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Abstract

The SENĆOTEN language, spoken on the
Saanich peninsula of southern Vancouver Is-
land, is in the midst of vigorous language re-
vitalization efforts to turn the tide of language
loss as a result of colonial language policies. To
support these on-the-ground efforts, the com-
munity is turning to digital technology. Auto-
matic Speech Recognition (ASR) technology
holds great promise for accelerating language
documentation and the creation of educational
resources. However, developing ASR systems
for SENĆOTEN is challenging due to limited
data and significant vocabulary variation from
its polysynthetic structure and stress-driven
metathesis. To address these challenges, we
propose an ASR-driven documentation pipeline
that leverages augmented speech data from a
text-to-speech (TTS) system and cross-lingual
transfer learning with Speech Foundation Mod-
els (SFMs). An n-gram language model is also
incorporated via shallow fusion or n-best restor-
ing to maximize the use of available data. Ex-
periments on the SENĆOTEN dataset show a
word error rate (WER) of 19.34% and a char-
acter error rate (CER) of 5.09% on the test
set with a 57.02% out-of-vocabulary (OOV)
rate. After filtering minor cedilla-related errors,
WER improves to 14.32% (26.48% on unseen
words) and CER to 3.45%, demonstrating the
potential of our ASR-driven pipeline to support
SENĆOTEN language documentation.

1 Introduction

Language documentation often plays an important
role in the revitalization of Indigenous languages.
Language revitalization is, in turn, crucially impor-
tant for preserving the cultural heritage and iden-
tity of Indigenous communities. SENĆOTEN (str),
the language of the W

¯
SÁNEĆ people, has faced

considerable challenges, largely due to the cumu-
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lative effects of historical marginalization and cul-
tural suppression (Haque and Patrick, 2015; Pine
and Turin, 2017). With a sharp reduction in fluent
speakers, many Indigenous languages in Canada,
including SENĆOTEN, are at a critical juncture.
Of the approximately 70 Indigenous languages in
Canada, many urgently require revitalization ef-
forts to prevent further loss (Littell et al., 2018). In
this context, Automatic Speech Recognition (ASR)
technology offers significant potential for language
revitalization by supporting the transcription of spo-
ken language, thereby potentially accelerating the
development of educational curriculum developed
from audio data (Jimerson and Prud’hommeaux,
2018; Foley et al., 2018; Littell et al., 2018; Gupta
and Boulianne, 2020a,b; Liu et al., 2022; Rodríguez
and Cox, 2023). While ASR technologies have
made significant strides for widely spoken lan-
guages (Peddinti et al., 2015; Chan et al., 2016;
Wang et al., 2020; Gulati et al., 2020; Hu et al.,
2022; Li et al., 2023), research on ASR systems for
Canadian Indigenous languages (Gupta and Bou-
lianne, 2020a,b) remains limited.

SENĆOTEN, also known as the Saanich lan-
guage, is spoken around the Saanich penin-
sula in the southern region of Vancouver Is-
land and on neighboring islands in the Strait of
Georgia. The language is written with a dis-
tinct alphabet developed by the late Dave Elliott
Sr. (FirstVoices, 2024). As of 2022, there are a
reported 16 fluent SENĆOTEN speakers and 165
semi-speakers (Gessner et al., 2022). While on-
going and vigorous revitalization efforts (Brand
et al., 2002; Jim, 2016; Bird and Kell, 2017; Bird,
2020; Elliott Sr, 2024; Pine et al., 2025) are in
place, there have been no prior efforts to leverage
ASR techniques to support the documentation and
revitalization of SENĆOTEN.

This paper aims to address the gap by inves-
tigating cutting-edge ASR-based techniques that
can support SENĆOTEN language documentation



efforts. However, developing ASR systems for
SENĆOTEN presents two major challenges: 1)
Limited data resources: Compared with high-
resource languages like English, there are very
few digitized materials in SENĆOTEN (Pine et al.,
2022b), and even fewer audio recordings are avail-
able with aligned transcriptions; 2) Extensive vo-
cabulary variation: Beyond the relatively polysyn-
thetic nature of SENĆOTEN, metathesis driven by
stress patterns further contributes to the vast num-
ber of possible word forms as illustrated below
from Montler (1986, Section 2.3.5.4.3):

(1) T
¯

QET
ň’kw’@́t

‘Put it out (a
fire).’

