor-Action
Dataset (Xu et al., 2015). It has a total of 3,782
videos, which contain 8 action classes and 7 actor
classes (e.g. adult, dog, cat).

Refer-Youtube-VOS (RVOS) is first extended
on the Youtube-VOS dataset by (Seo et al., 2020),
which contains 3975 high-resolution videos with
94 common object categories.

In this paper, we mainly study Open-set Do-
main Generalization (OSDG) task, we use the
above-mentioned A2D and RVOS datasets to train
the model on one dataset and then test its general-
ization ability on another dataset (A2R & R2A).
The target domain has at least 3 object types that
do not appear in the source domain. More details
about A2R and R2A generalization settings can be
found in appendix.

4.2 Baselines and Evaluation Metrics

We compare our method with several state-of-
the-art open-set referring segmentation models:
CLIPSeg (Lüddecke and Ecker, 2022), ReCLIP
(Subramanian et al., 2022), ZSSeg (Xu et al., 2021),
and DG models: AdaIN (Huang and Belongie,
2017), Instance Selective Whitening (ISW) (Choi
et al., 2021). Following previous works, we adopt
intersection-over-union (IoU) to measure the model
segmentation ability, more implementation details
can be found in the appendix.

4.3 Main Results

We compare our proposed approach with a series
of state-of-the-art open-set referring segmentation
models and domain generalization methods on two
datasets. We reimplement these state-of-the-art
methods on the new proposed task. The main eval-
uation results are presented in Table 1. From the
results we can see that our method achieves remark-
able performance gains of about 4∼7% than the
baseline model on two generalization directions,
demonstrating the effectiveness of our approach.
Using the DG method alone can slightly improve
the performance of the model in unknown domains,
but the improvement is less obvious as using the
CLIP-based open-set segmentation methods. We
think there are two main reasons: 1. in this task,
the label shift has a higher impact on the model
than the domain shift. 2. the introduction of CLIP
can help the model resist some domain shifts. The
results also show that combining the two kinds of
methods together can improve the performance of
the model. However, our model can still outper-
form these methods, which further demonstrates
that our model can transfer the segmentation ability
to unknown objects by reasoning from seen vision-
language knowledge.

4.4 Ablation Study

Effectiveness of CRPrompt. The CRPrompt con-
tains two different ways of reasoning, implicit rea-
soning (IR) and explicit reasoning (ER). We re-
move these two reasoning modules respectively to
study their effects. As illustrated in Table 2, both
of the two reasoning modules can improve the gen-
eralization ability of the model, which significantly
increases the Overall IoU accuracy of 2.70% and
3.09% in A2R, 1.84% and 2.01% in R2A. The re-
sults of ER demonstrate that the introduction of
CLIP can effectively link unknown words and vi-
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Table 1: Comparison with state-of-the-art methods on open-set domain generalization tasks.

Method Precision mAP IoU
P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

R2A
Baseline 50.45 43.04 32.59 19.12 3.02 26.60 52.46 44.26

ISW 52.25 45.09 34.59 21.51 4.53 28.95 54.32 46.11
AdaIN 54.18 47.52 37.92 23.01 4.92 30.71 56.30 48.08
ZSSeg* 54.83 48.13 39.00 23.99 5.05 31.39 56.03 48.05

ReCLIP* 55.01 48.80 39.36 24.22 5.53 31.75 56.83 48.52
CLIPSeg* 55.29 49.60 40.03 25.28 5.78 32.45 56.62 47.99

CLIPSeg+AdaIN 54.83 50.55 42.1 26.90 6.41 32.92 56.36 48.04
ReCLIP+AdaIN 56.47 50.76 42.37 26.77 6.31 33.61 56.45 48.98

Our Model 57.92 51.81 43.14 27.85 7.18 34.66 57.87 49.94
A2R

Baseline 35.02 28.18 19.70 10.24 1.62 17.04 38.95 33.30
ISW 36.14 28.96 19.98 10.99 1.87 17.66 39.71 34.12

AdaIN 37.04 30.09 22.06 11.59 2.27 17.99 41.27 35.13
ZSSeg* 38.04 30.77 21.87 10.99 2.41 18.92 41.50 35.24

ReCLIP* 37.10 30.71 22.41 12.53 2.68 19.17 41.41 35.26
CLIPSeg* 37.79 31.46 23.03 12.92 2.79 19.63 41.46 35.65

ReCLIP+AdaIN 38.04 31.19 22.89 12.55 3.04 19.55 41.89 35.85
CLIPSeg+AdaIN 38.56 31.65 22.74 12.23 3.20 19.64 41.93 36.07

Our Model 39.12 32.08 23.42 13.32 3.56 20.47 42.79 36.61

sual regions together, which can also significantly
improve the open-set ability of the model. Besides,
the performance gained by introducing IR proves
that our method can effectively use CLIP to extract
seen text-visual paired knowledge as prompt to fa-
cilitate unknown objects segmentation, which is
also an important difference between our model
and other CLIP-based open-set segmentation meth-
ods.

