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Abstract

Few-Shot Relation Extraction (FSRE) aims
to achieve high classification performance by
training relation classification models with a
small amount of labeled data. Prototypical net-
works serve as a straightforward and efficient
method for optimizing model performance by
combining similarity evaluation and contrastive
learning. However, directly integrating these
methods can introduce unpredictable noise,
such as information redundancy, which hin-
ders classification performance and negatively
affects embedding space learning. The tech-
nique presented in this paper applies Local-
To-Global optimization to enhance prototyp-
ical networks in few-shot relation extraction.
Specifically, this paper develops a local opti-
mization strategy that indirectly optimizes the
prototypes by optimizing the other information
contained within the prototypes. It considers
relation prototypes as global anchors and in-
corporates the techniques introduced in this
paper, such as information alignment, local
contrastive learning, and a local adaptive focal
loss function, to address the issues of informa-
tion redundancy. This approach enables the
model to learn a unified and effective embed-
ding space. We conduct extensive experiments
on the FewRel 1.0 and FewRel 2.0 datasets
to validate the effectiveness of the proposed
model1.

1 Introduction

Relation Extraction (RE) is a core task in Natural
Language Processing (NLP) that aims to automat-
ically identify and extract semantic relationships
between entities from unstructured text. The objec-
tive of RE is to convert natural language knowledge
into an organized format that computers can com-
prehend and process. RE is widely used in many
different NLP tasks, including knowledge graph
construction (Zhang et al., 2019), machine reading

†Corresponding author.
1https://github.com/sunxingzheowo/LoToG
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comprehension (Abdou et al., 2019), question an-
swering (Saxena et al., 2020), and dialogue systems
(Ma et al., 2019). However, the annotation of large-
scale datasets often demands significant human and
material resources, and the lack of sufficient data
in smaller datasets limits model performance. In
recent years, Few-Shot Relation Extraction (FSRE)
has emerged as an effective solution to the chal-
lenges of annotation difficulty and data scarcity.
The objective of FSRE is to train models using a
small amount of labeled data and enable them to
quickly adapt to new types of relationships, even
when data is extremely limited.

Prototype networks (Snell et al., 2017) stand out
as a straightforward but efficient method among
the various FSRE algorithms. Prototypical net-
works have the primary goal of classifying query
instances through the use of prototypes. Prototypes
for each relation class are learned using support
instances from the support set. To be more precise,
the model takes a new query sample, calculates
its distance from the learned prototypes, and then
assigns the sample to the relation class of the clos-
est prototype. Recent work has included relation
descriptions into the model (Yang et al., 2020; Han
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et al., 2021; Liu et al., 2022) to improve the quality
of the learned embeddings and further improve the
performance of prototypical networks.

Recent research has introduced various con-
trastive learning strategies to mitigate prediction
confusion between similar classes. For instance,
AdapAug (Li et al., 2024) proposed an adaptive
class prototype network that employs both instance-
level and representation-level augmentation. This
method uses a perturbation attention mechanism
in conjunction with a gradual addition of new in-
stances to accomplish contrastive training on rela-
tional prototypes. Alternately, by aligning multiple
representations and extracting discriminative in-
formation complementary to each representation,
MultiRep (Borchert et al., 2024) is an information
extraction technique that maximizes model perfor-
mance. It does this by utilizing contrastive learning
and multi-sentence representations. HCRP (Han
et al., 2021) introduced a hybrid contrastive relation
prototype method that uses relational information
as an anchor. This method treats samples from dif-
ferent classes as negative examples and samples
from the same class within a prototype as posi-
tive examples. Through contrastive learning, the
method brings instances of the same class closer to-
gether and pushes dissimilar instances apart. How-
ever, despite the promising results, this method
overlooks the relationship between prototype in-
formation and relational information. Specifically,
when relational information is embedded within
the prototype and used as an anchor, calculating
similarity or performing contrastive learning with
respect to this anchor may lead to other important
information within the prototype being weakened
or overlooked during training. This can negatively
impact the learned embedding space from the pro-
totype. We refer to this phenomenon as informa-
tion redundancy, which occurs when objects share
overlapping components, leading to the generation
of duplicate or redundant information. From a com-
putational perspective, we argue that information
redundancy may cause the model to overemphasize
the shared components while neglecting the unique
or independent aspects, thereby diminishing the
effectiveness of the representations.

