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Abstract

"Gold" and "ground truth" human-mediated la-
bels have error. This error can escape com-
monly reported metrics of label quality or ob-
scure questions of accuracy, bias, fairness, and
usefulness during model evaluation. This study
demonstrates methods for answering such ques-
tions even in the context of very low reliabili-
ties from expert humans. We analyze human
labels, GPT model ratings, and transformer en-
coder model ratings of the quality of classroom
teaching from two LLM architecture families–
encoders and GPT decoders. First, we demon-
strate that using standard metrics in the pres-
ence of poor labels can mask both label and
model quality. The encoder family of models
achieve state-of-the-art, even "super-human",
results across all classroom annotation tasks
using standard metrics. However, evaluation
techniques accounting for unreliable labels re-
veal important flaws, including spurious cor-
relations and nonrandom racial biases across
models and humans. We estimate that if mod-
els were used in a human-in-the-loop context,
the variance contributed by GPT model labels
would worsen ratings. These techniques also
highlight tasks where encoders could offer 80%
reduction in human costs while also reducing
bias.

1 Introduction

Human-mediated labels always have an unknown
amount of error. In machine learning practice, this
error is often quantified using inter-rater reliability
metrics and correlations. However, this annotation
uncertainty is often ignored during standard super-
vised learning and model evaluation, leading to
poorer models (Belz et al., 2023). Thus, imperfect
labels are treated as "gold" or "ground truth" (Belz
et al., 2020; Hosking et al., 2024). This may be due
in part to the fact that accuracy measures are the
most preferred methods of evaluating and bench-
marking model performance (Birhane et al., 2022;

Ribeiro et al., 2020; Kiela et al., 2021), but com-
mon practice could also arise from not using tools
expressive enough to interpret labels in low relia-
bility. To that end, this work demonstrates methods
for working with low-/unknown-reliability annota-
tions, often found in tasks requiring complex expert
judgment.

The field of education has many complex tasks
that often yield low reliabilities in labels (Jurenka
et al., 2024; Kane and Staiger, 2012), which makes
edtech NLP models and research particularly vul-
nerable to the effects of inexpert annotations (Belz
et al., 2020; van der Lee et al., 2019; Zhou et al.,
2023). The case study used to illustrate more ex-
pressive methods for working with unreliable la-
bels will be from K12 education. Specifically, this
study examines a use case where expert annota-
tions are highly unreliable and yet used in high-
stakes decisions: automated rating of the quality
of classroom teaching. The methods used in this
paper respond to the call of others to evaluate the
psychometric properties of models that perform
this task (Casabianca et al., 2013; Liu and Cohen,
2021), and do so by comparing metrics across six
dimensions of interest: Concordance, Confidence,
Validity, Bias, Fairness, and Helpfulness (complete
results for these metrics compared to human base-
lines are in Table 2). In addition, novel contribu-
tions of this work to NLP include:

1. First demonstration of automated ratings of
classroom instruction at or above the human-
level reliability (Section 4.1, Concordance),

2. Measurements of the generalizability and de-
pendability of labels found in NLP tasks (Sec-
tion 4.2, Confidence),

3. Methods for detection of spurious correlations
in model outputs (Section 4.3, Validity),

4. Methods for disentangling human rater-
specific biases from data (Section 4.4) and
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measuring fairness, even in the presence of
low label reliabilities (Section 4.5), and

5. Application of Design Studies (d-studies)
from Generalizability Theory (g-theory) for
estimating impacts of model use on human
label quality (Section 4.6, Helpfulness).

This paper will explain the complexity of the case
study task, followed by six evaluation methods
to scrutinize the quality of the label. This work
strengthens the argument that only using simple
inter-rater reliability metrics to understand the qual-
ity of labels may mask the limitations of the label-
ing criteria (Hill et al., 2012b; Hosking et al., 2024;
Belz et al., 2020). It also illustrates how more ro-
bust evaluation techniques can yield information in
the presence of noisy labels and seemingly incon-
clusive results. The analyses presented in this study
are motivated by issues of model interpretability,
fairness, and usefulness (see Appendix A). Brief in-
troductions to various techniques will be provided
and illustrated via the study task, followed by dis-
cussion of the results.

1.1 Case Study: Rating Teaching Quality
The classification task of rating teaching may seem
deceptively simple: using a rubric, provide a rat-
ing for the quality of instruction of an elementary
school math classroom. Such ratings are given
to all public education teachers in US K12 for
both formative educator development feedback and
as high-stakes teacher evaluations. Despite their
ubiquity, these ratings are not reliable, even when
conducted by experts (Ho and Kane, 2013; Kane
et al., 2015; Kane and Staiger, 2012; Glaese et al.,
2022; Whitehill and LoCasale-Crouch, 2024), sim-
ilar to the poor reliability of other K12 education
labels (Jurenka et al., 2024; Tack et al., 2023) that
have limited the rigor of education research (Slavin,
2002; Klahr, 2013; Jurenka et al., 2024). Stud-
ies about ratings of instruction are also extremely
expensive to conduct relative to other annotation
tasks (Grissom et al., 2013; Liu and Cohen, 2021;
Jurenka et al., 2024). There are only two major
studies across hundreds of public school teachers
that use authentic instructional metrics to support
development: the MET study (Kane et al., 2013;
Kane and Staiger, 2012) and the NCTE Main Study
(Kane et al., 2015). The latter is the source of data
for this study.

Ho and Kane estimated that increasing the num-
ber of human classroom observers can improve the

reliability of assigned ratings. In their major work
on the topic, they use methods similar to those in
this paper to measure conditions under which the
use of additional human raters can increase the re-
liability of this resource- and time-intensive task
(Kane and Staiger, 2012; Whitehurst et al., 2014).
Considering the expense, importance, complexity,
and lack of reliability in ratings of classroom teach-
ing and also the advances in natural language pro-
cessing, automated ratings based on classroom dis-
course offer one potential solution.

Study Research Question: How can we know
when the behaviors of models are good enough to
be used lieu of humans as estimated by Ho and
Kane when "gold" labels are not available?

Three recent studies have sought to use LLMs to
provide classroom instruction ratings (via class-
room transcripts) using authentic rating rubrics.
Whitehill and LoCasale-Crouch (2024) provide
instructional scores on a private dataset for Pre-
Kindergarden classrooms using mixes of zero-shot
LLMs and bag-of-words, commenting that their
highest Pearson’s correlation statistic of 72 exper-
iments (𝑟 = 0.48) "approaches human inter-rater
reliability". Wang and Demszky (2023) and (Xu
et al., 2024) both use the same publicly available
datasets as the present study, and the approach of
the former will be discussed in more detail. Xu et al.
use a by-item "best of" modeling approach and con-
ducted many experiments with both zero-shot and
fine-tuned encoder architectures (e.g., BERT (De-
vlin et al., 2019), DistilBERT (Sanh et al., 2020),
RoBERTa (Liu et al., 2019), XLNet (Yang et al.,
2020), etc.) and decoder architectures Llama 2
(Touvron et al., 2023) and ChatGPT. They report
only the most performant models, greatly reducing
the generalizability of the approaches. Although
Xu et al. did not publicly release model ratings or
the combinations of ensembles used, they reported
Spearman correlation values for each of the best of
several item-specific model constructions, which
are also displayed in Figure 1.

2 Data

The data used in this study and in Wang and Dem-
szky are from the National Center for Teacher Ef-
fectiveness (NCTE) Main Study (Kane et al., 2015),
which contains three years of data collection and
observations of math instruction in approximately
fifty schools and three-hundred (4th and 5th grade)
mathematics classrooms across four school dis-
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tricts in the United States, including expert hu-
man ratings of individual video-captured class-
room lessons across two observation instruments
(Bacher-Hicks et al., 2017, 2019): the CLASS
framework (12 items) (Pianta et al., 2008) for gen-
eral instructional practice and the content-specific
Mathematical Quality of Instruction (MQI; 13
items) (Hill et al., 2008), together yielding over
400,000 distinct human rating labels assigned, the
distributions of which are in Figure 6. Each item of
the instrument is designed to measure a different as-
pect of teaching quality. Like all human-mediated
labels,1 an individual classroom observation rating
requires at a minimum three facets: (1) item/task
rating criteria, (2) raters/labelers, (3) stimuli/ob-
servations to be classified. As tasks increase in
complexity, these facets contribute more error to
estimates.

2.1 Rating Criteria: MQI Rubric

Imperfections in measurement instruments also add
to measurement error. The 13 MQI items2 within
the dataset have at least two raters per classroom
observation. Although both humans and encoders
evaluated all items, this paper will focus on the 4 of
the 13 MQI items3 evaluated in Wang and Demszky
(2023): teacher explanations (EXPL), remediation
of student errors (REMED), student questioning
and reasoning (SMQR), and imprecision in mathe-
matical language (LANGIMP).4 Additional infor-
mation about the MQI instrument can be found in
Appendices C and B.

2.2 Human Expert Raters

The 63 MQI raters5 met a high standard: they were
recruited from a separate pool of applicants based
on their mathematics background and by contact-
ing colleagues in mathematics departments (Hill
et al., 2012a; Blazar et al., 2017), passed MQI cer-
tification exams, and attended biweekly calibration

1Label(er), rate(r), annotat(ion/or), and score(r) will be
used interchangeably for these classification tasks, as termi-
nology varies multidisciplinarily.

2instruments for classroom instruction are composed of
multiple items, that represent distinct instructional dimensions
to be evaluated

3Analyses for other items are in the appendices and online
in Hardy (2024).

4LANGIMP is reverse-coded so higher scores are better
and has noteworthy self-referentiality vis-à-vis instrument
uncertainty, but out of scope for the current study.

5Human rater information for both the MQI and CLASS
instruments can be found in the Appendix of the DS0 Study-
Level Files from the NCTE Main study.

meetings to ensure standardization of scoring pro-
cedures.

2.3 Classroom Observations

Human raters watched videos and provided ratings
on all MQI items at regular intervals. The tran-
scripts of these same videos (Demszky and Hill,
2022) are used by LLMs for the same task, where
the class discourse is equipartitioned across utter-
ances (GPT family models) or words (Encoder fam-
ily models) by the total number of classroom seg-
ments to align the text with human labels in the
absence of timestamps. Data from the NCTE Main
Study (Kane et al., 2015) 6 and for the associated
transcripts7 are available online.

