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Abstract

Fact-checking long-form text is challenging,
and it is therefore common practice to break it
down into multiple atomic claims. The typical
approach to fact-checking these atomic claims
involves retrieving a fixed number of pieces of
evidence, followed by a verification step. How-
ever, this method is usually not cost-effective,
as it underutilizes the verification model’s inter-
nal knowledge of the claim and fails to replicate
the iterative reasoning process in human search
strategies. To address these limitations, we
propose FIRE, a novel agent-based framework
that integrates evidence retrieval and claim
verification in an iterative manner. Specifi-
cally, FIRE employs a unified mechanism to
decide whether to provide a final answer or
generate a subsequent search query, based on
its confidence in the current judgment. We
compare FIRE with other strong fact-checking
frameworks and find that it achieves slightly
better performance while reducing large lan-
guage model (LLM) costs by an average of 7.6
times and search costs by 16.5 times. These
results indicate that FIRE holds promise for
application in large-scale fact-checking oper-
ations. Our code is available at https://
github.com/mbzuai-nlp/fire.git.

1 Introduction

“Every man has a right to his opinion,
but no man has a right to be wrong in his
facts.” - Bernard M. Baruch

Large language models (LLMs) have demon-
strated exceptional performance across a wide
range of tasks, including both language comprehen-
sion and generation (Zhao et al., 2023; Xie et al.,
2023a). Consequently, LLMs are now widely ap-
plied in various domains (Xie et al., 2023b), and
many users increasingly rely on the information
they provide. However, this reliance is problematic,
as LLMs are capable of producing outputs that are

highly confident but factually incorrect, highlight-
ing the critical need for robust fact-checking sys-
tems (Akhtar et al., 2023). However, fact-checking
the entire output of LLMs in a single step is highly
challenging. To address this, Min et al. (2023)
proposed decomposing the content into multiple
atomic claims, each of which can be individually
verified. While this approach simplifies the fact-
checking process, assessing the veracity of these
atomic claims remains complex, especially when
many require sourcing evidence from the web. In-
deed, identifying the most relevant evidence online
is a key challenge in fact-checking pipelines (Wang
et al., 2024a).

To address this issue, conventional methods,
such as FACTOOL and FACTCHECK-GPT (Chern
et al., 2023; Wang et al., 2024a), frame the prob-
lem as a question-answering task, as illustrated on
the left side of Figure 1. In these approaches, an
LLM is prompted to generate N relevant questions,
which are then used as search queries by a web
search tool. The search results serve as evidence
for LLM to determine the factuality of the claim.
However, we argue that this process is inefficient in
two key aspects. First, it underutilizes the internal
knowledge already embedded in LLMs during pre-
training. For claims involving common knowledge
or widely known events, the LLM could confidently
assess the claim without relying on external infor-
mation. Second, generating multiple search queries
concurrently does not align with the typical human
reasoning process during search (Hu et al., 2023).
Humans tend to begin with an initial query, gather
information, and then refine their perspective on
the claim, which often leads to the formulation of
more effective follow-up queries.

To address this gap, we introduce Fact-checking
with Iterative Retrieval and VErification (FIRE), an
innovative agent-based framework that integrates
both the internal knowledge of LLMs and exter-
nal knowledge sources by unifying the verifica-
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Atomic Claim: In 1980, the oldest justice on the United States Supreme Court was Justice William O. Douglas.
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Figure 1: Comparisons between FIRE and previous frameworks. Previous frameworks typically treat web search
and claim verification as distinct processes. In contrast, FIRE integrates interactive retrieval and verification.

tion process and search query generation into a
single step. As illustrated on the right side of
Figure 1, FIRE employs a mechanism to decide
whether to produce the final answer or generate a
new search query, continuing the evidence-seeking
process. This decision is based on the model’s con-
fidence in its judgment. The closest related work
to us is SAFE (Wei et al., 2024), depicted in the
center of Figure 1. Their method generates web
search queries iteratively and subsequently verifies
whether the entire retrieved evidence supports the
claim. However, this approach lacks flexibility, as
it treats evidence retrieval and claim verification
as distinct processes, requiring a predetermined
fixed number of searches regardless of the claim’s
complexity. In contrast, our approach integrates ev-
idence retrieval and claim verification into an itera-
tive framework, encouraging the language model
to verify based on its own knowledge and conduct
searches only when necessary. Our experiments
demonstrate that our method significantly re-
duces the computational costs of LLMs by an
average factor of 7.6, as well as search-related
costs by a factor of 16.5, all while maintaining
fact-checking performance.

In summary, our contributions are as follows:

• We present FIRE, a simple yet effective inter-
active framework for fact-checking. Through
extensive experiments conducted across mul-
tiple datasets, we demonstrate that our frame-

work significantly reduces the LLM compu-
tational and search costs, making it a better
option for large-scale production.

• Our ablation studies demonstrate that the
step-by-step reasoning process enhances the
model’s confidence in fact-checking, partic-
ularly with GPT-4o-mini. For GPT-4o, we
observed a similar trend; however, the ef-
fect was not as pronounced as that seen with
GPT-4o-mini.

• We conducted an error analysis and identified
several quality issues in the current bench-
mark datasets, including the presence of un-
grounded claims. Additionally, the strict rea-
soning capabilities of the LLM may incor-
rectly classify some debatable claims as non-
factual.

2 Related Work

LLM Factuality Despite the remarkable capabil-
ities of LLMs (Brown et al., 2020; OpenAI, 2023;
Zhao et al., 2023), the auto-regressive learning
objective does not inherently offer strong guaran-
tee or enforce the learning of factual accuracy in
the training process, making these models produce
content that deviates from real-world facts (Wang
et al., 2024b). On average, there are 5%-10%
false claims in responses of GPT-4 (OpenAI, 2023)
and LLaMA-2 (Touvron et al., 2023) on world-
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knowledge questions (Iqbal et al., 2024). Retrieval-
augmented generation (Guu et al., 2020) and post-
generation fact-checking are essential for ensur-
ing accurate knowledge dissemination. Retrieving
highly relevant information plays a pivotal role
in both guiding generation as a reference and de-
termining verification results in fact-checking sys-
tems (Wang et al., 2024a).

