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Abstract

The efficacy of detectors for texts generated
by large language models (LLMs) substantially
depends on the availability of large-scale train-
ing data. However, white-box zero-shot detec-
tors, which require no such data, are limited
by the accessibility of the source model of the
LLM-generated text. In this paper, we pro-
pose a simple yet effective black-box zero-shot
detection approach based on the observation
that, from the perspective of LLMs, human-
written texts typically contain more grammati-
cal errors than LLM-generated texts. This ap-
proach involves calculating the Grammar Error
Correction Score (GECSCORE) for the given
text to differentiate between human-written
and LLM-generated text. Experimental re-
sults show that our method outperforms current
state-of-the-art (SOTA) zero-shot and super-
vised methods, achieving an average AUROC
of 98.62% across XSum and Writing Prompts
dataset. Additionally, our approach demon-
strates strong reliability in the wild, exhibit-
ing robust generalization and resistance to para-
phrasing attacks. Data and code are available at:
https://github.com/NLP2CT/GECScore.

1 Introduction

The history of zero-shot methods for detecting
LLM-generated text can be traced back to research
on machine translation (MT) detection. These
studies utilized linguistic features to determine
whether a given text was generated by MT sys-
tems (Corston-Oliver et al., 2001; Arase and Zhou,
2013). Progress in the field has led to the develop-
ment of a suite of zero-shot methods specifically
designed for LLM-generated text detection. These
methods base their calculations on the logits that
are generated by the source model, including ap-
proaches such as Log-Likelihood (Solaiman et al.,
2019), Perplexity (Beresneva, 2016; Vasilatos et al.,
2023), Entropy (Lavergne et al., 2008), Log-Rank
(Gehrmann et al., 2019), and the Log-Likelihood
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Figure 1: Distribution of grammar errors of human-
written texts and LLM-generated texts by GPT-3.5-
turbo, PaLM-2-bison, Claude-3.5-Sonnet, and Llama-3-
70B on XSum and Writing Prompts. GPT-4o (OpenAI,
2024) is employed for grammar errors marking.

Log-Rank Ratio (LRR) (Su et al., 2023). Perturbed-
based zero-shot detection methods, including De-
tectGPT (Mitchell et al., 2023) and Normalized
Log-Rank Perturbation (NPR) (Su et al., 2023),
calculate the Log-Likelihood and Log-Rank curva-
ture on the perturbed texts to distinguish between
the two types of texts. More recently, Bao et al.
(2023) replaced the perturbation step of DetectGPT
with a more efficient sampling step, achieving bet-
ter performance and speed.

However, current zero-shot detectors are not re-
liable enough when dealing with cleverly revised
text, such as paraphrased text (Sadasivan et al.,
2023; Krishna et al., 2023; Wu et al., 2024). They
also struggle to detect text from unknown LLMs

https://github.com/NLP2CT/GECScore
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(Bao et al., 2023). While supervised approaches
based on fine-tuning pre-trained models (PLMs)
demonstrate enhanced performance, they often fail
in out-of-distribution settings (Li et al., 2023) and
are susceptible to attack through targeted training
of an LLM (Nicks et al., 2023). Given these chal-
lenges, we focus on a more challenging but prac-
tical direction. We explore a black-box zero-shot
approach that does not rely on access to the source
model, extensive training datasets, or fine-tuning
PLMs as classifiers.

In this study, we propose a simple but effective
zero-shot detection method that leverages an ex-
ternal grammar error correction model. By com-
puting the GECSCORE for the given text, our ap-
proach distinguishes between human-written and
LLM-generated text. Extensive experimental re-
sults show that our method not only outperforms
current SOTA zero-shot and supervised techniques,
but also shows remarkable reliability in the wild,
including robust generalization capability and re-
sistance to paraphrasing attack.

2 Related Works

2.1 White-box LLM-generated Text Detection

The white-box LLM-generated text detection meth-
ods require access to the source model. Current
white-box approaches typically employ zero-shot
techniques, where specific metrics are derived from
the logits of the LLM output. These metrics are
then compared against a statistically derived thresh-
old, which serves as the criterion for identifying
LLM-generated text. The most commonly used
metric is Log-Likelihood (Solaiman et al., 2019),
which evaluates whether a given text was gener-
ated by an LLM by measuring the average token-
wise log probability of each token. Similarly, Rank
(Gehrmann et al., 2019) calculates the average of
the absolute rank and entropy values for each to-
ken. Log-Rank (Gehrmann et al., 2019) further im-
proves on Rank by applying a logarithmic transfor-
mation to the rank values of each token, achieving
better performance. A notable method is LRR (Su
et al., 2023), which combines Log-Likelihood and
Log-Rank. By taking the ratio of these metrics,
LRR comprehensively incorporates their strengths
for improved performance.

Certain white-box methods perform LLM-
generated text detection by quantifying met-
ric variations following perturbations. Detect-
GPT (Mitchell et al., 2023) distinguishes LLM-

generated text by introducing perturbations to the
original text via a T5 model (Raffel et al., 2020)
and measuring the resultant alterations in the log
probability of the source LLM. This method capi-
talizes on the observation that the average decrease
in Log-Likelihood of perturbed LLM-generated
text consistently exceeds that of perturbed human-
written text. Another similar and concurrent work
by Su et al. (2023) performs the detection task by
measuring Log-Rank. Although perturbed-based
curve statistical methods exhibit superior capabili-
ties compared to conventional zero-shot methods,
the time overhead of perturbation greatly reduces
the usability of these methods. In response to this
limitation, Fast-DetectGPT (Bao et al., 2023) re-
placed the perturbation step of DetectGPT with a
more efficient sampling step to achieve superior
efficacy and efficiency in LLM-generated-text de-
tection performance.