3 Model Rater Families

GPT Models The GPT model family of Wang
and Demszky (2023)8 has 7,660 ratings for 223
different teachers. The family consists of three
models that differ in prompt engineering methods,
and a brief summary of these differences is given
in Table 5. GPT models were evaluated on cu-
rated selections of classroom text with the least
transcriptorial noise (i.e., minimizing instances
of [inaudible]), and were edited to indicate
whether the speakers were teachers or students.

Encoder Models Encoder family models are cus-
tom transformer encoders trained on NCTE class-
room transcripts. They use fixed-parameter pre-
trained sentence embeddings, differing in these
and in training hyperparamters, thereby exploiting
LLM sensitivites to pretraining regimes (D’Amour
et al., 2020; McCoy et al., 2023). A quick sum-
mary of differences is in Table 4 and more training
details can be found in Appendix D. In contrast
to the GPT models, the only text pre-processing
used with the encoders simply replaced all tran-
scription notes with [inaudible] to mimic the
uncertainty in live audio transcription, and no ed-
its to indicate speakership were included. For the
Encoder family, all model outputs9 used in evalu-
ations and reporting in this study were conducted
with a lesson-level-stratified held-out test set that

6https://www.icpsr.umich.edu/web/
ICPSR/studies/36095/datadocumentation

7https://github.com/ddemszky/
classroom-transcript-analysis

8https://github.com/rosewang2008/
zero-shot-teacher-feedback/

9https://github.com/hardy-education/
LLM-Psychometrics
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was not used during model development. Encoder
models were trained with a single GPU in Google
Colab.

4 Evaluation Methods

4.1 Reliability and Concordance
RQ 1: How do automated raters perform relative
to low-reliability labels?

Baseline Human Metrics Typical reliability
metrics (see Section 4.1) provide a backdrop of
descriptives based on concordance with other rat-
ings. Full reproductions of all reliability metrics
and calculation processes were performed exactly
as described in the NCTE Main Study Appendix
Section 2. (Kane et al., 2015). Following their
same procedures, replicated calculations were ex-
tended to the model families, replacing a human
rater score with a specified or random model for
evaluations of individual models and model fami-
lies, respectively. More details on the reproduced
human results, model results, and additional met-
rics are in Appendix F.1.

Commonly Used Metrics Figure 1 shows the
Spearman correlation 𝜌 between the rater fami-
lies. Common metrics also include: Pearson’s cor-
relation 𝑟, (e.g., Whitehill and LoCasale-Crouch,
2024), Kendall’s correlation 𝜏 (e.g., Liu et al.,
2023b) and Quadratic Weighted Kappa (QWK) typ-
ically used in ordinal classification tasks to penalize
the distance quadratically (squared error) while ac-
counting for categorical agreement by chance (e.g.,
Shermis, 2014; Hardy, 2021; Wang and Demszky,
2023). All these common label metrics for the four
items in this study are in panel (b) in Figure 7 and
the aggregated results by individual rating model
for common metrics are in Table 6. Full reliability
metrics at the segment level of lessons for all MQI
and CLASS items can be found in Hardy (2024).

4.2 Confidence via Generalizable Reliability
RQ 2: How generalizable are findings based on
unreliable labels?

Generalizability Studies (g-studies) (Brennan,
2001a, 2013, 2001b; Hill et al., 2012b) use random
effect estimates across possible configurations of
different sources of variance to quantify the stabil-
ity of labels. This estimates the extent to which
given labels would persist if sources of variation
changed (e.g., same teacher, different day; same
lesson, different rater; human rater vs. model rater;

𝐄�̂�2
ITEM Human Encoders GPTs
EXPL 0.15 0.00 0.00
LANGIMP 0.09 0.15 0.08
REMED 0.13 0.10 0.05
SMQR 0.14 0.09 0.00
All Items 0.114 0.106 0.007

Table 1: Generalizability metrics by model families for
each focus item. Bold represents the best rater fam-
ily for 𝐄𝜌2. In the overall "All Items" calculation, a
𝐽 ×𝑅× (𝑂 ∶ 𝐼) model was used for comparability with
other similar research. Generalizability (𝐄𝜌2) and de-
pendability (𝛷) results for all MQI items can be found
in Table 8.

etc.). 𝐄𝜌2 is a measure of the relative generalizabil-
ity of a rating (i.e., is rating order preserved), and𝛷,
accounting for absolute error, is a measure of label
dependability: how likely specific ratings would
be numerically the same with different sources of
variation. These two reliability-like estimates can
help quantify how "golden" labels are.

The multifaceted g-study design used to esti-
mate how much variation in individual teachers’
instructional quality, 𝑖, contributed to a rating la-
bel, 𝑋, annotated for a section of a lesson, 𝑠,
during an observation, 𝑜, on rubric item 𝑗 by
rater 𝑟 is known as an Item-by-Rater-by-Segment-
within-Observation-within-Individual Teacher de-
sign: 𝐽 × 𝑅 × (𝑆 ∶ 𝑂 ∶ 𝐼). The general estimates
for all MQI items for a given rating family, 𝔽 , are
shown in Table 8. For item-level reliabilities, we
simplify the expression by keeping the item fixed,
resulting in a𝑅×(𝑆 ∶ 𝑂 ∶ 𝐼) design. Using nested
random effects notation, the estimation model is:

𝑋(𝑗)
𝑠∶𝑜∶𝑖𝑟 =𝜇 + 𝜈𝑖 + 𝜈𝑜∶𝑖 + 𝜈𝑠∶𝑜∶𝑖 (1)

+ 𝜈𝑖𝑟 + 𝜈𝑟 + 𝜈𝑠∶𝑜∶𝑖𝑟

where 𝑗 indicates the item index, ∀𝑗 ∈ J.10 The
code for the model specification is in Appendix
I.4. Then, 𝐄𝜌2 (Equation 2) and 𝛷 (Equation 11,
Appendix I.4) are easily estimated from the random

10For the estimates in Fig. 7 (c), for dependability metrics of
Section 4.3, and for comparability with human baselines(Hill
et al., 2012b; Kane et al., 2015; Ho and Kane, 2013; Kane and
Staiger, 2012), a simplified model, an by-item 𝑅 × (𝑂 ∶ 𝐼)
design, was conducted for the human expert rater family with
results in Appendix I.1. The simplified model is 𝑋(𝑗)

𝑜∶𝑖𝑟 =
𝜇 + 𝜈𝑖 + 𝜈𝑜∶𝑖 + 𝜈𝑖𝑟 + 𝜈𝑟 + 𝜈𝑜∶𝑖𝑟 The full model structures of Eq.
1, 2 and 11 are used for Section 4.6.
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Rater 
Family

Raters ETCA EXPL LANGIMP LCP LINK MAJERR MGEN MLANG MMETH REMED SMQR STEXPL USEPROD
Humans 0.3 0.27 0.28 0.21 0.41 0.28 0.19 0.32 0.47 0.32 0.29 0.39 0.31
Encoders 0.51 0.46 0.41 0.39 0.57 0.35 0.33 0.52 0.52 0.46 0.39 0.47 0.46
GPTs 0.04 0.04 0.04 0.12
Xu et al. 0.3 0.31 0.19 0.13 0.41 0.13 0.4 0.36 0.27 0.26 0.37

Figure 1: Spearman correlation coefficients and confidence intervals by MQI Item for all rater families and studies.
Human (Kane et al., 2015), Encoder (current study, Section 3), and GPT (Wang and Demszky, 2023) family
correlations are between each rater and one randomly sampled human rater for each observation, following the
processes used in the original human study, repeated 1,000 times for bootstrapped confidence intervals. Xu et al.
(2024) coefficients are reported from Tables 5 and 9 of that paper, where each number represents the best of several
ensemble models fit for each individual item. Bold in the table indicates highest performing label family. Italicized
item abbreviations are those items evaluated by all studies.

effects for raters in rater family 𝔽 :

𝐄𝜌2𝔽
(𝑗) = 𝜈𝑖𝑗

𝜈𝑖𝑗+𝜈𝑜∶𝑖𝑗+𝜈𝑠∶𝑜∶𝑖𝑗+𝜈𝑖𝑟𝑗+𝜈𝑠∶𝑜∶𝑖𝑟𝑗
, (2)

∀𝑟 ∈ 𝔽 , where the item-rating-segment varia-
tion, 𝜈𝑠∶𝑜∶𝑖𝑟𝑗 , is confounded with the error variation.
These results are found in Table 8.

4.3 Validity, Accuracy and Spuriousness
RQ 3: Do models and humans use similar observ-
able features when annotating the same construct?

Disjoint Disattenuated Correlations Depend-
ability and generalizability do not guarantee accu-
racy, but even at these very low levels, they can
be used in indirect tests of convergent validity to
see whether correlations between humans and mod-
els are low because of measurement error, such as
poor rubric item construction, or because the two
sets are really uncorrelated. Disattenuation does
not change the low reliability across items nor the
quality of the measurement, but it can offer evi-
dence toward discerning model predictive validity
by quantifying how changes in the underlying con-
struct result in changes in the same direction for
both human and model. If an individual teacher’s
latent instructional ability 𝜃𝑖 is about the same from
lesson to lesson with the same students, we can

correlate �̂�𝑖 for human (𝕙) and model (𝕞) family
ratings for different lessons coming from the same
teacher and correct for measurement error using
each rater family’s 𝔽 label generalizability, 𝐄�̂�(𝑗)𝔽 ,
for a given item 𝑗. The disattenuated correlation,
𝜚(𝑗)𝕙𝕞, between humans and a family of models for
item, 𝑗, can be estimated:

𝜚(𝑗)𝕙𝕞 =
Corr[̃𝕙(𝑖,𝔏, 𝑗, 𝑟𝕙), ̃𝕞(𝑖,¬𝔏, 𝑗, 𝑟𝕞)]√

𝐄�̂�2𝕙
(𝑗)𝐄�̂�2𝕞

(𝑗)
(3)

where ̃𝔽 is score retrieval function for individual
teacher 𝑖 on item 𝑗 by a random member 𝑟 of rater
family 𝔽 in relation to some observed lesson 𝔏
with family label generalizability, 𝐄�̂�2𝔽

(𝑗) defined
in Equation 2. The numerator of Eq. 3 is the cor-
relation in scores whenever two different lessons
from the same teacher were scored by raters from
different families (human and model). The denom-
inator then adjusts for based on the reliabilities of
raters from each family to account for the known
tendency of low reliability to diminish observed
correlations.