(2) T
¯

EQT
ň’@́kw’t

SEN
s@n

‘I’m putting it
out.’

Such morphological and phonological complex-
ity makes it impractical to construct a sufficiently
large dictionary. As a result, many words to be tran-
scribed are absent from the system’s training data
(i.e., out of vocabulary). These two challenges,
taken together, significantly hinder the develop-
ment of robust ASR systems for SENĆOTEN.

To tackle the challenges associated with the
development of ASR systems for SENĆOTEN,
this paper explores a range of state-of-the-art tech-
niques, with an emphasis on end-to-end (E2E) mod-
els. E2E approaches offer a distinct advantage over
traditional GMM-HMM or hybrid DNN-based sys-
tems, as they eliminate the need for a fixed lexi-
con. Given SENĆOTEN’s highly complex mor-
phology, as well as the difficulty of building an
exhaustive lexicon, E2E models are particularly
well-suited to the task. However, a major draw-
back of E2E systems is their reliance on large
datasets, which poses a significant obstacle for
low-resource languages like SENĆOTEN. To ad-
dress this, we propose two strategies: 1) ASR data
augmentation through a carefully designed text-
to-speech (TTS) synthesis pipeline, and 2) cross-
lingual transfer learning leveraging speech foun-
dation models (SFMs). Additionally, we incorpo-
rate an external n-gram language model (LM) using
either shallow fusion (Kannan et al., 2018) or n-
best rescoring (Chow and Schwartz, 1989) to make
the most of the available data.

Experiments were conducted using the
SENĆOTEN speech dataset, comprising 4 hours
of recorded audio from the “Speech Generation
for Indigenous Language Education project (Pine

et al., 2025). The results show that systems
employing cross-lingual transfer learning with
speech foundation models significantly outper-
formed conventional hybrid time-delay neural
networks (TDNNs), particularly when recognizing
unseen words not present in the training set.
Moreover, incorporating TTS-synthesized data in
ASR training and an external n-gram LM further
enhanced system performance.

This paper’s key contributions are below:

1. First comprehensive investigation of SFMs
for documenting low-resource languages:
This study represents the first systematic in-
vestigation of speech foundation models for
the development of ASR systems aimed at
supporting the documentation of Canadian In-
digenous languages. Prior research on lan-
guages such as Inuktitut (Gupta and Bou-
lianne, 2020a), Cree (Gupta and Boulianne,
2020b), and other North American Indige-
nous languages, including Hupa (Liu et al.,
2022), has predominantly employed hybrid
ASR architectures. These approaches typ-
ically demand in-depth linguistic expertise,
particularly for the careful design and se-
lection of subword units. While models
such as Wav2vec2, XLS-R and Whisper have
been explored for language documentation
tasks (Jimerson et al., 2023; Rodríguez and
Cox, 2023), including for languages like
Hupa (Jimerson et al., 2023; Venkateswaran
and Liu, 2024), Seneca (Jimerson et al., 2023)
and Oneida (Jimerson et al., 2023), our work
is the first to conduct a comprehensive inves-
tigation of pre-trained SFMs in this context.
By leveraging these models, we aim to widen
the so-called “transcription bottleneck” and
accelerate language documentation efforts.

2. First ASR-driven documentation pipeline
for the SENĆOTEN language: This work in-
troduces the first ASR-driven documentation
pipeline tailored for SENĆOTEN. To address
the challenges of limited data and high lexi-
cal variation, we adopt a two-pronged strat-
egy: ASR data augmentation via TTS and
cross-lingual transfer learning based on SFMs.
Moreover, we perform a systematic analysis
of ASR performance under more extreme con-
ditions, reducing the available training data to
as little as 10 minutes1.

1Details can be found in the Appendix.
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Figure 1: The proposed multi-stage ASR-driven pipeline to support SENĆOTEN language documentation.

