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Abstract

This paper explores finetuning Whisper for tran-
scribing audio from linguistic elicitation of Tira,
a Heiban language of Sudan. Audio originates
from linguistic fieldwork and is bilingual in En-
glish and Tira. We finetune Whisper large-v3
using hand-labeled Tira audio and evaluate the
resulting model on bilingual audio. We show
that Whisper exhibits catastrophic forgetting of
English after only a small amount of training,
but that including automatically annotated En-
glish spans of audio in the training data dramati-
cally reduces catastrophic forgetting of English
while largely preserving ASR performance on
monolingual Tira audio. This work is relevant
to the study of automatic speech recognition
for under-resourced languages and for contexts
of bilingualism in a high and low-resourced
language.

1 Introduction

Automatic speech recognition (ASR) tools convert
speech into text, enabling rapid transcription or cap-
tioning of audio. Recent ASR models have reached
or exceeded human performance at transcription
on high-resource languages such as English (Rad-
ford et al., 2022), however performance lags in
under-resourced languages and in contexts of code-
switching (where multiple languages are used in a
single conversation). While research on expanding
Whisper’s performance on low-resource languages
exists (e.g. Lord and Newman, 2024; Liu et al.,
2024; Williams et al., 2023; Qian et al., 2024), less
work has been done on improving performance
in code-switched scenarios. Code-switching is an
under-addressed topic in ASR and in NLP in gen-
eral, and research there often focuses on a few high-
resource language pairs, such as Spanish-English,
Mandarin-English or Hindi-English (Winata et al.,
2023). Peng et al. (2023) evalute Whisper on
Mandarin-English code-switched audio and Kulka-
rni et al. (2023), on Mandarin-English, Arabic-

English and Hindi-English, for example.
The majority of languages in the world can be

classified as ‘ultra low-resource’ in terms of the
amount of NLP research and tools available for
them (Liu et al., 2022). While ASR research for
such languages exists (e.g. Prud’hommeaux et al.,
2021; Adams et al., 2018; Amith et al., 2021; Mi-
tra et al., 2016), the only work we are aware of
that addresses ASR with an ultra low-resource lan-
guage paired with a high resource language is San
et al. (2022), which uses a corpus of single-speaker
audio in English and Muruwari, though they only
use ASR for English in their corpus. Thus, we
are not aware of any work that directly addresses
code-switched ASR involving at least one ultra
low-resource language.

In this paper, we evaluate Whisper on bilingual
audio in English and Tira, an ultra low-resource
language of the Heiban family spoken in the Nuba
mountains region of Sudan, before and after fine-
tuning on monolingual audio in Tira. Audio comes
from linguistic elicitation on Tira conducted by the
authors and other colleagues in the Tira language
project in collaboration with native Tira speaker
Himidan Hassen. Linguistic elicitation refers to
the process of studying the grammar of a language
by “asking questions” from native speakers (Mosel,
2008). This often involves use of a metalanguage,
a language spoken in common between the linguist
and language speaker, in this case English, to ask
for translations of words, paradigms, or sentences
into the target language, or to elicit morphological
paradigms for a given word in the target language.
Audio from the Tira language project, then, con-
tains speech both in Tira and English. While elic-
itation is different than classical code-switching,
where interlocutors use multiple languages to com-
municate (often within the same utterance), the
challenges faced in ASR for bilingual elicitation
are largely the same as those faced in ASR for code-
switched audio, thus, we use the term “bilingual



audio” to refer to either.
The contributions of this paper are as follows.

We describe our process for using fieldwork data
from linguistic elicitation of Tira, an out-of-domain
language for Whisper, to create an ASR dataset.
We then finetune Whisper on this dataset, and eval-
uate on bilingual audio in Tira and English. We
also compare this with fine-tuning Whisper on Tira
and English simultaneously by using existing hand-
labeled annotations for Tira and automatically gen-
erated labels for English.