4.4 Disentangling Sources of Bias
RQ 4: Can bias in individual rater behaviors be
identified and disentangled from labels?
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Figure 2: Observed (𝜌, fainter color hues) and implied
(𝜚ℎ𝑚, darker color hues, Eq. 3) correlations between
human raters and model raters by MQI item and their
respective boostrapped 95% confidence intervals (1000
bootstraps of 𝑁 = 1500 for both 𝜌 and 𝜚ℎ𝑚)

Hierarchical Rater Models Rater biases in com-
plex tasks are usually not directly measurable, but
we can estimate latent constructs that quantify the
effects of individual raters’ behaviors using meth-
ods commonly used to estimate latent attributes
of rubric items (e.g., item difficulty) and latent at-
tributes individuals (e.g., ability) throughout Item
Response Theory (IRT). If the data had no varia-
tion due to raters, various polytomous IRT meth-
ods could help estimate "true/gold" labels (𝜉𝑖𝑗)
during classroom observations, teacher instruc-
tional abilities (𝜃𝑖), and various effects of individual
items. However, human raters introduce additional
sources of measurement error for each rating and
the data include multiples measures from multiple
raters for a single observation (leading to an ac-
cumulation of information at overlap observation
points). To address this, hierarchical rater modeling
(HRM) (Patz et al., 2002; Decarlo, 2003; DeCarlo
et al., 2011) combines an IRT model with a first
stage estimation defined by a signal detection the-
ory (SDT) relationship. The latter asks the question
"given the presence of the ‘true’ score, can a rater
detect it?" as the former asks, "given the inputs,
can we estimate the ‘true’ score accounting for
differences in the tasks used to measure it?" The
hierarchical structure addresses the problem of ac-
cumulation of information in the estimates. HRMs
consist of three components:

HRM

⎧
⎪⎨⎪⎩

𝜽𝑖 ∼ MVN(0𝑀×1, I𝑀×𝑀 ),
𝜉𝑜𝑖𝑗 ∼ IRT model: Equation 5
𝑋𝑠𝑜𝑖𝑗𝑟 ∼ SDT model: Equation 6

(4)

where an IRT model estimates the "gold" label
score 𝜉𝑠𝑜𝑖𝑗 for a given item for some time segment 𝑠
in teacher 𝑖’s 𝑜-th observed lesson for item 𝑗, which
arises from 𝑖’s 𝑀-dimensionally distributed latent

instructional ability/needs (𝜽𝑖), and a Signal De-
tection Theory (SDT) model component disen-
tangles individual rater biases from each recorded
score, 𝑋𝑠𝑜𝑖𝑗𝑟, by quantifying the latent attributes
that mediate whether rater 𝑟 correctly detects the
true score, i.e., 𝑝𝜉𝑘𝑟 = 𝑃

[
𝑋𝑠𝑜𝑖𝑗𝑟 = 𝑘 |𝜉𝑜𝑖𝑗 = 𝜉

]
.

The IRT component of Equation 4 that estimates
the true scores based on the specific parameters of
the rubric item and teacher is a multidimensional
generalized partial credit model (MGPCM) (Mu-
raki, 1992; Adams et al., 1997; Cui et al., 2024;
Casabianca, 2021) with 𝐾𝑗 categories. Distribu-
tional challenges of negatively worded items can be
addressed through a multidimensional parameteri-
zation of the underlying latent teacher instructional
abilities, with between-item dimensionality con-
firmatorily defined by the factors in (Blazar et al.,
2017). The MGPCM item discrimination param-
eters, 𝜶𝑗 = 𝛼𝑗𝑚, a vector of dimension-specific
traits 𝜽𝑖 = 𝜃𝑖𝑚 are separated for 𝑚 ∈ 𝑀 latent di-
mensions, and parameters for item difficulties 𝛾𝑗𝑘
exist for each possible score category 𝑘 in item 𝑗,
𝑃
[
𝜉𝑜𝑖𝑗 = 𝜉 |𝜽′𝑖, 𝜶𝑗 , 𝛾𝑗𝜉 , 𝑜

]
=:

exp
{
(𝑘 − 1)𝜶𝑗𝜽′𝑖 −

∑𝑘
𝑘=1 𝛾𝑗𝑘

}

∑𝐾𝑗
ℎ=1 exp

{
(𝑘 − 1)𝜶𝑗𝜽′𝑖 −

∑ℎ
𝑘=1 𝛾𝑗𝑘

} , (5)

where 𝑜𝑖 = 1, ..., 𝑁 lessons observed for teacher
𝑖, 𝑗 = 1, ..., 𝐽 items, 𝑟 = 1, ..., 𝑅 raters, and
𝑘 = 1, ..., 𝐾 possible scores. Additional details
on model specification and fit can be found in Ap-
pendix H.

As parameterized by Patz et al., the HRM base-
level SDT model represents the measurement error
induced by the rater 𝑟 whose ability to "detect"
the true score changes according to the individual
rater’s item-specific biases, 𝜙𝑗𝑟 and variabilities,
𝜓𝑗𝑟 , on the x and y axes of Figure 3:

𝑝𝜉𝑘𝑟 ∝ exp

{
− 1

2𝜓2
𝑗𝑟

[
𝑘 −

(
𝜉 + 𝜙𝑗𝑟

)]2
}

(6)

where 𝝓𝑗𝑟 = Y𝑗𝑟𝜂 is a linear model for rating
bias for items and with design matrix Y𝑗𝑟 of dimen-
sions (𝑅𝐽 )×(𝑅+𝐽 ) and 𝜂 = (𝜙1, ..., 𝜙𝑅, 𝜂1, ...𝜂𝐽 )𝑇
for 𝑅 raters and 𝐽 items, as parameterized by Mar-
iano and Junker.

4.5 Measuring Fairness across Racial Lines
RQ 5: With unreliable labels and complex tasks,
can issues of racial fairness in ratings be disentan-
gled from individual rater behaviors?
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Figure 3: (Top) Disentangled Rater Bias. Section 4.4: standardized rater bias 𝜙𝑗𝑟 (x axis) and rater variability/con-
sistency, 𝜓𝑗𝑟 (y axis) from Equation 6, 𝜂𝑗-centered. Each point represents an individual human (represened by +) or
model rater (Encoders and GPT models are •and ▿, respectively). More severe raters (red) are left, more lenient
(blue) right. (Bottom) Fairness across Racial Lines. Section 4.5: Standardized difference in rater bias 𝜙𝑟 and rater
combined variability/consistency 𝜓𝑟 between ratings for Black teachers and White teachers. Leftward (red) values
are more severe towards Black teachers (relative to White). Any horizontal bar present with a marker represents
95% CI from MCMC estimation. Rater estimates for additional items can be found in Hardy (2024).

Rater Covariate HRMs Disentangling individ-
ual rater biases further, across sensitive attributes,
can provide a measure of fairness for labels and
identify raters (human or model) that display dis-
criminatory biases. Variables representing a sensi-
tive attribute, 𝜍 (e.g., race/ethnicity, gender, age,
etc.) should be independent of observed score
𝑋𝑠𝑜𝑖𝑗𝑟 given the true score 𝜉𝑠𝑜𝑖𝑗 if ratings are fair:
𝑋 ⟂ 𝜍 ⇒ 𝑃𝜍=𝑎(𝑋𝑗𝑟|𝜉𝑗) = 𝑃𝜍=𝑏(𝑋𝑗𝑟|𝜉𝑗),∀𝑎, 𝑏
which implies Δ𝜙𝐵𝑊 = 𝜙𝐵 − 𝜙𝑊 = 0. In the
notation used for disentangling rater effects in Eq.
4, a score scoring rater 𝑟 on item 𝑗 is fair with
respect to attribute 𝜍 given 𝜍 ⟂ 𝜉:

𝑃 [𝑋𝑠𝑜𝑖𝑗𝑟|𝜉𝑠𝑜𝑖𝑗 , 𝑟, 𝑗, 𝜍𝑖] = 𝑃 [𝑋𝑠𝑜𝑖𝑗𝑟|𝜉𝑠𝑜𝑖𝑗 , 𝑟, 𝑗] (7)

The reparameterization of Equation 4 for rater co-
variates and additional details on model specifica-
tion and fit can be found in Appendix H.

4.6 Estimating Real-world Helpfulness
RQ 6: Can we estimate the effects on rating qual-
ity and changes in real-world cost if a model were
to be used with a human-in-the-loop?

Decision Studies (D-studies) estimate how relia-
bilities of ratings could improve by adjusting mea-
sured facets of variation, much like Ho and Kane
did to motivate the case study. To estimate relia-
bility in a human-in-the-loop scenario, multiple g-
studies and d-studies would need to be constructed
to combine variance contributions across a set of
rater families, 𝔽 . For this work, only two different
types of family are considered in each d-study, and

one of them will always be human, as automated
rating models, even high-performing Encoders, are
not yet ready to produce ratings independent of
human confirmation. For a human-in-the-loop de-
cision study, 𝔽 would consist of families 𝕗 that
have humans only and models only, and a com-
bined human-model family. For a (𝑆 ∶ 𝑂 ∶ 𝑖) ×𝑅
study estimated dependability of ratings provided
to teachers 𝑖 on item 𝑗, Φ̃𝑗 is, in the joined "uni-
verse" 𝔽 ′ where estimations are represented by 𝐊,
the collection of unique parameterizations and esti-
mates, 𝜘, for the facets of variance in each D-study:

Φ̃𝑗,𝔽 ′𝜘∼𝐊 =
∑𝔽

𝕗 𝜎
2(𝑖𝜘)𝑗𝕗∑𝔽

𝕗 𝜎2(𝑖𝜘)𝑗𝕗 + 𝜎2(Δ𝜘)𝑗𝕗
(8)

where the summations in Equation 8 combines
the variation across the familial "universes", in-
dexed by 𝜘, of different rater families in 𝔽 and
𝜎2(𝑖𝜘)𝑗 and 𝜎2(Δ𝜘)𝑗 represents the "universe" vari-
ability for teacher 𝑖 and the absolute error for de-
pendability, respectively, at the teacher-year-level
(𝑖) across the combined parameterization set 𝐊.
These values are represented in the ratio for cal-
culating dependability, Φ𝑗 , as found in Equation
11 𝜎2(Δ)𝑗 ≡ 𝜈𝑜∶𝑖𝑗 + 𝜈𝑠∶𝑜∶𝑖𝑗 + 𝜈𝑖𝑟𝑗 + 𝜈𝑟𝑗 + 𝜈𝑠∶𝑜∶𝑖𝑟𝑗 .
The expanded parameterization of 𝜎2(Δ𝜘) for the
described human-in-the-loop model can be found
in Appendix I.3.

