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Abstract

LLMs have boosted progress in many AI ap-
plications. Recently, there were attempts to
distill the vast knowledge of LLMs into in-
formation retrieval systems. Those distilla-
tion methods mostly use output probabilities
of LLMs which are unavailable in the latest
black-box LLMs. We propose Syntriever, a
training framework for retrievers using syn-
thetic data from black-box LLMs. Syntriever
consists of two stages. Firstly in the distilla-
tion stage, we synthesize relevant and plausi-
bly irrelevant passages and augmented queries
using chain-of-thoughts for the given queries.
LLM is asked to self-verify the synthetic data
for possible hallucinations, after which retriev-
ers are trained with a loss designed to clus-
ter the embeddings of relevant passages. Sec-
ondly in the alignment stage, we align the
retriever with the preferences of LLMs. We
propose a preference modeling called partial
Plackett-Luce ranking to learn LLM prefer-
ences with regularization which prevents the
model from deviating excessively from that
trained in the distillation stage. Experiments
show that Syntriever achieves state-of-the-art
performances on benchmark datasets from var-
ious domains in nDCG@K. The code is avail-
able at https://github.com/kmswin1/Syntriever.

1 Introduction

Large Language Models (LLMs) have become a
core technology in various NLP applications such
as chatbots (Achiam et al., 2023; Team et al., 2023)
and coding assistants (Roziere et al., 2023; Guo
et al., 2024). It is essential that the knowledge
of LLMs is complemented by up-to-date informa-
tion from external sources. To this end, retrieval-
augmented generations (RAG) have been pro-
posed and actively explored for various knowledge-
intensive NLP tasks (Lewis et al., 2020; Guu et al.,
2020; Lazaridou et al., 2022). RAG enhances the
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LLM performance without fine-tuning by incor-
porating external knowledge into LLMs through
search and alleviates problems such as hallucina-
tion (Welleck et al., 2020), i.e., plausible but non-
factual information generated by LLMs.

The retrieval of documents relevant to a given
query is a key task of the RAG system. Dense re-
trieval methods (Karpukhin et al., 2020; Gao and
Callan, 2022) are widely used to capture seman-
tic relationships between queries and documents,
in which text encoders are trained to learn dense
embeddings of queries and passages for their se-
mantic matching. The encoders can be pre-trained
in an unsupervised manner by using large-scale
text pairs sampled from sentences and their con-
texts (Lee et al., 2019; Izacard et al., 2021), and
then be fine-tuned on the annotated datasets for re-
trieval tasks (Wang et al., 2022; Chen et al., 2024).
Meanwhile, recent LLMs have exhibited remark-
able generalization abilities in many NLP tasks,
including information retrieval. In this paper, we
explore how the vast knowledge of LLMs can be
effectively utilized in training retrievers. Recently,
RePlug (Shi et al., 2024) has been proposed for
distilling the LLMs’ knowledge into small retriev-
ers. RePlug calculates the relevance scores of k
retrieved passages given a query, from which a
likelihood over k passages is computed. The re-
triever is trained to minimize the KL divergence
between this likelihood and the LLM’s likelihood
over passages based on its probability of predicting
the ground truth answer. However, prediction prob-
abilities are mostly unavailable as the output in the
latest black-box LLMs (Achiam et al., 2023; Team
et al., 2023). Thus, we consider the distillation of
LLM’s knowledge into retrievers when only the
synthetically generated texts are available as the
output from LLMs.
Contribution. We propose Syntriever, a frame-
work to train/fine-tune retriever models based on
synthetic data so as to distill the knowledge of
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black-box LLMs into retrievers effectively. We
propose a two-stage framework: in the first stage,
called distillation stage, we fine-tune the retriever
with LLM-generated synthetic data; in the sec-
ond stage, called alignment stage, we align the
retriever with the preference of LLMs. In the distil-
lation stage, Syntriever exploits synthetically aug-
mented queries using chain-of-thoughts (Wei et al.,
2022), synthetic positive and hard-negative pas-
sages, as well as self-verification to deal with hallu-
cination. The retriever is then trained by modified
Soft Nearest-Neighbor loss (Frosst et al., 2019)
to cluster multiple relevant passages together in
the embedding space. In the alignment stage, we
continually fine-tune the retriever trained from the
distillation stage, where the goal is to align the re-
triever with LLM preferences. The retriever fetches
top-K passages from which a set of passage pairs
is sampled and provided to LLMs for preference
feedback. In particular, we propose a preference
modeling called partial Plackett-Luce ranking to
learn LLM preferences with a regularization effect
such that the aligned model does not deviate ex-
cessively from the distilled model. We evaluated
the performance of Syntriever in various domains
of benchmark datasets for the retrieval tasks from
BeIR (Thakur et al., 2021). Syntriever achieves su-
perior performances on all benchmark datasets, by
up to 18.6% in nDCG@10, compared to the prior
state-of-the-art. Moreover, we show that the Syn-
triever framework can be combined with diverse
base retrievers and LLMs, leading to a significant
increase in retrieval accuracy.

2 Training Retrievers through Passage
Synthesis

2.1 Problem Statement and Notation
Neural retrieval is a task of searching for top-K
relevant passages C given query q using encoder E
from knowledge source Z:

C = Retrieval(q,Z,K,E) (1)

The retrieval system (retriever in short) is used
for retrieval-augmented generations (RAG) (Lewis
et al., 2020; Guu et al., 2020). Our goal is to
train/fine-tune a (pre-trained) text encoder E which
outputs embeddings for semantic representations
of queries and passages. The semantic similarity
of query q and passage p is measured by

sτ (q, p) :=
sim(E(q), E(p))

τ

where sim(a, b) stands for the cosine similarity of
vectors a and b, and τ is the temperature hyperpa-
rameter which controls the concentration of (nor-
malized) embeddings on the unit hypersphere.

In the training dataset, each query qi is paired
with passage pi manually labeled as relevant or the
answer to qi. We will denote a batch of samples
during training by B, where B is a set of indices of
batch samples. A typical method to train a retriever
is metric learning with contrastive loss such as
InfoNCE (Oord et al., 2018; Izacard et al., 2021):

LInfoNCE = − log

[
exp(sτ (qi, pi))∑

j∈B
exp(sτ (qi, pj))

]

That is, manually labeled pi is regarded as a posi-
tive passage for qi, and the embeddings of qi and
pi are pulled closer in the embedding space. The
other passages in batch B are considered irrelevant
to qi, and as negative passages whose embeddings
are pushed away from that of qi.