3. Promising ASR performance with extended
error analysis: The top-performing sys-
tem, integrating cross-lingual transfer learn-
ing, TTS-based data augmentation and lan-
guage model fusion, achieves a word error rate
(WER) of 19.34% and a character error rate
(CER) of 5.09% on the test set with a 57.02%
out-of-vocabulary (OOV) rate. Furthermore,
by filtering out minor errors involving missing
or extraneous cedillas (¸), the WER and CER
further improve to 14.32% (26.48% on un-
seen words) and 3.45%, respectively. These
findings highlight the system’s capability to
significantly expedite the transcription pro-
cess for SENĆOTEN, providing valuable as-
sistance in efforts to revitalize the language.

The rest of the paper is organized as follows. Sec-
tion 2 outlines the proposed ASR-driven pipeline
developed to support the documentation of the
SENĆOTEN language. Section 3 details the TTS
system for synthesizing audio to augment ASR
training data. Section 4 discusses the application
of cross-lingual transfer learning based on speech
foundation models. Experimental results and anal-
ysis on the SENĆOTEN dataset are presented in
Section 5. Section 6 provides conclusions and dis-
cusses potential directions for future research.

2 ASR-Driven Pipeline for SENĆOT EN
Language Documentation

As illustrated in Figure 1, our proposed ASR-driven
pipeline for SENĆOTEN language documentation
consists of four stages, with carefully designed

procedures to maximize the usage of the available
audio and text data:
Stage 1: Train the TTS system: Parallel audio
and text data in SENĆOTEN are used to train
a custom-designed text-to-speech (TTS) system,
which will be described in detail in Section 3.
Stage 2: Generate synthesized audio via TTS:
SENĆOTEN text without accompanying audio is
fed into the trained TTS system to generate the
corresponding synthesized audio.
Stage 3: Perform cross-lingual transfer learning
on the SFM: The original parallel audio and text
data, combined with the synthesized audio from the
text-only data, are utilized to perform cross-lingual
transfer learning on the speech foundation model
(SFM), which will be outlined in Section 4.
Stage 4: Transcribe new audio with the fine-
tuned SFM: New audio in SENĆOTEN is tran-
scribed using the fine-tuned SFM, with the option
to fuse an external language model (LM) trained
on part or all of the available text data to further
improve accuracy.

3 Text-to-Speech Synthesis

Text-to-speech (TTS) synthesis has emerged as a
powerful technique for augmenting ASR training
datasets (Gokay and Yalcin, 2019), particularly in
scenarios where parallel audio and text resources
are limited. As there exists written SENĆOTEN
text without corresponding audio recordings, TTS-
generated audio can be used to augment the training
data for developing SENĆOTEN ASR systems.

To mitigate the scarcity of parallel audio & text
data in SENĆOTEN, a three-phase approach is
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Figure 2: Architecture of the feature prediction work of our TTS system. “Char. Embed.”, “Spkr. Embed.” and
“Lang. Embed.” respectively denote character, speaker, and language embeddings.

adopted using the EveryVoice TTS Toolkit Pine
et al. (2022b), including 1) training a feature pre-
diction network, 2) developing a vocoder, and 3)
aligning vocoder outputs with mel-spectrograms
generated by the prediction network (i.e., vocoder
matching).

3.1 Feature Prediction Network
Building on the work of Pine et al. (2022b), the Ev-
eryVoice TTS toolkit uses a modified FastSpeech
2 (Ren et al., 2020) architecture as the feature pre-
diction network. As illustrated in Figure 2, the key
modifications are:

• Substitution of standard convolutions with
depthwise separable convolutions in both the
encoder and mel-spectrogram decoder (Pine
et al., 2022b) to enhance parameter efficiency.

• Integration of learnable speaker embeddings
(Figure 2, middle, in circled box).

• Incorporation of a decoder post-net (Figure 2,
right, in light green).

Moreover, pre-generated forced alignments are
replaced by a jointly-trained alignment mod-
ule (Badlani et al., 2022), while pitch and energy
are predicted at the phoneme level instead of the
frame level to achieve smoother prosody.

3.2 Vocoder
Since speech foundation models directly process
raw audio, ensuring high-quality waveform synthe-
sis is crucial. The vocoder, which converts inter-
mediate mel-spectrograms into waveforms, plays
a key role in this process. To this end, we utilize
HiFi-GAN (Kong et al., 2020), a widely adopted
generative adversarial network recognized for gen-
erating natural and high-quality waveforms, as the
vocoder in our TTS system.