5 Discussion

Table 2 shows a summary of the six dimensions
of interest in the presence of low label reliability.
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Figure 4: Helpfulness: Estimated Improvements to Reliability. Estimated improvements to the reliability of
ratings under various mixes of humans, models, and numbers of lessons for the same teacher. The baseline is a single
individual human observer (black, solid), showing modest improvements to estimated reliability with increased
15 minute visits to the teacher’s classroom. The red (solid) represents the reliability resulting from a different
human observer conduct additional observations (separate from the baseline observer). All model families only
observe classes with the baseline observer: single Encoder (green, dashed), a 3-Encoder ensemble (purple, dashed),
and GPT ensemble (3 separate prompts, blue, dotted). For models, the x-axis is the number of full classroom
observations conducted where the human (black) observes a 15 minute portion of the same class.

Category Metric GPTs Encoders
EXPL LANGIMP REMED SMQR EXPL LANGIMP REMED SMQR

RQ1 Concordance IRRs q q q q ¥ ® ¥ ¥

𝑟, 𝜌, 𝜏 q q q q ¥ ¥ ¥ ¥

RQ2 Confidence 𝐄𝜌2 q q q q q ¥ q q

Φ q q q q q ¥ q q

RQ3 Validity 𝜚(𝑗)𝕙𝕞 q q q q q ¥ ¥ ®

RQ4 Bias 𝜙𝑟 q q q q ¥ ¥ ¥ ®

RQ5 Fairness Δ𝜙𝐵𝑊 ® q q q ¥ ¥ ¥ ¥

RQ6 Helpfulness Φ̃𝔽 ′HIL∼𝐊
q q q q q ¥ ¥ ®

Table 2: Summary Performance Table for Families. GPTs are from Wang and Demszky and Encoders are from the
present study. For each metric, symbols represent whether the model family generally performs as good as or better
than humans ¥, worse than humans q, or if performance relative to humans is unclear ®.

Figure 7 has the combined metrics from all sec-
tions. Using nearly any standard combination of
metrics across all items, Encoder models perform
better than even the single highest performing ex-
pert human rater. Additionally, the Encoder mod-
els’ designs were constructed to allow for greater
interpretability by evaluating continuous windows
of classroom discourse, such as with real-time diag-
nosis and conducting sentence-level feature attribu-
tion11 via integrated gradients (Sundararajan et al.,
2017). However, their performance is not unidirec-
tional: Sections 4.2 through 4.6 suggest that some
SOTA-level correlations may have been spurious
and provide insight into the poor performance of
the GPT models.

Concordance Human raters meet an extremely
high bar as annotators and yet show relatively weak

11The material online in Hardy (2024) contains examples
of the models’ performance on continuous predictions. Code
for statistical models is also available online.

correlations with each other on the MQI Instru-
ment, corroborating similar findings from Kane
and Staiger (2012). Despite this, the encoder family
demonstrates that there is sufficient signal between
the transcripts and human ratings to meaningfully
perform the task of rating classroom instruction,
outperforming human concordance in 100% of
MQI tasks in Fig. 1. We suspect Encoder perfor-
mance was higher than that of the GPT models,
mostly because they learned to generalize across
raters and lessons, and GPT models relied on in-
context learning. As previously reported in Wang
and Demszky (2023), the zero-shot GPT models
show that they have "significant room for improve-
ment" in these tasks.

Confidence Although the encoder family outper-
formed the individual human rater in terms of con-
cordance, they do so with less consistency at the
teacher level (Table 8). Trained human experts are
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likely better at selectively filtering for evidence that
represents more persistent features of the construct
being measured, even if they do not align or miss
evidence on a single rating. The lack of general-
izability of the encoders on EXPL (𝐄�̂�2 = 0) sug-
gests that they identified speech patterns associated
with higher observation scores but not necessarily
specific to the quality of teacher explanations.

Validity When we correct for measurement er-
ror, human raters have an implied correlation of
𝜚ℎ𝑚 = 1.0 on all items (Fig. 2). This means that if
infinite human experts were to rate the same lesson,
scores would converge. This is also mostly true for
Encoder models.12 The failure of disattenuation to
identify viable human-model correlations for items
that previously showed correlated relationships in
Section 4.1 suggests that previous correlations may
be spurious. Humans and encoders showed agree-
ment after correcting for measurement error. Con-
trastingly, low disattenuated correlations for GPT
models suggest that they were, in fact, not corre-
lated.

Bias Disentangling sources of bias from human
raters can support data curation and flagging hu-
man raters, even when limited information about
the raters themselves is known. This can be im-
portant when the sources of variation between ob-
servations are complex. GPT models (�̄� = 0.85)
likely performed poorly in part due to the prompt
length (Liu et al., 2023a) and the out-of-distribution
nature of primary school classroom discourse (Mc-
Coy et al., 2023). As GPT-style models increase in
popularity, in use, and in sophistication, these meth-
ods can help identify sophistry and speciousness
in third-party models even in the presence of low
reliability. Like humans, models tended to choose
a preferred rating value, and their deviations, condi-
tionally informed by billions of parameters, are not
completely random. Education technologists and
EdTech enthusiasts should be wary of the ability of
foundation models to do out-of-distribution tasks.

Fairness Disentangling racial bias reveals dif-
ferential rater functioning across racial lines with
a negative bias (Δ̄𝜙𝐵𝑊 = −0.62) against Black
teachers relative to White teachers in Figure 3. Po-
tentially more precisely, the centrality of the GPT

12Disattenuated correlations are not directly comparable
to the correlation measures in Section 4.1. Reported disat-
tenuated correlations of 1.0 do not imply perfect correlations.
They can mean that the measurement error is not randomly
distributed.

model ratings appeared to diminish when rating
black teachers, adding evidence that foundation
models may be sensitive to linguistic differences
found in African-American English (AAE) (Hof-
mann et al., 2024b; Fleisig et al., 2024), possibly
due to the relative lack of familiarity of the mod-
els with AAE (Rickford and King, 2016). These
results should give pause to edtech developers re-
lying on prompt-engineering of foundation LLMs,
as subtleties in biases exist in very complex tasks.

Helpfulness As conducting actual human-
annotated classroom observation ratings is
immensely expensive, the decision study analyses
of Section 4.6 offer methods for estimating
the improvement gained by using a model or
model family. Figure 4 shows, for example, that
if a school administrator were to observe two
classes with an encoder ensemble, the estimated
improvements in label dependability would be the
same as two school administrators each observing
five different lessons–a cost savings of 80%.
Parameterizing the decision conditions to reflect
"human-in-the-loop" scenarios can even offer
insight into whether the variation offered from
automated ratings adds or detracts from human
rating quality, offering a means of estimating
research questions before more expensive trials.
Notably, using GPT models in these scenarios
would worsen the reliability of human ratings.

5.1 Conclusion

As foundation models are increasingly deployed in
complex contexts where evaluation of the quality
of their performance may not be feasible, identify-
ing performance gaps in cases of unreliable anno-
tations will be increasingly important, especially
when downstream tasks diverge more from model
training (McCoy et al., 2023). This paper demon-
strated some techniques to show that even when
human reliabilities are low, meaningful insights
can be obtained to understand and improve model
construction and use. These techniques uncovered
checkered performance in answering whether mod-
els are good enough to be used to diagnose instruc-
tional quality. We encourage researchers to publish
results and data from foundation models even if
they fail to reject a null hypothesis. By perform-
ing more rigorous evaluations, researchers could
crowdsource measuring model biases and behavior
tendencies to help all users be more discerning of
speciousness.
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6 Limitations

These methods serve as a proof-of-concept for im-
proving reliability in widespread and costly class-
room evaluation tasks. Even though these mod-
els can outperform a human given many accepted
metrics, much more analysis and technological de-
velopment is needed to ensure their readiness for
influencing high-stakes decisions. Despite being
best in class, the encoder models should not be
used in production in their current state, even with
a human in the loop. Far more important is that
GPT style models are not used similarly, and this
paper does not endorse their use for this or similar
tasks.

The methods in this paper are not representa-
tive of the full scope of psychometrics or of the
best possible implementation of available meth-
ods. Rather, they illustrate the potential for better
quantifying behaviors in both labelers and models
when we have uncertainty in labels. Psychometric
models generally assume that the underlying latent
variables are distributed normally across a popula-
tion, a reasonable assumption with humans. But
this assumption might not be true for LLMs or for
all tasks. A few models were estimated alongside
humans to demonstrate how differently they be-
have under this assumption, but this paper provides
no evidence that model abilities and underlying
constructs as perceived by LLMs would be nor-
mally distributed (e.g., latent constructs could fol-
low multimodal distributions or follow a Normal-
exponential-gamma distribution for shifts in metric-
specific emergent behaviors). Were researchers in-
terested in modeling learning in a larger population
of models, other methods could potentially help,
(e.g., unipolar IRT models Huang and Bolt, 2023
for detection tasks). Additionally, more facets of
variation could be incorporated for more precise
estimates. For example, Equation 8 does not have
a within-observation-longitudinal parameterization
and thus assumes that humans observing multiple
segments of a class period do not necessarily need
to observe the segments consecutively. While the
MQI rubric is worded so as to be robust to within-
lesson autocorrelation, actual lessons are obviously
autocorrelated.

