
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 2586–2606

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Chain-of-Probe: Examining the Necessity and Accuracy of CoT
Step-by-Step

Zezhong Wang1*, Xingshan Zeng2†, Weiwen Liu2, Yufei Wang2, Liangyou Li2,
Yasheng Wang2, Lifeng Shang2, Xin Jiang2, Qun Liu2, Kam-Fai Wong1

1The Chinese University of Hong Kong, 2Huawei Noah’s Ark Lab
{zzwang,kfwong}@se.cuhk.edu.hk

{zeng.xingshan,liuweiwen8,wang.yufei1,liliangyou}@huawei.com
{wangyasheng,Shang.Lifeng,Jiang.Xin,qun.liu}@huawei.com

Abstract
Current research found the issue of Early An-
swering in large language models (LLMs),
where the models already have an answer be-
fore generating the Chain-of-Thought (CoT).
This phenomenon suggests a potential lack of
necessary dependency between the predicted
answer and the reasoning process. Conse-
quently, two important questions arise: (1) Is
CoT still necessary if the model already has an
answer? (2) Can the correctness of the answer
serve as valid evidence for the correctness of
CoT? To address these questions, we propose
a method, namely Chain-of-Probe (CoP), to
probe changes in confidence during the model’s
reasoning. The probing results show that in a
significant number of question-answer cases,
CoT appears to be unnecessary, and this ne-
cessity correlates with the simplicity of the
task, defined by the reasoning steps required.
Furthermore, by analyzing patterns in confi-
dence change, we examine the correctness of
the model’s reasoning. Our validation reveals
that many responses, although correct in their
final answer, contain errors in their reasoning
process. To this end, we propose a strategic ap-
proach based on CoP to prioritize answers with
correct reasoning among multiple candidates,
thereby bolstering the reliability of the model’s
reasoning.

1 Introduction

Chain-of-Thought (CoT) has been widely proven
to effectively improve the accuracy of Large Lan-
guage Models (LLMs) in reasoning tasks. How-
ever, recent research (Lanham et al., 2023; Turpin
et al., 2023) found the issue of Early Answering
in LLMs, where LLMs have already predicted an
answer before generating the CoT (refer to the left
part in Figure 1). This implies that in many cases,
the contribution of CoT to the model’s final pre-
diction is limited (Lyu et al., 2023; Bentham et al.,
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Figure 1: Diagram of early answering and Chain-of-
Probe. Line graphs illustrate several typical patterns of
confidence changes.

2024; Parcalabescu and Frank, 2024; Yeo et al.,
2024), or even unnecessary. On the other hand, if
the model’s predicted answer does not necessarily
depend on the CoT, we cannot judge the correctness
of the model’s reasoning by examining the answers.
Even if the model predicts correct answers, it is un-
reliable if the CoT is incorrect (Zhang et al., 2023;
Li et al., 2024; Sui et al., 2024).

In order to effectively evaluate the necessity
and accuracy of CoT, we propose a probing
method, namely Chain-of-Probe (CoP), to detect
the changes in the model’s thought during reason-
ing. Specifically, after the model completes each
step of reasoning, we ask it to output a prediction
based on the current reasoning and record its confi-
dence. We believe that the changes in confidence
can help us understand the impact of each step
of reasoning on the model’s decision-making pro-
cess (Wang and Zhou, 2024). As shown in the right
side of Figure 1, these confidence trends across
three different reasoning processes illustrate this
phenomenon.

Based on CoP, we investigate the issue of early
answering, intending to analyze the underlying
causes of early answering, thereby determining
when the CoT is necessary. We first conduct statis-
tical analysis on multiple-choice reasoning datasets.
Results show that all LLMs exhibit the issue of
early answering (i.e., choosing the same answer
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throughout the entire reasoning process) on a large
number of question-answer cases. More surpris-
ingly, the accuracy of the predictions when the mod-
els exhibit early answering is significantly higher
than the accuracy obtained when changing their
choices during the reasoning process (generally ex-
ceeding 20%). This seems to contradict the view
that CoT can improve model performance.

We further analyze the correlation between early
answering and accuracy and find that early answer-
ing is linked to question difficulty: the model tends
to predict answers in advance for simpler ques-
tions (Madaan et al., 2023). This suggests that CoT
is often unnecessary for simple questions. For chal-
lenging questions, CoT is more likely to alter the
model’s initial choice, though not always positively.
Our analysis also indicates that higher model con-
fidence during reasoning correlates with a higher
likelihood of correctness. Based on this, we pro-
pose the CoP Score to evaluate and select CoTs,
aiming for more positive improvements. Experi-
ments demonstrate that selecting responses based
on the CoP Score achieves accuracy comparable to
majority voting.

Selection based on the CoP score is relatively op-
timal among the candidates. However, it does not
guarantee the correctness of the processes within
CoT (Wang et al., 2023). The correctness of CoT
is equally crucial as part of the model’s output, re-
flecting the reliability of the answers (Bao et al.,
2024; Ye and Durrett, 2022; Jung et al., 2022). Our
further experiments reveal that about 20% of CoTs
with correct answers include reasoning errors. In
subsequent case studies combining CoP, we ob-
serve a significant decrease in confidence when
the model makes incorrect steps in its reasoning
process. Based on this insight, we extract features
from CoP to train a decision tree, called CoP Tree,
which is used to identify CoT that may contain
errors. We propose to resample if errors are iden-
tified by the CoP Tree. Such an inference method
improves the model’s overall accuracy by 13% on
average across different models when evaluating
and also considering CoT correctness.

We summarize our contribution into the follow-
ing three key points:

• We propose a novel method, Chain-of-Probe
(CoP), to detect changes in model confidence.

• We identify that the problem of early answer-
ing in the model is due to the simplicity of the
questions, making CoT unnecessary.

• We find that the changing pattern of confi-
dence during the model’s reasoning can be
used to examine the correctness of the model’s
CoT and answers, thus improving overall ac-
curacy.

2 Related Works

Extensive research has shown that CoT techniques
significantly improve the reasoning abilities of
LLMs (Wei et al., 2023). However, Lanham et al.
(2023) and Turpin et al. (2023) highlights an issue
known as early answering, where models arrive at
the answer before the CoT is fully generated. Their
experiments found that even if the CoT is forcibly
interrupted or erroneous information is added, the
model still arrives at the same answer. Similarly,
some work (Parcalabescu and Frank, 2024; Paul
et al., 2024) found that LLMs are not always faith-
ful in using their intermediate reasoning steps when
generating answers. Li et al. (2024) discovered that
while the CoT sometimes misses critical context,
the model often recalls this information directly
from the context when answering. These observa-
tions suggest that LLMs often answer questions
without depending on CoT (Lyu et al., 2023; Ben-
tham et al., 2024; Yeo et al., 2024; Sprague et al.,
2024).

Besides, as the model’s final prediction might
not necessarily depend on the generated CoT, eval-
uating the accuracy of the CoT based on the final
answer becomes inaccurate. The quality of the
CoT, as part of the model’s response, is equally im-
portant (Lightman et al., 2023; Jacovi et al., 2024).
Deriving correct answers from flawed reasoning re-
mains unreliable (Zhang et al., 2023; Bao et al.,
2024). As a result, increasing efforts focus on
improving the accuracy of the model’s reasoning
process rather than just the accuracy of the pre-
diction results (Radhakrishnan et al., 2023). Fi-
DeLiS (Sui et al., 2024) uses an external knowl-
edge graph to enhance CoT accuracy. Another,
the Selection-Inference (SI) model (Creswell and
Shanahan, 2022), includes a value function to as-
sess the quality of reasoning steps, guiding beam
search to improve reasoning quality. Additionally,
there are some methods (Ji et al., 2023; Zheng et al.,
2023) that allow models to recheck their reason-
ing and correct any errors after generating CoT to
ensure its accuracy. While these methods improve
CoT accuracy, they introduce significant additional
costs, such as requiring an external module or an
extra round of inference.

2587



Half of the 
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Question: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How 
many blue golf balls are there?
(A) 4     (B) 5     (C) 6     (D) 7
Answer: Let’s think step by step. 

Figure 2: The pipeline of Chain-of-Probe with a running example. Yellow boxes represent each reasoning step in
the CoT. Gray boxes denote predefined probing strings. In this case, {A, B, C, D} serves as the target token set, with
each probing collecting the model’s predicted probabilities for these four tokens (illustrated by yellow bar charts).