The retriever and verifier are the most resource-
consuming components in fact-checking systems,
in terms of time and cost. Even with the inexpen-
sive APIs (e.g., Serper at 0.001 USD per request
and GPT-3.5-turbo for verification), verifying an
atomic claim costs approximately 0.02 USD, mak-
ing extensive verification impractical for general
users (Iqbal et al., 2024). This high cost limits the
ability to verify large volumes of LLM responses,
potentially contributing to the spread of misinfor-
mation. Our framework aims to minimize the costs
in these two steps, enabling affordable verification
for general users. This allows them to easily verify
suspicious or doubtful information, enhancing the
dissemination of factual information.

Fact Checking with Agents The recent advance-
ments in LLMs have spurred significant research
on LLM-powered agents, which are capable of rea-
soning about their environment and making deci-
sions by either invoking external tools or perform-
ing internal actions (Wang et al., 2024c). These
agent frameworks typically consist of several com-
ponents, including reasoning, tool usage, memory,
and multi-agent debate (Masterman et al., 2024),
many of which can be seamlessly integrated into
fact-checking pipelines to enhance the performance
of traditional fact-checking systems. For exam-
ple, recent works have endowed systems with the
ability to call external tools, such as search en-
gines (Chern et al., 2023; Wang et al., 2024a; Wei
et al., 2024; Cheng et al., 2024), recognizing that
many claims in the field require additional informa-
tion for verification. During the verification stage,
Sun et al. (2024) proposed a Markov Chain-based
multi-agent debate approach to ensure more rigor-
ous verification by enabling collaborative decision-
making among agents based on retrieved evidence.
Our work differs from previous approaches by com-
bining the evidence retrieval and verification stages,
leveraging agents’ reasoning and tool-use capabili-
ties to more closely simulate human cognitive pro-
cesses in fact-checking.

3 Framework

Assessing the factual accuracy of long-form text
presents significant challenges (Min et al., 2023).
To address this, prior approaches have broken down
the text into individual checkworthy claims (Chern
et al., 2023). These sentences, referred to as atomic
claims, are fact-checked individually, with their
factuality scores aggregated to evaluate the over-
all factual accuracy of the original text. Previous
research indicates that verifying the factuality of
atomic claims is the most challenging step in this
process (Wang et al., 2024a). Our work there-
fore focuses on this critical task: determining
the factual accuracy of individual atomic claims,
classifying each as either True or False.

3.1 FIRE

We present FIRE, a simple yet effective agent-
based framework for interactive claim verification
through web searches. As illustrated in Figure 1,
FIRE takes an atomic claim as input and outputs a
binary label indicating whether the claim is factual
or non-factual. The framework consists of three key
components: Final Answer or Next Search Query,
Web Search, and Final Verification, each of which
we will explain below.

Final Answer or Next Search Query We in-
troduce a unified method, Final Answer or Next
Search Query f(·), which integrates claim veri-
fication with search query generation. Given an
atomic claim c, this component decides whether to
produce a final answer a or generate an additional
search query q. This decision is guided by both
an external evidence set E, derived from search re-
sults, and the internal knowledge k of the language
model, acquired during pre-training. At the outset,
no evidence has been retrieved, meaning that the
evidence set E is initially empty. Consequently, the
decision relies solely on the internal knowledge k.
As shown in Equation 1, we incorporate confidence
estimation into the reasoning process to determine
the next action. If the model’s confidence is suffi-
ciently high, it outputs a final answer a; otherwise,
it generates an additional query q.

f(c, E, k) =

{
a, if confident
q, if not confident

(1)

This method offers greater flexibility by eliminat-
ing the need to retrieve a fixed number of evidence
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items before verification, thereby largely reducing
search costs. A detailed description of the prompt
used for this component is provided in Appendix A.

Web search When the language model deter-
mines that a web search is necessary and issues
a search query q, we retrieve results using Google
Search via the SerpAPI1, following prior work (Wei
et al., 2024). This API returns the retrieved snip-
pets as a single string, which we use as the new
evidence e. We then append e to the existing evi-
dence set E to form the updated evidence set E′

for the next iteration, as shown in Equation 2.

E′ = E ∪ e, e = Search(q) (2)

Final Verification Due to the inherent difficulty
of confidently verifying certain claims, even with
supplementary evidence, we impose an upper limit
on the number of retrieval steps. As shown in
Equation 3, once this limit is reached, the model
performs a final verification f ′(·) based on all pre-
viously retrieved evidence. The detailed prompt for
this process is provided in Appendix B.

{
a = f ′(c, E, k), n ≥ N

e = Search(q), n < N
(3)

3.2 Prevention of Repetitive Search Queries

In our preliminary studies, we identified a recur-
ring issue with sequential search query generation
using language models: the tendency of these mod-
els to generate repetitive queries. This occurs even
when the models are explicitly instructed to gener-
ate queries targeting new, claim-relevant informa-
tion. As a result, identical queries are repeatedly
submitted to web search tools, leading to inefficient
use of search resources. To address this issue, we
investigate following methods for enhancing search
query generation and reducing repetition.

Early Termination The iterative process is ter-
minated when consecutive queries or retrieved re-
sults exhibit a high degree of similarity, indicating
diminishing returns.

Diversity Prompt We introduce additional
prompts to encourage the model to generate more
diverse queries when consecutive similar queries
or search results are detected.