In order to address the issue of information re-
dundancy within prototypes, this paper suggests a
way to improve prototypical networks by switching
from local to global optimization. In particular, we
align relational information with entity information

to align the head and tail entities with the same rela-
tional information in the spatial representation be-
fore generating both relation and entity prototypes.
Building on SimpleFSRE’s perspective (Liu et al.,
2022), we combine relation prototypes and entity
prototypes into a single prototype representation.
We then separately analyze the relation and entity
prototypes within the overall prototype structure.
In the entity prototype, instances from the same
class serve as positive samples, while instances
from different classes serve as negative samples.
Global anchoring is thought to apply to the relation
prototype. Through contrastive learning, the entity
prototype learns its spatial representation from the
relation prototype. The model can learn a more ef-
ficient embedding space without undervaluing the
entity prototype by assembling the prototype from
both relation and entity prototypes.

Furthermore, we introduce a local adaptive fo-
cal loss function. Since the prototype contains the
relation prototype, we do not directly compute the
similarity between the overall prototype and the
relation prototype. Rather than employing a bal-
ancing hyperparameter in the focal loss function,
we compute the similarity between the entity pro-
totype and the relation prototype. By taking this
approach, the prototype’s embedding space is indi-
rectly optimized, which effectively reduces redun-
dant information and improves the discriminative
power of the model.

The method proposed in this paper can be intu-
itively understood as illustrated in Figure 1. By em-
ploying local optimization, it maximizes the utiliza-
tion of each component of the prototype, alleviating
the negative effects of information redundancy and
ultimately enhancing the performance of the pro-
totypical network. In summary, our contributions
are:

1) We have proposed a novel method that em-
ploys local optimization strategies to enhance
the prototype representation through indirect
optimization.

2) We have introduced an information alignment
strategy that aligns entity and relational infor-
mation, enabling both head and tail entities
to learn consistent relational information via
contrastive learning.

3) We have developed a local contrastive learn-
ing approach that mitigates the effects of re-
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dundant information, facilitating the indirect
optimization of the prototype.

4) We have introduced a local adaptive focal
loss function that refines the prototype rep-
resentation by leveraging local similarity for
improved optimization.

2 Methodology

In this section, we introduce a Local-to-Global
Optimization (LoToG) framework designed to en-
hance prototypical networks for few-shot learning.
This framework leverages relational information as
a global anchor point, allowing for the optimization
of individual prototype components, which in turn
facilitates the indirect optimization of the overall
prototype. By addressing the noise introduced by
the information redundancy, the framework enables
the model to achieve a more effective embedding
space. As illustrated in Figure 2, LoToG comprises
five key components:

(1) Encoding Text Information: The textual data
is encoded into an embedded representation. (2)
Information Alignment: The head and tail entities
are aligned with the same relational information.
Through contrastive learning, entities learn shared
relational information. (3) Local Contrastive Learn-
ing: The remaining components of the prototype,
specifically the entity prototypes, engage in con-
trastive learning with the relation prototype (an-

chor), which helps reduce noise arising from in-
formation redundancy. (4) Local Adaptive Focal
Loss Function: The similarity between the entity
prototypes and the anchor serves as a balancing
factor. When combined with the focal loss func-
tion, this enhances the optimization of the proto-
type representation, thereby further improving the
prototypical network through local optimization.
(5) Prediction: The similarity between the overall
prototype and the query prototype is computed to
ascertain the corresponding class label.