Next, we outline the proposed method, dubbed
Syntriever, which consists of two stages. In Stage 1
(Sec. 2.2), we use LLM-generated synthetic data to
distill their parametric knowledge into the retriever.
In Stage 2 (Sec. 2.3), we align the retriever with
LLM preferences. The two-stage process of Syn-
triever is analogous to the training of LLMs, i.e., su-
pervised fine-tuning (SFT) followed by alignment
with human preferences (Ouyang et al., 2022). An
overview of Syntriever is depicted in Fig. 1.

2.2 Stage-1. Distillation of LLM’s knowledge
through Synthesis

Given query q, our goal is to assimilate q to a set
of positive documents, and to disassimilate q from
negative documents. We synthesize a variety of
positive and negative passages so as to distill the
vast knowledge of LLMs into the retriever.
Decomposing query to easier sub-queries. Neu-
ral retrievers struggle with challenging queries (Li
et al., 2024), e.g., if a query requires multi-step
reasoning, or is too complex to understand. LLMs
are capable of decomposing a complex query into
multiple easier sub-queries which contain fine-
grained planning to answer the query. We lever-
age the decomposition capability by applying the
original query with prompts generating chain-of-
thoughts (CoT) (Wei et al., 2022), e.g., “Let’s
think step-by-step” proposed by (Kojima et al.,
2022). Specifically, given query qi, we generate
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What is considered a 

business expense on a 

business trip?

Let’s Think step by step

Question

…

Write a passage that contains 

plausible but irrelevant ....

…

Compose a passage … Ensure that 

no false information is provided; 

all content must be entirely 

accurate …

Stage 1

Stage 2

Retriever

Retriever

Top-K

passages

1. What is the Travel Expenses

Airfare: Cost of  flights to and from the business destination.

   …

2. What is the Accommodation Expenses

Hotel or Lodging: Cost of  staying at a hotel or other lodging.

 …

3. What is the Meals and Entertainment 

 Meals: Costs for meals during the trip. …

…

choose which passage is more 

relevant to answer to the question.

Relevant passages

Irrelevant passages

Self-verification

No

Yes

Retrieval

Pair-wise Comparison

-

+

Partial Plackett-Luce Ranking

…

Retriever

cot

Attract

Repel

Distillation of  LLM knowledge

Aligning Retriever with LLM

In batch samples

Hallucination?

Figure 1: Overview of Syntriever. Stage-1 (Distillation Stage). Given a query, Syntriever uses LLMs to synthesize
(i) related sub-queries (prompt Pcot), (ii) relevant passages ( P+) which are self-verified for hallucination ( PRelabel),
(iii) plausibly irrelevant passages ( P−). The retriever is trained with the synthetic positive and negative passages.
Stage-2 (Alignment Stage). The retriever is aligned with the LLM preferences. LLM compares passage pairs from
top-K retrieved passages. If LLM prefers yw over yl, we write yw ≻ yl. We propose partial Plackett-Luce ranking
to combine preference modeling and contrastive learning for the retriever to learn yw ≻ yl ≻ {in-batch negatives}.

augmented query qcoti given by

qcoti = M(Pcot(qi)) (2)

where M(·) denotes the LLM operation, and Pcot

denotes the prompt operator to generate CoT (see
Appendix D for prompt details). qcoti contains sub-
queries relevant to the original query, which are
carefully planned out with clarification and details
necessary to retrieve relevant documents. We will
use qcoti as a positive document for qi. This helps
the retriever with understanding diverse contexts
associated with related queries in the future.
Synthesizing positive and hard-negative pas-
sages. We generate synthetic positive and hard-
negative passages from query q. Although there
exist positive passages manually labeled for q in
the dataset, the synthesis of positive passages can
distill a broader range of knowledgeable contexts
from LLM to the retriever, and provide different
perspectives on the query, which prevents overfit-
ting to specific keywords or contexts. We generate

synthetic positive passage p+i related to query qi
with prompt P+:

p+i = M(P+(qi)) (3)

In addition, contrastive learning can be made
more robust using hard-negatives (Robinson et al.,
2021) where hard-negatives are samples that are dif-
ficult to distinguish from positive samples. For the
retriever, hard negatives are plausible but irrelevant
answers to query q. We synthesize hard-negative
passage p−i with prompt P− given by

p−i = M(P−(qi)) (4)

Hallucination as Hard-negatives. We take a step
to verify whether synthetic positive passages are
indeed relevant to the given query. Using LLMs to
generate answers runs a risk of hallucinations. Hal-
lucination is a non-factual but seemingly plausible
passage. The synthetic positive p+i can potentially
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Figure 2: Example of LLM synthesis. The correct an-
swer to the query is shown in red font.

be a hallucination. However, the plausible irrele-
vance of hallucination fits the definition of hard-
negatives. Thus, we re-use hallucination as hard
negative passages, which differs from prior works
(Weng et al., 2023; Madaan et al., 2024) which
simply discards hallucination outputs.

To that end, once positive passage p+i is synthe-
sized, LLM checks the passage for hallucination.
LLMs are known to have self-verification ability
(Weng et al., 2023), i.e., they can re-verify the in-
ferred answer. If p+i is decided as hallucination, we
label p+i as a hard-negative, which we call Relabel-
ing step. Specifically,

p̂i = M(PRelabel(qi, p
+
i )) (5)

where PRelabel denote the prompting for relabeling.
If p+i is relabeled as a hard-negative, query qi will
have two hard-negatives (synthetic and relabeled)
and two positives (manually labeled and CoT).