Although some studies cited in Appendix A.2
seek to generalize findings across all classrooms,
this cannot be done with the transcript data used in
this work, as it consists only of fourth- and fifth-
grade mathematics classrooms from the United

States. Furthermore, the associated ratings and re-
liability metrics pertain solely to a subset of rating
items on two specific rubrics, which may introduce
limitations when addressing the more universal task
of classroom evaluation. The encoder models could
be improved through metalearning during training,
so they could be more adaptive to new instructional
rubrics and classrooms. Their current transferra-
bility is limited by their training and architecture
just as much as lack of data for this task limits
more robust model generalization. Furthermore,
the models have not been trained to work with auto-
mated transcription, as the transcripts process was
done with humans. These models were trained un-
der the assumptions that the actual expert human
ratings are not very reliable, that the alignment
of the coordination of timing across rubrics and
across transcripts is imperfect, that the discourse
transcripts are imperfect, and that information is
lost by keeping fixed sentence-level embeddings.
Although the methods outlined worked to extract
a meaningful signal despite these challenges, it
should be noted that the signal is still trained on
noisy human ratings. If, on average, the raters had
a particular bias, the model would carry that bias13

Similarly, biases and imperfections of the MQI in-
strument (see Appendix C) would likely propagate.

And finally, while not as severe as the GPT re-
sults, the encoder models did not avoid issues of
racial bias. On the item with lowest correlations
for both human and encoder models, MGEN, all of
the encoder models found spurious relationships in
some language feature while overfitting with a neg-
ative bias against Black teachers. Earlier studies
had already suggested that humans (see Appendix
F.1 and Hill et al., 2012b) could not identify the
MGEN item. Thus, the reasons for this bias arising
are likely to do with label sparcity: <1% of training
set labels had the highest rating on MGEN, likely
leading to overfit on a potentially biased sample.
This underrepresentation in data is a microcosm of
the poor alignment between an LLM’s training and
the downstream task that GPT exhibits on a more
global scale.

13This is particularly true with the CLASS item ratings, as
there were only 19 different raters used, compared to the 63
used for the MQI rubric items, and only had one rater per
CLASS.
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A Related Work

A.1 Annotation Quality and Bias

Accuracy, based on "gold" or "ground truth" labels,
is the primary type metric by which LLMs are eval-
uated (Ribeiro et al., 2020; Kiela et al., 2021). For
expediency of development, data scientists need
to assume data labels are reliable, accurate, and
end-task aligned for intended real-world use cases,
(Bejar et al., 2006; Messick, 1998), even in scenar-
ios where these assumptions could be detrimental
(e.g., performing complex high-stakes tasks, reduc-
ing discriminatory biases found in data (Field et al.,
2021) that are immutably historical by definition
of their creation, etc.), which is especially true of
autoregressive models, whose labels are Internet
text and which contain harmful biases (Hofmann
et al., 2024a,b). Assessing the accuracy and reliabil-
ity of idiosyncratically human-annotated "ground
truth" can be difficult (Eckes and Jin; Wind and
Guo, 2019; Wind, 2019; Abercrombie et al., 2023;
Baan et al., 2024, 2022; Waseem, 2016; Kazai et al.,
2013; Hosseiny Marani et al., 2022), a challenge
that is exacerbated when label uncertainty is under-
examined or underreported. Limited transparency
around label quality makes it more challenging to

measure biases, interpret model findings, assess in-
dividual fairness, and establish real-world validity.

Powerful and provocative research has begun
to address the limitations of accuracy-only evalua-
tions and propose more fair and responsible solu-
tions (Hardt et al., 2016; Dwork et al., 2012; Kasy
and Abebe, 2021; Song et al., 2020; Zhao and Er-
mon, 2021; Corbett-Davies et al., 2023; Pleiss et al.,
2017; Zemel et al., 2013), including techniques for
addressing when labels lead to undesirable model
behaviors (Ding et al., 2022; Hebert-Johnson et al.,
2018). This paper offers several ways to quantify
these issues and improve interpretability and ex-
plainability (Adebayo et al., 2020; Lundberg and
Lee, 2017; Rudin, 2019; Kim et al., 2018).

A.2 Use of LLMs in Teacher Development
and Evaluation

School leaders working with teachers to improve
the quality of instruction typically: evaluate the
teacher’s proficiency in a range of competencies
(typically measured during in-class observation and
evaluation on a teaching rubric; (Aguilar, 2013;
Bambrick-Santoyo, 2016, 2018)), then determine
which competencies are most important to improve
first (i.e., which change will have the biggest im-
pact on student learning), and then provide sup-
portive feedback and coaching. This paper focuses
on the first step of evaluating teacher proficiency,
which is often time-consuming and produces rat-
ings (labels) that are unreliable (Kane and Staiger,
2012; Blazar, 2018; Kane et al., 2013; Casabi-
anca et al., 2013). Without accurate classifica-
tions, it is challenging for practitioners to prior-
itize instructional needs and aligned practices from
among the many elements of good teaching (Sa-
phier et al., 2008; Darling-Hammond, 2014; Ham-
mond, 2015; Lemov and Atkins, 2015; Lemov,
2021; Liljedahl et al., 2021; Darling-Hammond
et al., 2020; Schwartz et al., 2016) and for edtech re-
searchers to quantify good teaching (Jurenka et al.,
2024).

Thus, this work provides a bridge to research
seeking to improve teaching quality by providing
feedback to teachers on various instructional tech-
niques (Samei et al., 2014; Donnelly et al., 2017;
Kelly et al., 2018; Demszky et al., 2021; Suresh
et al., 2022; Jacobs et al., 2022; Alic et al., 2022;
Demszky and Liu, 2023; Demszky et al., 2024,
2023). These studies identify linguistic features
correlated with an aspect of good teaching, but may
optimistically overgeneralize the usefulness, effi-
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cacy, and universality of their solution, providing
specific prescriptions without diagnosis. Matching
these models with the specific needs of teachers
will help provide a more individualized approach to
teacher development, one based on understanding
instructional needs and then providing correspond-
ing supports.

B Observation Instrument Item
Descriptions and Distributions

For each of the observation instruments, the abbre-
viation codes used in this study are listed with the
expanded names in Table 3. The distributions of
scores across all items for all rater families are in
Figure 6. The CLASS rubric has 12 items on a
scale from 1 to 7, rated at 15 minute intervals. The
MQI rubric has 13 items on a scale from 1 to 3,
rated at 7.5 minute intervals.

Figure 5: Overview of technical details the two instruc-
tional frameworks used for evaluating instruction.

C MQI Instrument

C.1 MQI Instrument Properties

Previous studies have explored the reliability
of MQI instrument ratings generally (Kane and
Staiger, 2012; Mantzicopoulos et al., 2018; Hill
et al., 2012b; Kane et al., 2015; Ji, 2023); This
study confirms previous findings by reproducing
the reliability metrics in Section 2.2, which corre-
spond to the NCTE Study, Apdx Section 2). For
our purposes, the MQI instrument has a few unique
properties that warrant further analysis, since the
instrument may have some qualitative attributes
that may influence human raters.

The MQI ratings are written to identify the pres-
ence of a behavior and then, if present, report the
magnitude or quality of its presence, doing so re-
peatedly at regular intervals throughout the lesson
(in this case, 7.5 minutes). This shortened win-
dow with simpler targets provides an opportunity
for training a model for real-time use (rather than
an arbitrary interval) to find different features in a
single lesson.

The version of the MQI for which data are avail-
able in the NCTE dataset is ternary, in contrast to
the current version of the MQI, which is quater-
nary. The lowest rating on the ternary MQI scale
is a combination of the two lowest ratings on the
quaternary, meaning that the present data cannot
distinguish between whether the attribute described
in each item is “Not present” or “Low”.14 This
ternary classification scheme creates non-normal
distributions as seen in Figure 6, which will need
to inform models and methods during quantitative
analysis.

This is unfortunate because these two categories
are “None” And “Brief content error, instance of
imprecision, lack of clarity. Does not obscure the
mathematical details of the segment”, respectively
(for the domain of errors and imprecision in Hill
et al. and second MQI-only factor in Blazar et al.:
MAJERR, LANGIMP, LCP).

C.2 Possible Effects of Negative-worded Items
The MQI is unique in having a separate domain of
items that try to capture aspects of poor mathemat-
ical instruction. Unlike most items in observation
rubrics, the MQI has three items that are worded
in the negative direction, specifically, higher scores
on the MAJERR, LANGIMP, and LCP items in-
dicate worse performance.15 It is possible that look-
ing for negative attributes may make these items
more susceptible to different rater biases. A partial
description of the potential impact of this rubric
attribute for the LCP item found in Appendix C.2
with further details.

Notably, the LCP item is particularly subjective.
In the documentation and training provided for the
MQI, "You have to ask: “What, mathematically,
was the teacher trying to say?”" This can be prob-
lematic, as it is asking for observers to use their

14There is one exception, which the original authors of the
Appendix adjusted for: the USEPROD item is replaced by the
MATCON item, with the correction of combining the lowest
two categories.

15In the analyses of this paper, these will be reverse coded,
as will the one negative CLASS item CLNC
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Abbreviation Item Item Description
MQI
ETCA Enacted Task Cognitive Activation Task cognitive demand, such as drawing connections among different

representations, concepts, or solution methods; identifying and explaining
patterns.

EXPL Teacher Explanations Teacher explanations that give meaning to ideas, procedures, steps, or
solution methods.

LANGIMP† Imprecision in Language or Notation Imprecision in language or notation, with regard to mathematical symbols
and technical or general mathematical language.

LCP† Lack of Clarity in Presentation of
Mathematical Content

Lack of clarity in teachers’ launching of tasks or presentation of the
content.

LINK Linking and Connections Linking and connections of mathematical representations, ideas, and pro-
cedures.

MAJERR† Major Mathematical Errors Major mathematical errors, such as solving problems incorrectly, defining
terms incorrectly, forgetting a key condition in a definition, equating two
non-identical mathematical terms.

MGEN Developing Mathematical General-
izations

Developing generalizations based on multiple examples.

MLANG Mathematical Language Mathematical language is dense and precise and is used fluently and
consistently.

MMETH Multiple Procedures or Solution
Methods

Multiple procedures or solution methods for a single problem.

REMED Remediation of Student Errors and
Difficulties

Remediation of student errors and difficulties addressed in a substantive
manner.

SMQR Student Mathematical Questioning
and Reasoning

Student mathematical questioning and reasoning, such as posing mathemat-
ically motivated questions, offering mathematical claims or counterclaims.

STEXPL Students Provide Explanations Student explanations that give meaning to ideas, procedures, steps, or
solution methods.