2.1 Task Definition

We follow a typical few-shot task setting, known as
the N -way-K-shot setting, which includes a sup-
port set S and a query set Q. The support set S
consists of N different classes, with each class hav-
ing K labeled instances. The query set Q contains
the same N classes as S, and the task is evalu-
ated on the query set Q, attempting to predict the
class to which each relation in Q belongs. We uti-
lized two datasets, where the training set contains
abundant base classes, each with a large number of
labeled examples, and the validation set contains
various novel classes, each with a certain number
of labeled examples. Note that base classes and
novel classes are disjoint. Few-shot learning in-
volves acquiring knowledge from base classes and
utilizing this knowledge to identify novel classes.
Specifically, in each training iteration, we randomly
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select N classes from the base classes, with each
class having K instances, forming the support set
S = {sik | i = 1, 2, . . . , N ; k = 1, 2, . . . ,K}. At
the same time, we extract M instances from the re-
maining data of N classes to construct the query set
Q = {qim | m = 1, 2, . . . ,M}. For the FSRE task,
each instance consists of a tuple (x, e, y), where x
represents a natural language sentence, e = (eh, et)
represents a pair of head entity and tail entity, and
y is the relationship label.

2.2 Sentence Encoder

We utilize BERT (Devlin et al., 2019) as our en-
coder to derive contextual embeddings for both the
support set S and the query set Q. Specifically,
for the global representation of each instance, we
first use a special token to mark the positions of
the head and tail entities within the instance. The
BERT encoder is then used to obtain the contextual
representation of the starting position, which gener-
ates the head entity representation sik,h and the tail
entity representation sik,t for the support set, while
the query set generates the corresponding head en-
tity representation qim,h and tail entity representa-
tion qim,t. Additionally, the relation description is
encoded to produce a relation representation with
the same dimensionality as the instance represen-
tation. Specifically, the relation sentence is input
as “[CLS] Relation Name [SEP] Relation Descrip-
tion,” and the global representation rig is obtained
from the [CLS] token’s representation. For the lo-
cal information representation of each relation, we
first tokenize the instance using the WordPiece to-
kenizer, splitting words into subwords. We then
directly extract all hidden states from the final layer
of the BERT model to obtain the representations
of all subwords. The maximum length of an in-
stance is denoted as L, indicating that each relation
contains L units of local information, generating
the corresponding local representation ril . To facili-
tate the representation of relationships among these
entities, we will refer to the following terms in
subsequent discussions to denote their correspond-
ing features: {ril , rig, sik,h, sik,t, qim,h, q

i
m,t} ∈ Rd,

where Rd represents the feature dimensions ob-
tained from the sentence encoder.

2.3 Representation space alignment

To effectively map entity information and relational
information into a unified representation space, we
propose an information alignment strategy. This

strategy aligns the head entity and tail entity infor-
mation produced by the BERT encoder with the
corresponding relational information it generates.
Such alignment enhances subsequent contrastive
learning, enabling both head and tail entities to
share a common representation space.

As detailed in Section 2.2, we utilize ril and rig
to represent the relational information. Given that
we treat relational information as a global anchor,
we first extract the global relational information
rig and the local relational information ril , subse-
quently combining them to create a hybrid relation
prototype rihyp. Finally, we concatenate the two
rihyp prototypes to derive the final relation proto-
type rip (serving as the global anchor). This can be
formulated as follows:

rihyp = ril + rig ∈ R2d, (1)

rip =

[
rihyp
rihyp

]
∈ R2d, (2)

Based on the representations outlined in Section
2.2, and following the information alignment strat-
egy, we concatenate sik,h and sik,t together and then
compute the average across K support samples of
the same class to form the entity prototype sip for
the support set. For the query set, we simply con-
catenate the head and tail entities to form the query
entity prototype qim,p. The main objective is to
align these head and tail entities with the hybrid
relation prototype. This can be formally expressed
as follows:

sip = − 1

K

K∑

k

[
sik,h
sik,t

]
∈ R2d, (3)

qim,p =

[
qim,h

qim,t

]
∈ R2d. (4)