3.3 Vocoder Matching

To mitigate the artifacts arising from limited train-
ing data, a vocoder matching strategy is employed
after the initial training of the vocoder. This process
fine-tunes the vocoder using mel-spectrograms gen-
erated by the feature prediction network as input,
aligning it with the specific characteristics of these
spectrograms to minimize discrepancies between
training and inference conditions.

4 Cross-Lingual Transfer Learning

The limited availability of SENĆOTEN data makes
it impractical to train an end-to-end (E2E) ASR sys-
tem from scratch. Alternatively, recent advances
in speech foundation models (SFMs), which are
pre-trained on large-scale datasets, offer a promis-
ing pathway for cross-lingual transfer learning in
low-resource languages like SENĆOTEN.

SFMs can be categorized into two main types:
Encoder-Based SFM: Encoder-based SFMs have
gained widespread adoption due to their ability
to convert raw audio into representations useful
for various downstream tasks. Widely recog-
nized models in this category include Wav2Vec 2.0
(Wav2Vec2) (Baevski et al., 2020), HuBERT (Hsu
et al., 2021), WavLM (Chen et al., 2022), and
Data2Vec (Baevski et al., 2022). These models em-
ploy a single encoder architecture to process audio,
with a focus on self-supervised learning from un-
labeled data. Both Wav2Vec2 and HuBERT excel
at capturing rich speech representations, which are
crucial for ASR in low-resource settings. WavLM
further improves performance by effectively mod-
eling not only speech but also environmental noise,
making it particularly robust in challenging acous-
tic conditions. Data2Vec, on the other hand, ex-
pands the applicability of these models by general-
izing the approach to multiple modalities.



Encoder-Decoder-Based SFM: In contrast,
encoder-decoder-based SFMs integrate both an
encoder to process the input audio and a decoder
to generate transcriptions or other forms of output.
Whisper (Radford et al., 2023) is among the most
well-known models in this category. By combining
these two components, Whisper is capable of
end-to-end transcription, making it a powerful
tool for ASR tasks. Its architecture is particularly
useful for languages with limited resources, as
the encoder-decoder framework allows for more
sophisticated handling of complex linguistic
structures through cross-lingual transfer learning.

5 Experiments

5.1 Task Description

Parallel Audio & Text Data: The SENĆOTEN
speech dataset, part of the “Speech Generation
for Indigenous Language Education” project (Pine
et al., 2025), consists of about 4 hours of single-
speaker recordings. A Kaldi-based (Povey et al.,
2011) GMM-HMM system is used to estimate
emission probabilities for each utterance. 20% of
the data is then allocated as the test set based on
these estimates to ensure a balanced representation
of difficulty. After silence stripping, the training set
contains 1.7 hours and the test set 0.2 hours, with
average utterance lengths of 2.06 and 2.04 seconds,
respectively. The training set consists of 3k utter-
ances with 3.6k distinct words, while the test set
includes 0.8k utterances with 1.2k distinct words.
The average word length is 3.6 characters in both
sets. Due to SENĆOTEN’s polysynthetic nature
and stress-driven metathesis, the test set shows a
high out-of-vocabulary (OOV) rate of 57.02%.
Text-Only Data: We have permission to access
the SENĆOTEN dictionary (Montler, 2018), the
most comprehensive lexicographic resource for the
language, containing over 30k words and exam-
ple sentences. This data is text-only, with no cor-
responding audio. 27k words and sentences are
retained after filtering out overly long entries ex-
ceeding 81 characters.