1https://serpapi.com

3.3 Prevention of Verification Overconfidence
LLMs can exhibit strong calibration abilities across
diverse tasks (Kadavath et al., 2022; Geng et al.,
2024). Consequently, they are aware of their con-
fidence levels during the claim verification pro-
cess. However, our preliminary analysis reveals
that LLMs often demonstrate excessive strictness
and unwarranted confidence in certain cases, lead-
ing to errors. Considering this, we explore several
techniques to prevent overconfidence in verifica-
tion:

At Least One/Two At Least One requires models
to retrieve at least one evidence during the verifica-
tion, which increase the probability of eliminating
overconfidence. Similarly, we also adopted a more
aggressive approach At Least Two to retrieve a
second evidence to reduce the uncertainty.

Inclusive Prompt In this setting, we prompt
models to be “less strict, open-minded and avoid
being over confident” to encourage models to re-
flect on their confidence level of answers.

4 Experiments Setup

4.1 Datasets
In our study, we utilized four datasets from prior
research that align with our experimental setup:
FacTool (Chern et al., 2023), FELM (Chen et al.,
2023), Factcheck-Bench (Wang et al., 2024a), and
BingCheck (Li et al., 2024b). FacTool and FELM
provide factuality claims across multiple domains.
From these, we selected instances requiring world
knowledge for verification, which we refer to as
FacTool-QA and FELM-WK, both annotated with
binary labels (True or False). Our selection was
motivated by the need to focus on claims that chal-
lenge models to use external knowledge, a critical
aspect of factual verification.

For Factcheck-Bench and BingCheck, we con-
solidated the original four-label classification (sup-
ported, partially supported, not supported, refuted)
into a binary format by merging supported and par-
tially supported into True, treating refuted as False,
and excluding not supported. This binarization
aligns these datasets with the others and simplifies
evaluation, focusing on clear-cut factuality deci-
sions. We sampled a subset of BingCheck due to
its class imbalance (3,581 True claims versus 42
False claims), selecting 100 True claims for our
test set. This sampling was essential to create a
more balanced and manageable test set, ensuring
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Dataset #True #False Total

Factcheck-Bench 472 159 631
FacTool-QA 177 56 233
FELM-WK 99 85 184
BingCheck 100 42 142

Table 1: Statistics of the datasets after processing.

Family Name

GPT GPT-4o, GPT-4o-mini, o1-preview,
o1-mini

Claude Claude-3 Haiku, Claude-3 Opus,
Claude-3.5 Sonnet

LLaMA LLaMA 3.1-Inst 8B
Mistral Mistral-Inst 7B

Table 2: Model families and specific model names
used in this study.

that evaluation metrics reflect performance on both
classes without being dominated by the majority
class. In FELM-WK, we retained un-split claims
to maintain contextual integrity, which is crucial
for accurate verification. Full dataset statistics are
provided in Table 1.

In our experiments, we first use the Factcheck-
Bench dataset as a development set to optimize
the settings for our framework. We then evaluate
its performance on the remaining three datasets,
comparing it with other competitive fact-checking
systems.

4.2 Language Models
We investigate several state-of-the-art (SOTA) lan-
guage models, including proprietary models from
two prominent families: GPT models (OpenAI,
2024a,b) and Claude models (Anthropic, 2024), as
detailed in Table 2. In addition, we assess two open-
source models: LLaMA 3.1-Inst 8B (Dubey et al.,
2024) and Mistral-Inst 7B (Jiang et al., 2023).

4.3 Compared Fact-checking Frameworks
We select several SOTA fact-checking frameworks
for comparison. Additionally, we introduce two
baseline models: Random and Always True/False.
To further assess the impact of LLM reasoning and
evidence retrieval in fact-checking, we include two
ablation settings: FIRE (No Reason) and FIRE (No
Search).

FACTOOL is adaptable across domains and tasks,
using a tool-augmented framework that integrates
external tools like Google Search and Python in-
terpreters to assess the factuality of content from

large language models. However, this can intro-
duce complexity and depend on the accuracy of
these external tools.

FACTCHECK-GPT excels in fine-grained fac-
tuality evaluation through a detailed benchmark
with annotations at the claim, sentence, and docu-
ment levels. While resource-intensive, it provides
valuable insights into specific stages of factual in-
accuracies.

SAFE uses a search-augmented approach to ver-
ify long-form content by breaking it down into indi-
vidual facts and checking them via Google Search.
This method is cost-effective compared to human
annotation but depends on the reliability of search
engine results, which can vary and introduce bi-
ases.

Random assigns the predicted label for each
claim in the test set randomly, choosing between
True and False with equal probability.

Always True/False is an approach that always
predicts a single label – either True or False – for
all claims in the test set.

FIRE (No Reason) utilizes the same framework
as FIRE; however, it is explicitly instructed not to
articulate its reasoning process in the output. This
modification aims to assess the impact of explicitly
stating the step-by-step reasoning process on the
results.

FIRE (No Search) employs the same framework
as FIRE; however, it is not permitted to invoke the
search tool. This configuration is designed to eval-
uate the model’s ability to perform fact-checking
without retrieving any supporting evidence.

4.4 Evaluation Metrics

In this work, we investigate the trade-off between
computational cost and fact-checking performance.

Performance We evaluate precision, recall, and
F1 scores for both positive and negative classes.