USEPROD Responding to Student Mathematical
Productions

Responding to student mathematical productions in instruction, such as ap-
propriately identifying mathematical insight in specific student questions,
comments, or work; building instruction on student ideas or methods.

CLASS
CLPC Classroom Positive Climate Positive climate reflects the emotional connection and relationships among

teachers and students, and the warmth, respect, and enjoyment communi-
cated by verbal and non-verbal interactions.

CLBM Behavior Management Behavior management encompasses the teacher’s use of effective methods
to encourage desirable behavior and prevent and redirect misbehavior.

CLINSTD Instructional Dialogue Instructional dialogue captures the purposeful use of dialogue—structured,
cumulative questioning and discussion which guide and prompt stu-
dents—to facilitate students’ understanding of content and language de-
velopment. The extent to which these dialogues are distributed across all
students in the class and across the class period is important to this rating.

CLNC† Classroom Negative Climate
CLTS Teacher Sensitivity
CLRSP Regard for Student Perspective
CLPRDT Productivity
CLILF Instr. Learning Formats
CLCU Content Understanding
CLAPS Applied Problem Solving
CLQF Quality of Feedback
CLSTENG Student Engagement

Table 3: CLASS and MQI item descriptions and the corresponding abbreviations. †denotes items that are reverse
coded because they are negatively worded with respect to the construct of teacher ability. The bolded elements are
those evaluated by the GPT rater family and reported by Wang and Demszky. Each member of the Human and
Encoder families of raters evaluated all 25 items.
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Figure 6: Distribution densities of rater scores for each of the 25 instrument items for all rater families.
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Figure 7: Section 4 Study Method Results for four MQI Items across Human, Encoder, and GPT rater families. (a)
Distributions. Score distributions by rater type. (b) Reliabilities. Inter-rater reliability metrics introduced in Section
4.1. C’s 𝜅: Cohen’s 𝜅; QWK: Quadratic Weighted Kappa; %Agr: percent exact agreement; %Agr±1: percent
agreement within 1 category; ICC: intraclass correlation; AICC: adjusted intraclass correlation; 𝜌: Pearson’s
correlation; 𝐫𝐬: Spearman’s rank correlation; Bold format is highest value for a given metric. (c) Generalizability
Measures and Spurious Correlation Detection. Section 4.2: generalizability coefficient 𝐄𝜌2 and dependability
measure 𝛷. Section 4.3∶ 𝜚𝕙𝕞 is the disattenuated correlation. Red font indicates correlation was spurious or
incalculable due to low reliabilities. (d) Disentangled Rater Bias. Section 4.4: standardized rater bias 𝜙𝑗𝑟 (x axis)
and rater variability/consistency, 𝜓𝑗𝑟 (y axis) from Equation 6, 𝜂𝑗-centered. Each point represents an individual
human or model rater. More severe raters are left, more lenient right. (e) Fairness across Racial Lines. Section
4.5: Standardized difference in rater bias 𝜙𝑟 (x axis) and rater combined variability/consistency, 𝜓𝑟, (y axis) across
Black teachers and White teachers. Leftward values are more severe towards Black teachers, rightward are more
lenient. Any horizontal bar present with a marker represents 95% CI for bias. (f) Estimated Improvements
to Reliability. Section 4.6: Expected changes to rating reliability are estimated improvements to quality (via
reliability) of classroom ratings for various contexts. The single individual human baseline (black) estimates
reliability improvements by visiting the same class the x axis represents the number of different 15 min. classroom
observations of the same teacher. The red line is estimate of having a different human observer conduct observations
as described. By contrast, for the model raters–single Encoder (green), Encoder ensemble (average of 3 encoders)
(Red), and GPT ensemble (average of 3 GPT prompt engineered models)–the x-axis for models is the number of
full classroom observations conducted where the human (black) observes at least 15 minutes (in-the-loop) of the
same classroom (models observe the entire class period).
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judgment to determine what the teacher was “try-
ing to say.” The subjectivity increases further for
observers who may not be as familiar with African-
American Vernacular English (AAVE). The subjec-
tivity further mixes lack of content clarity (lack of
clarity explaining math) with lack of directional
clarity (unclear instructions for an activity, which
is typically associated with items addressing class-
room management), as stated in the MQI rubric:

Teacher’s launch of a task/activity lacks
clarity (the “launch” is the teacher’s
effort to get the mathematical tasks/ac-
tivities into play). If the launch is
problematic, score for the launch plus
amount of time students are confused/off-
task/engaging in non-productive explo-
rations. . . [Example:] Garbling a task
launch, e.g., by asking initially “How
much TV is watched in the US?” when
students really must draw a graph to
show “How many TVs in US vs. Europe
vs. rest of the world?

Instructing observers to score based on the
“amount of time students are confused/off-
task/engaging in non-productive explorations”, is
more likely to capture problems with classroom
management and directional lack of clarity, not
mathematical lack of clarity, compounded by the
request for raters to guess what the teachers were
trying to say and training instructions that let raters
"code Lack of Clarity even with correction". This
mix of observational cues and overlapping con-
structs makes this item particularly susceptible to
individual rater biases.16

Indeed, while not reported in this paper explic-
itly, we identified that one rater in particular rated
Black teachers much more harshly on these, espe-
cially on LCP, providing some evidence that some
items can be more prone to rater biases, even with
research-quality observers and calibration.

C.3 Prior work on Rater Fairness with MQI

Recent work has begun to look at rater biases, in-
cluding racial bias, in these data and with the MQI

16As a note, the skill of providing clear directions, founda-
tional to establishing a well-managed classroom, is also not
included the CLASS instrument’s "Behavior Management"
item, suggesting that neither of these instruments is perfectly
designed to address root causes of instructional shortcomings
and thus may be inadequate as tools for coaching and devel-
oping skills in teachers.

instrument. Ji (2023) uses cross-classified mixed-
effects models for analysis and evaluation, which
seeks to answer similar questions by combining
G-theory and IRT estimations (Briggs and Wilson,
2007). However, the helpfulness of this study is
limited by data selection decisions: it eliminates
23% of MQI items (all of the second MQI fac-
tor in (Blazar et al., 2017)) without explanation;
it only uses 21% of available classroom observa-
tions (from a single year) and by so doing also
eliminates 43% of the study’s raters; it then trun-
cates the class lengths to 45 minutes thus removing
another 20% of the remaining data observations,
and when evaluating for differences in teacher race,
combines all non-white races/ethnicities into a sin-
gle category, removing meaningful inference from
the contrast. These decisions to use only 13% of
available data would lead to a model with better fit,
as all of these removals simplify trends in the data,
indirectly suggesting that the mixed-effects model
constructions used are not robust to the complete
set of observations (Murphy and Beretvas, 2015)
and are therefore inadequate for our purposes here.

D Encoder Family Construction

Pretraining and training/fine-tuning regimes can
have significant effects on model performance
(D’Amour et al., 2020), so our family of models
sought to exploit this by using three different pre-
trainings for sentence-level embeddings and includ-
ing variations on training regimes (e.g., different
checkpoints), the summary of these variations can
be found in Table 4. Thus, the encoder family of
models designed for this study shares the same
architecture,17 training, and held-out test sets, dif-
fering only as outlined in Table 4.

Another forthcoming paper explores this proto-
col in greater depth, showing that this training and
augmentation of noisy data can similarly achieve
SOTA and "superhuman" results on a variety of
sentence embedding pre-trainings.

All results were run on a completely held out
test set of entire classroom transcripts. No analyses
were conducted using the held-out test set until
after all models in the model family were trained,
thus preserving the integrity of the study.

D.0.1 Encoder Model Pre-processing
As mentioned in Section 3, pre-processing
of the transcript data was intentionally mini-

17One model, "un2", has a slightly different architecture,
differing in the number of attention heads.
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Pre-trained (fixed) sentence 
embeddings

Figure 8: Model Pipeline: General sentence-encoder model architecture.

Model Pretrained Embedding Layer Attn. Heads Train Epochs Dropout

un1 Unsupervised SimCSE (Gao, 2022) 32 3 75
un2 Unsupervised SimCSE (Gao, 2022) 16 4 75
un3 Unsupervised SimCSE (Gao, 2022) 32 8 75
e5 E5 (Wang et al., 2022) 32 2 15
gte GTE (Li et al., 2023) 32 4 65

Table 4: Encoder Within-family differences: Summary of basic differences within the Encoder family of models.
Detailed information on training and architecture can be found in the Appendix D.3.

mal, replacing bracketed transcription notes (e.g.
[cross-talk]) with [inaudible]. For this
study, the transcript was not annotated denote
whether a teacher or a student is speaking to reflect
the broadest future use case of general classroom
microphones. In other words, this family of models
does not know who is speaking, and the results of
this decision are evident in the models’ relative un-
derperformance in two MQI items that distinguish
between teacher explanations (EXPL) and student
explanations (STEXPL), a trend further explored
in (Hardy, 2024)

To align transcripted class segments to human
observation ratings, transcripts were equiparti-
tioned at the word-level across the maximum num-
ber of lesson segments for which there were human
annotations available, and estimated timestamps
were made across sentences by linear interpolation
weighted by word count.

The encoder models removed transcription notes
and intentionally did not use transcription infor-
mation (such as identification of speaker) to best
emulate what the functionality would be in a audio-
input-only setup. While this is an authentic inter-
pretation of the task, the transcription process was
still done with humans. Even though direct input
from audio would capture even more information

(such as tone or long breaks in speaking for inde-
pendent work), these models have not been trained
to work with automated transcription.

D.1 Sentence-level Embeddings
One key difference to other studies using these
same transcripts is the choice to parse the utter-
ances at the sentence level. Sentences, rather than
individual words or long, uninterrupted utterances,
are the key unit of meaning for interpretability of
models for classroom discourse. The downstream
tasks are a key decision for this choice. Sentence
level parsing anticipates meaningful feature attri-
bution studies (Sundararajan et al., 2017) to further
investigate construct validity.

Parsing at the sentence level both augments the
total number of unique observations in the data
and, by creating more standardization in sequence
lengths prior to sentence-embedding, the variation
in the density of semantic information is reduced.