2 Dataset

We first created a Tira audio corpus using exist-
ing fieldwork recordings. Tira is a tonal language,
meaning that pitch can distinguish words and mor-
phemes. Tone has historically been difficult for
ASR, as it is realized suprasegmentally, that is, si-
multaneous with the production of phonological
segments such as consonants and vowels (Adams
et al., 2018; Mortensen et al., 2016).

Audio labels for Tira come from pre-existing
annotations recorded in ELAN (Sloetjes and Wit-
tenburg, 2008), a software for annotation of mul-
timedia recordings. The annotations relevant to
this work are narrow IPA transcription and free
translation into English. IPA transcriptions along
with timestamps were extracted using the Python
pympi-ling package1. A total of 28k annotated
utterances were found from across 202 elicitation
session recordings, totalling to 16 hours of audio.
As these annotations were made to be used as ref-
erence for the purposes of linguistic documenta-
tion, certain noise is present in the labels relative to
ASR training data. For example, 2123 records that
did not have tone marked were excluded from the
dataset. Sometimes Himidan’s metacommentary in
English is included alongside a Tira utterance in a
single annotated label. We used the pyenchant2

library to look for any sentences containing English
words in the transcription and discarded these sen-
tences from the monolingual Tira dataset. Some-
times, Himidan hums or whistles a Tira sentence
for purposes of hearing the tones. Many records
were explicitly labeled as such either in the tran-
scription or translation tier, i.e. [k@̀v@̀lÈDÉŃı únÈRÈ]
“Whistling: I pulled him here yesterday.”, but some
whistled or hummed speech is included with no
overt indication. To account for this, we used PyAn-

1https://pypi.org/project/pympi-ling/
2https://pypi.org/project/pyenchant/

note voice activity detection3 (VAD) (Bredin and
Laurent, 2021; Bredin, 2017) to determine the per-
centage of total duration for each record that was
detected as speech. We found that the majority of
records contained ≥ 60% speech, so we excluded
all records beneath this threshold, 825 records in
total. Manual inspection showed that records be-
neath the 60% threshold were often completely
silent, contained humming, whistling, excessive
noise, or static.

Another metric we use for assessing audio qual-
ity is cosine similarity of text and audio embed-
dings using CLAP-IPA (Zhu et al., 2024). CLAP-
IPA consists of an audio encoder, which takes audio
input in any language and returns an acoustic em-
bedding s, and a phoneme encoder, which takes a
sequence of IPA characters as input and returns a
phoneme embedding p such that the speech embed-
ding for a given word should have a small cosine
distance to the phone embedding for its respective
IPA sequence. CLAP-IPA was intended for key-
word spotting (the task of identifying a given word,
or in this case phoneme sequence, in a stream of
speech) and forced alignment (the task of mapping
each unit in a given word or phoneme sequence
to its timestamps in the audio). However, we
adopt it here as a metric for summarizing transcrip-
tion noise with the assumption that audio which is
clearer and is free of noise, cross-talk or other arte-
facts will have a high cosine similarity to its respec-
tive transcription. We calculated the cosine simi-
larity of the embedding for each audio record with
the phoneme embedding for its respective transcrip-
tion. We found that most records in the dataset were
above or equal to the threshold sim(s,p) = 0.6,
so we excluded any record whose cosine similarity
fell beneath this value, 2156 records in total. Man-
ual inspection of excluded records indicated that
they generally contained significant noise or echo,
or included commentary in English run along with
the Tira utterance where only the Tira utterance
had been transcribed in the label.

Annotations were made in a narrow phonetic
transcription rather than in an established orthogra-
phy, which can introduce variation as transcribers
are required to make subjective decisions of how
to represent phonetic variation (cf. Michaud et al.
2018). We compensated for this by normalizing
the set of IPA symbols used in the dataset. For

3https://huggingface.co/pyannote/
voice-activity-detection

https://pypi.org/project/pympi-ling/
https://pypi.org/project/pyenchant/
https://huggingface.co/pyannote/voice-activity-detection
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example, the phoneme /é/ might be transcribed [é,
J, dZ, dý, dü]. Each of these symbols were replaced
with [é], and similarly for other phonemes. We
also used NFKD normalization from the Python
unicodedata4 package.