Effectiveness of Prompt Engineering. To fur-
ther evaluate the performance of the prompt en-
gineering, we remove the text prompt and visual
prompt respectively, as shown in Table 3. The re-
sults illustrate that the performances degrade with-
out the two kinds of prompts. The reason is that
the text prompt can allow the model to distinguish
between the main object to be segmented and other
objects which can provide contextual clues. And
the visual prompt can help the model improve its
generalization ability in unknown objects. By in-
troducing text and visual prompts, our model can
facilitate CLIP to achieve more precise text-object
matching, surpassing previous CLIP-based open-
set referring segmentation methods.

Effectiveness of RaIN. We conduct a series of

experiments to test the performance of our pro-
posed RaIN. As we can see in Table 2, the accuracy
will decrease significantly at all levels. To further
illustrate the superiority of our module, we replace
RaIN with the widely used AdaIN. From Table
2 we can observe that although AdaIN can help
our model improve performance in unknown do-
mains, it is not as effective as RaIN. Compared
with AdaIN using data in the same batch, RaIN
can introduce object statistics with similar seman-
tics to enhance the current objects, simulating their
styles in unknown domains, which can accurately
improve the generalization ability of the model.

Effectiveness of The Selection Number of
Mask Proposals. We also test the performances
when the selection number M of mask proposals is
set to a different number. From Figure 4 (b) we can
see that the model performs best when M = 4 in
R2A, and when M = 5 in A2R. Some main objects
may not be selected if M is too small, while the
text-region matching ability will be reduced if M
is too large. Therefore, considering performance
and efficiency, we set M to 4 in this paper.
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Table 2: Analysis of the components on two generalization tasks.

Method
Precision mAP IoU

P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean
A2R

Full Model 39.12 32.08 23.42 13.32 3.56 20.47 42.79 36.61
w/o Implicit Reasoning 36.68 29.34 21.66 11.36 2.52 18.39 40.09 34.20
w/o Explicit Reasoning 35.96 29.75 20.37 11.64 2.43 18.04 39.71 34.16

w/o RaIN 37.10 30.71 22.41 12.53 2.68 19.17 41.41 35.26
RaIN→AdaIN 38.10 31.86 22.91 12.28 2.89 19.54 40.91 35.52

Baseline 35.02 28.18 19.70 10.24 1.62 17.04 38.95 33.30
R2A

Full Model 57.92 51.81 43.14 27.85 7.18 34.66 57.87 49.94
w/o Implicit Reasoning 55.01 48.67 40.18 25.15 5.51 32.14 56.03 47.81
w/o Explicit Reasoning 54.10 48.03 39.26 24.31 5.13 31.51 55.86 47.29

w/o RatIN 55.98 49.37 40.64 25.20 6.02 32.14 56.03 47.81
RatIN→AdaIN 56.29 49.99 41.13 26.33 6.74 33.26 55.09 48.99

Baseline 41.72 33.59 24.23 12.81 2.66 20.88 42.64 37.67

(a) zero-shot. (b) the effect of number of select mask proposals.

Figure 4: The effect of different codebook sizes on two pre-training tasks.

Table 3: Analysis of the prompt engineering.

Method
A2R R2A

mAP IoU mAP IoU
0.5:0.95 Overall Mean 0.5:0.95 Overall Mean

Full Model 20.47 42.79 36.61 34.66 57.87 49.94

w/o Text Prompt 19.55 41.29 35.21 33.44 56.87 48.44
w/o Visual Prompt 19.03 41.01 34.75 31.36 54.92 46.37

4.5 Performance of Zero-shot Domain
Generalization

The above experiments prove that our proposed
modules can effectively improve the performance
of the model under open-set setting. However, it
is still unknown whether the improvement mainly
comes from seen objects or unseen objects in target
domains. To illustrate this, we conduct a series of
experiments under zero-shot domain generalization
setting, where all objects in the target domain are
unseen in the source domain. As shown in Figure

4 (a), we can see that the performances degrade
dramatically without Implicit Reasoning (IR) and
Explicit Reasoning (ER) in both two tasks, demon-
strating our proposed CRPrompt plays an essential
role in unknown objects segmentation. Meanwhile.
we can observe that the removal of RaIN has lit-
tle effect on the zero-shot capability of the model,
which may be because RaIN focuses more on the
robustness of seen object categories.

4.6 Qualitative Analysis

To qualitatively analyze the effectiveness of our
method, we visualized two segmentation results on
OSDG task, as shown in Fig 5. From the results
we can see that compared with CLIPSeg model,
our model can locate the object to be recognized
and segment it accurately. The right demo can
show that: although our model has not seen the
object "giraffe" in the source domain before, it can
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Figure 5: The visualization results. Our model is better than CLIPSeg in segmenting unseen categories.

still predict the right region of giraffe based on
the learned knowledge from seen object "people"
and the spatial location relationship "nearby". The
demo on the left proves even if there are no seen ob-
jects as a reference in the video frames, the model
can still determine which one is the right parrot to
be recognized based on knowledge such as color
and spatial relationship learned from the source
domain, while the CLIPSeg model can seldom tell
the right parrot.