5.2 Experiment Setup

Data processing: We conduct silence stripping
using SoX2 and denoise the audio with an RNN-
based denoiser3. The audio is then resampled to 16

2https://linux.die.net/man/1/sox
3https://github.com/xiph/rnnoise

kHz for ASR and 22.05 kHz for TTS development,
while words are segmented into characters.
Text-to-Speech Synthesis: The TTS system out-
lined in Section 3 is built using the EveryVoice
TTS Toolkit4. The train/test split mirrors that of the
ASR system. The modified FastSpeech2 feature
prediction network includes 4 encoder and 4 de-
coder blocks5, while HiFi-GAN in its V1 configura-
tion (Kong et al., 2020) is used as the vocoder. The
synthesized audio is automatically evaluated using
the TorchSquim (Kumar et al., 2023) model, which
provides estimates for short-time objective intel-
ligibility (STOI), perceptual evaluation of speech
quality (PESQ), scale-invariant signal-to-noise ra-
tio (SI-SNR), and mean opinion score (MOS).
Cross-lingual Transfer Learning: We utilize the
Hugging Face platform to perform cross-lingual
transfer learning with both encoder-based speech
foundation models, including Wav2Vec2, Hu-
BERT, WavLM, and Data2Vec, as well as encoder-
decoder-based models6 like Whisper. SFMs of
varying model sizes and pretraining data serve as
the starting point for this process.
Language Model Fusion: We construct two 4-
gram language models (LMs) using the KenLM
toolkit (Heafield, 2011):

• A smaller model (“small-4g”) trained exclu-
sively on the text from the training set.

• A larger model (“large-4g”) that also incor-
porates the 27k text-only SENĆOTEN sen-
tences.

The “small-4g” LM covers 3.6k words, while
the “large-4g” spans 14k. For encoder-based SFMs
(e.g., Wav2Vec2), shallow fusion (Kannan et al.,
2018) integrates the n-gram LM during decoding.
For encoder-decoder SFMs (e.g., Whisper), the LM
rescales the n-best hypothesis list.

5.3 Performance Analysis

Table 1: TTS evaluation on the SENĆOTEN test set.

Vocoder Matching STOI (↑) PESQ (↑) SI-SNR (↑) MOS (↑)

✗ 0.980 3.207 20.339 4.227
✓ 0.985 3.324 20.809 4.336

4https://github.com/EveryVoiceTTS/EveryVoice
5Both encoder and decoder blocks have a 1024-dim feed-

forward layer and two 128-dim attention heads.
6https://huggingface.co/blog/{fine-tune-wav2v

ec2-english,fine-tune-whisper}

https://linux.die.net/man/1/sox
https://github.com/xiph/rnnoise
https://github.com/EveryVoiceTTS/EveryVoice
https://huggingface.co/blog/{fine-tune-wav2vec2-english,fine-tune-whisper}
https://huggingface.co/blog/{fine-tune-wav2vec2-english,fine-tune-whisper}


Table 2: Performance of cross-lingual transfer learning using SFMs with different architectures. ✗ in the "Multilin-
gual" column indicates that the SFM is pre-trained on English data only. "WER/CER" represents word/character
error rate, while "seen" and "unseen" refer to whether the test words are included in the original training data.

Sys. Model Multi-Lingual LM CER% (↓) WER% (↓)

seen unseen all

1 Wav2Vec2-random-int - - 84.36 99.94 100.00 99.96

2 Wav2Vec2-base
✗

-

10.68 36.18 65.99 49.10
3 Wav2Vec2-large 8.25 21.42 56.87 35.04

4 Wav2Vec2-xlsr-53
✓

11.23 33.48 69.13 51.44
5 Wav2Vec2-xls-r-300m 10.41 31.55 63.35 45.63
6 Wav2Vec2-xls-r-1b 6.32 14.87 55.04 27.81

7 Data2Vec-base
✗ -

14.89 40.09 78.56 60.61
8 Data2Vec-large 9.29 27.75 60.08 40.51

9 HuBERT-base
✗ -

13.34 45.15 72.04 58.61
10 HuBERT-large 12.29 44.66 69.78 56.06

11 WavLM-base
✗ -

11.70 36.18 71.27 50.71
12 WavLM-large 13.43 45.98 71.88 59.61

13 Whisper-medium-en ✗
-

7.36 15.38 57.30 28.13
14 Whisper-large-v2 ✓ 7.11 14.60 58.01 27.66

15
Wav2Vec2-xls-r-1b ✓

small-4g 6.05 12.18 57.92 25.13

16 large-4g 5.63 12.35 49.09 23.16

17
Whisper-large-v2 ✓

small-4g 6.53 11.09 60.14 25.16

18 large-4g 6.12 10.95 50.35 22.67

The evaluation of the TTS system, cross-lingual
transfer learning with SFMs, and the integration of
TTS-based data augmentation and language models
is conducted on the test set described in Section 5.1.
In this context, “seen” and “unseen” words in terms
of word error rate (WER) refer to whether the test
words were present in the original training data.