The model takes as input an approximate 12 min
rolling window of class text (stepping at each sen-
tence), and simultaneously predicts ratings for each
of the 12 CLASS dimensions, 13 of the MQI dimen-
sions for rounded-rolling average scores for that
time window. Each model is multi-task predicting
all 25 scores simultaneously for each of the MQI
and CLASS items. This multi-task training takes
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GPT Model Name Prompt Info Output

N Numeric Item Overview Single Number
ND Numeric w/ Description Rubric Descriptions of Score

Categories
Single Number

NR Numeric after Reasoning Item Overview and CoT instruc-
tions

Reasoning and Number

Table 5: GPT Within-family model differences: Details for the GPT/Decoder models can be found in the original
paper (Wang and Demszky, 2023).

advantage of the interrelated skills of teaching that
may be implicit in human ratings. Over one million
unique observations from fewer than 1,600 unique
classroom transcripts were generated, with rolling
windows representing each observation. Training-
val-test splits of this data were 75/15/10, stratified
at the classroom level.

Classroom transcripts are extremely long, with
thousands of sentences, and with classes having
tokens in the hundreds of thousands. Sentence-
level inputs could capture the relationship between
something a teacher says and something a student
says five minutes later without incurring large costs
associated with sequence length. These long-range
dependencies are needed to identify some of the
instructional constructs being measured.

Raw class transcripts also have a lot of noise:
content that is unrelated to any of the tasks, includ-
ing fillers, self-corrections, interruptions and self-
interruptions, sentences that are partially repeated
or emphasized, text that requires being able to refer
to a visual cue in the classroom, etc. While sen-
tence level embeddings lose information relative
to subword tokenizations, this loss of information
may mitigate disproportionate effects of idiosyn-
cratic speaking styles.

D.1.1 Embedding Model Selection
To save on compute, static embeddings were pre-
computed. To represent the very noisy transcript
data, we have to be careful in using sentence-
embeddings, as they decrease the completeness
of the information captured. We tested sentence-
level embeddings using across different pretrained
embedding models accessed through Huggingface
on a subset of the training data for a small random
selection of target measures:

• unsup-simcse-roberta-large:
from princeton-nlp (Gao, 2022), was pre-
trained using unsupervised contrastive
sentence representations. simCSE

• sup-simcse-roberta-large: from
princeton-nlp (Gao, 2022), was pretrained us-
ing supervised training. At the writing of this
paper, we did not yet have a converged model
with reportable results. simCSE

• e5-large-v2: from intfloat (Wang et al.,
2022), pretrained using weakly supervised
contrastive sentence representations with sen-
tence pair training. e5-large-v2

• gte-large: from thenlper (Li et al., 2023),
pretrained using multistage contrastive sen-
tence representations. gte-large

The first three models had significantly reduced
performance, compared to our sentence embedding
model of choice, SimCSE (Gao, 2022), which uses
unsupervised self-contrasting learning to improve
sentence-level representations of words.

D.2 Model Architecture

D.3 Encoder Model Training and Description

Models were built and trained in pytorch,18 largely
based on the Encoder modules available. Each
model was trained on a single L4 GPU in Google
Colab. Each epoch took about 4.25 hours:

• 8 transformer encoder layers

• 25 total classifier heads (with a single dense
layer each) for each task (using double objec-
tive functions, results 50 total loss calculations
backpropagated.)

• All encoder layer parameters are shared by
objectives, but the trainable parameters of the
single dense layer classification heads are spe-
cific to each item.

18https://pytorch.org/docs/stable/
generated/torch.nn.TransformerEncoder.
html
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• Attention heads: 32. Since a lot of seman-
tic information were needed to be extracted
from within each embedding and its neigh-
bors, supporting an increase in multi-head
self-attention mechanisms.

• Hidden dimension: 2048

D.3.1 Preventing Overfit within the Model
An abnormally high 0.75 Dropout rate was the
primary regularization technique to avoid overfit in
a noisy dataset with non-gold labels.

• Optimizer: Adamax: defined in the origi-
nal paper by Kingma and Ba (2017), this is a
variant of Adam that replaces the L2 norm of
the gradients with the L-infinity norm which
provides stability in sparse gradients resulting
from the droupout. Additionally, its initial
momentum and second derivative momentum
are limited slightly to 0.78 and 0.9, respec-
tively, to prevent overfitting, but increasing
training time, and increased the weight decay
to 0.0003 similarly.

• Learning Rate: initial learning rate was set
to 2.5e-5

• Gradient clipping: set to 4 (instead of the typ-
ical 1), since we did not want an unusual batch
to , but recognizing that we need to capture as
much info as we can from our optimizer

• Learning rate schedule: Using chaining, be-
gan linear from zero with warmup, a 1,000
step linear ramp, followed by exponential de-
cay with gamma = 0.9995) with CosineAn-
nealingWarmRestarts scheduling with anneal-
ing cycles cutting frequency by a third each
time. We have initial data to suggest that using
a cyclic learning rate improves model perfor-
mance.

E GPT Model Family

E.1 Model construction
Detailed descriptions of the three models and data
generated by them can be found in the original
paper and accompanying websites Wang and Dem-
szky19 which examples for how the three models
differ. A brief summary of those differences can be
found in Table 5.

19The automated rating data was retrieved
from https://github.com/rosewang2008/
zero-shot-teacher-feedback/tree/main

E.1.1 GPT Model Preprocessing
In contrast to the Encoder model preprocessing,
a preliminary analysis was conducted by Wang
and Demszky to identify the highest quality 7.5-
minute segments available in the dataset, as defined
by fewest transcriber notes. The models are pro-
vided the discrourse from these selections and also
information about the subset of items they pro-
vide ratings for, including four items from the MQI
(EXPL, LANGIMP, REMED, SMQR).

F Reliability Metrics

As reproductions from the original NCTE study,
ICC calculations were reproduced using the follow-
ing multilevel model where lesson 𝑙 scores for each
rubric item are nested within teachers 𝑘:

𝐼𝑇𝐸𝑀 𝑙𝑘 = 𝛽0 + 𝜇𝑘 + 𝜀𝑙𝑘, (9)

and then calculate the ICC and Adjusted ICC

𝐼𝐶𝐶 =
var

(
𝜇𝑘

)

var
(
𝜇𝑘

)
+ var(𝜀𝑙𝑘)

𝑛𝑙

, (10)

where 𝑛𝑙 = 1 for ICC and where 𝑛𝑙 = 6 for
Adjusted ICC following the original study.

F.1 Full Results
Table 6 reports the relative performance on the met-
rics of Section 4.1. Full results of human baselines
and comparisons against the various models can
be found in the extended online material in Hardy
(2024), which contains the all results calculations
referenced in Section 4.1 and additional calculation
details.

G Disattenuated Correlations

Results for disattenuated correlations described in
Section 4.3 and their confidence intervals are in
Figure 9. Most items show correlated relationships
after disattenuation, and most with confidence in-
tervals above 0.5, suggesting that the encoder mod-
els and the humans are likely identifying similar
sources of underlying teacher variation for those
items.
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Metric Encoders un1 un2 un3 gte e5 GPTs N NR ND
%Agr 0.54 0.69 0.77 0.69 0.39 0.39 0.00 0.00 0.00 0.00
C’s 𝜅 0.69 0.85 0.77 0.62 0.62 0.62 0.00 0.00 0.00 0.00
QWK 1.00 1.00 1.00 1.00 0.92 0.92 0.00 0.00 0.00 0.00
𝑟 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
𝜌 1.00 1.00 1.00 1.00 0.77 0.77 0.00 0.00 0.00 0.00
𝜏 1.00 1.00 1.00 1.00 0.77 0.77 0.00 0.00 0.00 0.00

Table 6: Concordance: Performance above Human Reliability and Agreement Metrics. Proportion of MQI items
where the model or model family listed had better results than human baselines. Bold indicates where performance
was better on more than half of items rated. Inter-rater reliability metrics introduced in Section 4.1. C’s 𝜅: Cohen’s
𝜅; QWK: Quadratic Weighted Kappa; %Agr: percent exact agreement; 𝑟: Pearson’s correlation; 𝜌: Spearman’s
rank correlation; 𝜏: Kendall’s concordance correlation;. Full data can be found in the supplementary material online.
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Figure 9: Correlations, Disattenuated Correlations and their respective 95% confidence intervals between human
raters and model raters by MQI item. Observed (𝜌, fainter color hues) and implied (𝜚ℎ𝑚, darker color hues, Eq. 3)
correlations between human raters and model raters by MQI item and their respective boostrapped 95% confidence
intervals (1000 bootstraps of 𝑁 = 1500 for both 𝜌 and 𝜚ℎ𝑚)
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H Disentangling Bias and Measuring
Fairness

H.1 Bias HRM Specification
Consequently, we update ln𝜓2

𝑗𝑟 = Y𝑗𝑟(ln 𝜏2) where
ln 𝜏2 = (ln𝜓2

1 , ..., ln𝜓
2
𝑅, ln 𝜏

2
1 , ..., ln 𝜏

2
𝐽 )
𝑇 . These

results are in the top panel Figure 3. Bayesian es-
timates were calculated via Markov chain Monte
Carlo (MCMC) simulation using Gibbs sampling
across four chains with JAGS (Plummer, 2003) in
R using very weakly informative priors and con-
verging with �̂� < 1.1 for each parameter.

H.2 Fairness HRM Reparameterization
To measure a rater’s item-level fairness with
respect to some sensitive teacher attribute, 𝜍,
the rater parameter vectors are easily updated
where 𝜙𝑗𝑟𝜍 = Y𝑗𝑟𝜍𝜂 is now a linear model for
rating bias for items and with Y𝑗𝑟𝜍 is a design
matrix of dimensions (𝑅𝐽Σ) × (𝑅 + 𝐽 + Σ)
and Σ = {𝐵,𝑊 } for Black and White self-
identified teachers, respectively. In this case,
where 𝜍𝑖 ∈ {𝐵,𝑊 }, we can explicitly up-
date the vector to illustrate the values 𝜂 =
(𝜙1𝐵 , ...𝜙𝑅𝐵 , 𝜙1𝑊 , ...𝜙𝑅𝑊 , 𝜂1𝐵 , ...𝜂𝐽𝐵 , 𝜂1𝑊 , ...𝜂𝐽𝑊 )𝑇
for the raters 𝑅, the items 𝐽 , and
ln𝜓2

𝑗𝑟𝜍 = Y𝑗𝑟𝜍(ln 𝜏2) are updated similarly so that
ln 𝜏2 = (ln𝜓2

1 ,… , ln𝜓2
𝑅, ln 𝜏

2
1 , ..., ln 𝜏

2
𝐽 , 𝜏

2
𝐵, 𝜏

2
𝑊 )𝑇 .