In summary, given query qi, positive passages
are manually labeled passage pi, CoT qcot

i , and
synthetic positive p+i (if not relabeled as negative).
The negative passages are p−i (and relabeled pas-
sages, if any) and in-batch samples. An example of
synthesized passages is shown in Fig. 2.
Putting positives together: modified Soft-
Nearest Neighbor Loss. Next, we train the re-
triever with synthesized passages. Considering that
there are multiple positives for a given query, we
propose to use a loss inspired by soft-nearest neigh-
bor (SNN) loss (Frosst et al., 2019). SNN loss is
used in metric learning for supervised classifica-
tion as follows. Consider batch B from a labeled
dataset and a sample xi in B with label yi. The

“nearest” neighbor (NN) to xi is selected from B in
a randomized fashion: the probability of xj being
selected as the NN is ∝ exp(−dT (xi, xj)) where
dT is the distance metric with temperature param-
eter T . SNN loss is the negative logarithm of the
probability that the NN of xi is in the same class
as xi:

LSNN = − log

(∑
j∈B:yj=yi

exp(−dT (xi, xj))∑
j∈B exp(−dT (xi, xj))

)

The goal of loss LSNN is entanglement (Frosst et al.,
2019) which is to closely cluster the sample em-
beddings from the same class.

We consider a loss inspired by SNN loss. In
our case, the set of points we want to cluster is a
group of 4 samples (qi, pi, p+i , qcoti ). Although
these groups do not represent individual classes as
in SNN loss, we still want the group to be “entan-
gled”. Thus, similar to SNN loss, we propose a
loss Ldistill(qi) for query qi given by

Ldistill(qi) = − log(

esτ (qi,pi) + esτ (qi,p
+
i ) + esτ (qi,q

cot
i )

∑
j∈B

esτ (qi,pj)+esτ (qi,p
+
j )+esτ (qi,q

cot
j )+esτ (qi,p

−
j )

)

where the similarity metric (sτ ) is used instead of
the negative distance (−dT ). Another difference
between Ldistill(qi) and SNN loss is that there is
no attraction term for synthetic hard-negatives (p−i )
in Ldistill(qi), i.e., they are used only for repulsion
from other samples.

2.3 Stage-2. Retriever Alignment from LLM
Feedback

Alignment is a process of aligning language mod-
els with human preferences (Ouyang et al., 2022;
Rafailov et al., 2024). Alignment provides LMs
with a pair of answer candidates for a question,
where the preference between the pair is labeled
by humans. We propose to align the retriever with
LLM preferences as follows. Given a query, the
retriever trained in the distillation stage is asked
to retrieve top-K passages. Next, a pair of pas-
sages is sampled from top-K passages, and LLM
is asked to provide the preference between the pair.
Since K passages are top passages from a retriever
trained through the distillation stage, deciding the
preference between the pair is likely to be challeng-
ing (for moderately small K, e.g., K = 5). The
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retriever is continually trained based on the pref-
erence feedback from LLMs. The details of the
alignment process are outlined as follows.
Step 1: Retrieve top-K passages. Given query
qi, we retrieve top-K passages using encoder Ê
trained through the distillation stage:

Ĉi = Retrieval(qi,Z,K, Ê) = {ci,1, ci,2, ..., ci,K}

Step 2: Pair-wise Comparison. A pair of pas-
sages, ci,j and ci,k, is sampled from Ĉi. We probe
LLM to decide which passage is more relevant to
answer query qi using prompt PCompare:

(qi, c
+
i , c

−
i ) = M(PCompare(qi, ci,j , ci,k)) (6)

where LLM labels the more (resp. less) preferred
passage as c+i (resp. c−i ). We compute the pairwise
preferences of N distinct passage pairs sampled
from Ĉi where N ≤

(
K
2

)
is a hyperparameter.

Step 3: Partial Plackett-Luce ranking. Consider
batch B of triples (qi, c+i , c

−
i ) obtained in Step 2

where qi’s in the batch are distinct. Encoder Ê is
fine-tuned with the following loss function:

Lalign(qi) = − log

[
esτ (qi,c

+
i )

∑
j∈B

(
esτ (qi,c

+
j ) + esτ (qi,c

−
j )
)

× esτ (qi,c
−
i )

esτ (qi,c
−
i ) +

∑
j∈B,j ̸=i

(
esτ (qi,c

+
j ) + esτ (qi,c

−
j )
)
]

(7)

We refer to the training under loss (7) as partial
Plackett-Luce ranking. The method is explained in
detail as follows.
From Bradely-Terry to Plackett-Luce model.
Preference modeling has been used for aligning
language models with human preferences (Ouyang
et al., 2022; Rafailov et al., 2024). Bradley-Terry
(BT) model (Bradley and Terry, 1952) is widely
adopted for modeling preference over two choices.
Consider a pair of answer passages yw and yl given
query q. If yw is preferred over yl by a human
annotator, the preference relation is denoted as
yw ≻ yl | q. In preference modeling, it is typically
assumed that there exists some (implicit) reward
function r(q, y) for query q and answer y. Given
query q and two answers y1 and y2, BT model is
defined by the distribution

p(y1 ≻ y2 | q) =
er(q,y1)

er(q,y1) + er(q,y2)
(8)

The fitting of BT model involves either explicitly
formulating and optimizing reward r(·, ·) (Ziegler
et al., 2019; Ouyang et al., 2022), or implicitly
doing so by policy optimization through parameter-
ization (Rafailov et al., 2024).

Plackett-Luce (PL) model (Plackett, 1975; Luce,
1959) generalizes BT model to ranking M ≥ 2
choices. Suppose π : [M ] → [M ] is a permutation.
Given query q and answers y1, ..., yM , we define
the notation:

p(π | q) := p(yπ(1) ≻ yπ(2) ≻ ... ≻ yπ(M) | q).

The PL model defines distribution p(π | q) as

p(π | q) =
M∏

m=1

(
er(q,yπ(m))

∑M
j=m er(q,yπ(j))

)
(9)

where the m-th term in the product of (9) is the
soft-max probability of the reward for the choice
of rank m, r(q, yπ(m)), along with the rewards of
choices of lower preferences.
Partial Ranking through Marginalization. The
key idea of our method is to include in-batch
samples in preference modeling. Consider triple
(qi, c

+
i , c

−
i ) from batch B. Our goal is to model the

following preference relation:

c+i ≻ c−i ≻ {in-batch samples} | qi (10)

where the preference ordering of in-batch samples
can be arbitrary or “don’t care”. Relation (10) is
explained as follows. Firstly, c+i is preferred over
c−i by LLM given qi. Secondly, since c+i and c−i
are in top-K passages obtained from a retriever
trained through the distillation stage, it is highly
likely that both c+i and c−i are preferred over irrel-
evant samples in the batch. We call this relation
partial ranking, since the ranking of the samples is
incompletely specified.