2.4 Local contrastive learning

As described in Section 2.3, we derive the relation
prototype rip and the entity prototypes sip. In this
subsection, we focus on the proposed local con-
trastive learning approach. Specifically, we begin
by performing an addition operation between the
relation prototype and the instance prototypes to
obtain the prototype representation P = {pi}, as
illustrated below:

pi = rip + sip ∈ R2d, (5)
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N-way-K-shot 5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot
Models (Encoder: BERT) val test val test val test val test
Proto-BERT (Snell et al., 2017) 82.92 80.68 91.32 89.60 73.24 71.48 83.68 82.89
MAML (Finn et al., 2017) 82.93 89.70 86.21 93.55 73.20 83.17 76.06 88.51
BERT-PAIR (Gao et al., 2019) 85.66 88.32 89.48 93.22 76.84 80.63 81.76 87.02
MTB (Baldini Soares et al., 2019) – 91.10 – 95.40 – 84.30 – 91.80
REGRAB (Qu et al., 2020) 87.95 90.30 92.54 94.25 80.26 84.09 86.72 89.93
TD-Proto (Yang et al., 2020) – 84.76 – 92.38 – 74.32 – 85.92
HCRP (Han et al., 2021) 90.90 93.76 93.22 95.66 85.11 89.95 87.79 92.10
CTEG (Wang et al., 2020) 84.72 88.11 92.52 95.25 76.01 81.29 84.89 91.33
SimpleFSRE (Liu et al., 2022) 91.29 94.42 94.05 96.37 86.09 90.73 89.68 93.47
DAPL (Yu et al., 2022) – 85.94 – 94.28 – 77.59 – 89.26
LPD (Zhang and Lu, 2022) 88.84 93.79 90.65 95.07 79.61 89.39 82.15 91.08
FAEA (Dou et al., 2022) 90.81 95.10 94.24 96.48 84.22 90.12 88.74 92.72
AdapAug (Li et al., 2024) 92.27 94.35 93.95 96.96 86.01 90.69 89.67 93.46
MultiRep (Borchert et al., 2024), 92.73 94.18 93.79 96.29 86.12 91.07 88.80 91.98
Ours(LoToG) 92.38 95.28 94.26 96.71 86.23 91.48 91.11 93.14

Table 1: FewRel 1.0 validation/testing set few-shot classification accuracy (%). The best results are presented in
bold, while the second-best results are underlined..

Previous contrastive learning methods (Han
et al., 2021) directly compared the prototype with
the anchor point. However, during the contrastive
learning process, we do not split pi into positive
and negative prototypes for triplet contrastive learn-
ing with the anchor point. Since pi already con-
tains rip, we divide sip into positive and negative
prototypes. Samples belonging to the same class
as the anchor are designated as positive prototypes,
while those from different classes are designated
as negative prototypes. The model collects the
positive prototypes sip and the negative prototypes
{snp ;n = 1, . . . , N, n ̸= i}. The goal is to dis-
tinguish between positive and negative prototypes.
Given the true label {Tij ; j = 1, . . . , N}, we em-
ploy the dot product G(·) to compute the logits
between the anchor and the selected prototypes,
denoted as Pij , as follows.

Tij =
{
1, G(rip · sip) j = i;

0, G(rip · snp ) j = n,
(6)

Pij = G(rip · sjp), (7)

After categorizing positive and negative samples
from Sp = {sjp}, we reformulate the problem as
a binary classification task. We then perform con-
trastive learning with the anchor point to ensure that
entity representations belonging to the same class
are positioned closer to the anchor point, while
those from different classes are placed farther away.
The prototype derived from the addition operation
preserves both relational and entity information,

effectively mitigating the influence of redundant
information. For the binary classification task, we
employ the Binary Cross-Entropy Loss with Logits,
denoted as LBCE . This method integrates the sig-
moid activation function with binary cross-entropy
loss in a numerically stable fashion. The loss func-
tion is defined as follows:

LBCE =− [y log(σ(a))

+ (1− y) log(1− σ(a))],
(8)

where a denotes the output logits of the model,
y represents the true label (0 or 1), and σ(a) is
the probability derived by applying the sigmoid
function to the logits a.