3 Methodology

In this section, we propose a Probing method,
namely, CoP. Essentially, after the model gener-
ates each step of reasoning, we prompt it to predict
an answer and record the corresponding confidence.
Figure 2 illustrates the process of CoP.

We denote the input to the model as x, i.e., the
prompt, and the i-th step in the CoT generated by
the model as si. We also introduce a probing string
a∗, such as, " So, the answer is (". We expect the
model to predict an answer after concatenating a∗
to each step, like a choice index A or B for multiple-
choice questions. We then define a target token set
V that includes all the possible answers, such as
{A, B, C, D}, etc. This set needs to be customized
based on the datasets that are specifically used. Af-
ter the model generates the i-th step of reasoning si,
we concatenate a∗ to si, using the model to predict
the word distribution of the next token:

P (y|x; s1:i; a∗) = softmax LLM(x; s1:i; a∗) (1)

We extract the probabilities corresponding to the
tokens defined in the set V from the word distribu-
tion, which serves as the confidence set for the i-th
step encompassing all possible final predictions:

ci = [pvi | v ∈ V]
where pvi = P (y = v | x; s1:i; a∗)

(2)

Notably, we also do a probe before the model’s
reasoning (i.e., the model only read the prompt).
The result of this initial probe is denoted as c0,
which can be regarded as the direct answer without
any CoT. Then, we divide the reasoning process
according to sentences, and after each sentence,

we probe once based on Equation (1) and (2). At
the end of the CoT generation, we can collect a
confidence matrix c = [c0, · · · , ck] ∈ R(k+1)×|V|,
where k is the number of reasoning steps.

In practice, we propose a cache fallback algo-
rithm to reduce redundant calculations, thereby
conserving substantial computational resources.
Specifically, we only maintain the Key-Value (KV)
cache (Vaswani et al., 2017) generated during the
CoT process, denoted as M. The KV cache
generated after the i-th reasoning step is Mi =
{mx,ms1 , · · · ,msi}, where m(∗) represents the
cache produced by the corresponding sequence en-
coding. During probing, ma∗ is generated and tem-
porarily added to KV cache,Mi ←Mi ∪ {ma∗}.
After obtaining the probing result, ma∗ is removed
fromMi, allowing the process to revert from prob-
ing back to the CoT generation and continue with
the next step. In this way, we circumvent redundant
calculations, thereby conserving substantial com-
putational resources. The additional computational
overhead during the probing process is reduced to
the generation of k × l tokens, where l represents
the length of the probing string.

4 Experiment

4.1 Settings
We mainly conducted experiments on three rea-
soning datasets: MMLU (Hendrycks et al., 2021),
BBH (Suzgun et al., 2022), and ARC (Clark et al.,
2018). For specific dataset information and reason-
ing settings, please refer to Appendix A.1.

The models used in the experiments include
LLaMA-2 (7B, 13B, 70B) (Touvron et al., 2023),
Vicuna 7B (Chiang et al., 2023), Mistral 7B (Jiang
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Figure 3: The left figure shows the early answering ratio in the model on the MMLU and BBH datasets. The right
two figures compare the model’s accuracy on these datasets, distinguishing between cases with early answering
(EA) issues and those without (Not EA).

et al., 2023), LLaMA-3 8B (Meta Team, 2024),
and Qwen2 7B (Qwen Team, 2024) (Refer to Ap-
pendix A.3 for detailed checkpoint versions).

In the following sections, we use CoP to first
analyze the conditions in which the LLM is more
prone to experiencing the early answering issue.
Next, we examine the correlation between model
confidence and accuracy, and design a candidate
answer selection strategy, validating it across three
datasets. Finally, through case analysis and pat-
tern recognition, we identify abnormal changes in
model confidence during reasoning, allowing us to
exclude CoT with potential reasoning errors.

4.2 Early Answering Issue Analysis

In this experiment, we systematically conducted a
statistical analysis of the early answering issue in
open-source models and examined the causes.

4.2.1 Early Answering Criterion
We define the early answering issue as the model
consistently choosing the same answer throughout
the entire reasoning process. Given the confidence
matrix c = [c0, · · · , ck] obtained from probing, we
take the index of the highest probability in each
row as the prediction for that step, i.e.,

ĵ = [j0, . . . , jk],

where ji = argmax
j

(cij | j = 1, . . . , |V|). (3)

If the prediction for each step matches the model’s
final prediction, we consider that the model has not
changed its choice during the reasoning, indicat-
ing an early answering issue. The process can be
described as follows:

y =

{
1 if ji = j∗ for all i ∈ {0, . . . , k}
0 otherwise

(4)

where y = 1 indicates that the early answering
issue occurred, and y = 0 indicates that it did not.

4.2.2 Early Answering Statistical Analysis

Based on this criterion, we conduct experiments
on four models across three datasets and reported
the Early Answering Ratio (EAR), indicating the
percentage of instances where the model exhibits
early answering issues.

From the first sub-figure of Figure 3, we find that
early answering is a common issue across all mod-
els instead of an isolated incident. For example, on
MMLU, multiple models exhibit early answering
in nearly half of the cases, indicating that half of
the CoTs might be unnecessary. We further ana-
lyze the accuracy of the models both when early
answering occurs and when it does not, as shown in
Figure 3. Surprisingly, when the model changes its
decision after generating a CoT, its accuracy tends
to be lower. This contradicts the belief that CoT
enhances performance.

4.2.3 Cause of Early Answering

To investigate the reasons behind the "negative ef-
fect of CoT,", we further analyze the relationship
between EAR and accuracy and plot the experi-
mental results of the MMLU and BBH datasets on
Figure 4. From the left two sub-figures, we can
observe a positive correlation between EAR and
accuracy across all models in both datasets. This
observation is consistent with our previous find-
ing that models achieve higher accuracy when the
early answering issue occurs. If we use accuracy
as an indicator of task difficulty — i.e., higher ac-
curacy indicating that the task is relatively easy
for the model, and vice versa — we can draw the
following finding:
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Figure 4: Relationship between EAR and accuracy. The two graphs on the left show the results of four models on
the MMLU and BBH datasets. The right part shows the results of the LLaMA-2 7b model on the MMLU dataset,
categorized by disciplines. Gaussian smoothing, with sigma=1 and order=0, was applied to each line to better
observe overall trends.

Finding 1: For reasoning-based tasks, easier
questions (i.e., those with higher accuracy) are
more likely to lead to early answering. This
suggests that CoT may not be necessary for
those easy tasks.

Intuitively, simpler questions require less rea-
soning steps and can often be answered directly.
We further categorize the results of LLaMA-2 7b
on the MMLU dataset to investigate the relation-
ship between EAR and Accuracy across various
disciplines. The results are shown in the right sub-
figure of Figure 4. Overall, the trend observed
across disciplines remains consistent: higher ac-
curacy correlates with a higher EAR. By compar-
ing the curves of different disciplines, we find that
STEM, in particular, shows a lower EAR compared
to others (with an average EAR of 34.6% for STEM
tasks and 51% overall), which implies that STEM
may require more reasoning compared to other dis-
ciplines. This observation also aligns with our
intuition. We conducted similar experiments on
datasets with human-annotated difficulty levels and
reached similar conclusions, with details provided
in Appendix B.1. Additionally, we present the spe-
cific numerical values for the correlation analysis
between EAR and Accuracy in Appendix B.2.

In essence, the questions where CoT can be ef-
fective tend to be more challenging, resulting in nat-
urally lower accuracy, rather than CoT having neg-
ative effects. In fact, when CoT influences model
decisions, there are generally more correct adjust-
ments than incorrect ones on a macro scale (refer to
Figure 5 and Appendix B.3). This is why CoT can
enhance model performance. It is undeniable that
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Figure 5: The ratio of CoT changing answers from True
to False versus from False to True.

there are cases where the model makes mistakes
after reasoning, which suggests that CoT may not
always be beneficial (Singhal et al., 2022; Gupta
et al., 2024; Wang et al., 2024). Hence, could we
discern whether a CoT is a positive or negative pro-
cess, thus eliminating CoTs that lead to incorrect
adjustments? We explore the answer in the next
two subsections.