Text-to-Speech Synthesis: We evaluate the TTS
system on the SENĆOTEN test set using four met-
rics: STOI, PESQ, SI-SNR, and MOS. As indicated
in Table 1, performance improves across all four
metrics with vocoder matching. Based on this, we
use the vocoder-matched system to synthesize 27k
SENĆOTEN sentences outlined in Section 5.1, re-
sulting in approximately 11.6 hours of generated
speech for ASR data augmentation. Compared to
the 13.3-hour augmented training set, the test set
retains an OOV rate of 29.96%.

Cross-lingual Transfer Learning: Table 2 illus-
trates the results of cross-lingual transfer learning
across various speech foundation models (SFMs).
As part of an ablation study (Sys. 1), we also carry
out an additional experiment where the weights
of the Wav2Vec2-base model are randomly re-
initialized to serve as the starting point. In addition,

the top-performing encoder- and encoder-decoder-
based SFMs are further integrated with the 4-gram
LMs (Sys. 15-18).

Several insights can be drawn from Table 2: 1)
Larger SFMs do not consistently deliver better re-
sults than smaller models with similar architectures
(Sys. 12 vs. 11). 2) Although the top-performing
SFMs are pre-trained on multilingual datasets (Sys.
6, 14), they do not always outperform monolingual
models with similar structures trained solely on
English (Sys. 4-5 vs. 3). 3) Incorporating an ex-
ternal LM further boosts performance (Sys. 15-16
vs. 6 and Sys. 17-18 vs. 14), with larger LMs
providing better outcomes (Sys. 16 vs. 15, Sys.
18 vs. 17). 4) A substantial performance gap ex-
ists between words covered (“seen”) in the training
data and those that are not (“unseen”), while the
top-performing systems (Sys. 16,18) correctly tran-
scribe roughly half of the unseen words.
TTS-Based Data Augmentation: We progres-
sively incorporate TTS-synthesized data into the
cross-lingual transfer learning process of the top-
performing SFM (Table 2, Sys. 18), i.e., Whisper7.

7https://huggingface.co/openai/whisper-large
-v2

https://huggingface.co/openai/whisper-large-v2
https://huggingface.co/openai/whisper-large-v2


Table 3: Performance of incorporating TTS-synthesized
data in cross-lingual transfer learning with the Whisper
model. The original training data is always included,
while “all” denotes the full 11.6-h synthesized data.

Sys. Aug.
Data LM CER% (↓) WER% (↓)

seen unseen all

1 1h

-

6.67 12.97 54.97 25.38
2 2h 6.02 12.67 51.42 23.99
3 4h 5.84 12.67 47.52 22.86
4 6h 5.72 11.34 49.79 22.56
5 8h 5.79 11.79 48.44 22.53
6 all 5.63 12.18 44.81 22.01

7 1h

small
fg

6.80 10.55 56.31 23.74
8 2h 5.82 10.95 52.41 22.82
9 4h 5.50 9.71 49.79 21.21

10 6h 5.59 9.96 50.50 21.65
11 8h 5.42 9.57 48.73 20.70
12 all 5.26 9.91 46.51 20.51

13 1h

large
fg

6.60 10.65 49.08 22.60
14 2h 5.96 10.06 49.36 22.42
15 4h 5.38 9.57 45.67 20.84
16 6h 5.18 9.22 46.60 20.44
17 8h 5.09 8.43 44.96 19.34
18 all 5.11 9.62 43.53 20.15

The augmentation begins with 1 hour of synthe-
sized data and scales up to a total of 11.6 hours. As
shown in Table 3, several trends can be observed: 1)
Incorporating TTS-synthesized data leads to ASR
performance improvements both with or without
an external LM (Sys. 1-6, 7-12, 13-18 in Table 3 vs.
Sys. 14,17,18 in Table 2), with overall WER reduc-
tions of up to 5.65% abs. (20.43% rel.) and 13.20%
abs. (22.75% rel.) on unseen words absent from
the original training set (Sys. 6 in Table 3 vs. Sys.
14 in Table 2). 2) For systems fused with the large
4-gram LM covering all text used for TTS, the in-
clusion of synthesized audio further improves ASR
performance (Sys. 13-18 in Table 3 vs. Sys. 18 in
Table 2). 3) There is a general trend of performance
convergence when 8 hours of TTS-synthesized data
are added (Sys. 5,11,17 in Table 3).