The preference relation in (10) can be modeled
by marginalization of Plackett-Luce distribution
given by (9) as follows. Suppose we want to model
the preference relation

yπ(1) ≻ yπ(2) ≻ {yπ(3), . . . , yπ(M)} | q (11)

where the top-two choices (π(1) and π(2)) are pre-
ferred over the rest (π(3), . . . , π(M)), and the or-
dering of the rest can be arbitrary. Since p(π|q) is a
distribution over π, the distribution modeling (11)
can be obtained by marginalizing p(π|q) over the
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components of π except top-two choices, π(1) and
π(2). Specifically, we have that

∑

π(3),π(4),...,π(M)

p(π | q) = er(q,yπ(1))

∑M
j=1 e

r(q,yj)

× er(q,yπ(2))

er(q,yπ(2)) +
∑

j ̸=π(1),π(2)

er(q,yj)
(12)

The derivation of (12) is provided in Appendix C.
Thus, if we set q = qi, yπ(1) = c+i , yπ(2) = c−i
and the rest of y’s as in-batch samples with M =
|B| and the reward r(·, ·) as the similarity metric
sτ (·, ·), then (12) models the partial relation (10).

In conclusion, the proposed loss (7) is the nega-
tive log-likelihood of the marginalized PL model
representing partial ranking given by (10), which
makes our training a maximum likelihood estima-
tion under distribution (12). The key question is:
why should we include in-batch samples in the pref-
erence modeling?
Combining Preference Modeling and Con-
trastive Learning. Our observation is that, the
training objective for preference modeling invari-
ably takes the form of a contrastive loss. For ex-
ample, the BT model is trained with the loss which
is the negative log of (8). Suppose we use the BT
model, in which case y1 and y2 in (8) are replaced
by c+i and c−i respectively. From a contrastive learn-
ing perspective, (8) attracts c+i (y1) to q, but repels
c−i (y2) from q. But this may unintentionally move
c+i and c−i closer to samples irrelevant to qi. This is
undesirable, because c+i and c−i are among top-K
documents retrieved by the model trained through
the distillation stage, and thus should be regarded
as relatively “positive” and kept away from irrele-
vant in-batch negatives. Conventional preference
modeling, such as BT model, lacks perspective on
learning with negative (irrelevant) samples.

The proposed loss directly addresses the prob-
lem: it not only captures the LLM’s preferences
but also maintains separation among irrelevant doc-
uments. Thus, our loss combines preference mod-
eling and contrastive learning. It can be seen that
(7) is simply a sum of two contrastive-type losses.
By having a similar form of contrastive loss as that
from the distillation stage, e.g., positive embed-
dings keeping distances from in-batch negatives,
our alignment loss serves as regularization. That is,
the model is prevented from excessively deviating
from that trained in the distillation stage. Regu-
larization is deemed important in the alignment of

LLMs as well (Ouyang et al., 2022). In addition, it
is reported that the larger number of negatives leads
to better performance in contrastive learning (He
et al., 2020). In Appendix B.1, our experiments
show that partial PL ranking model achieves robust
performances across datasets, whereas BT model
occasionally suffers from poor alignment.

3 Experiment

3.1 Experimental Settings

Datasets. Experiments are conducted on re-
trieval benchmark datasets from various domains
in BeIR (Thakur et al., 2021). We evaluate the per-
formance of retrievers in two benchmark settings
as follows.

• Supervised Fine-Tuning. The models are
evaluated on BeIR benchmark datasets which
contain the training datasets. For each bench-
mark dataset, every model is fine-tuned on
its training dataset, and we report in-domain
evaluation results on that benchmark dataset.

• Zero-shot Transfer. The models are eval-
uated on out-of-domain datasets from BeIR
benckmark. The zero-shot setting is simi-
lar to previous work (Izacard et al., 2021;
Wang et al., 2022): the models can be first
fine-tuned on large retrieval datasets such
as MSMARCO (Nguyen et al., 2016) and
NQ (Kwiatkowski et al., 2019) for generic
knowledge, and then are evaluated on unseen
datasets.

We use Normalised Discounted Cumulative Gain
(nDCG@K) as the default performance metric.
Baselines. We experiment with lexical retriever
BM-25 (Robertson et al., 2009), semantic retriev-
ers DPR (Karpukhin et al., 2020), SBERT (Reimers
and Gurevych, 2019), CoCondenser (Gao and
Callan, 2022), RocketQA (Ren et al., 2021), Con-
triever (Izacard et al., 2021), E5 (Wang et al., 2022),
English model of BGE-M3-EN (Chen et al., 2024),
Nomic-embed (Nussbaum et al., 2024).
Settings of Syntriever. Syntriever uses pre-trained
E5 (Wang et al., 2022) as the base encoder E. In
the settings of supervised fine-tuning, Syntriever
is trained with synthetic data generated from each
training dataset. In the settings of the zero-shot
transfer, Syntriever is first trained on synthetic data
based on training datasets of MSMARCO and NQ,
and then is evaluated on out-of-domain datasets
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Method BM-25 DPR CoCondenser RocketQA Contriever E5 BGE-M3-EN Nomic-Embed Syntriever
MSMARCO 22.8 36.8 37.4 30.2 40.3 42.4 41.3 37.1 50.3
HotpotQA 60.1 48.9 56.3 53.3 61.2 63.4 64.2 66.3 70.2

FiQA 23.5 21.4 27.6 30.2 31.4 37.9 39.1 40.9 41.9
Fever 75.3 50.7 51.8 52.3 53.7 57.1 54.3 53.5 60.3

SciFact 66.5 63.3 48.7 56.8 64.9 73.7 75.4 79.1 80.5
NFCorpus 32.5 35.4 32.5 29.3 31.7 35.8 38.2 36.8 43.3

NQ 32.9 41.2 43.3 42.1 42.5 49.3 46.3 50.1 52.1

Table 1: Supervised fine-tuning results on seven BeIR benchmark with training datasets (nDCG@10). The best
scores are highlighted in bold with underline and, the second best scores are emphasized in bold.