4.3 Positive CoTs discrimination
4.3.1 CoP Score
To select positive CoT, we attempt to identify indi-
cators from probing results that evaluate the qual-
ity of CoT and assign corresponding scores. Ac-
cording to Equation (3) and (4), early answering
essentially refers to the model maintaining high
confidence in its predictions throughout the entire
reasoning process. We hypothesize that there is
also a correlation between confidence and accu-
racy, such as higher confidence in reasoning being
more likely to yield accurate answers. To verify
this, we track the confidence associated with the
final prediction v∗ at each step of probing to ob-
serve the trend of the model’s confidence during
reasoning. Then, we defined a metric, namely CoP
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Acc (%) Vicuna 7b Mistral 7b LLaMA-3 8b Qwen2 7b LLaMA-2 7b LLaMA-2 13b LLaMA-2 70b Avg.
MMLU

GS 52.5 62.7 67.2 70.5 49.7 55.9 69.0 61.1
Maj@5 53.6 64.5 69.1 73.0 51.3 57.7 70.6 62.8
CoPS@5 54.7 (+1.1) 64.4 (-0.1) 70.2 (+1.1) 72.1 (-0.9) 52.7 (+1.4) 59.0 (+1.3) 69.9 (-0.7) 63.3

BBH
GS 45.7 56.5 71.4 65.7 44.1 48.2 63.1 56.4
Maj@5 46.9 59.2 74.0 68.7 44.6 49.6 68.5 58.8
CoPS@5 48.5 (+1.6) 58.9 (-0.3) 73.4 (-0.6) 70.1 (+1.4) 45.5 (+0.9) 50.8 (+1.2) 69.5 (+1.0) 59.5

ARC-Easy
GS 81.0 89.4 93.5 94.9 83.0 88.4 93.4 89.1
Maj@5 83.3 90.9 94.2 95.7 84.5 88.7 94.5 90.3
CoPS@5 84.3 (+1.0) 92.2 (+1.3) 95.2 (+1.0) 96.9 (+1.2) 84.8 (+0.3) 89.0 (+0.3) 95.8 (+1.3) 91.2

ARC-Challenge
GS 66.9 82.2 86.1 88.7 69.2 73.2 84.0 78.6
Maj@5 72.2 82.8 87.1 91.0 71.4 77.4 88.1 81.4
CoPS@5 73.0 (+0.8) 84.1 (+1.3) 87.4 (+0.3) 91.3 (+0.3) 73.3 (+1.9) 78.4 (+1.0) 88.4 (+0.3) 82.3
Avg. +1.1 +0.6 +0.5 +0.5 +1.1 +0.9 +0.5 +0.7

Table 1: The comparison results of CoT selection. GS, Maj@5, and S@5 indicate the settings of greedy search,
5-time sampling with majority vote, and 5-time sampling with the CoP score (our method), respectively. The best
result is highlighted in bold.The improvements of S@5 compared with Maj@5 are listed in parentheses, with the
positive improvements marked in red. The last row shows the average improvement of S@5 compared to Maj@5.
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(5)

The first term measures the model’s average con-
fidence during the reasoning process, while the
second evaluates the average change in confidence.
Intuitively, higher confidence or greater increases
in confidence suggest that CoT benefits the final
prediction, making these CoTs more likely to have
a positive impact.

To further verify whether the CoP Score accu-
rately reflects the quality of CoT, we perform a
correlation analysis between the CoP Score and
Accuracy. Based on the probing results, we com-
pute a CoP Score for each CoT and sorted them
accordingly. Then, we partition the sorted CoT set
into 10 sections and calculate the accuracy within
each section. We plot a line graph in Figure 6 us-
ing the accuracy and average CoP Score of each
section as coordinates.

Figure 6 reveals a clear positive correlation be-
tween the CoP score and accuracy (Refer to Ap-
pendix B.2 for details). As the CoP score essen-
tially represents model confidence, we can further
draw the following finding:

Finding 2: The model is confident during the
inference process (high CoP Score), often re-
sulting in accurate predictions.

0.2 0.4 0.6 0.8 1.0
CoP Score

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MMLU
vicuna-7b-v1.5
LLAMA-2-7b-chat
LLAMA-2-13b-chat
LLAMA-2-70b-chat

0.2 0.4 0.6 0.8 1.0
CoP Score

0.2

0.4

0.6

0.8

1.0 BBH

Figure 6: The correlation between CoP Score and Accu-
racy. Positive correlation is found between them.

This result also validates our hypothesis: using
the CoP Score to guide the selection of better CoTs
is potentially feasible.

4.3.2 CoT Selection Strategy
Based on the correlation analysis, we evaluate CoP
Score’s ability to select CoT across three datasets:
MMLU, BBH, and ARC. For each question, we
have LLMs sample five responses and extract the
corresponding CoP. Then, we calculate the CoP
Score for each response based on the CoP and se-
lect the response with the highest CoP Score as the
final prediction. We compare our method (S@5)
against five-time sampling with majority voting
(Maj@5) and greedy search (GS). The results in Ta-
ble 1 show that choosing answers based on the CoP
score yields marginally better accuracy compared
to using multiple voting. Compared to Maj@5,
S@5 achieves an average improvement of over 1%
across several models (Vicuna 7b and LLaMA-2
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7b). We further conducted a one-tailed paired t-
test to compare CoPS with the baseline method on
the ARC-Challenge dataset. Our method achieved
consistently higher accuracy (Mean=82.27%) com-
pared to the baseline (Mean=81.43%). The analy-
sis revealed that this improvement was statistically
significant (p < 0.005) with a large effect size (Co-
hen’s d = 1.38), indicating that our method pro-
vides a reliable and meaningful enhancement over
the baseline approach. When compared across dif-
ferent models, selecting answers based on the CoP
Score yields even greater improvements for weaker
models (earlier or smaller models).

Notably, selection based on the CoP score is rel-
atively optimal among the candidates. While it
is more likely to contain the correct answer and
the model has higher confidence in it, we still can-
not ensure that every reasoning step is accurate. As
part of the model output, the correctness of the CoT
is equally important. Obtaining numerous correct
answers based on flawed reasoning remains unreli-
able. To delve deeper into the correctness of each
step within CoT, we transition from macro-level
correlation analysis to examining the underlying
patterns of confidence.

4.4 Reasoning Step Correctness Verification

4.4.1 True Answer, False CoT

We first investigate the ratio of responses with cor-
rect answers but false CoT. We collect responses
generated by the seven models for the questions
in the ARC-Challenge dataset. Then we ask GPT-
4 (OpenAI et al., 2024) to check whether those re-
sponses are correct, considering any CoT with even
a single error as incorrect (refer to Appendix A.4
for details). To ensure the reliability of GPT-4’s
evaluation, we randomly selected 50 samples from
the responses of all models on ARC-Challenge for
manual annotation. We recruited four PhD students

to annotate the golden answers of whether both
CoT and final answers are correct. All the answers
are consistently validated by all four annotators.
The Pearson correlation coefficient between GPT-
4’s annotations and the golden answers is 0.879,
proving that GPT-4 is a capable evaluator. We de-
fine a metric, namely True Answer with False CoT
Ratio (TAFCR), to evaluate this situation:

TAFCR =
#TA ∩ FC

#TA
(6)

We report TAFCR in Figure 7. The results show
that around 20% of the "correct" responses contain
errors in their CoT. However, according to the Ex-
act Match (EM) metric for answers, these cases are
marked as correct in the current benchmark. We
summarize the following findings:

Finding 3: Due to the limitations of current
reasoning evaluating benchmark, many mod-
els are overestimated. Relying solely on an-
swer matching to assess LLMs’ reasoning abil-
ities lacks rigor and reliability.

Ensuring the correctness of the reasoning is crucial,
but using AI tools like GPT-4 for verification is too
expensive. There is a need for a more lightweight
method to examine the correctness of the CoT.

4.4.2 Case Study

We assume that the model’s confidence may change
when it makes incorrect assertions. To verify this
assumption, we begin with a case study analy-
sis, randomly sampling instances where the model
made correct predictions. For each case, we plot
a line graph to show changes in the model’s con-
fidence over time. By comparing each line seg-
ment with the corresponding reasoning steps, we
observe that significant drops in confidence often
occur when the reasoning steps are not supportive
of or even contradict the final chosen answer.

Two real cases are shown in Figure 8. In Case 1,
the model’s confidence drops sharply after the sec-
ond reasoning step. On the right-hand side, during
this step, the model states the primary cause is the
relation between the earth and the moon (marked
in red), aligning with choice (A), which contradicts
its final prediction (C). In fact, this statement is in-
deed incorrect. A similar pattern is also observed in
Case 2. Please refer to Appendix B.4 for additional
case studies and numerical analysis.