Data splits should be chosen so as to minimize
overlap between partitions. For fieldwork audio
datasets, splits may be decided on speaker iden-
tity or grouped by narrative. For the Tira dataset,
only one speaker is present, and different record-
ings may have significant overlap in their content.
For example, across several elicitation sessions fo-
cusing on syntactic structure utterances may be-
gin with [ùRnÒ k@̀lÈǸıt”́O àpŔı. . . ] ‘grandfather knows
that the boy. . . ’. To maximize the difference across
data partitions, we calculated the phone embed-
ding for each transcription using CLAP-IPA and
sampled records so as to maximize the cosine dis-
tance of embeddings between the train, validation
and test splits. Statistics for the size of this and
other datasets are given in Table 1. We refer to
this dataset as the “hand-labeled monolingual” or
“hand-labeled” dataset.

To evaluate the model’s generalization to bilin-
gual audio, we hand annotated labels from two elic-
itation recordings containing both Tira and English
speech. We picked one recording that supplied Tira
labels used for training (the “in-domain” bilingual
set) and one recording that was not used in train-
ing (the “out-of-domain” bilingual set). Note that
English audio for both recordings will be unseen
for the model. Each label was taken from up to 30
seconds of speech, always segmented to end at the
end of a speech turn.

We also created bilingual labels through data
augmentation. For bilingual label creation, we used
PyAnnote VAD to detect regions of speech from
the longform elicitation recordings that were not
included in the hand-labeled dataset. Since not all
Tira utterances from the elicitation recordings were
hand-labeled, several of these detected utterances
contain speech in Tira. To distinguish between
Tira and English audio, we trained a logistic re-
gression model on hand-labeled Tira and English
spans from the elicitation corpus to perform lan-
guage identification (LID), using embeddings from
the SpeechBrain ECAPA TDNN for language iden-
tification (Ravanelli et al., 2021), similar to the
protocol outlined in (San et al., 2022). We trained

4https://docs.python.org/3/library/
unicodedata.html

LID on a dataset of 3637 Tira and 3637 English
utterances, and it achieved 90% classification ac-
curacy on a test dataset of 1818 Tira and 1818
English utterances. Tira utterances were all taken
from Himidan, whereas English utterances were
sampled from both Himidan and other speakers.
Once utterances were segmented and labeled for
language identity, English utterances were tran-
scribed using Whisper large-v2 (which we found
to perform better than Whisper large-v3 on En-
glish) and Tira utterances were transcribed using
the fine-tune of Whisper large-v3 on monolingual
Tira audio, as described in the following section.
We then used these annotations to make a bilingual
ASR dataset. For each hand-transcribed label from
the monolingual dataset, we concatenated adjacent
transcribed speech regions in the same elicitation
recording to create a new label of up to 30 seconds.
We excluded utterance transcriptions with exces-
sive repetition (e.g. “Yeah. Yeah. Yeah. Yeah. . . ”),
a known failure mode of Whisper. For all train-
ing labels from the in-domain elicitation recording
used for bilingual evaluation, we only included
the hand-labeled Tira utterances to ensure both the
model trained on the monolingual dataset and the
bilingual dataset have seen the same set of data
from the in-domain elicitation recording during
training. We refer to this dataset as the “augmented
bilingual” or “augmented” dataset.

Textual analysis of the labels revealed 14,017
words (5.3% of the whole dataset) were not iden-
tified as English (using pyenchant as above) or
Tira (defined as any word containing only Tira
IPA characters). Manual inspection of such words
suggests that several are Tira words that were
missed by the VAD+SLI pipeline and thus were
transcribed by Whisper large-v2 rather than the
checkpoint trained on Tira, e.g. “kukungapitito”
instead of [kúkù Ngáp̀ıt”̀ıt”́O] ‘Kuku hunted (in some-
one’s place)’, or “ngiyol” instead of [ǸıjÓl] ‘eat’.