H.3 Fit and Code
For the models estimated in Section 4.5, less than
1% of the parameter estimates had �̂� ≥ 1.1, whose
differences in posterior distributions have no ma-
terial effect on results or discussion; all rater-item-
specific 95% credible intervals for biases are repre-
sented as horizontal lines in Figure 3.

Conducting a full fairness analysis across both
CLASS and MQI items and raters is considerably
more complicated when accounting for all four
construct dimensions in (Blazar et al., 2017). If
only MQI items are modeled, as was the case in
the plots of Figure 7, the model can be simplified
two dimensions. This paper focused mostly on
the MQI instrument, in particular the four items
in the test set of Wang and Demszky. Item-level
MQI results for the full model (including CLASS)
for disentangling biases from Section 4.4 and for
corresponding racial bias difference models from
Section 4.5 with JAGS code listings, a model plate
diagram and mixed effect model specifications are
available in the extended supplementary material
in Hardy (2024).

I Generalizability and Decision Studies

I.1 Generalizability Study Human Results
(for NCTE Main Study)

The results of the item-level G-study for human
expert ratings, consisting of only the estimates for
individual items using the NCTE Main Study data
(Kane et al., 2015) to replicate Section 2.d from the
Appendix. All calculations and representations are
according to the design details listed therein.

In the Appendix of the NCTE study, the authors
submitted a G-study on the MQI instrument, but
not for data of the study: they provide a separate
G-study of only eight (8) different middle school
teachers teaching three (3) lessons each with only
nine (9) raters, instead of the corresponding 317
NCTE Study teachers with an average 5.34 lessons
each and 63 raters. For completeness, this paper
conducts the g-study for the Kane et al. 2015 NCTE
main study Appendix, Section 3, using the NCTE
dataset. The full results of the human label G-study
are in Table 7.

Percent of Variance height
ITEM (I) Teacher Lesson Rater Tch×Rat

It Io:t Ir Itr
LINK 12.3 39.6 6.5 4.3
EXPL 11.7 21.3 22.0 0.0
MMETH 12.7 51.0 3.9 4.3
MGEN 2.4 13.5 13.3 1.2
MLANG 5.7 29.8 17.3 0.0
REMED 11.2 25.3 12.4 0.0
USEPROD 18.1 18.9 13.9 9.4
MAJERR 6.9 25.7 8.3 14.3
LANGIMP 8.0 29.0 14.9 3.6
LCP 9.0 26.1 16.9 13.4
STEXPL 23.1 29.1 9.0 0.0
SMQR 12.8 24.4 11.2 1.2
ETCA 14.8 22.2 13.7 0.0

Table 7: By item, the percentage contribution, excluding
the residual (which accounts for the remainder of the
variance), of each variance component in the given MQI
Item’s R x (O:T) Generalizability Study

I.2 Rater Family Generalizability Metrics
The metric of dependability, 𝛷 (Equation 11), is
estimated from the random effects for raters in rater
family 𝔽 from the parameters in Equation 1:

𝛷(𝑗)
𝔽 =

𝜈𝑖𝑗
𝜈𝑖𝑗 + 𝜈𝑜∶𝑖𝑗 + 𝜈𝑠∶𝑜∶𝑖𝑗 + 𝜈𝑖𝑟𝑗 + 𝜈𝑟𝑗 + 𝜈𝑠∶𝑜∶𝑖𝑟𝑗

,

(11)
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Humans, on average, produce labels that are both
more reliable and generalizable for capturing fea-
tures that are more permanent at the teacher-level.
The full results for human rater labels, decomposed
into variance components, can be found in I.420 and
estimates for 𝐄𝜌2 and 𝛷 can also be found in panel
(c) of Figure 7. The Encoder models outperform
humans on nearly every item in terms of inter-rater
reliability metrics (Table 6) , but not in generaliz-
able reliability metrics as seen in panel (c) tables of
Figure 7. Importantly, the large difference between
𝐄�̂�2 and �̂� for Humans and Encoders is due to prop-
erties of individual items, which accounted for over
75% of the variation in those families. GPT mod-
els, on the other hand, did not change ratings very
much on different items, consistent with literature
on these models not understanding such prompts
(Liu et al., 2023a; Webson and Pavlick, 2022; Heo
et al., 2024). Table 8 shows that Encoder model
still performs better than humans on the majority of
items, but it is no longer as clear. Interestingly, as
mentioned in Section 3, the encoder models did not
receive any annotations outside of the transcript, in-
cluding speaker. This means that the model would
struggle to identify teacher explanations (EXPL)
from student explanations (STEXPL). This shift
in interpreting encoder family performance from
superhuman to zero reliability adds validity to the
argument that these metrics provide valuable in-
sight, showing that the relationships found in some
of the variables could be explained by variance un-
related to the label construct. Implications: Mea-
sures of generalizability and dependability derived
from structured variance decomposition can mean-
ingfully quantify label quality.

I.3 Decision Study Parameterization
Structurally, Equation 8 shares similarities with
the two-stage ICC calculation (see Eq. 10). The
absolute error for a rater family (𝕗 ) indexed by 𝜘
across any permutation of decision values in this
study:

𝜎2(Δ𝜘) =
𝜎2(𝑟𝜘)
𝑛′𝑟𝜘

+
𝜎2(𝑜𝜘)
𝑛′𝑜𝜘

+
𝜎2(𝑟𝜘 𝑖)
𝑛′𝑟𝜘

(12)

+
𝜎2(𝑠𝜘 ∶ 𝑜𝜘)
𝑛′𝑠𝜘𝑛

′
𝑜𝜘

+
𝜎2(𝑠𝜘 ∶ 𝑜𝜘 ∶ 𝑖𝑟𝜘)

𝑛′𝑠𝜘𝑛
′
𝑜𝜘𝑛

′
𝑟𝜘

where the decision values vary across design facets
and whose contribution is weighted by the com-

20Appendix 2.c of (Kane et al., 2015) provided a g-study,
but, surprisingly, not using the data from the study.

bined count 𝑛′𝑘 of a given facet 𝑘 for ratings gen-
erated only by the family indexed by 𝜘, 𝑛𝑘𝜘 and
those facets, if any, shared between families, 𝑛𝑘𝔽 ′ :
𝑛′𝑘𝜘 = 𝑛𝑘𝜘 + 𝑛𝑘𝔽 ′∀𝑘 ∈ {𝑠, 𝑜, 𝑟}, 𝑛𝑟𝔽 ′ = 0. These dis-
tinct sets of parameter values for each design study
are represented in Equation 8. For human-in-the-
loop only use cases, 𝜘HIL, the value 𝑛𝑘𝔽 ′ represents
those sources of variation that are shared between
rater families, and for a model family 𝕗 = 𝕞, where
there would be no observations made by a model
without a human, the model would not have any
independent observations 𝑛𝑜𝕞 = 0. To represent
these 𝑛 values where a human 𝕙 observes a class-
room for 15 minutes21 with a model and where
a single model 𝕞 continues to observe for the re-
mainder of the class (an additional 45 minutes),
𝐊𝑛∈𝜘HIL

= {𝑛𝑜𝕞 = 0, 𝑛𝑜𝕙 = 0, 𝑛𝑜𝔽 ′ = 1, 𝑛𝑠𝕞 =
6, 𝑛𝑠𝕙 = 0, 𝑛𝑠𝔽 ′ = 2, 𝑛𝑟𝕞 = 1, 𝑛𝑟𝕙 = 1, 𝑛𝑜𝔽 ′ = 0}
and where the variance components are solved sim-
ilarly to the coefficients of Eq. 1. Additional mate-
rial can be found in Hardy (2024).

I.4 Generalizability Theory Parameters and
Code

A helpful heuristic for understanding the mathemat-
ics of G-theory might be they are very computa-
tionally similar to hierarchical mixed effect models,
where estimates of interest are found in variation of
the random effects. The two code blocks represent
by item (𝑂 ∶ 𝐼) × 𝑅 and (𝑆 ∶ 𝑂 ∶ 𝐼) × 𝑅 pa-
rameterizations, respectively, using variable names
from the original dataset. The former replicates the
methods used in (Hill et al., 2012b) and the Ap-
pendix Section 2.d of (Kane et al., 2015) to create
Table 7 in Appendix section I.1, and was used in
this study to calculate the family generalizability
metrics in Section 4.2, including those used in Sec-
tion 4.3. The latter is used for the decision studies
described in Section 4.6. Studies were conducted
using lme4 (Bates et al., 2015) in R (Team). Full
results for all 25 item-level d-studies as defined in
Section 4.6 are can be found in Hardy (2024) as
well as code listings used in the model estimations.

21For the MQI instrument, observation segments are 7.5
minutes long.

2277



𝐄�̂�2 �̂�
ITEM Human Encoders GPTs Human Encoders GPTs
ETCA 0.17 0.20 0.15 0.19
EXPL 0.15 0.00 0.00 0.12 0.00 0.00
LANGIMP 0.09 0.15 0.08 0.08 0.14 0.08
LCP 0.11 0.27 0.09 0.26
LINK 0.13 0.19 0.12 0.19
MAJERR 0.08 0.00 0.07 0.00
MGEN 0.03 0.08 0.02 0.08
MLANG 0.07 0.18 0.06 0.17
MMETH 0.13 0.37 0.13 0.36
REMED 0.13 0.10 0.05 0.11 0.09 0.04
SMQR 0.14 0.09 0.00 0.13 0.09 0.00
STEXPL 0.25 0.00 0.23 0.00
USEPROD 0.19 0.25 0.17 0.25
All Items 0.114 0.106 0.007 0.010 0.014 0.004

Table 8: Generalizability and Dependability metrics by model families for each MQI Item. Bold represents the
best rater family for each of 𝐄𝜌2 and 𝛷, respectively. Underlined items are focus MQI items, because they were
evaluated by (Wang and Demszky, 2023). For the overall "All Items" calculation, a 𝐽 × 𝑅 × (𝑂 ∶ 𝐼) model was
used for comparability with other similar research.
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