Method BM-25 DPR CoCondenser RocketQA Contriever BGE-M3-EN E5 Nomic-Embed Syntriever
MSMARCO 22.8 17.7 24.3 23.2 40.7 35.2 43.1 26.4 50.1
Trec-covid 65.6 33.2 71.2 67.5 59.6 44.6 61.7 67.1 75.3
HotpotQA 60.3 39.1 56.3 35.6 63.8 68.3 52.4 69.1 60.2

FIQA 23.6 11.2 27.6 30.2 32.9 28.3 37.9 37.8 39.5
Arguana 31.5 17.5 29.9 45.1 44.6 61.5 51.4 54.2 38.8

Touche-2020 36.7 13.1 19.1 24.7 23.0 13.5 28.3 19.0 19.9
Quora 78.9 24.8 30.5 31.2 86.5 88.7 87.9 88.4 88.9

CQADupstack 29.9 15.3 17.2 19.3 34.5 40.2 28.3 49.6 41.4
DBPedia 31.3 26.3 36.3 35.6 41.3 19.0 33.8 39.4 39.8

Climate-Fever 21.3 14.8 14.4 18.0 23.7 18.3 15.4 27.0 13.1
SciDocs 15.8 7.7 13.7 13.1 16.5 9.6 19.0 19.2 19.7
SciFact 66.5 31.8 61.5 56.8 69.3 71.5 73.1 71.8 64.2

NFCorpus 32.5 18.9 32.5 29.3 32.8 32.7 35.1 35.5 36.6
Fever 75.3 56.2 49.5 67.6 75.8 64.3 58.2 60.3 60.2
NQ 32.9 47.4 48.7 59.5 49.8 29.8 60.0 51.2 62.2

Table 2: Zero-shot transfer results on BeIR benchmark datasets (nDCG@10). The best scores are highlighted in
bold with underline, and the second best scores are emphasized in bold.

qcot p+,− c+ ≻ c− MSMARCO HotpotQA FiQA SciFact NFCorpus
✗ ✗ ✗ 42.4 63.4 37.9 73.7 35.8
✔ ✗ ✗ 44.6 64.3 38.5 76.7 40.2
✗ ✔ ✗ 45.7 64.7 39.3 77.3 40.8
✔ ✔ ✗ 46.2 65.3 40.2 78.9 41.4
✗ ✗ ✔ 45.8 67.3 39.1 75.5 37.3
✔ ✔ ✔ 50.3 70.2 41.9 80.5 43.3

Table 3: Ablation study (in nDCG@10). The first three
columns represent the following components: synthe-
sized query with CoT (qcot), synthetic positives and
hard-negatives (p+,−), alignment (c+ ≻ c−).

from BeIR benchmarks. This is a similar setting as
Contriever (Izacard et al., 2021), E5 (Wang et al.,
2022), etc. To minimize the effects of model sizes
on performance, we set the size of Syntriever and
all baseline models to (approximately) 125M. In
alignment stage of Syntriever, we set K = 5 by
default, and set N =

(
K
2

)
= 10. Detailed hyperpa-

rameters are in Appendix E.

3.2 Experimental Results

Main Results. We first present the supervised
fine-tuning results on seven datasets for the re-
trieval task which are BeIR benchmarks with train-
ing datasets. The results are shown in Table 1.
Compared to the second-best models, Syntriever

improves the retrieval performances by: 18.6% on
MSMARCO, 5.9% on HotpotQA, 2.5% on FiQA,
1.8% on SciFact, 8.3% on NFCorpus, and 4%
on NQ. The base encoder for Syntriever is a pre-
trained E5; still, Syntriever achieves performance
gain over E5 by: 18.6% on MSMARCO, 10.7%
on HotpotQA, 10.6% on FiQA, 9.2% on SciFact,
20.9% on NFCorpus, 5.6% on Fever and 5.7%
on NQ. This shows that Syntriever can success-
fully distill LLMs’ capability into small retrievers
and improve their performance by a large margin.
Overall, Syntriever shows robust performances on
datasets both in generalized and specialized do-
mains. Our results show that small LMs can effi-
ciently learn from the teacher model through syn-
thetic data and can be successfully aligned through
feedback, even without access to the output proba-
bility of black-box LLMs.

Next, we present zero-shot transfer results. Ta-
ble 2 shows that Syntriever achieves the best per-
formances on 8, and the second best on 1, out of 15
datasets. Note that the performances of Syntriever
on MSMARCO and NQ are in-domain results,
whereas other baselines, e.g., Contriever (Izacard
et al., 2021), E5 (Wang et al., 2022), etc., are re-
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Dataset Metric Base encoder
ColBERT SBERT Contriever

HotpotQA

nDCG@1 65.3 (+10.3) 63.2 (+10.3) 73.3 (+10.5)
nDCG@3 58.2 (+9.7) 57.0 (+9.5) 68.2 (+9.5)
nDCG@5 60.7 (+8.5) 59.5 (+9.8) 70.4 (+9.7)
nDCG@10 62.8 (+9.1) 61.8 (+11.1) 72.1 (+10.9)

FiQA

nDCG@1 30.1 (+3.8) 26.7 (+5.2) 32.1 (+5.1)
nDCG@3 27.8 (+3.2) 25.1 (+4.6) 30.4 (+4.7)
nDCG@5 30.5 (+2.8) 26.1 (+4.5) 31.9 (+4.3)
nDCG@10 33.5 (+2.9) 25.8 (+4.3) 35.2 (+4.6)

Table 4: Performance gains of Syntriever with different
base encoders.

ported also to be trained on MSMARCO and/or
NQ. In particular, although Syntriever shares the
same base model as E5, it improves the retrieval
accuracy on 11 datasets. This is perhaps because
LLM-generated synthetic data and alignment feed-
back improve the generalization capabilities of the
retriever on unseen data.