3 Experiment

We finetuned Whisper large-v3 using a learning
rate of 3e− 4 with 500 warmup steps. We used the
AdamW optimizer (Loshchilov and Hutter, 2019)
with betas of 0.9 and 0.99, and trained with a batch
size of 4 with 2 gradient accumulation steps for an
effective batch size of 8. All models were trained
with an Nvidia GeForce RTX 4090 with 24 giga-
bytes of VRAM. Due to GPU VRAM limitations,
we were not able to finetune all of the weights

https://docs.python.org/3/library/unicodedata.html
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Dataset Split N records Length (total) Avg record len %Tira %Unk

Monolingual train 16,384 9h29m 2.08s 100
Monolingual dev 2,048 1h8m 1.99s 100
Bilingual train 16,384 51h48m 11.38s 21.0 5.3
Bilingual in-domain test 88 39m 26.25s 8.60
Bilingual out-domain test 65 29m 26.31s 2.86

Table 1: Size of datasets used for training, validation (dev) and testing.

of Whisper large-v3, and had to rely on parame-
ter efficient finetuning (Han et al., 2024; Houlsby
et al., 2019). We used LoRA (Hu et al., 2021)
applied to the query and value weights of the at-
tention modules for parameter-efficient finetuning,
following the example given in PEFT (Mangrulkar
et al., 2022)5, similar to Liu and Qu (2024). Mod-
els are evaluated in terms of word error rate (WER)
and character error rate (CER). As Tira is out-of-
domain for Whisper, labels were prefixed with a
language ID for Yoruba (another tonal African lan-
guage) for purposes of knowledge transfer (Qian
et al., 2024), though we leave more thorough inves-
tigation of language ID choice for later research.
We compared finetuning Whisper large-v3 using
a LoRA, Whisper medium using a LoRA, and a
full finetune of Whisper medium, by training each
model size on the Tira dataset for 4 epochs. We
found the best results came from Whisper large-v3
with LoRA, so we use this configuration for our
experiment. We finetune one model for 10 epochs
on each dataset respectively (hand-labeled mono-
lingual and augmented bilingual).

4 Results

We evaluate Whisper large-v3 out of the box and
compare it to a finetune using LoRA at each epoch
of training using both monolingual hand-labeled
data and augmented bilingual data, evaluating on
both monolingual Tira data and bilingual Tira-
English data. WER and CER on each evaluation
set across training are given in Figure 1, where
“epoch 0” corresponds to Whisper large-v3 with no
finetuning.

In general, the model trained on augmented bilin-
gual data outperforms the monolingual model when
evaluated on bilingual data. When evaluated on
monolingual data, both models perform similarly,
with the monolingual model slightly outperforming
the bilingual model.

For monolingual data, we see a precipitous drop
5https://github.com/huggingface/peft/tree/

main/examples/int8_training

Dataset Model WER CER Epoch

Tira monoling Tira only 0.48 0.11 8
Augmented 0.53 0.13 10

In-domain biling Tira only 0.83 0.57 2
Augmented 0.55 0.34 4

Out-domain biling Tira only 0.57 0.83 0
Augmented 0.49 0.34 10

Table 2: Best WER and CER on validation sets

in CER (0.86 to 0.15 for the monolingual model,
0.20 for the bilingual model) and WER (1.70 to
0.59 for the monolingual model, 0.72 for the bilin-
gual model) in epoch 1, with much smaller im-
provements each subsequent epoch. For bilingual
data, we see conflicting results with the model
trained on monolingual Tira data. On the out-of-
domain bilingual dataset, the monolingual model
underperforms Whisper large-v3 at all epochs of
training. For the in-domain bilingual dataset, there
is a slight reduction in WER and CER by epoch 2,
likely owing to the model’s ability to transcribe Tira
it has recognized in training, followed by a decline
in performance in all subsequent epochs. Unlike
the monolingual model, the augmented bilingual
model’s performance improves on both monolin-
gual and bilingual datasets with training, achiev-
ing the best WER and CER at epoch 4 for the
in-domain dataset and 10 for the out-of-domain
dataset.