5.4 Language Documentation Support

The motivation for this project stemmed from dis-
cussions between the authors in the context of reg-
ular meetings related to a multi-year TTS research
project, described in detail in Pine et al. (2025).
ASR was not an explicit goal of the project that
brought us together, but the first author of this pa-
per has expertise in speech recognition and realized
that we had some of the requisite pieces to develop
a proof-of-concept ASR system, namely, an estab-
lished relationship with the language community in

question, pre-trained TTS models, and some mod-
est amounts of parallel text-audio data. The first
author proposed the idea, along with possible bene-
fits and risks, to members of the W

¯
SÁNEĆ school

Board at a meeting for the TTS project, which was
met with enthusiasm and support leading to this
initial effort. Despite the strong results from these
initial experiments, many more steps and protocols
will be required to connect this technology with
on-the-ground language efforts.

To help us demonstrate the capabilities of this
technology, we developed an intuitive, web-based
user interface and API using the Gradio frame-
work (Abid et al., 2019) in Python. The interface,
as illustrated in Figure 3, allows users to interact
with the model by either speaking directly into
the microphone or uploading a pre-recorded audio
file. After providing the input, users can click the
“Submit” button (Figure 3, bottom, in orange) to
generate an automatic transcription, displayed in
the text box labeled “output” (Figure 3, right).

Additionally, users can select specific segments
of the audio (Figure 3, left) to view their corre-
sponding transcriptions, enabling precise analysis
of smaller portions of the recording. The “Flag”
button, located on the right, allows users to mark
an audio-transcription pair for further review, an-
notation, or reference. This functionality is partic-
ularly useful for collaborative workflows, where
flagged segments may require validation or addi-
tional context from language experts. By simplify-
ing transcription workflows, the interface stream-
lines language documentation, enabling linguists,
community members, and researchers to efficiently
process spoken language data with decreased man-
ual effort. Features like audio segmentation and
flagging support iterative transcription processes,
while the web-based design ensures accessibility
across a wide range of devices, making it well-
suited for teams working in different locations.

To safeguard the model’s privacy, the interface is
currently accessible exclusively through a private
web gateway. Future developments aim to facilitate
closer alignment with documentation and language
revitalization workflows (e.g., Cox, 2019; Adams
et al., 2021).

A closer examination of the decoded outputs
from the SENĆOTEN ASR systems reveals that
a notable portion of the errors involve missing or
extraneous cedillas (¸) which indicate either glot-
talization when following resonant or glottal stops
otherwise. Given that these errors are relatively



Figure 3: Demonstration of the user interface designed to support SENĆOTEN language documentation.

easily correctable by a SENĆOTEN speaker, and
that the consistency of their use varies, we reassess
the ASR performance with these errors excluded.
As shown in Table 4, the system achieves an overall
WER of 14.32%, a CER of 3.45%, and a WER of
26.48% on unseen words. This demonstrates the
potential of our proposed ASR-driven pipeline to
support the documentation for SENĆOTEN.

Table 4: Performance of the top-performing SFM (Sys.
17 in Table 3), excluding errors related to cedilla (¸).