Computational Cost We report the financial
costs of LLM API calls for proprietary models
and GPU rental expenses for open-source models,
alongside an analysis of API costs from search
engine queries and a breakdown of the total time
spent on the fact-checking process. The experi-
ments using open-source models were conducted
on an NVIDIA RTX 6000 GPU at an estimated cost
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LLM LLM+Search
Cost ($)

Label = True Label = False
Prec Recall F1 Prec Recall F1

GPT-4o-mini 0.19+0.44 0.91 0.84 0.87 0.61 0.74 0.67
GPT-4o 10.45+1.47 0.92 0.79 0.85 0.56 0.79 0.66
o1-preview 145.66+0.80 0.91 0.86 0.88 0.64 0.75 0.69
o1-mini 20.06+1.13 0.89 0.81 0.85 0.56 0.71 0.62
Claude-3 Haiku 0.56+0.85 0.9 0.81 0.85 0.56 0.73 0.64
Claude-3 Opus 48.64+1.43 0.92 0.81 0.86 0.58 0.79 0.67
Claude-3.5 Sonnet 13.21+1.63 0.94 0.79 0.86 0.58 0.85 0.69

LLaMA 3.1-Inst 8B 3.95+2.27 0.89 0.74 0.8 0.48 0.72 0.57
Mistral-Inst 7B 1.84+1.22 0.85 0.67 0.75 0.4 0.66 0.5

Table 3: Fact-checking performance and cost com-
parisons between different language models within
FIRE on Factcheck-Bench.

of $0.79 per hour, while search queries via SerpAPI
incurred approximately $0.00105 per search.

5 Results

In this section, we first present preliminary stud-
ies on Factcheck-Bench (§ 5.1), focusing on three
key aspects: language models, prevention of repeti-
tive search queries, and prevention of verification
overconfidence. These studies aim to identify the
most appropriate configurations for our framework.
Subsequently, we compare FIRE to other strong
fact-checking frameworks across three additional
datasets (§ 5.2) to evaluate the generalization capa-
bilities of our approach.

5.1 Preliminary studies

Language Models We present a performance
comparison of various language models in Table 3.
Overall, proprietary language models generally out-
perform open-source models, likely due to their
larger size and more sophisticated training in rea-
soning and tool utilization. Among the propri-
etary models, the latest and most advanced of-
ferings from different organizations—specifically
o1-preview from OpenAI and Claude-3.5 Sonnet
from Anthropic—exhibit the best performance. Al-
though the more economical model, GPT-4o-mini,
performs slightly worse than the top-performing
o1-preview, it offers a cost savings of 766 times.
This suggests that for fact-checking tasks, the
most advanced models may not be necessary;
GPT-4o-mini can serve as a sufficiently capable al-
ternative at a significantly lower cost. We will con-
tinue our preliminary studies using GPT-4o-mini.

Prevention of Repetitive Search Queries We
conducted an experimental analysis to evaluate
the impact of Early Termination and Diversity
Prompt on mitigating the generation of repeti-

Window
Size

Diversity
Prompt

LLM+Search
Cost ($)

Label = True Label = False
Prec Recall F1 Prec Recall F1

2
✗ 0.17+0.29 0.92 0.83 0.87 0.61 0.77 0.68
✓ 0.16+0.29 0.91 0.81 0.86 0.57 0.76 0.65

3
✗ 0.17+0.36 0.91 0.82 0.87 0.60 0.77 0.67
✓ 0.18+0.36 0.91 0.82 0.86 0.59 0.76 0.66

4
✗ 0.18+0.39 0.91 0.81 0.86 0.57 0.76 0.65
✓ 0.18+0.39 0.91 0.82 0.86 0.59 0.76 0.66

Default - 0.19+0.44 0.91 0.84 0.87 0.61 0.74 0.67

Table 4: FIRE performance across various window
sizes, with and without the use of prompts for gener-
ating diverse queries on Factcheck-Bench.

tive search queries. To assess query similarity,
we employed Sentence-BERT (all-MiniLM-L6-
v2; Reimers and Gurevych (2019)) with a simi-
larity threshold of 0.9, as established by Shashavali
et al. (2019). Table 4 presents experimental re-
sults, where window size refers to the predefined
number of consecutive similar queries or retrieval
results. Once this threshold is reached, early termi-
nation is triggered to prevent further query genera-
tion and retrieval. If the model generates queries or
retrieves results exhibiting high similarity within
this window, the system also activates an early stop-
ping mechanism. The results indicate that optimiz-
ing the similarity window size effectively reduces
search costs without compromising the model’s
performance. However, our findings suggest that
the diversity prompt does not enhance performance.
In our optimal configuration, we selected a window
size of 2 without utilizing the diversity prompt.

Prevention of Verification Overconfidence We
present the performance and cost of various over-
confidence prevention approaches for verification
on Factcheck-Bench in Table 5. Interestingly,
the At Least One/Two settings, which aggres-
sively retrieve additional evidence, result in higher
search costs without improving fact-checking per-
formance compared to the Default setting, where
no explicit constraints are placed on web search.
This supports our hypothesis that most atomic
claims are relatively straightforward and do not
require extensive external web searches for veri-
fication. In fact, introducing additional searches
may introduce noise, negatively impacting perfor-
mance. The Inclusive setting encourages models
to be more flexible and open to alternative inter-
pretations of evidence, which reduces the need for
queries but also leads to lower overall performance.
Based on these observations, we maintain the De-
fault setting, leveraging the language model’s rea-
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Approach LLM+Search
Cost ($)

Label = True Label = False
Prec Recall F1 Prec Recall F1

At Least One 0.21+0.83 0.92 0.81 0.86 0.58 0.78 0.67
At Least Two 0.22+0.87 0.91 0.79 0.84 0.55 0.77 0.64
Inclusive 0.20+0.42 0.91 0.81 0.86 0.58 0.77 0.66

Default 0.19+0.44 0.91 0.84 0.87 0.61 0.74 0.67

Table 5: FIRE performance using different veri-
fication overconfidence prevention approaches on
Factcheck-Bench.

soning capabilities without imposing additional
search constraints.