Therefore, the loss function is computed as fol-
lows:

LBCE =− 1

N2

N∑

i

N∑

j

(
Tij log(σ(Pij)

+ (1− Tij) log(1− σ(Pij))
)
.

(9)

2.5 Local adaptive focal loss

The focal loss introduced by (Lin et al., 2017) ad-
dresses the imbalance between hard and easy ex-
amples in classification tasks. Subsequently, (Han
et al., 2021) enhanced this approach specifically
for few-shot relation extraction tasks. The formula
for the adaptive focal loss function is presented as
follows:

LAF = −α(1− zy)
γ log zy. (10)
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The parameter γ is a difficulty-adjusting coefficient
that controls the model’s attention to misclassified
samples. The variable y represents the class label,
while zy denotes the estimated probability for class
y. The similarity factor α is determined by the de-
gree of dispersion between classes in a batch; lower
dispersion corresponds to higher class similarity,
indicating that the batch should receive more focus.

Redundant information can pose challenges due
to the inclusion of anchor information within the
prototype; therefore, our objective is to eliminate
this noise. Inspired by the adaptive focal loss frame-
work presented in (Han et al., 2021) and addressing
the issue of information redundancy, this paper in-
troduces a local adaptive focal loss function. This
adaptation enables the model to focus on more chal-
lenging instances while mitigating the impact of
noise introduced by redundant information. This
method utilizes the similarity between sip and the
anchor as the local similarity factor αl, rather than
employing the similarity between pi and the anchor
as the similarity factor α. By optimizing local sim-
ilarity, we indirectly enhance the embedding space
of pi. This method optimizes the entire model
through local optimization without adversely af-
fecting the overall performance of the model.

Specifically, we first perform a concatenation
operation between sip and rip to obtain the feature
vector F . Next, we normalize the F vector to
ensure consistent feature scales, which enhances
the stability and performance of model training.
Then, we compute the task similarity matrix using
matrix multiplication:

F = |
[
sip
rip

]
|, (11)

where | · | denotes the Euclidean norm. The task
similarity scalar is calculated as follows:

αl = softmax(||F · F⊤||), (12)

where || · || denotes the Frobenius norm. The local
adaptive loss function is defined as follows:

LLAF = −αl(1− zy)
γ log zy, (13)

Therefore, the loss function is computed as follows:

(zy)
i,j
m = softmax(G(qim,p · pj)), (14)
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Figure 3: Accuracy for different λ values on the FewRel
1.0 validation set for the 5-way-1-shot task.

LLAF = − 1

MN2

N∑

i=1

M∑

m=1

N∑

j=1

αi
l(1− (zy)

i,j
m )γ log((zy)

i,j
m )(∑N

i=1

∑M
m=1

∑N
j=1 α

i
l(1− (zy)

i,j
m )γ

) .

(15)
αi
l represents the local dynamic adjustment factor

that dynamically modifies the loss based on the
difficulty associated with class i. The term (zy)

i,j
m

denotes the estimated probability between the m-th
query sample of class i and the j-th class prototype.

The final objective function of our model is de-
fined as follows:

L = LLAF + λ× LBCE (16)

where λ is a hyperparameter to balance the two
terms.

3 Experiments

3.1 Datasets
Our model is evaluated on two commonly-used
datasets:

1) FewRel 1.0 (Han et al., 2018). This is a large-
scale, manually annotated FSRE dataset con-
structed from Wikipedia articles, containing
100 different relations. Each relation includes
700 instances. The dataset is split into train-
ing, validation, and test sets with 6, 4, 16, and
20 relations, respectively.