2592



Question: Science students investigated the cause of the different phases of the moon. The model that would best
demonstrate the cause of the phases of the moon would include representations of
(A) the moon and Earth
(B) the moon and the sun
(C) the moon, the sun, and Earth
(D) the moon, the sun, and Venus
Answer: Let's think step by step. The phases of the moon are primarily caused by the gravitational
relationship between the Earth and the moon. The model that best demonstrates this relationship includes the
moon, Earth, and sun, which would provide the necessary visual representation of the gravitational interactions
between the three bodies. Option (C) is the best choice, as it represents the most important components involved in
the phases of the moon. The other options do not accurately convey the key relationships between the moon, Earth,
and sun. So, the answer is (C).

Case 1

Case 2

Question:Which alternative energy resource is used most like coal?
(A) geothermal energy
(B) nuclear energy
(C) hydropower
(D) biofuel energy
Answer: Let's think step by step.  Biofuels, like coal, are a type of solid fuel that can be burned for energy.
However, when considering similarities to coal, it is more accurate to compare alternatives like geothermal
energy. Like coal, geothermal energy can provide a consistent supply of heat, which makes it a more reliable
alternative to coal. Additionally, geothermal energy is renewable and does not produce greenhouse gas emissions,
making it a cleaner alternative. So, the answer is (D).

Figure 8: Analysis of two real cases: The line plot shows changes in the model’s confidence in its final prediction
over the reasoning steps. On the right are the corresponding cases, including the question and the response generated
by the model. We add numerical indices to indicate probing points, helping readers match the line plot with the CoT.
The step causing the significant drop is marked in red.

4.4.3 CoP with Decision Tree

To objectively describe this pattern, we train a
decision tree to automatically learn classification
conditions based on features extracted from the
CoP. Specifically, we sample 200 responses from
LLaMA-2 7b in the ARC-Challenge dataset and
consider GPT-4’s annotation as the ground truth.
Then, we extract three features from the model’s
confidence based on CoP: the maximum value,
i.e., max(pv

∗
1 , · · · , pv∗k ), the minimum value, i.e.,

min(pv
∗

1 , · · · , pv∗k ), and the minimum change in
confidence, i.e., min(pv

∗
1 − pv

∗
0 , · · · , pv∗k − pv

∗
k−1),

which could be a large negative number. Using
these features and labels, we train a decision tree,
namely CoP Tree, with 16 leaf nodes to identify
potentially incorrect CoT.

After training, we use CoP Tree for CoT screen-
ing experiments. Specifically, the model repeatedly
generates responses to the same question until the
decision tree confirms the CoT as correct or the
maximum number of samples is reached. We col-
lect the selected response, along with the response
obtained under greedy search (GS) settings and
3-time sampling with the CoP score as a control.
In addition, we compared strong baseline methods
Least-to-Most prompting (Zhou et al., 2022) and
Tree-of-Thought (ToT) (Yao et al., 2023). We use
the annotations from GPT-4 as the ground truth to
determine if the CoT contains any errors. Then, we
assess the CoT Accuracy, which measures the pro-

portion of responses with completely correct CoT
across all questions within the selected responses
under these three settings.

The results are presented in Table 2. The experi-
ment reveals a 13% average enhancement in CoT
accuracy following CoP Tree filtering of responses.
Remarkably, CoP Tree was trained based on confi-
dence features extracted from 200 CoTs generated
by the LLaMA-2 7b model, yet it demonstrates out-
standing generalization in cross-model predictions.
On the other hand, this also suggests a commonality
among confidence features in the model. Further-
more, we combine all samples from each model
and use GPT-4 annotations as the ground truth to
calculate the precision of the decision tree. The re-
sults reveal an average precision of 88%, indicating
its high performance in identifying correct CoTs
according to the CoP features. In Appendix B.5
and B.6, we provide more analysis.

4.4.4 CoP Tree Error Analysis

In the classification of the reasoning results of
LLaMA-2 7b, the CoP Tree generated 109 false
positive samples (incorrect reasoning classified as
correct). We conducted a statistical analysis and
plotted the corresponding confidence changes of
these samples in Appendix B.7 Figure 11. Over-
all, in the false positive cases, the model exhibited
high confidence during reasoning. 89.9% of false
positive cases were early answering cases (marked
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Metrics Vicuna 7b Mistral 7b LLaMA-3 8B Qwen2 7b LLaMA-2 7b LLaMA-2 13b LLaMA-2 70b Avg.
CoT Accuracy (%)

GS 49.1 63.7 67.4 71.4 55.4 60.5 66.9 62.0
CoPS@3 55.3 70.7 70.6 75.3 60.1 65.3 76.8 67.7
L2M 50.0 71.9 70.7 78.7 59.1 68.5 74.5 67.6
ToT 48.7 78.6 79.2 81.2 57.3 66.7 79.5 70.2
CoPT 67.6 76.4 78.9 82.8 68.7 72.8 81.1 75.5

CoPT Classification Performance (%)
Precision 84.1 89.6 91.0 91.2 81.4 87.5 91.1 88.0
Recall 67.2 69.3 70.3 70.6 72.5 67.1 71.1 69.7
F1 74.7 78.1 79.3 79.6 76.7 76.0 79.8 77.7
# Samples 4.17 3.89 3.53 3.12 4.34 3.87 4.03 3.89

Table 2: Results of reasoning step correctness verification on ARC-Challenge. TA-FCR stands for True Answer
with False CoT Ratio. GS, CoPS@3, L2M, ToT, and CoPT represent the CoT accuracy under the greedy search,
3-time sampling with the CoP score, Least-to-Most Prompting, Tree-of-Thought, and CoP Tree resampling settings,
respectively. Besides Precision, Recall, and F1 score, we also report the average number of sampling iterations (#
Samples) as an efficiency indicator for CoPT.

in orange). This implies that the model seemed
unaware of its errors. This resulted in the confi-
dence change curve being misleading. Please refer
to Appendix B.7 for more error analysis.

5 Conclusion

In this work, we introduce CoP, a probing method
to detect changes in confidence during the reason-
ing process of LLMs. Using CoP, we analyze the
necessity and accuracy of CoT. We find that the
early answering issue in the LLMs is often due to
task simplicity, indicating that CoT is unnecessary
for simple tasks. We then propose the CoP Score to
identify CoTs that lead to positive improvements.
Finally, through case analysis and pattern recogni-
tion, we develop the CoP Tree to detect errors in
the LLM’s reasoning process.

Limitations

We summarize the limitations in three points.
Firstly, CoP currently only applies to multiple-
choice questions or questions where the answer
is a single token. This is because the confidence
detected by CoP comes from a single token. If
the target token set includes words that span more
than one token, such as carbonated, which is tok-
enized into [_carbon, ated] or even a number like
100, which is tokenized into [_, 1, 0, 0], defining
the model’s confidence in the final prediction be-
comes challenging when the target word exceeds
one token. We are exploring the use of the perplex-
ity of multiple tokens instead of the probability of
a single token to make CoP applicable to a wider
range of tasks. We look forward to presenting more

findings in future work.
Secondly, regarding the necessity of CoT, we can

only provide a general conclusion: simple tasks do
not require CoT. However, it is difficult to deter-
mine in advance whether a task is simple, making
it impossible to pre-judge whether CoT is needed
for a particular question.

Lastly, concerning the accuracy of CoT, the CoP
Tree has high precision but relatively low recall.
This means it is a strict classifier. Consequently,
the resampling strategy of the CoP Tree may reject
some correct CoTs, leading to an increase in the
number of samples needed.

Ethic Statement

In this research, GPT-4 was employed as an evalu-
ator in a manner consistent with ethical guidelines.
Transparency about its usage, accountability for
its outputs, and mitigation of potential biases were
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maintained, and the AI’s limitations were acknowl-
edged, ensuring it supplemented rather than re-
placed human judgment. This approach aimed
to enhance the research quality while upholding
academic integrity and ethical standards. Refer to
Appendix A.4 for the detailed implementation of
the GPT-4 evaluation.
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of doubt amidst echoes of triumph in nlp robustness.
Preprint, arXiv:2311.09694.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Alon Jacovi, Yonatan Bitton, Bernd Bohnet, Jonathan
Herzig, Or Honovich, Michael Tseng, Michael
Collins, Roee Aharoni, and Mor Geva. 2024. A
chain-of-thought is as strong as its weakest link: A
benchmark for verifiers of reasoning chains. Preprint,
arXiv:2402.00559.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko
Ishii, and Pascale Fung. 2023. Towards mitigating
LLM hallucination via self reflection. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 1827–1843, Singapore. Associ-
ation for Computational Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brah-
man, Chandra Bhagavatula, Ronan Le Bras, and
Yejin Choi. 2022. Maieutic prompting: Logically
consistent reasoning with recursive explanations. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
1266–1279, Abu Dhabi, United Arab Emirates. Asso-
ciation for Computational Linguistics.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan,
Benoit Steiner, Carson Denison, Danny Hernan-
dez, Dustin Li, Esin Durmus, Evan Hubinger, Jack-
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A Experiment Details

A.1 Detailed Experiment Settings
We mainly conduct our experiments on the follow-
ing three datasets:

• Massive Multitask Language Understand-
ing (MMLU) includes approximately 16,000
multiple-choice questions across 57 academic
subjects, which are categorized into four su-
per categories: STEM, Humanities, Social
Science, and Other. (Hendrycks et al., 2021).