5.2 Comparisons to Other Frameworks

We present a performance comparison of our frame-
work against other frameworks in Table 6 and a
cost analysis in Table 7. As shown, all frame-
works exhibit similar performance, with a small
gap of approximately 0.2. Our framework, us-
ing GPT-4o, performs slightly better, achieving
superior results on 7 out of 18 metrics, followed
closely by SAFE with GPT-4o at 6 metrics. This
suggests that all frameworks can effectively per-
form fact-checking for most claims, although they
may encounter difficulties with challenging ex-
amples, which we analyze further in § 6. Re-
garding the necessity of evidence retrieval in fact-
checking, we observe a relatively larger perfor-
mance drop in FACTOOL when evidence search is
omitted, compared to a smaller drop in FELM-WK
and BingCheck. This suggests that FacTool-QA
comprises more rare knowledge than GPT-4o-mini,
whereas FELM-WK and BingCheck may rely pre-
dominantly on common knowledge, for which ev-
idence retrieval is less impactful. Overall, both
GPT-4o and GPT-4o-mini perform reasonably well
on popular public datasets, highlighting the need
for datasets that incorporate more complex claims.
In terms of model size, GPT-4o generally outper-
forms GPT-4o-mini across most frameworks, in-
dicating that larger models are more effective in
detecting misinformation. However, the perfor-
mance improvement is limited, and the associated
costs result in an average increase of 16.7 times in
LLM expenses and a three-fold increase in search
costs when using FIRE. Therefore, we argue that
cheaper models, such as GPT-4o-mini, are a viable
option for performing fact-checking tasks. Fur-
thermore, when considering all frameworks with
GPT-4o-mini, FIRE achieves additional cost sav-
ings, reducing LLM expenses by 7.6 times and
search costs by 16.5 times compared to other frame-
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Figure 2: The effect of reasoning on the number
of searches using GPT-4o and GPT-4o-mini within
FIRE on BingCheck. The shaded area indicates the
number of misclassified cases. The x-axis shows the
number of web searches, while the y-axis denotes the
number of instances.

works. Thus, we contend that FIRE, when paired
with GPT-4o-mini, offers a compelling solution for
the large-scale deployment of fact-checking sys-
tems.

Figure 2 illustrates the impact of reasoning on
the number of web searches conducted by GPT-4o
and GPT-4o-mini tested on BingCheck. Notably,
GPT-4o-mini demonstrates a high level of confi-
dence in making verifications when it is allowed to
articulate its reasoning process, resulting in the
majority of judgments being made without any
searches. Conversely, when not permitted to ex-
press its reasoning, there is a significant decrease
in the number of instances with zero searches; most
cases now involve at least one search, indicating
a marked reduction in GPT-4o-mini’s confidence
in its judgments. This observation aligns with pre-
vious findings that the presence of CoT reasoning
correlates with increased confidence in the model’s
answers (Wang and Zhou, 2024). While GPT-4o
also shows a decline in confidence when it is not
allowed to search, the decrease is less pronounced
than that observed in GPT-4o-mini.

By combining the performance and cost results
presented in Table 6 and Table 7, we find that, in
the absence of a reasoning process, the costs asso-
ciated with LLMs can be reduced through fewer
completion tokens. However, this reduction leads
to increased search costs, resulting in overall per-
formance that is inferior to scenarios in which the
models are permitted to engage in step-by-step rea-
soning. Furthermore, the step-by-step reasoning
approach facilitates more effective error analysis.
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Framework LLM
FacTool-QA FELM-WK BingCheck

Label = True Label = False Label = True Label = False Label = True Label = False
Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1

Random - 0.81 0.47 0.59 0.28 0.64 0.39 0.75 0.49 0.59 0.30 0.57 0.39 0.77 0.67 0.72 0.40 0.52 0.45
Always True - 0.76 1.0 0.86 0 0 0 0.72 1.0 0.84 0 0 0 0.70 1.0 0.83 0 0 0
Always False - 0 0 0 0.24 1.0 0.39 0 0 0 0.28 1.0 0.44 0 0 0 0.30 1.0 0.46

FACTOOL
GPT-4o 0.88 0.81 0.84 0.52 0.66 0.58 0.69 0.53 0.60 0.57 0.73 0.64 0.86 0.57 0.68 0.43 0.79 0.56

GPT-4o-mini 0.92 0.68 0.78 0.45 0.82 0.58 0.67 0.37 0.48 0.51 0.78 0.62 0.92 0.55 0.69 0.45 0.88 0.60

FACTCHECK-GPT GPT-4o 0.90 0.79 0.84 0.52 0.71 0.60 0.67 0.68 0.67 0.61 0.61 0.61 0.85 0.70 0.77 0.50 0.71 0.59
GPT-4o-mini 0.85 0.80 0.82 0.47 0.56 0.51 0.61 0.50 0.55 0.51 0.62 0.56 0.88 0.78 0.83 0.60 0.76 0.67

SAFE
GPT-4o 0.92 0.88 0.90 0.66 0.77 0.71 0.70 0.80 0.75 0.72 0.60 0.65 0.84 0.90 0.87 0.71 0.60 0.65

GPT-4o-mini 0.92 0.82 0.87 0.58 0.79 0.67 0.61 0.76 0.68 0.61 0.44 0.51 0.86 0.81 0.84 0.60 0.69 0.64

FIRE
GPT-4o 0.92 0.88 0.90 0.65 0.71 0.68 0.70 0.86 0.77 0.77 0.54 0.63 0.86 0.88 0.87 0.70 0.67 0.68

GPT-4o-mini 0.87 0.88 0.87 0.60 0.59 0.59 0.63 0.82 0.71 0.67 0.44 0.53 0.87 0.91 0.88 0.74 0.67 0.70

FIRE (No Reason) GPT-4o 0.88 0.86 0.87 0.60 0.64 0.62 0.70 0.85 0.77 0.77 0.58 0.66 0.85 0.89 0.87 0.70 0.62 0.66
GPT-4o-mini 0.87 0.84 0.86 0.55 0.61 0.58 0.65 0.84 0.73 0.71 0.47 0.57 0.84 0.87 0.85 0.66 0.6 0.62

FIRE (No Search) GPT-4o 0.86 0.87 0.88 0.61 0.54 0.57 0.69 0.86 0.77 0.77 0.55 0.65 0.86 0.91 0.88 0.79 0.64 0.71
GPT-4o-mini 0.84 0.84 0.84 0.49 0.48 0.49 0.61 0.86 0.72 0.7 0.36 0.48 0.83 0.9 0.87 0.71 0.57 0.63

Table 6: Performance comparisons between different frameworks across multiple datasets.