2) FewRel 2.0 (Gao et al., 2019). To evaluate
the generalization capability of our model,
we also conducted experiments on FewRel
2.0. The training set for FewRel 2.0 is the
same as that of FewRel 1.0. Notably, the
test set of FewRel 2.0 is constructed from the

2673



Models 5-way 10-way
(Encoder: BERT) 5-shot 5-shot
Proto-BERT (Snell et al., 2017) 51.50 36.39
BERT-PAIR (Gao et al., 2019) 78.57 66.85
HCRP (Han et al., 2021) 83.03 72.94
AdapAug (Li et al., 2024) 84.37 73.92
Ours(LoToG) 84.38 75.69

Table 2: We chose the more challenging FewRel 2.0
dataset and configured the 10-way-5-shot and 5-way-
5-shot settings to demonstrate the effectiveness of our
method.

biomedical domain, which does not overlap
with the relations in the training set. It con-
tains 25 relations, each with 100 instances.
FewRel 2.0 is trained on the Wikipedia do-
main but tested on a different biomedical do-
main. Only the names of the relation labels
are provided, without descriptions, making
the task more challenging.

3.2 Analysis of the Hyperparameter λ

In equation 16, the hyperparameter λ is used to
balance the two loss terms. To determine the op-
timal value of λ, we conducted experiments with
various λ settings on the FewRel 1.0 validation
set. As shown in Figure 3, the model achieved
the best performance when λ = 0.1. Therefore,
we employed λ = 0.1 in all subsequent FewRel
1.0 experiments. Given the specific characteristics
of the FewRel 2.0 dataset, we set λ = 1 for all
subsequent experiments on FewRel 2.0.

3.3 Setup

We adopt the BERT-base-uncased model from Hug-
gingface’s Transformer2(Wolf et al., 2020) library
as the encoder, which contains approximately 110
million parameters. The implementation is based
on PyTorch (Paszke et al., 2019). The AdamW
optimizer (Loshchilov and Hutter, 2019) is em-
ployed to minimize the loss. Following the training
and evaluation procedures outlined by (Gao et al.,
2019), our model was trained for 30,000 iterations
on the FewRel training set, with 1,000 iterations
for validation and 10,000 iterations for testing. The
batch size was set to 4, and the learning rate was
configured at 2e− 5. The total training time for the
four types of N -way-K-shot tasks on an NVIDIA
RTX 4090D GPU is approximately 16 hours, while
testing takes about 3 hours.

2https://github.com/huggingface/transformers

Models 5-way 10-way
(Encoder: BERT) 1-shot 1-shot
Ours (LoToG) 92.38 86.23
w/o. Representation alignment 90.89 84.32
w/o. Local contrastive 92.16 85.98
w/o. LLAF 91.96 85.37
w/. LAF & proto contrastive 91.00 83.26

Table 3: Ablation results on the FewRel 1.0 validation
set. “w/o. x”: Without module x. “w/. x”: With
module x.

3.4 Comparison with Baselines

We compare our model with the following base-
line methods: 1) Proto-BERT (Snell et al., 2017),
A prototype network model based on BERT. 2)
MAML (Finn et al., 2017), A typical meta-learning
method. 3) BERT-PAIR (Gao et al., 2019), A
similarity-based prediction method, where each
query instance is paired with all support instances.
4) MTB (Baldini Soares et al., 2019), A BERT-
based model further pre-trained with an additional
matching-the-blank objective. 5) REGRAB (Qu
et al., 2020), A method based on relation graphs. 6)
TD-Proto (Yang et al., 2020), A prototype network
model enhanced by entity descriptions. 7) HCRP
(Han et al., 2021), An improved Proto-BERT with
a hybrid attention module and task-adaptive focus
loss. 8) CTEG (Wang et al., 2020), Learning from
unlabelled data for clinical semantic textual similar-
ity. 9) SimpleFSRE (Liu et al., 2022), A prototype
network model enhanced by relation descriptions.
10) DAPL (Yu et al., 2022), A novel dependency-
aware prototype learning method for few-shot rela-
tion classification. 11) LPD (Zhang and Lu, 2022),
A label prompt dropout method that effectively uti-
lizes relation descriptions. 12) FAEA (Dou et al.,
2022), A functional word adaptive enhanced few-
shot relation classification attention network. 13)
AdapAug (Li et al., 2024), A adaptive class aug-
mented prototype network for few-shot relation
extraction 14) MultiRep (Borchert et al., 2024), A
efficient information extraction in few-shot relation
classification through comparative representation
learning.