• AI2 Reasoning Challenge (ARC) is a set
of grade-school science questions, consisting
of two subsets: ARC-Easy with 2,376 sam-
ples and ARC-Challenge with 1,172 samples.
(Clark et al., 2018).

• BIG-Bench Hard Multiple-Choice (BBH
MC) is the multiple-choice subset of
BBH (Suzgun et al., 2022), including 4074
samples of 17 tasks from BBH.

All experiments use a 5-shot setup. CoT for demon-
strations in MMLU and BBH experiments come
from the Chain-of-Thought Hub (Fu et al., 2023),
while for ARC experiments, it is manually anno-
tated by our team. For detailed information, includ-
ing prompting templates and ARC demonstrations,
please refer to Appendix A.2. In all experiments,
we use half-precision (float16) for inference. For
the experiments using sampling decoding, we set
the temperature to 0.7, top-k to 40, and top-p to
0.9.

A.2 Prompting Template
For all reasoning experiments, we use the following
prompting template.

{INSTRUCTION}
Question: {DEMO QUES. 1}
Answer: Let’s think step by step. {DEMO ANS. 1}

...

Question: {DEMO QUES. 5}
Answer: Let’s think step by step. {DEMO ANS. 5}

Question: {QUES.}
Answer:

Table 3: The prompting template used in experiments.
The placeholders within the blue braces need to be filled
with corresponding data during the experiment.

For experiments with BBH and MMLU, the in-
structions and demonstrations used are identical

to those used in the Chain-of-Thought hub exper-
iment setup (Fu et al., 2023). For example, the
instruction for the tracking shuffled three objects
task is:

A task requiring determining the final
positions of a set of objects given their
initial positions and a description of a
sequence of swaps.

The instructions and demonstrations used for the
ARC dataset are shown in Table 6.

A.3 LLMs Checkpoints

We provide the detailed version of checkpoints in
Table 4.

LLM Checkpoints
Vicuna 7b vicuna-7b-v1.5
Mistral 7b Mistral-7B-Instruct-v0.3
LLaMA-3 8b Meta-Llama-3-8B-Instruct
Qwen2 7b Qwen2-7B-Instruct
LLaMA-2 7b llama-2-7b-chat
LLaMA-2 13b llama-2-13b-chat
LLaMA-2 70b llama-2-70b-chat
GPT-4 gpt-4-turbo-2024-04-09

Table 4: LLMs involved in the experiments and the
corresponding checkpoints.

A.4 GPT-4 Evaluation

A.4.1 Instructions for GPT-4

We use GPT-4 as an evaluator to examine whether
the CoT generated by the model contains potential
errors (refer to Table 4 for the detailed version).
Briefly, we ask GPT-4 to check for contradictory
statements or statements that do not align with facts
in the CoT. For the instructions, refer to Table 5.

A.4.2 Human Evaluation

To ensure the reliability of GPT-4’s evaluation, we
randomly selected 50 samples from the responses
of all models on ARC-Challenge for manual an-
notation. We recruited four PhD students to an-
notate the golden answers of whether both CoT
and final answers are correct. All the answers are
consistently validated by all four annotators. The
Pearson correlation coefficient between GPT-4’s
annotations and the golden answers is 0.879, prov-
ing that GPT-4 is a capable evaluator.
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### Instruction

Below is a question paired with an answer
provided by an AI assistant. With reference to the
ground truth, you are tasked with examining the
assistant’s response. The primary focus of your
evaluation should be to discern whether there are any
inconsistencies or assertions within the reasoning
that contradict established facts, rather than merely
assessing the correctness of the answer itself. If no
issues are found in the response, reply with

<Evaluation Results: Pass>

Should you identify problematic statements,
please indicate the portions of its answer that are
problematic and respond in the following format:

<Evaluation Results: Fail>

<Start of problematic description 1>
...
<End of problematic description 1>

<Start of problematic description 2>
...
<End of problematic description 2>
...

### Input

Question: {QUES. }
AI Answer: {ANS. }

### Output

Table 5: The prompting template for GPT-4 evaluation.

B Experiments Results Supplement

B.1 Impact of Problem Difficulty on EAR
Performance

In addition to using model accuracy as a criterion
for task difficulty, we further investigated the varia-
tion of EAR under human-annotated difficulty lev-
els. The ARC dataset consists of two subsets: Easy
and Challenge, with each subset containing prob-
lems spanning from grade 3 to grade 9. The EAR
results across subsets are presented in Table 7.

The analysis reveals that the ARC-Challenge
subset indeed shows a lower EAR, which provides
additional support for the findings reported in the
main text. Interestingly, we observed a general
downward trend in EAR from grade 3 to grade 9.
While this trend is not strictly monotonic, it aligns
with our expectations.

B.2 Correlation Analysis
From Figure 3 and Figure 6, we can see that there is
a positive correlation between EAR and accuracy,
as well as between CoPS and accuracy. To validate
this observation, we further conducted numerical
analysis. We calculated the Pearson correlation co-
efficients between EAR and accuracy, and between
CoPS and accuracy, respectively. The results are
reported in Table 8.

The correlation between EAR and Accuracy is
strong, with average Pearson correlation coeffi-
cients of 0.8915 and 0.7663 on the MMLU and
BBH datasets, respectively. On the other hand,
CoPS and Accuracy also exhibit strong positive cor-
relation, averaging 0.8645 on MMLU and 0.9681
on BBH.

B.3 Positive & Negative Effect of CoT
We analyzed the proportion of answers that
changed from false to true and from true to false
after the model’s reasoning on the MMLU and
BBH datasets. Specifically, in our CoP, the results
obtained from probing at step 0 are considered
the model’s predictions without any reasoning, i.e.,
j0. The final generated answers are considered
the model’s predictions after full reasoning, i.e., j∗.
Hence, we define the effect of CoT as the following
equation,

Effect =

{
Pos. if j0 is False and j∗ is True
Neg. if j0 is True and j∗ is False

(7)
We further compute the ratio of positive CoT

and negative CoT and present the results in Fig-
ure 5. Overall, the positive effects of CoT are more
evident, although there are still a number of cases
where the model’s reasoning changes a correct an-
swer to an incorrect one.

B.4 Case Study Supplement
Figure 9 shows two cases of reasoning where con-
fidence increases. In case 3, as the model’s con-
fidence in its reasoning grows, it seems more cer-
tain about its choices, but the reasoning process
is incorrect. The number of neutrons is found by
subtracting the atomic number from the mass num-
ber, not by division. In this case, the change in
the model’s confidence aligns with what we would
expect from a "good" thinking pattern, yet it leads
to an erroneous reasoning. We attribute this error to
the limited reasoning ability and knowledge of the
model. It is not aware that its reasoning is incorrect.
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Prompt for ARC dataset

Given a question, please reason through it step by step and then provide an answer.

Question: Juan and LaKeisha roll a few objects down a ramp. They want to see which object rolls the farthest. What should they do so they can 
repeat their investigation?
(A) Put the objects in groups.
(B) Change the height of the ramp.
(C) Choose different objects to roll.
(D) Record the details of the investigation.
Answer: Let's think step by step. To make sure Juan and LaKeisha can repeat their investigation, they need to keep everything consistent except for 
what they are directly testing, which is how far the objects roll. So recording the details of the investigation is crucial because it allows them to 
remember exactly what they did, including the objects used, the height of the ramp, and any other conditions. This way, they can duplicate those 
conditions in future trials.
So, the answer is (D).

Question: High-pressure systems stop air from rising into the colder regions of the atmosphere where water can condense. What will most likely 
result if a high-pressure system remains in an area for a long period of time?
(A) fog
(B) rain
(C) Drought
(D) tornado
Answer: Let's think step by step. High-pressure systems prevent air from rising, which is necessary for the formation of clouds and precipitation. If 
a high-pressure system stays in one area for a long time, this means that the atmospheric conditions will be dry and stable, inhibiting the 
development of weather systems that bring rain or storms. Therefore, the lack of rising air and subsequent condensation of water vapor will lead to 
a lack of precipitation.
So, the answer is (C).