Framework LLM LLM Search Time

FACTOOL
GPT-4o 24.76 3.67 2.92

GPT-4o-mini 1.49 3.67 2.34

FACTCHECK-GPT
GPT-4o 21.41 - 4.25

GPT-4o-mini 1.28 - 4.09

SAFE
GPT-4o 6.34 2.93 4.62

GPT-4o-mini 0.43 2.93 4.25

FIRE
GPT-4o 3.35 0.60 1.31

GPT-4o-mini 0.14 0.20 1.25

FIRE (No Reason)
GPT-4o 1.65 0.68 0.57

GPT-4o-mini 0.07 0.59 0.54

FIRE (No Search)
GPT-4o 1.70 - 1.03

GPT-4o-mini 0.11 - 1.34

Table 7: LLM/Search cost (USD) and time (hrs)
for evaluating the total 559 atomic claims in
FacTool-QA, FELM-WK, and BingCheck. We use
SerperAPI for FACTOOL, SAFE and FIRE for search,
while FACTCHECK-GPT has its own implemented
scrapping technique.

6 Error Analysis

To identify weaknesses in our fact-checking system,
we manually examine failed cases of three datasets:
FELM-WK, FacTool-QA, and BingCheck, analyz-
ing whether the majority of failures is attributed
to inadequate retrieved evidence or to flaws in the
LLM verification process, despite the availability
of reliable evidence.

We summarized errors into four major issues
and nine error types. Among the total number of
135 failed claims, there are 44 cases falling into
challenges of (I) inaccurate identification of check-
worthy claims and false gold labels in the original
datasets, 50 claims are due to (II) inaccurate or in-

sufficient knowledge applied to verification, either
internally extracted from LLM parameters or exter-
nally collected from web pages. The rest 26 and
15 cases result from LLM reasoning ability and
debatable opinions over some topics, respectively,
as shown in Table 8.

The major issue lies in collecting sufficient evi-
dence, especially for long claims containing many
aspects to verify. This can be approached by
decomposing “atomic claims” from the original
dataset into the real granularity of “atomic”, each
containing only 1-3 pieces of information. The
second problem focus on the quality of benchmark-
ing datasets, particularly FELM-WK that includes
many ungrounded claims and labels (Li et al.,
2024a), which may lead to ineffective comparisons
between fact-checking systems. Interestingly, be-
yond incorrect reasoning, overly-strict reasoning
by exact matching between the claim and collected
evidence can also lead to verification errors. For
example, LLMs label a claim as false when the
claim states FUN Word-Cross Puzzle while evi-
dence mentions Word-Cross Puzzle. Additionally,
some claims can be viewed as true from one per-
spective but false from another, as seen in debates
over the origins of fortune cookies, where the truth
of related claims is debatable.

Considering above, to further advance the field
of fact-checking, we highlight the need for im-
proved benchmarking datasets, a stronger focus
on verifying fine-grained claims, and strategies
to guide LLMs in performing verification under
more flexible reasoning conditions, such as seman-
tic alignment, rather than relying exclusively on
exact matches.
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Major Issue Error Type Description FELM FacTool BingCheck #Total

I. Dataset Issue

1. Not a claim, e.g. a claim only has a name Elvis Presley. 12 1 0 13
2. Unclear, ambiguous or subjective claim e.g. there is no record of how many sons he had. 11 7 2 20
3. False gold labels, i.e., the original annotated label might be wrong. For example, claim
choosing organic and local foods that are in season can reduce emissions from transporting food
from far away is labeled as false

10 0 1 11

II. Knowledge Issue

4. Complicated science domain expert knowledge is needed to judge, like astronomy. 3 0 1 4
5. Inaccurate parametric knowledge. LLM-based verifiers make wrong verification due to the
incorrect parametric knowledge stored in LLMs.

3 6 7 16

6. Insufficient or inaccurate externally collected knowledge (evidence), involving three
scenarios: (i) no external evidence, model makes wrong reasoning by itself; (ii) collected
evidence is insufficient to cover all aspects mentioned by a long claim; (iii) collected evidence is
inaccurate (e.g., evidence contain statement More than 430 species of mammal are found in the
Amazon when the correct number is 427).

9 15 6 30

III. LLM Reasoning

7. Incorrect reasoning, e.g., the claim mentioned A while the model dismissed in the reasoning
process, or the claim did not mention A while the model hallucinated A

6 8 4 18

8. Strict reasoning includes two situations: (i) strictly depending on the collect evidence to
make decision leads to wrong verification, while if it combines commonsense and collected
evidence to analyze, it can verify correctly; (2) strict reasoning based on parametric knowledge.
E.g. regarding Word-Cross Puzzle and FUN Word-Cross Puzzle are different.

5 0 3 8

IV. Debatable Opinion
9. Debatable Opinions on controversial topics, e.g. actual origins are debated for claim Fortune
cookies made their way to San Francisco in the late 1800s and early 1900s through Japanese
immigrants.

7 8 0 15

Total 66 45 24 135

Table 8: Datasets Error distribution, grouped into nine fine-grained types under four major issues.

7 Conclusions and Future Work

Conventional fact-checking systems typically sep-
arate the steps of evidence retrieval and claim ver-
ification, leading to suboptimal utilization of the
verification models’ internal knowledge. To ad-
dress this, we propose FIRE, a novel framework
that integrates evidence retrieval and claim verifi-
cation in an iterative process. FIRE enables LLMs
to leverage their internal knowledge for judgment
and only rely on external evidence retrieval when
uncertain. Our experiments on multiple datasets
demonstrate that FIRE not only slightly improves
accuracy but also reduces LLM computation costs
by an average of 7.6 times and search costs by 16.5
times, making it highly efficient for production use.
Additionally, we performed a detailed error analy-
sis, which revealed issues with the benchmarking
datasets quality. These findings highlight the need
for further research into edge cases, rather than
relying solely on automatic metrics for evaluation.