Ablation study. We conduct an ablation study on
Syntriever. We add or remove model components,
and the effects on the performance are shown in
Table 3. The results show that both synthesized
query (qcot) and passages (p+, p−) in the distil-
lation stage improve the retrieval performances.
Overall, the distillation stage achieves an average
gain of 8.2% over the base retriever. Results show
that the retriever successfully learns from the para-
metric knowledge of LLMs during the distillation
stage. Also, the alignment component (c+ ≻ c−)
in Table 3 is shown to achieve performance gains
of up to 8.8%. Our results show that the alignment
component is significant for retrieval performance,
considering that nDCG@K is sensitive to the fine-
grained ranking of relevant passages.

Performances with different encoders. Syn-
triever is a framework for training encoders for re-
trieval, and thus can be combined with different sen-
tence encoders. We experiment with various well-
known encoders, e.g., ColBERT, SBERT, and Con-
triever, as the base encoders for Syntriever. Syn-
triever improves the performance by a large margin
in all three retrieval models. The performance im-
provement is particularly high in nDCG@1 which
concerns retrieving the exact passage relevant to
the query. This is because the alignment stage in
Syntriever helps the retriever with a fine-grained
ranking of highly relevant passages. Overall, the
results show that Syntriever is generally applica-
ble to, and improves the performances of, various
retrievers.

Method HotpotQA FiQA SciFact
w/o Self-verification 67.4 40.8 79.7
w/ Self-verification 70.2 41.9 80.5

Table 5: Effectiveness of re-labeling hallucination pas-
sages. Results are in nDCG@10.

Dataset Metric GPT-4o mini GPT-4o

SciFact

nDCG@1 65.7 66.7
nDCG@3 73.0 75.0
nDCG@5 76.7 79.1
nDCG@10 76.3 78.9

NFCorpus

nDCG@1 46.0 45.0
nDCG@3 42.3 41.2
nDCG@5 42.1 41.1
nDCG@10 42.6 41.4

Table 6: Comparison of models trained only up to the
distillation stage using synthetic data from GPT-4o
mini vs. GPT-4o.

Dataset Metric GPT-4o mini GPT-4o

HotpotQA

nDCG@1 64.5 68.3
nDCG@3 63.5 71.2
nDCG@5 66.3 71.4
nDCG@10 68.6 70.2

FiQA

nDCG@1 41.8 42.1
nDCG@3 39.7 40.4
nDCG@5 41.3 41.5
nDCG@10 40.7 41.9

Table 7: Comparion of models trained by preference
feedback from GPT-4o mini vs. GPT-4o. Both models
are trained with GPT-4o in the distillation stage.

Effects of Re-labeling Hallucination Passages.
Table 5 shows that LLM self-verification and re-
labeling are effective for the synthetic training by
Syntriever. The performance improvement of self-
verification on HotpotQA is relatively greater than
other datasets. We found that, approximately 15%
of synthetic positive passages were relabeled as
hallucinations in the case of HotpotQA, whereas
the proportion was about a few percent in other
datasets. This indicates that the performance im-
provement through relabeling is likely higher for
HotpotQA. In conclusion, removing hallucinations
(and even re-using them as hard-negatives as in
Syntriever) through self-verification is important
for data synthesis, which is the case for most tasks
utilizing LLMs (Weng et al., 2023).

Weaker but Cheaper LLMs can be effective.
We examine how the LLM capabilities affect dis-
tillation and alignment performances. We consider
two LLMs: GPT-4o vs. GPT-4o-mini, where GPT-
4o is the larger and more capable model. First, we
compare the distillation capabilities of two LLMs.
Table 6 shows the comparison, where Syntriever
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is trained only up to the distillation stage. Interest-
ingly, the distillation performance of GPT-4o-mini
is better than GPT-4o on NFCorpus. Considering
the datasets concern different knowledge domains
(SciFact: scientific, NFCorpus: medical), smaller
models may be better at teaching than larger ones in
certain domains. Our results interestingly coincide
with recent findings that weaker models may be bet-
ter at teaching than stronger models in domains like
math problem solving (Bansal et al., 2024). Next,
we examine the alignment capabilities of LLMs.
For a fair comparison, two models are first trained
by GPT-4o in the distillation stage, and then trained
by different LLMs in the alignment stage. Table 7
shows that the larger model (GPT-4o) is better at
alignment. It is challenging to rank top-K passages
retrieved by a distilled retriever, requiring a deep
understanding of various contexts, and thus larger
models may be more favored for the task. Over-
all, smaller models appear to be quite competitive,
i.e., the performance gap is small or even better in
some domains. Thus, our prospect is that distilla-
tion/alignment through small models will become
an increasingly good alternative, especially under
a fixed compute budget (Bansal et al., 2024).

4 Related Work

Neural Information Retrieval. Neural infor-
mation retrieval is a key element of retrieval-
augmented generation (RAG) (Lewis et al., 2020)
which is a retrieve-and-read approach for open do-
main question answering tasks (Chen et al., 2017).
Lexical retrieval methods such as BM-25 (Robert-
son et al., 2009) have been mostly used prior to
neural retrievals, which however had difficulties
with capturing semantic information at scale. Thus,
dense passage retrievers using text encoders (De-
vlin, 2018) have been actively explored (Karpukhin
et al., 2020; Gao and Callan, 2022; Xiong et al.,
2021). RocketQA (Qu et al., 2021) is a multi-step
training framework for a retrieval system consist-
ing of a retriever and a re-ranker which typically is
a cross-encoder to estimate the ranking among re-
trieved passages. RocketQA further utilizes the re-
ranker to sample hard negatives from top-retrieved
passages. Meanwhile, Syntriever does not use sep-
arate re-rankers, but continually trains the retriever
for its alignment with the ranking preference of
LLMs. Unsupervised learning for retrieval (Izac-
ard et al., 2021; Wang et al., 2022) was proposed
to train sentence encoders by contrastive learning

using a large collection of text-pair datasets. Subse-
quently, a hybrid retrieval method which combines
lexical, dense, and multi-vector retrievers has been
proposed (Chen et al., 2024). RePlug (Shi et al.,
2024) proposed a knowledge distillation for retriev-
ers using KL divergence associated with the pre-
diction probabilities of relevant documents from
LLMs which, however, are available only from
outdated APIs.