Question: Which topic area would be the best to research to find ways of reducing environmental problems caused by humans?
(A) converting sunlight into electricity
(B) looking for new coal reserves
(C) finding reservoirs that contain oil
(D) converting forests into farmland
Answer: Let's think step by step. To address environmental problems caused by humans, we should focus on solutions that mitigate pollution, 
reduce greenhouse gas emissions, and promote sustainability. Among the options provided, converting sunlight into electricity (solar energy) is a 
renewable and clean source of power that can help reduce reliance on fossil fuels, thereby decreasing pollution and greenhouse gas emissions.
So, the answer is (A).

Question: Which characteristic of a cheetah is more likely to be learned rather than inherited?
(A) speed
(B) a spotted coat
(C) hunting strategies
(D) claws that do not retract
Answer: Let's think step by step. Characteristics of animals can generally be divided into two categories: inherited traits, which are passed down 
genetically, and learned behaviors, which are acquired through experience or teaching. Hunting strategies involve behavior and techniques that can 
be improved upon with practice and experience. While some instinctual hunting behavior is innate, the specifics of how to hunt effectively can be 
learned over time, making this the most likely learned characteristic among the options given.
So, the answer is (C).

Question: Approximately 50 million acres of tropical rainforest are cleared each year. Which effect most likely would result from the clearing of 
these forests?
(A) a decrease in soil erosion
(B) a decrease in biodiversity
(C) an improvement in air quality
(D) an improvement in water quality
Answer: Let's think step by step. Tropical rainforests are incredibly biodiverse ecosystems, hosting a vast array of plant and animal species. When 
these forests are cleared, the habitat for these species is destroyed, leading to a decline in biodiversity. Clearing also disrupts the natural cycles, 
often increasing soil erosion due to the loss of root structures that hold the soil in place, and can lead to decreased water quality as runoff carries 
sediment and pollutants into waterways. Additionally, the act of clearing, typically through burning, releases carbon dioxide into the atmosphere, 
contributing to climate change and not improving air quality.
So, the answer is (B).

Table 6: The prompts used for reasoning on ARC dataset.
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Question: An atom of tin has an atomic number of 50 and a mass number of 119. How many protons, electrons, and
neutrons are found in one neutral atom of tin?
(A) 50 protons, 69 electrons, 50 neutrons
(B) 50 protons, 50 electrons, 69 neutrons
(C) 69 protons, 50 electrons, 69 neutrons
(D) 69 protons, 69 electrons, 50 neutrons
Answer: Let's think step by step.We know that an atom of tin (Sn) has an atomic number of 50, which means it has
50 protons. Since the atom is neutral, it has an equal number of electrons. Therefore, the number of electrons is also
50. The mass number of tin, 119, represents the number of protons and neutrons in the nucleus. To find the number
of neutrons, we divide the mass number by the atomic number, which gives us 50 neutrons. So, the answer is (B).

Case 3

Case 4

Question: The Moon revolves around Earth. This causes
(A) Earth to be warmer at night.
(B) Earth to rotate more rapidly.
(C) the Moon to shine more brightly than other objects in the sky.
(D) the Moon to appear as different shapes during the month.
Answer: Let's think step by step. The Moon does indeed revolve around the Earth, which has no effect on Earth's
temperature or rotation speed. However, the Moon's proximity to Earth causes it to appear larger in the sky as it orbits,
causing it to appear as if it changes shape over the course of a month. So, the answer is (D).

Figure 9: Analysis of two real cases: The line plot shows changes in the model’s confidence in its final prediction
over the reasoning steps. On the right are the corresponding cases, including the question and the response generated
by the model. We add numerical indices to indicate probing points, helping readers match the line plot with the CoT.

Grade ARC-Challenge ARC-Easy
3 0.7399 0.8323
4 0.7497 0.8642
5 0.7502 0.8578
6 0.6901 0.8263
7 0.7023 0.8017
8 0.6665 0.8024
9 0.6684 0.8153

Table 7: Comparison of EAR across different difficulty
levels in the ARC dataset.

EAR & Acc CoPS & Acc
Model MMLU BBH MMLU BBH
Vicuna 7b 0.9041 0.8303 0.9293 0.9923
LLaMA-2 7b 0.8814 0.8240 0.8455 0.9620
LLaMA-2 13b 0.9011 0.7233 0.7892 0.9306
LLaMA-2 70b 0.8794 0.6874 0.8939 0.9876
Avg. 0.8915 0.7663 0.8645 0.9681

Table 8: Correlation analysis between EAR and accu-
racy, and CoPS and accuracy.

In case 4, confidence also increases as the reason-
ing progresses, and this case is an example where
there are no errors and the reasoning is completely
correct.

We believe that it is effective to judge whether
errors occur in the model’s reasoning process based
on the pattern of confidence changes. We can iden-
tify some patterns that roughly represent correct
and incorrect reasoning. It is undeniable that this
approach is not entirely accurate. When the model
is not aware of its mistakes, confidence does not
change, leading to misjudgments.

To further validate the effectiveness of the idea

of pattern-matching, we conducted additional sta-
tistical analysis. Based on the results of the CoP,
we first identify the bad pattern that reasoning steps
that lead to a significant decrease in confidence. We
then compare the annotations and perform statisti-
cal analysis based on whether the pattern matches
and whether the step is correct. The results of
LLaMA-2 7b are as follows:

Match Mismatch
Correct 1.54% 72.39%
Incorrect 10.03% 16.02%

Table 9: The ratio of correct and incorrect reasoning
steps that match or do not match the pattern of "decreas-
ing confidence".

Here is a further explanation of the indicators
with an example: Match & Incorrect - this rea-
soning step matches the pattern of a significant
decrease in confidence and is also incorrect. The
values in the table represent the proportion of this
kind of sample. Please note that we only conducted
statistical analysis on the examples that included
incorrect reasoning steps.

These results indicate that the majority of rea-
soning processes that fit this pattern are incorrect
(10.03% vs. 1.54%). This suggests that using this
pattern to filter out incorrect reasoning steps is re-
liable. On the other hand, there are still many in-
correct reasoning steps that do not fit this pattern
(16.02%). This indicates that this pattern is just one
of the patterns for incorrect reasoning and cannot
represent the overall trend of confidence changes
in all incorrect reasoning. This is consistent with
the conclusion drawn from our case study, which
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gini = 0.0
samples = 4.5%
value = [1.0, 0.0]

gini = 0.0
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value = [0.0, 1.0]

X[1] <= 0.731
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samples = 5.6%
value = [0.8, 0.2]

gini = 0.0
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value = [0.0, 1.0]

X[2] <= 0.894
gini = 0.49

samples = 7.9%
value = [0.571, 0.429]
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value = [1.0, 0.0]

gini = 0.0
samples = 1.1%
value = [0.0, 1.0]

gini = 0.278
samples = 6.7%

value = [0.833, 0.167]

X[2] <= 0.924
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value = [0.75, 0.25]
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value = [0.0, 1.0]

gini = 0.0
samples = 10.1%
value = [1.0, 0.0]

X[2] <= 0.984
gini = 0.408

samples = 7.9%
value = [0.714, 0.286]

X[2] <= 0.947
gini = 0.48

samples = 16.9%
value = [0.6, 0.4]

X[2] <= 0.98
gini = 0.219

samples = 18.0%
value = [0.875, 0.125]

X[2] <= 0.956
gini = 0.383
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value = [0.742, 0.258]

gini = 0.0
samples = 3.4%
value = [0.0, 1.0]

X[2] <= 0.988
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samples = 38.2%
value = [0.676, 0.324]

gini = 0.087
samples = 24.7%

value = [0.955, 0.045]

gini = 0.0
samples = 1.1%
value = [1.0, 0.0]
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samples = 6.7%

value = [0.167, 0.833]
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value = [1.0, 0.0]

gini = 0.0
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value = [0.0, 1.0]
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value = [1.0, 0.0]
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gini = 0.0
samples = 1.1%
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X[1] <= 0.467
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X[1] <= 0.375
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value = [0.333, 0.667]

X[1] <= 0.585
gini = 0.26
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gini = 0.469
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Figure 10: The classification process of the trained CoP
Tree, where x[0] is the minimum change in confidence,
x[1] is the minimum value, x[2] is the maximum value.

is why we need to train a decision tree to further
comprehensively describe the patterns of errors.