We identify several promising directions for fu-
ture work, which include: (1) Integrating memory
banks to store verification results, allowing the sys-
tem to reuse previous results instead of repeatedly
executing the entire process; (2) Expanding the
system to support additional modalities, such as
code and images; and (3) Revisiting existing pub-
lic fact-checking datasets, incorporating personal
opinions when addressing ambiguous cases, and
adding claims that require rarer and more complex
knowledge, where evidence retrieval is essential.

Limitations

We acknowledge several limitations in this work
that we plan to address in future research. First, to
maintain the efficiency of our framework, we im-
plement the “Final Answer or Next Search Query”
mechanism in a compact manner, allowing it to
retrieve evidence, assess confidence in knowledge,
and verify the final answer within a single step.
Ideally, this process could be separated to include
a standalone confidence estimation step, which
would enhance both flexibility and interpretability.
We leave this exploration to future work. Second,
to ensure a fair comparison across multiple fact-
checking datasets, our system adopts a binary la-
beling scheme (“True” or “False”) and standardizes
labels across datasets. However, this approach may
not fully capture the complexity of factual labels
in real-world settings. We intend to incorporate
fine-grained labeling schemes in future research.
Finally, in this study, we rely on SerpAPI with its
default settings. While we did not investigate in
detail how evidence is retrieved, we believe future
work could explore this aspect further to optimize
the selection of the most relevant evidence for a
given claim.

Ethical Statement and Broad Impact

Data License A primary ethical consideration is
the data license. We reused pre-existing dataset,
FactBench, FACTOOL, FELM-WK, BingCheck,
which have been publicly released and approved
for research purposes. We adhere to the intended

2909



usage of all these dataset licenses.

Ethical Statement We acknowledge that our sys-
tem relies on LLMs, which can sometimes produce
biased or incorrect judgments due to the data used
in their pre-training or biases present in external
sources. Additionally, there is the risk of over-
reliance on the system for making critical factual
judgments without human oversight. To mitigate
these risks, we strongly encourage human review-
ers to be involved in decision-making, especially
in high-stakes domains such as legal, political, or
medical contexts.

Broad Impact FIRE has the potential to advance
the field of automated fact-checking by enhancing
its efficiency and accessibility. Its capability to
iteratively retrieve evidence while minimizing com-
putational costs will empower a broader range of
users—including journalists, researchers, and the
general public—to verify factual information with
greater ease. Furthermore, FIRE can be applied
to large-scale implementations, such as integration
into search engines and social media platforms,
thereby contributing to efforts to combat the spread
of misinformation.
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A Prompts for Verification

Default prompt We use the following prompt to
guide the language model in verifying the atomic
claim, determining whether to provide a final judg-
ment or issue an additional Google search query
based on the current status. The prompt will output
reason or explanation for the verification process.

_FINAL_ANSWER_OR_NEXT_SEARCH_FORMAT = f"""
Instructions:

1. You are provided with a STATEMENT and
relevant KNOWLEDGE points.

2. Based on the KNOWLEDGE, assess the factual
accuracy of the STATEMENT.

3. Before presenting your conclusion, think
through the process step-by-step. Include
a summary of the key points from the
KNOWLEDGE as part of your reasoning.

4. If the KNOWLEDGE allows you to confidently
make a decision, output the final answer
as a JSON object in the following format:

{{
"final_answer": "{_Factual_LABEL}" or "{

_Non_Factual_LABEL}"
}}

5. If the KNOWLEDGE is insufficient to make a
judgment, issue ONE Google Search query
that could provide additional evidence.
Output the search query in JSON format, as
follows:

{{
"search_query": "Your Google search query

here"
}}

6. The query should aim to obtain new
information not already present in the
KNOWLEDGE, specifically helpful for
verifying the STATEMENT’s accuracy.

KNOWLEDGE:
{_KNOWLEDGE_PLACEHOLDER}

STATEMENT:
{_STATEMENT_PLACEHOLDER}
"""

No Reason prompt To improve efficiency, we
opted for this setting to output only the label.

_FINAL_ANSWER_OR_NEXT_SEARCH_FORMAT = f"""
Instructions:

1. You are provided with a STATEMENT and
relevant KNOWLEDGE points.

2. Based on the KNOWLEDGE, assess the factual
accuracy of the STATEMENT.

3. Before presenting your conclusion, think
through the process step-by-step. Include
a summary of the key points from the
KNOWLEDGE as part of your reasoning.

4. If the KNOWLEDGE allows you to confidently
make a decision, output the final answer
as a JSON object in the following format:

{{
"final_answer": "{_Factual_LABEL}" or "{

_Non_Factual_LABEL}"
}}
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5. If the KNOWLEDGE is insufficient to make a
judgment, issue ONE Google Search query
that could provide additional evidence.
Output the search query in JSON format, as
follows:

{{
"search_query": "Your Google search query

here"
}}

6. The query should aim to obtain new
information not already present in the
KNOWLEDGE, specifically helpful for
verifying the STATEMENT’s accuracy.

7. Do not provide any additional information
or reasoning in the output. Only output
the JSON object.

KNOWLEDGE:
{_KNOWLEDGE_PLACEHOLDER}

STATEMENT:
{_STATEMENT_PLACEHOLDER}
"""

At Least One prompt At Least One prompt re-
quires models to retrieve at least one evidence dur-
ing the verification.