5 Conclusion

In this paper, we investigate a challenging problem,
open-set domain generalization in referring video
segmentation task, where the model is required not
only to recognize unknown objects, but also to be
able to segment them according to the text descrip-
tion, overcoming both domain shift and label shift.
To migrate the huge gap between the source do-
main and target domain, we bring up CRPrompt,
which can extract the learned knowledge from the
source domain as text and visual prompt, to help
CLIP model achieve better text-region alignment,
and transfer the segmentation ability from seen ob-
jects to unseen objects. Furthermore, we propose
a RaIN to reduce the domain shift caused by dif-
ferent distributions of objects in different domains
such as appearance, shape, background and action
mode. Extensive ablation studies on open-set and
zero-shot domain generalization tasks verify the
effectiveness of each proposed component.
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7 Limitation

In this paper, due to the limitations of the dataset,
we are unable to conduct open-set testing on a

wider variety of categories. For the choice of the vi-
sual backbone, we have tested CLIP; in the future,
it will be necessary to evaluate the generalization
effects of other visual universal encoders, such as
ImageBind.
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A Evaluation Metrics

For IoU, we use the “Overall IoU”, which calcu-
lates the ratio of the total intersection area divided
by the total union area over the entire dataset, and
the “Mean IoU”, which first calculates the ratio of
each sample and then obtains the average results on
the whole dataset. "P@K" denotes compared with
ground truth results, the IoU scores of testing sam-
ples are larger than K. We also measure the mean
average precision at 5 different IoU thresholds from
0.50 to 0.95 with the step 0.05.

B Implementation Details

For natural language query inputs, we set the max-
imum number of words in one query as 20, and
apply the Bert(Devlin et al., 2018) as our text en-
coder. For video inputs, we employ the I3D net-
work (Carreira and Zisserman, 2017) pretrained on
the Kinetics dataset to extract the spatial and tempo-
ral features and we use the pre-trained ResNet-50
(He et al., 2016) to extract each video frame rep-
resentations, the number of frames in one clip is
8. We select M = 4 mask proposals using Mask-
RCNN for each video frame, then we resize these
proposals to CLIP resolution, and use "ViT-B/32"
as the visual encoder for proposals. We also use
the CLIP text encoder to complete text prompt in
CRPrompt module.

We divide the visual features into K = 5 dif-
ferent scales, the sizes of them are 320 × 320,
160 × 160, 80 × 80, 40 × 40 and 20 × 20 sepa-
rately. We set the hidden size of visual and query
features as 512. Following (Wang et al., 2019),
the FCN network in deconvolutional layer contains
three fully convolutional layers, where the kernel
size is 3×3 for the first two layers and 1×1 for the
remaining layer. All experiments are implemented
with Pytorch package on 4 NVIDIA V100 GPUs in
this paper, the batch size is 16, and we use Adam
optimizer with a initial learning rate 1e-7.

In open-set domain generalization setting, we
choose "person, parrot, dog, cat, skateboard,
giraffe, motorbike, duck, mouse, giant panda"
categories in RVOS dataset, and choose "adult,
baby, ball, bird, cat, dog, car" categories in A2D
dataset. In zero-shot domain generalization setting,
we choose the same categories as OSDG settings
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Figure 6: The visualization results of open-set domain generalization task:R2A.

Figure 7: The visualization results of open-set domain generalization task:A2R.

in A2D dataset, and we choose all the categories
except "adult, baby, ball, bird, cat, dog, car" in
RVOS dataset.

C Text Prompt Details

Here we use an example to give a detailed descrip-
tion of the text prompt. Given a query "a motor
bike being used by a man riding on a dirt road in
front of another man riding a motorbike", we can
use spaCy (Honnibal and Johnson, 2015) to split it
into several phrase fragments: "a motor bike/ being
used by a man/ riding on a dirt road/ in front of/
another man riding a motorbike". The first frag-
ment "a motor bike" is the subject part Q1 to be
segmented, and the following parts Q2 are clues to
locate it. We use "and" to connect the fragments in
Q2. Then we introduce natural language prompts
to modify Q1 and Q2: Q̂1 = [L1;Q1;L2], thus
Q̂1 is "Localizing a motor bike, which is the main
object to be segmented."; Q̂2 = [L3;Q2], thus Q̂2

is "Find clues to locate the previously mentioned
subject from the following objects and relation-
ships, being used by a man and riging on a dirt
road and in front of and another man riding a mo-
torbike.".

D More qualitative results on two
generalization tasks.

We show more qualitative results on two open-set
domain generalization tasks, R2A (Figure 6) and
A2R (Figure 7).
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