3.5 Results

Results on FewRel 1.0. The experimental results
on the FewRel 1.0 validation and test sets are pre-
sented in Table 1. All models directly utilize BERT
as the encoder without additional pre-training. Our
model achieves strong performance under the same
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Figure 4: The t-SNE visualization demonstrates the
instance embeddings of 100 randomly sampled hard
relation classification examples obtained from LoToG
and the original BERT.

configurations, indicating that it demonstrates bet-
ter generalization ability and stronger performance,
enabling it to better handle the challenges of data
scarcity in difficult few-shot scenarios.
Results on FewRel 2.0. As detailed in Section 3.1,
FewRel 2.0 poses greater challenges as its train-
ing and test sets feature relation classes that are
mutually exclusive and originate from distinct do-
mains. From Table 2, it is evident that our model
also performs well under the same configurations.
These findings further underscore the efficacy of
our model for cross-domain datasets and its en-
hanced generalization capability. The main results
of this paper can be found in the CodaLab3 compe-
tition.

3.6 Ablation Study
To further understand the effectiveness of the mod-
ule we proposed, we conducted extensive ablation
studies. Under the 5-way-1-shot and 10-way-1-
shot settings, we performed ablation experiments
on the FewRel 1.0 dataset by removing different
modules of the model to evaluate their contribu-
tions to overall performance. The results of the ab-
lation study are shown in Table 3. We can see that
when we remove individual modules, the model’s
performance decreases to some extent. When the
methods in (Han et al., 2021) are used to replace
local contrastive learning and the local adaptive
focal loss function, we observe a significant de-
cline in the model’s performance. This indicates
the effectiveness of our proposed model.

3.7 Analysis of Local Optimization Effects
As shown in Figure 5, we use t-SNE to visualize the
learned embedding space (van der Maaten and Hin-

3https://codalab.lisn.upsaclay.fr/
competitions/?q=fewrel(GoodluckGoodLuck)

ton, 2008), providing an intuitive representation of
the effects of local optimization. Specifically, we
select three similar relations, "mother," "child," and
"spouse," from the FewRel 1.0 validation set and
randomly sample 100 instances for each relation.
We visualize the prototypes produced by the origi-
nal BERT output, the prototypes learned through
relation-prototype contrastive learning, and com-
pare them with the prototypes obtained using our
proposed LoToG method. We observe that the em-
beddings trained with LoToG are more concen-
trated, making classification easier, while the em-
beddings from relation-prototype contrastive learn-
ing show relatively poor performance.

Additionally, we visualize the entity prototype
embeddings in Figure 4. It can be seen that even
with the optimization of the prototype embedding
space, our entity prototype embeddings still exhibit
clear distinctions.

4 Conclusions

This paper has presented a method for enhancing
prototypical networks in few-shot relation extrac-
tion through local to global optimization. The pro-
posed approach has effectively eliminated redun-
dant information within the prototypes by employ-
ing relation prototypes as global anchors to opti-
mize local information from multiple perspectives.
This indirect optimization has mitigated the noise
introduced by information redundancy and has en-
hanced the prototype embedding space, allowing
each class prototype to map more effectively into a
unified embedding space.

We have posited that when information redun-
dancy is present during prototype processing, lo-
cal optimization can effectively mitigate this issue
without compromising the overall performance of
the model. Furthermore, we have contended that
these foundational principles are applicable to a
diverse array of tasks that align with prototypical
network modeling.

Limitations

Here are the main limitations of the proposed
method:

1) We utilize relation descriptions as global an-
chors, which limits the applicability of our
model to tasks that specifically incorporate
these descriptions.
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P25:mother
P40:child
P26:spouse

(a) BERT Proto

P25:mother
P40:child
P26:spouse

(b) LAF & proto contrastive

P25:mother
P40:child
P26:spouse

(c) LoToG

Figure 5: This figure illustrates the prototype embeddings using t-SNE under three different models, with relation
descriptions included.

2) Our investigation has not encompassed the
local information pertaining to entities, which
is crucial for capturing the subtle distinctions
between instances.
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