B.5 Supplement Analysis of CoP Tree

In Table 2, when comparing CoPT and CoPS@3,
we found that Vicuna 7b can achieve an absolute
improvement of over 12%. Compared to the 5%-
8% improvement in other models, the improvement
of Vicuna 7b can be considered significant. This
may be because Vicuna 7b itself has a lower accu-
racy (only 55.3%, while other models are above
60% and even as high as 76.8%).

Figure 10 illustrates the classification process
of the trained CoP Tree. Overall, the decision tree
is asymmetric and has a skewed shape. The right
subtree of the root node has been split multiple
times based on feature 2, which represents the max-
imum value of confidence. This suggests that the
feature is more valuable for distinguishing, but it
also raises the possibility that the decision tree may
have overfit on this feature.

We further investigated the improvement in an-
swer accuracy brought by CoPT and reported the
results in Table 10. The results show that CoPT
improved the model’s final prediction accuracy. In
comparison, CoPT demonstrated a more clear im-
provement in CoT accuracy.

B.6 Significance Analysis of CoP Tree

Statistical evaluation of the CoPT method against
the ToT baseline yielded compelling results.

The paired t-test analysis revealed that CoPT
(Mean=75.47%) consistently outperformed the ToT
(Mean=70.17%), with a mean performance gain of
5.3%. The observed difference achieved statistical
significance (p < 0.05), accompanied by a robust
effect size (Cohen’s d = 0.82). This quantitative ev-
idence substantiates CoPT’s superior performance
in the experimental setting.

Moreover, we employed Bayes Factor analysis
to evaluate classifier performance. The null hy-
pothesis was set as the performance of a random
classifier, which theoretically achieves 50% preci-
sion in binary classification tasks. This baseline
represents purely random guessing and was set as
the theoretical value for all seven test models. The
alternative hypothesis was based on our classifier’s
actual performance across seven independent mod-
els. The Bayes Factor analysis yielded a BF10 of
approximately 4.054e+04, indicating overwhelm-
ing evidence in support of the alternative hypothe-
sis, effectively ruling out the possibility of random
classification performance.

B.7 Error Analysis of CoP Tree
On the ARC-Challenge dataset, we collected the
CoT and CoP generated by LLaMA-2 7b under
the setting of greedy search. We used the CoP
Tree to classify these CoPs and compared them
with the labels generated by GPT-4. Finally, we
collected 109 False Positive cases, where the CoP
Tree believed there was no error, but there actually
was. We plotted the confidence changes of these
109 cases into a line graph (see Figure 11).

Overall, in the false positive cases, the model
exhibited high confidence during reasoning. We
further divided these cases based on whether they
belonged to the phenomenon of early answering
and found that 89.9% of false positive cases were
early answering cases (marked in orange). This
implies that the model seemed unaware of its er-
rors. We conducted manual checks on false posi-
tive cases that did not belong to early answering. In
these cases, we found that the model often made er-
rors at the beginning of reasoning (resulting in low
confidence). The model seemed to convince itself
to accept the error during the subsequent reasoning
process, leading to increasing confidence.

From the perspective of confidence changes,
these two types of errors align with our definition
of "good" thinking patterns. For example, main-
taining high confidence throughout the reasoning
process, or increasing confidence as the reasoning
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Model GS Answer Acc. CoPT Answer Acc GS CoT Acc. CoPT CoT Acc
Vicuna 7b 66.9 74.3 49.1 67.6
Mistral 7b 82.2 86.7 63.7 76.4
LLaMA-3 8b 86.1 88.3 67.4 78.9
Qwen2 7b 88.7 91.6 71.4 82.8
LLaMA-2 7b 69.2 74.6 55.4 68.7
LLaMA-2 13b 73.2 79.4 60.5 72.8
LLaMA-2 70b 84.0 90.0 66.9 81.1
Avg. 78.6 83.6 62.1 75.5

Table 10: Answer accuracy improvement achieved by CoP Tree. For ease of comparison, we also included the CoT
Accuracy from the main text.

progresses. When the model is unable to realize
its mistakes, or convinces itself to accept errors
during reasoning, the changes in confidence can be
quite misleading. This highlights the limitations
of CoP Tree, which relies on model confidence to
determine the correctness of reasoning.

B.8 Tree-of-Thought Experiment Setup and
Results Supplement

We referred to the original paper and source code of
ToT1, and designed a BFS algorithm for the ARC-
Challenge dataset. Initially, we counted the rea-
soning steps of the standard answers in the dataset.
Most of the reasoning can be completed within 6
steps. Therefore, we defined the maximum depth
of ToT as 6. We specified that the model samples 5
responses for each reasoning. Then, through self-
evaluation, the model selects the optimal reasoning
process from the five responses (ToT width is 1).
Repeat this reasoning process until the model gets
the answer or reaches the maximum tree depth. The
prompts used in the ToT experiment are shown in
Table 13 and Table 12.

The experimental results are shown in Table 2.
The improvement in reasoning ability of LLM
by ToT varies significantly: Mistral 7b reasoning
with ToT shows a 14.9% improvement compared
to greedy search, while Vicuna 7b’s accuracy de-
creases by 0.4%. We conducted extensive case
studies and found that the improvement brought
by ToT highly depends on the model’s ability to
follow instructions. ToT breaks down tasks, requir-
ing the model to complete specific subtasks step by
step, such as reasoning the next step or evaluating
and selecting the optimal reasoning step. However,
these subtasks often dictate the model’s output for-
mat. If the model’s output format does not fully

1https://github.com/princeton-nlp/tree-of-thought-llm

comply with the instructions, the predefined reg-
ular matching program may fail to effectively ex-
tract key information, leading to breaks in the ToT
reasoning process and affecting the generation of
the final answer. For example, when the model
self-evaluates and selects candidate responses, we
specify that it should summarize its final choice as
"The best choice is candidate {idx}." If the model
does not follow this instruction, for instance, if it
responds with "The best choice is the first one," the
subsequent matching program will not be able to
extract the evaluation results.

Adding more human input may alleviate the is-
sue, such as testing better prompts, optimizing reg-
ular expressions to make them more general, etc.,
but it cannot fundamentally solve the problem. The
performance decline caused by the model deviating
from instructions sometimes exceeds the improve-
ment in reasoning ability brought by ToT. This is
why, for weak models, the improvement brought by
ToT is not significant and may even have negative
effects.

On the other hand, ToT brings significant im-
provements to strong models, such as Mistral 7b
and LLaMA-3 8b, surpassing the improvements
brought by CoPT. We believe the main reason is
that The ToT algorithm includes a step-levl error
correction process. ToT requires the model to self-
evaluate and select better reasoning steps, allowing
for timely correction of errors and preventing er-
ror accumulation. In contrast, CoPT evaluates the
correctness after the model completes all reason-
ing. Therefore, every time a correction is made, the
model needs to reason from beginning again. Dur-
ing the process of re-reasoning, the model may gen-
erate new errors. This is a limitation of the sample-
level error correction mechanism. The performance
improvement brought by ToT comes at the cost of
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Model CoPT ToT
Vicuna 7b 5,931,135 36,262,747
Mistral 7b 5,400,881 34,532,024
LLaMA-3 8b 5,054,359 31,855,485
Qwen2 7b 4,539,389 28,143,109
LLaMA-2 7b 6,079,912 39,035,407
LLaMA-2 13b 5,390,422 33,522,586
LLaMA-2 70b 5,641,564 34,282,840
Avg. 5,433,952 33,947,743

Table 11: Comparison of inference token consumption
on the ARC-Challenge dataset under the settings of
CoPT and ToT.

ToT Vote Prompt for ARC dataset

Given a problem and several possible paths to solving the 
problem, evaluate the correctness of each path and choose the 
one that is most likely to lead to the correct answer. Then 
conclude in the last line "The best choice is {s}", where {s} the 
integer id of the choice.

Input: 
{input_1, input_2, …, input_5}

Output:

Steps

C
on

fid
en

ce

Table 12: ToT vote prompt used for ARC dataset.

significant inference overhead. Compared to CoPT,
under the 5-shot setting, ToT consumes 6-7 times
more tokens than CoPT. We counted the total num-
ber of tokens consumed during model inference
under both settings, which includes the sum of
input tokens and output tokens. We reported the
results in Table 11.

Therefore, developers need to carefully balance
the trade-off between overhead and performance.
From a cost perspective, CoPT achieves similar
performance to ToT at a much lower cost, making
it a better choice.