Training with Synthetic Data. Tiny-stories (El-
dan and Li, 2023) first proposed training small lan-
guage models using synthetic data generated by
GPT-4 (Achiam et al., 2023). Motivated by (El-
dan and Li, 2023), Phi (Gunasekar et al., 2023)
proposed filtering of code data based on the educa-
tional value through the prompting of GPT-4. The
next version of Phi-series (Li et al., 2023; Abdin
et al., 2024) generated high-quality synthetic data
from judiciously selected topics in order to distill
GPT-4’s knowledge into small LLMs. They demon-
strated that distillation through synthetic data of
high educational value can boost the performances
of small LLMs. (Wang et al., 2023) proposed to
train a Mistral-7B model (Jiang et al., 2023) by
synthetically generating query-document pairs by
prompting GPT-4 for various text embedding tasks.
(Yu et al., 2024) proposed distillation synthetic data
where they fine-tune the student LLM using the
output answers from teacher models based on ra-
tionales (Wei et al., 2022; Deng et al., 2023). The
aforementioned methods have demonstrated that
student models can efficiently learn from the syn-
thetic data generated by teacher models.

5 Conclusion

We proposed Syntriever, a training framework for
retrieval systems using LLM synthesis. In the distil-
lation stage, Syntriever synthesizes various types of
passages including augmented queries, relevant and
plausibly irrelevant passages. Relevant passages
are clustered in the embedding space using mod-
ified soft nearest-neighbor loss. In the alignment
stage, the retriever is continually trained based on
the preference feedback of LLMs on the retrieved
passages. We propose a preference modeling called
partial Plackett-Luce ranking to learn LLM pref-
erences while maintaining the similarity relation
among embeddings learned during the distillation
stage. Experiments show that Syntriever achieves
significant performance gains over baselines on
benchmark datasets from various domains.
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6 Limitations

Although Syntriever achieves performance gains
compared to baseline retrievers on various bench-
mark datasets, it requires LLM inferences to gen-
erate synthetic data and alignment feedback. This
may incur additional costs compared to other meth-
ods which only perform a fine-tuning of text en-
coders. However, the cost of proprietary black-box
LLMs has become increasingly cheaper and af-
fordable. Moreover, weaker but cheaper LLMs
become increasingly capable of teaching student
models (Bansal et al., 2024). Thus, we believe that
the Syntriever framework is widely applicable to
retrieval systems in practice.
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Method FiQA NFCorpus SciFact
Partial Plackett Luce 41.9 43.3 80.5
Bradley Terry 35.7 36.1 79.8

Table 8: Comparison of preference modeling. Results are in nDCG@10.

Dataset Metric w/o Alignment K = 3 K = 5 K = 10

FiQA

nDCG@1 38.7 40.9 42.1 42.3
nDCG@3 38.3 39.7 40.4 41.5
nDCG@5 38.5 40.9 41.8 42.7
nDCG@10 37.9 41.7 41.9 42.5

SciFact

nDCG@1 80.2 81.0 81.3 80.0
nDCG@3 78.0 78.6 79.0 79.8
nDCG@5 78.8 79.7 79.8 79.2
nDCG@10 78.9 80.0 80.5 80.6

Table 9: Effect of varying K in top-K retrieved passages for preference alignment.

Dataset Default K = 3 K = 5 K = 10

FiQA 41.9 41.7 41.8 42.3
SciFact 80.5 80.0 80.3 79.8
NFCorpus 43.3 42.4 42.6 43.8

Table 10: Effect of varying K in top-K retrieved passages and the number N of sampled pairs for comparison in
alignment. We set N = K for this experiment. By default, Syntriever uses K = 5 and N = K(K−1)

2 = 10. The
evaluation metric is nDCG@10.

A Reproducibility Statement

Source Code. We release the source code in the public repository.
Black-box LLMs. We experiment with GPT-4o and GPT-4o-mini for synthetic data generation. Those
models are accessible by OpenAI API. We generate LLMs’ responses using our prompt templates in
Appendix D.

B Additional Experiments

B.1 Comparison of Preference Modeling Methods
Table 8 compares the preference modeling methods for alignment: Bradley-Terry (BT) (Bradley and
Terry, 1952) and partial Plackett-Luce (PL) ranking model. While BT and partial PL models achieve
similar performances on SciFact, BT model shows poor performances on FiQA and NFCorpus. The
following is a possible explanation. The search results on SciFact tend to be highly accurate, and most
of top-K passages are likely to contain (partly) relevant context. By contrast, top-K passages on FiQA
and NFCorpus which are more challenging datasets, will tend to be only marginally relevant to the given
query. The partial PL performs preference ranking while keeping those marginally relevant passages away
from highly irrelevant (in-batch) passages. Without such regularization of keeping marginally positive
samples away from in-batch negatives, which was done during the distillation stage, BT model may cause
the retriever to forget the knowledge learned during the distillation stage. This may cause performance
drops on FiQA and NFCorpus as shown in Table 8. Thus, we conclude that the proposed partial ranking is
crucial for the alignment performance.

B.2 Effects of the number of retrieved passages during alignment
We examine the effect of the number K in the top-K passage retrieved during the alignment process.
Table 9 shows the results with varying K, where we sample all the possible pairs, or N =

(
K
2

)
, for
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Passages Can derive answer Cannot derive answer
Synthetic positive 88% 12%

Ground truth 84% 16%

Table 11: Results of GPT-4o about whether each passage can answer ground truth. We randomly select 1000
samples in each passage set.

comparison. The performance improves with increasing K, up to 12% in FiQA and 5.1% in SciFact. Also,
results show that the larger K, the better the performance. In addition, using a larger number of passages is
particularly effective when the overall retriever accuracy is low, since it is more likely to retrieve relevant
context in top-K-ranked passages for large K. However, large K may incur high computational costs if
N =

(
K
2

)
, and thus there is a trade-off between performance and computational overheads. In this paper,

we chose K = 5 as a good trade-off point.

In addition, we experiment with the numbers of passage pairs to be sampled for comparison (N ) with
varying K. Previously in Table 9, we set N =

(
K
2

)
= K(K − 1)/2. Here we provide the experiments

with a smaller N given by N = K. The results are shown in Table 10. Overall, if we compare Table 9
and 10, the performance seems to slightly degrade for smaller N . As previously, for challenging datasets
such as FiQA and NFCorpus, the performance seems to gradually improve with increasing K, again
because more retrieved passages lead to a higher chance of including relevant passages in top-K. At the
same time, increasing K seems to exhibit diminishing returns on the performance. Overall, the default
setting of Syntriever (K = 5, N = 10) appears to be a reasonable choice in terms of a balance between
complexity and performance.