In Figure 2, we break down CER and WER by
language. This plot confirms the trend suggested
in Figure 1, namely that both the monolingual and
augmented bilingual models perform similarly on
Tira, but the augmented bilingual model signifi-
cantly outperforms the monolingual model on En-
glish, likely owing to the inclusion of an English
transcription task in training, even on synthetic la-
bels.

Manual inspection gives further evidence that the
worsening performance following epoch 2 for the
monolingual model is due to catastrophic forget-
ting of English. For example, the span “on the com-
puter” uttered by Himidan is transcribed correctly

https://github.com/huggingface/peft/tree/main/examples/int8_training
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Figure 1: CER and WER on Tira validation sets. Epoch = 0 is equivalent to Whisper large-v3 with no finetuning.

in English by Whisper large-v3 and the model fine-
tuned on monolingual hand labels after the first
epoch, but in the second epoch is already tran-
scribed as “aDa kUOEmṕıdO”. This happens even
to linguist’s speech in English, particularly in prox-
imity of Himidan giving a Tira production e.g. the
span “[Himidan] Nóóón [linguist] Yeah I saw in the
Stephen dictionary it was written as Nic@lo” from
the out-of-domain dataset was rendered “NÓóón, jà
ı̀s ı̀ǹ st”̀ıj@̀ǹ d̀ıkS@̀nÈ ı̀wÈs̀ rÈt”̀ıN ı̀c@̀lò” after only one
epoch of training. Manual inspection of the output
of the augmented bilingual model shows that it is
more common for Tira spans to be transcribed in a
non-IPA pseudo-English orthography, even if the
same span is correctly transcribed in the same prox-
imity, e.g. “I’ll pull them... okay La lovela. lál ló
v@́lÈDà nd”Òbà”. This is likely due to the presence
of similar spans in the augmented dataset, owing
to the imperfect nature of the VAD>SLI pipeline,
and could likely be ameliorated by improving the
quality of the augmented dataset.

5 Conclusion

We describe the steps to create an ASR dataset
from linguistic elicitation of an ultra low-resource
language, Tira, including various strategies for data
cleaning. We use the dataset to train Whisper large-
v3, and evaluate on bilingual audio in Tira and
English. We compare training on hand-labeled
monolingual Tira audio with training on an aug-
mented dataset where English (and additional Tira)
audio is included with machine-generated labels.
We show that the model exhibited catastrophic for-
getting of English and overfitting after only one
epoch of training, but this can be minimized by
adding synthetic labels in English.

6 Limitations and future directions

Our training dataset comes from one speaker alone
and is limited in its subject domain. As such the
models produced in this work are overfit to his
speech and to the domain of linguistic elicitation,

Figure 2: Language-specific WER and CER for bilin-
gual datasets.

and would not generalize well to conversational
speech in Tira or to other Tira speakers. However,
our goal is a model suited to transcribing audio
specifically from a context of linguistic fieldwork
or pedagogy. We hope that our method can be
extended to aid documentation and revitalization
efforts on other low resource languages.

Future directions include comparing machine
learning techniques for preventing catastrophic for-
getting to training with artificial bilingual labels to
see which causes the least degradation of English
ASR performance, improving the quality of the
augmented dataset, and reproducing these experi-
ments with other datasets of bilingual audio from
fieldwork corpora.

7 Ethical considerations

Data gathered on Tira were recorded with the con-
sent of the speaker and the permission of UC San
Diego’s IRB (Protocol 805624). Annotations were
produced by the authors and other academic col-
leagues. Data in English come from Himidan as
well as the authors and other linguists present dur-
ing elicitation sessions. No other data were used.
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