B.9 Least-to-Most Prompting Experiment
Setup and Results Supplement

We referred to the original paper (Zhou et al., 2022)
to create the prompt. We rephrased all five exam-
ples used for inference into a task decomposition
solving approach, with detailed prompts provided
in Table 14. The experimental results are presented
in Table 2 within the main text.

Despite the Least-to-Most prompting method
not involving reflection and error correction mech-
anisms, its accuracy in the reasoning process has
significantly improved compared to the baseline
of CoT + greedy search. This improvement is at-
tributed to the task decomposition mechanism of
Least-to-Most Prompting. By breaking down com-

plex problems into sub-problems, the difficulty is
reduced, enabling the model to solve simpler sub-
problems with fewer errors. This, in turn, enhances
the accuracy of the reasoning process. On aver-
age, the accuracy of the Least-to-Most Prompting
method is comparable to CoPS@3. It is important
to note that these two methods are not mutually
exclusive. We can generate multiple inference pro-
cesses by repeatedly sampling using the Least-to-
Most Prompting method, calculate the CoP Score,
and then select the best inference process.

2603



ToT Propose Prompt for ARC dataset

Given a question and a solution path (if any), please reason the next step.

Question: Juan and LaKeisha roll a few objects down a ramp. They want to see which object rolls the farthest. What should they 
do so they can repeat their investigation?
(A) Put the objects in groups.
(B) Change the height of the ramp.
(C) Choose different objects to roll.
(D) Record the details of the investigation.
Answer: Let's think step by step.
Step 1. To make sure Juan and LaKeisha can repeat their investigation, they need to keep everything consistent except for what 
they are directly testing, which is how far the objects roll.
Step 2. So recording the details of the investigation is crucial because it allows them to remember exactly what they did, including 
the objects used, the height of the ramp, and any other conditions.
Possible next steps: This way, they can duplicate those conditions in future trials.

Question: High-pressure systems stop air from rising into the colder regions of the atmosphere where water can condense. What 
will most likely result if a high-pressure system remains in an area for a long period of time?
(A) fog
(B) rain
(C) drought
(D) tornado
Answer: Let's think step by step.
Step 1. High-pressure systems prevent air from rising, which is necessary for the formation of clouds and precipitation.
Step 2. If a high-pressure system stays in one area for a long time, this means that the atmospheric conditions will be dry and 
stable, inhibiting the development of weather systems that bring rain or storms.
Possible next steps: Therefore, the lack of rising air and subsequent condensation of water vapor will lead to a lack of 
precipitation.

Question: Which topic area would be the best to research to find ways of reducing environmental problems caused by humans?
(A) converting sunlight into electricity
(B) looking for new coal reserves
(C) finding reservoirs that contain oil
(D) converting forests into farmland
Answer: Let's think step by step.
Step 1. To address environmental problems caused by humans, we should focus on solutions that mitigate pollution, reduce 
greenhouse gas emissions, and promote sustainability.
Possible next steps: Among the options provided, converting sunlight into electricity (solar energy) is a renewable and clean
source of power that can help reduce reliance on fossil fuels, thereby decreasing pollution and greenhouse gas emissions.

Question: Which characteristic of a cheetah is more likely to be learned rather than inherited?
(A) speed
(B) a spotted coat
(C) hunting strategies
(D) claws that do not retract
Answer: Let's think step by step.
Step 1. Characteristics of animals can generally be divided into two categories: inherited traits, which are passed down genetically, 
and learned behaviors, which are acquired through experience or teaching.
Step 2. Hunting strategies involve behavior and techniques that can be improved upon with practice and experience.
Possible next steps: While some instinctual hunting behavior is innate, the specifics of how to hunt effectively can be learned over 
time, making this the most likely learned characteristic among the options given.

Question: Approximately 50 million acres of tropical rainforest are cleared each year. Which effect most likely would result from 
the clearing of these forests?
(A) a decrease in soil erosion
(B) a decrease in biodiversity
(C) an improvement in air quality
(D) an improvement in water quality
Answer: Let's think step by step.
Step 1. Tropical rainforests are incredibly biodiverse ecosystems, hosting a vast array of plant and animal species.
Step 2. When these forests are cleared, the habitat for these species is destroyed, leading to a decline in biodiversity.
Step 3. Clearing also disrupts the natural cycles, often increasing soil erosion due to the loss of root structures that hold the soil in 
place, and can lead to decreased water quality as runoff carries sediment and pollutants into waterways.
Possible next steps: Additionally, the act of clearing, typically through burning, releases carbon dioxide into the atmosphere, 
contributing to climate change and not improving air quality.

Question: {input}
Possible next steps:

Table 13: ToT propose prompt used for ARC dataset.
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Lest-to-Most Prompt for ARC dataset

Given a question, please first break it down into a series of sub-questions. By solving the sub-questions in order, provide the final 
answer.

Question: Juan and LaKeisha roll a few objects down a ramp. They want to see which object rolls the farthest. What should they 
do so they can repeat their investigation?
(A) Put the objects in groups.
(B) Change the height of the ramp.
(C) Choose different objects to roll.
(D) Record the details of the investigation.
Answer: Let's break down this problem: 1. What is the main goal of Juan and LaKeisha's investigation? 2. What should they do to 
ensure their investigation can be repeated?
1. The main goal of Juan and LaKeisha's investigation is to see which object rolls the farthest.
2. To ensure that their investigation can be repeated, they should keep a record of the details of the investigation.
The answer is: (D).

Question: High-pressure systems stop air from rising into the colder regions of the atmosphere where water can condense. What 
will most likely result if a high-pressure system remains in an area for a long period of time?
(A) fog
(B) rain
(C) drought
(D) tornado
Answer: Let's break down this problem: 1. What effect does a high-pressure system have on air movement? 2. What will most 
likely result if this condition persists over a long period?
1. High-pressure systems stop air from rising, which prevents it from cooling and condensing into water droplets.
2. If air cannot rise and condense into water droplets, there will be little to no precipitation. Therefore, if a high-pressure system 
remains over an area for a long period, it will likely lead to a lack of rain.
The answer is: (C).

Question: Which topic area would be the best to research to find ways of reducing environmental problems caused by humans?
(A) converting sunlight into electricity
(B) looking for new coal reserves
(C) finding reservoirs that contain oil
(D) converting forests into farmland
Answer: Let's break down this problem: 1. What is the main goal of the research topic? 2. Which topic area would best address
reducing environmental problems caused by humans?
1. The main goal of the research topic is to find ways to reduce environmental problems caused by humans.
2. Of the options given, converting sunlight into electricity focuses on renewable energy sources, which can help reduce reliance 
on fossil fuels and decrease pollution and other environmental impacts.
The answer is: (A).

Question: Which characteristic of a cheetah is more likely to be learned rather than inherited?
(A) speed
(B) a spotted coat
(C) hunting strategies
(D) claws that do not retract
Answer: Let's break down this problem: 1. What are the differences between inherited and learned characteristics? 2. Which 
characteristic listed is more likely to be learned?
1. Inherited characteristics are traits passed from parents to offspring genetically, such as physical attributes. Learned 
characteristics are behaviors or skills acquired through experience.
2. Hunting strategies are not genetically passed but are learned through experience and practice by observing others or through 
direct experience.
The answer is: (C).

Question: Approximately 50 million acres of tropical rainforest are cleared each year. Which effect most likely would result from 
the clearing of these forests?
(A) a decrease in soil erosion
(B) a decrease in biodiversity
(C) an improvement in air quality
(D) an improvement in water quality
Answer: Let's break down this problem: 1. What are the effects of clearing tropical rainforests? 2. Which effect listed would most 
likely result from the clearing of these forests?
1. Clearing tropical rainforests often leads to loss of habitat for many species, which decreases biodiversity. It also results in more 
CO2 in the atmosphere and less filtration of pollutants, affecting air and water quality negatively.
2. Among the options, a decrease in biodiversity is a direct consequence of habitat destruction due to deforestation.
The answer is: (B).

Question: {input}
Answer: Let's break down this problem: 

Table 14: Least-to-Most prompt used for ARC dataset.
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ToT Propose Prompt for ARC dataset

Given a problem and several possible paths to solving the problem, evaluate 
the correctness of each path and choose the one that is most likely to lead to 
the correct answer. Then conclude in the last line "The best choice is {s}", 
where {s} the integer id of the choice.

Input: 
{input_1, input_2, …, input_5}

Output:

Steps

C
on

fid
en

ce

Figure 11: The confidence change corresponding to the 109 false positive cases misclassified by the CoP Tree. The
orange color represents early answering cases, while the blue color represents cases that are not early answering.
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