Model CER% (↓) WER% (↓)

seen unseen all

Whisper 3.45 6.88 26.48 14.32

6 Conclusion

In this paper, we proposed an ASR-driven pipeline
designed to tackle the unique challenges of docu-
menting the SENĆOTEN language, which is hin-
dered by data scarcity, substantial vocabulary vari-
ation, and phonological complexity. By incorpo-
rating augmented speech data from a TTS system,
cross-lingual transfer learning using speech foun-
dation models (SFMs), and an n-gram language
model via shallow fusion, we demonstrated the
effectiveness of our approach in improving ASR
performance for low-resource languages. Our ex-
periments on the SENĆOTEN dataset yielded a
WER of 19.34% and a CER of 5.09%, with further
improvements to a WER of 14.32% (26.48% on
unseen words) and a CER of 3.45% after mitigating
minor cedilla-related errors. These results highlight
the potential of the proposed pipeline to enhance

SENĆOTEN language documentation, offering a
valuable tool for ongoing language revitalization
efforts. Future work will focus on more linguisti-
cally oriented techniques, for example, modeling
stress-driven metathesis in SENĆOTEN.
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Appendix A Further Ablation Studies

To get an in-depth analysis of our proposed ASR-
driven documentation pipeline (Figure 1), two sets
of ablation studies are further conducted: 1) replac-
ing the end-to-end speech foundation model with
a conventional hybrid TDNN ASR system, and 2)
Reducing the training data to as little as 10 mins to
simulate ultra-low resource settings.
Hybrid TDNN Systems: The hybrid TDNN
system is constructed following the Kaldi Chain
recipe8 but with a more compact architecture fea-
turing 7 context-splicing layers with time strides of
{1, 1, 0, 3, 3, 6}. I-Vectors (Saon et al., 2013) are
incorporated while speed perturbation is omitted.
The text is transcribed into International Phonetic
Alphabet (IPA) representations using the g2p li-
brary (Pine et al., 2022a).

Table 5 reveals the following trends: 1) Using a
larger language model (LM) leads to noticeable per-
formance degradation when the additional words
in the LM lack corresponding audio in the train-
ing set (Sys. 2 vs. Sys. 1). 2) Using the small
4-gram, expanding the training set’s word coverage
with TTS-synthesized data leads to marginal perfor-
mance improvement (Sys. 3 vs. Sys. 1). However,
a substantial gain is achieved when the text used
for TTS is also included in LM training (Sys. 4 vs.
Sys. 3). 3) The top-performing SFMs (Sys. 17-
18 in Table 3) largely outperforms the best hybrid
TDNN system (Sys. 4 in Table 5 across all metrics,
showing the effectiveness of using SFMs in the
proposed ASR-driven documentation pipeline.

Table 5: Performance of hybrid TDNN system. “Data
Aug.” refers to TTS-based data augmentation. “# Hrs”
denotes the duration of the training set.

Sys. Data
Aug. # Hrs LM CER% (↓) WER% (↓)

seen unseen all

1
✗ 1.7

small-4g 19.68 18.93 100.00 46.92

2 large-4g 19.59 20.46 100.00 49.34

3
✓ 13.3

small-4g 19.72 16.67 100.00 46.23

4 large-4g 9.65 16.62 58.92 36.63

Ultra-Low Resource Scenarios: We simulate
ultra-low-resource conditions by utilizing just 10
minutes of parallel audio and text data to perform
cross-lingual transfer learning with SFMs, exclud-
ing the external LM, and assuming this limited
training data is the only available resource. As

8https://github.com/kaldi-asr/kaldi/tree/mast
er/egs/librispeech/s5

shown in Table 6, Whisper (Sys. 5-8) is more sen-
sitive to the amount of data available for transfer
learning compared to Wav2Vec2 (Sys. 1-4). This
may be attributed to differences in their architec-
tures, with Wav2Vec2 being encoder-based, while
Whisper follows an encoder-decoder structure.

Table 6: Performance of cross-lingual transfer learning
on SFMs in ultra-low resource scenarios with as little
as 10 min training data. No LM fusion is incorporated.

Sys. Model Train
Data CER% (↓) WER% (↓)

seen unseen all

1

Wav2Vec2

all 6.32 14.87 55.04 27.81
2 1h 7.54 20.15 54.99 32.92
3 30min 8.78 23.79 59.77 37.74
4 10min 12.11 34.42 67.94 50.13

5

Whisper

all 7.11 14.60 58.01 27.66
6 1h 9.13 17.36 59.94 31.17
7 30min 10.95 26.53 69.22 41.17
8 10min 21.28 43.34 82.58 63.00

https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech/s5
https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech/s5