_FINAL_ANSWER_OR_NEXT_SEARCH_FORMAT = f"""
Instructions:

1. You are provided with a STATEMENT and
relevant KNOWLEDGE points.

2. Based on the KNOWLEDGE, assess the factual
accuracy of the STATEMENT.

3. Before presenting your conclusion, think
through the process step-by-step. Include
a summary of the key points from the
KNOWLEDGE as part of your reasoning.

4. If the KNOWLEDGE allows you to confidently
make a decision, output the final answer
as a JSON object in the following format:

{{
"final_answer": "{_Factual_LABEL}" or "{

_Non_Factual_LABEL}"
}}

5. If the KNOWLEDGE is insufficient to make a
judgment, issue ONE Google Search query
that could provide additional evidence.
Output the search query in JSON format, as
follows:

{{
"search_query": "Your Google search query

here"
}}

6. The query should aim to obtain new
information not already present in the
KNOWLEDGE, specifically helpful for
verifying the STATEMENT’s accuracy.

7. If the KNOWLEDGE is empty, please issue ONE
Google Search query immediately.

KNOWLEDGE:
{_KNOWLEDGE_PLACEHOLDER}

STATEMENT:
{_STATEMENT_PLACEHOLDER}
"""

At Least Two prompt At Least Two prompt is
a more aggressive approach to retrieve minimum
two evidence before verification.

_FINAL_ANSWER_OR_NEXT_SEARCH_FORMAT = f"""
Instructions:

1. You are provided with a STATEMENT and
relevant KNOWLEDGE points.

2. Based on the KNOWLEDGE, assess the factual
accuracy of the STATEMENT.

3. Before presenting your conclusion, think
through the process step-by-step. Include
a summary of the key points from the
KNOWLEDGE as part of your reasoning.

4. If the KNOWLEDGE allows you to confidently
make a decision, output the final answer
as a JSON object in the following format:

{{
"final_answer": "{_Factual_LABEL}" or "{

_Non_Factual_LABEL}"
}}

5. If the KNOWLEDGE is insufficient to make a
judgment, issue ONE Google Search query
that could provide additional evidence.
Output the search query in JSON format, as
follows:

{{
"search_query": "Your Google search query

here"
}}

6. The query should aim to obtain new
information not already present in the
KNOWLEDGE, specifically helpful for
verifying the STATEMENT’s accuracy.

7. If the KNOWLEDGE is empty or there is only
ONE evidence in the KNOWLEDGE, please
issue ONE Google Search query immediately.

KNOWLEDGE:
{_KNOWLEDGE_PLACEHOLDER}

STATEMENT:
{_STATEMENT_PLACEHOLDER}
"""

Inclusive In this setting, we prompt models to
be “less strict, open-minded and avoid being over
confident” to encourage models to reflect on their
confidence level of answers.

_FINAL_ANSWER_OR_NEXT_SEARCH_FORMAT = f"""
Instructions:

1. You are provided with a STATEMENT and
relevant KNOWLEDGE points.

2. Based on the KNOWLEDGE, assess the factual
accuracy of the STATEMENT.

3. Before presenting your conclusion, think
through the process step-by-step. Include
a summary of the key points from the
KNOWLEDGE as part of your reasoning.

4. If the KNOWLEDGE allows you to confidently
make a decision, output the final answer
as a JSON object in the following format:

{{
"final_answer": "{_Factual_LABEL}" or "{

_Non_Factual_LABEL}"
}}
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5. If the KNOWLEDGE is insufficient to make a
judgment, issue ONE Google Search query
that could provide additional evidence.
Output the search query in JSON format, as
follows:

{{
"search_query": "Your Google search query

here"
}}

6. The query should aim to obtain new
information not already present in the
KNOWLEDGE, specifically helpful for
verifying the STATEMENT’s accuracy.

7. Please be more open-minded and less strict
in your evaluation. Avoid being overly
confident, and consider the possibility of
alternative interpretations or
uncertainties in the evidence.

KNOWLEDGE:
{_KNOWLEDGE_PLACEHOLDER}

STATEMENT:
{_STATEMENT_PLACEHOLDER}
"""

B Prompt for Final Verification

Upon reaching the maximum number of steps, we
issue the following prompt to compel the language
model to make a final judgment based on the accu-
mulated information.

_MUST_HAVE_FINAL_ANSWER_FORMAT = f"""
Instructions:

1. You are provided with a STATEMENT and
relevant KNOWLEDGE points.

2. Based on the KNOWLEDGE, assess the factual
accuracy of the STATEMENT.

3. Before presenting your final answer, think
step-by-step and show your reasoning.
Include a summary of the key points from
the KNOWLEDGE as part of your reasoning.

4. Your final answer should be either "{
_Factual_LABEL}" or "{_Non_Factual_LABEL
}".

5. Format your final answer as a JSON object
in the following structure:

{{
"final_answer": "{_Factual_LABEL}" or "{

_Non_Factual_LABEL}"
}}

6. Do not include any other information or
reasoning in the output. Only provide the
JSON object.

KNOWLEDGE:
{_KNOWLEDGE_PLACEHOLDER}

STATEMENT:
{_STATEMENT_PLACEHOLDER}
"""

C Effect of Reasoning

We additionally include figures to illustrate
the effect of reasoning on two other datasets:
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Figure 3: The effect of reasoning on the number
of searches using GPT-4o and GPT-4o-mini within
FIRE on FacTool-QA.
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Figure 4: The effect of reasoning on the number
of searches using GPT-4o and GPT-4o-mini within
FIRE on FELM-WK.

FacTool-QA (Figure 3) and FELM-WK (Figure 4),
supplementing Figure 2. These figures demonstrate
that both GPT-4o and GPT-4o-mini are influenced
by explicitly stating their reasoning process, with
GPT-4o-mini showing a consistent impact across
all datasets, not just BingCheck. Furthermore,
when comparing these datasets, we observe that
the models appear most confident on FELM-WK
compared to the other two datasets. As a result,
even in the absence of explicit reasoning, they do
not perform any searches to verify the claims.
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