B.3 Quality of Synthetic Positives

In general, it is difficult to accurately quantify the ratio of hallucination in the synthetic passage. The
passage may not have direct clues to the answers, but may contain partial information from which the
answer can be deduced. How relevant a passage should be to the query so that the passage is classified as
positive? This is very hard to quantify, and thus measuring the quality of synthetic passages is difficult as
well.

We performed experiments to indirectly measure the quality of synthetic positives as follows. We
asked GPT-4o that whether the true answer can be directly derived from synthetic positive passages (after
self-verification). We asked the same question, but in this time whether the answer can be derived from
the ground-truth passages provided by the dataset. The results are shown in the table below.

Interestingly, GPT-4o states that only 84% of the ground truth passages have direct clues to the true
answer. This is because, a significant portion of the "ground truth" passages of the HotpotQA dataset do
not contain direct clues to the true answer, but only indirect clues or partial information. By contrast,
GPT-4o stated that 88% of synthetic positives after self-verification contain direct contexts to the true
answer. Thus, we conclude that synthetic positives after self-verification are of fairly high quality.

Training Implementation. We implement retrieval tasks based on BEIR (Thakur et al., 2021) which is
implemented by sentence-transformers. All the sentence encoders used in our experiments are publicly
accessible in HuggingFace.

Evaluation Datasets. The four evaluation datasets of HotpotQA, FiQA, SciFact, and NFCorpus are
released to the public repository. All the experiments are conducted with the single A100 GPU with 80GB
VRAM.
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C Derivation of (12)

For notational simplicity, we define zk := exp(r(q, yπ(k))). We have that

∑

π(3),...,π(M)

p(π | q) =
∑

π(3),...,π(M)

M∏

m=1

(
zm∑M
j=m zj

)
(13)

=
∑

π(3),...,π(M)

z1∑M
j=1 zj︸ ︷︷ ︸
(a)

z2∑M
j=2 zj︸ ︷︷ ︸
(b)

M∏

m=3

(
zm∑M
j=m zj

)
(14)

=
z1∑M
j=1 zj︸ ︷︷ ︸
(a)

z2∑M
j=2 zj︸ ︷︷ ︸
(b)

∑

π(3),...,π(M)

M∏

m=3

(
zm∑M
j=m zj

)

︸ ︷︷ ︸
(c)

(15)

=
z1∑M
j=1 zj︸ ︷︷ ︸
(a)

z2
z2 +

∑
j ̸=1,2 zj︸ ︷︷ ︸

(b)

(16)

The derivation steps are explained as follows.

• (13) is the definition of p(π|q) from Placket-Luce ranking model.

• In (14), we take two terms (a) and (b) out from the product in (13).

• In (15), (a) and (b) are invariant with respect to π(3), . . . , π(M), so they can be taken out of the
summation with respect to π(3), . . . , π(M). Specifically, the denominators of (a) and (b) contains
the sums over π(3), . . . , π(M), and the sum is a permutation-invariant operation. Also, (c) is the
sum of Placket-Luce distribution over all possible permutations of π(3), . . . , π(M). Thus, (c) must
sum up to 1.

• In (16), we simply re-write (b) in (15) as shown in (b) in (16).

By replacing zi with exp(r(q, yπ(i))) in (16), we obtain the marginalization result in Eq. (12).
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D Prompt templates

D.1 Prompt template of positive passage generation (P+).

You are a subject matter expert in your field with substantial accumulated knowledge in a
specific subject or topic, validated by academic degrees, certifications, and/or years of
professional experience in that field.

Question: {question}

Write a passage that elaborates on the question. Ensure that no false informa-
tion is provided; all content must be entirely accurate. Present everything you are aware
of, offering a comprehensive and detailed explanation. Do not include any unverified or
speculative information.

Figure 3: Prompt template design for generating synthetic positive passages.

D.2 Prompts for generating plausible but irrelevant passages (P−).

You are a subject matter expert in your field with substantial accumulated knowledge in a
specific subject or topic, validated by academic degrees, certifications, and/or years of
professional experience in that field.

Question: {question}

Write a passage that contains plausible but irrelevant context given the ques-
tion.

Figure 4: Prompt template design for generating plausible but irrelevant passages.

D.3 Prompt template of relabeling for synthetic passages (PRelabel).

You are a subject matter expert in your field with substantial accumulated knowledge in a
specific subject or topic, validated by academic degrees, certifications, and/or years of
professional experience in that field.

Question: {question}
Passage: {passage}
Is the above passage relevant to the aforementioned question?
Answer with yes or no.

Figure 5: Prompt template design of relabeling for synthetic positive passages.
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D.4 Prompts for pair-wise comparison of two passages (PCompare).

You are a subject matter expert in your field with substantial accumulated knowledge in a
specific subject or topic, validated by academic degrees, certifications, and/or years of
professional experience in that field.

Passage #1: {passage1}
Passage #2: {passage2}
Question: {question}

Based on your professional knowledge, choose which passage is more relevant
to answer the given question.
Only answer as Passage #1 or Passage #2

Figure 6: Prompt template design for comparison of a passage pair.

E Hyperparameters

Hyperparameter Value
Model size 125M

Learning rate 2e-5
Learning rate scheduler Cosine

Optimizer Adam (Kingma, 2014)
Warmup ratio 1000 steps
Weight decay 0.01
GPU Usage Single A100 w/ 80GB VRAM
Batch size 60 (Stage 1), 100 (Stage 2)

τ (temperature) 0.05

Table 12: Detailed hyperparameters.

F Dataset Statistics

Dataset Train Validation Test Domain
MSMARCO 532,752 9,261 7,438 Search Engine
HotpotQA 170,001 10,895 14,811 Wikipedia
FiQA 14,167 1,239 1,707 Finance
SciFact 920 - 340 Science
NFCorpus 110,576 11,386 12,335 Medical
FEVER 140,086 8,080 7,938 Fact Verification
NQ 132,803 - 3,452 Search Engine

Table 13: Dataset statistics.
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