2.2 Black-box LLM-generated Text Detection

Black-box LLM-generated text detection mainly
identifies LLM-generated text by training neural-
based classifiers. Fine-tuning PLM-based classi-
fiers is the most widely used black-box method and
typically requires a large number of human-written
and LLM-generated training samples. Pre-trained
language models, such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and XLNet
(Yang et al., 2019), demonstrate strong semantic
understanding ability and effectively enhance the
performance of NLP tasks (Qiu et al., 2020), es-
pecially text classification. Previous research has
demonstrated that the fine-tuned classifiers based
on RoBERTa are highly effective at detecting LLM-
generated text (Guo et al., 2023; Liu et al., 2023a,b;
Chen et al., 2023). Notably, these fine-tuned classi-
fiers have been shown to outperform other method-
ologies, such as zero-shot approaches and water-
mark technologies, while also demonstrating com-
mendable adversarial robustness.

Recently, Zhu et al. (2023) demonstrated a novel
black-box zero-shot method for detecting LLM-
generated text. This method employs BARTScore
(Yuan et al., 2021a), a metric for calculating the
semantic similarity between ChatGPT-revised text
and the original text. The foundational hypothesis
is that ChatGPT tends to introduce fewer modifi-
cations to LLM-generated text compared to text
written by humans.
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Figure 2: GECSCORE Framework Overview. First, a grammar correction model generates a grammatically corrected
version x̃i of the input text xi. Next, the similarity score si between x̃i and xi is calculated using a similarity metric
Sim. Finally, if si meets or exceeds the threshold ϵ, the text is more likely to be generated by LLM.

3 Methodology: GECSCORE

3.1 Hypothesis and Motivation

The proposed GECSCORE is based on the hypoth-
esis that, from the perspective of LLMs, human-
written texts typically contain more grammatical
errors than LLM-generated texts. In other words,
when an LLM is used to perform grammatical er-
ror correction on an initial text xi, the similarity
between the corrected text x̃i and the original text
xi should be higher if the text was generated by an
LLM, compared to if it was written by a human.
This hypothesis relies on two specific features: Dif-
ferences in Grammatical Errors and Differences
in LLM Correction Preferences.

Human-written texts inherently contain more
grammatical errors. The intrinsic complexity
of the human brain, combined with psychological
and environmental variables, naturally results in a
higher error rate in human-written texts compared
to LLM-generated outputs. The Working Memory
Theory (Baddeley, 1992; Olive, 2004) provides an
initial explanation for this phenomenon: writing is
a complex, high-level cognitive task that relies on
working memory to organize ideas, construct sen-
tences, and retrieve linguistic rules. The limitations
of working memory often lead to writing errors.

Research in neuroscience and cognitive psychol-
ogy, particularly on Word Priming (Meyer and
Schvaneveldt, 1971; Neely, 1977) and Memory
Formation (Hebb, 2005), has uncovered the cog-
nitive mechanisms behind linguistic errors. Such
mistakes often stem from the brain’s tendency to
prioritize semantic coherence and narrative fluency
over character-level and syntactic accuracy. This
tendency is evident even among skilled writers and
contributes to the difference in error frequency be-

tween human-written and LLM-generated texts.
Moreover, theories like Language Interference
(Odlin, 2003), which points out that multilingual
individuals might confuse different linguistic sys-
tems and increase the chance of errors, Attention
Bias (Fernandes et al., 2019; Limpo et al., 2017),
which suggests that distractions can split a writer’s
focus and raise the possibility of mistakes, and Cog-
nitive Load (Sweller, 1988; Kellogg, 1987), which
emphasizes the intense mental effort required for
writing tasks (e.g. organizing information) can lead
to more errors, all offer further empirical support
for the observed differential in error propensity be-
tween human-written and LLM-generated texts.

LLMs tend to perform grammatical error cor-
rection on human-written texts. LLMs are gen-
erally more familiar with the statistical patterns of
texts generated by themselves or other LLMs (Zhu
et al., 2023). As a result, they are less sensitive to
grammatical errors in such texts and less inclined
to correct them, leading to fewer detected and cor-
rected errors. In contrast, LLMs exhibit a stronger
tendency to correct human-written texts due to the
differences in language style and statistical patterns
between human-written texts and the rules learned
by LLMs during training. Specifically, informal
grammar, stylistic variations, or specific linguistic
habits in human-written texts are more likely to be
judged as “grammatical errors” by LLMs. When
correcting human-written texts, LLMs typically
adhere more strictly to their internal language mod-
eling norms to identify and address grammatical
issues. Consequently, LLMs’ correction prefer-
ences may amplify the grammatical error differ-
ences between LLM-generated texts and human-
written texts in grammar correction tasks.
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3.2 Hypothesis Validation
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Figure 3: Distribution of types of editing operations
required for grammar error corrections on human-
written texts and LLM-generated texts by GPT-3.5-
turbo, PaLM-2-bison, Claude-3.5-Sonnet, and Llama-3-
70B on XSum and Writing Prompts.

We validate the proposed hypothesis. Specif-
ically, we use GPT-4o (OpenAI, 2024) to anno-
tate grammatical errors in human-written texts
and LLM-generated texts produced by GPT-3.5-
turbo (OpenAI, 2022), PaLM-2-bison (Ghahra-
mani, 2023), Claude-3.5-Sonnet (Anthropic, 2024),
and Llama-3-70B (MetaAI, 2024) on the XSum
and Writing Prompts datasets. We then compile
statistics on the total number of grammatical er-
rors in each text, as well as the number of editing
operations of addition, deletion, and substitution
required for grammatical error correction. Detailed
experimental settings and parameters are provided
in Appendix A.2. Our findings, illustrated in Fig-
ure 1, support the hypothesis across diverse LLMs.
Specifically, the number of grammar correction ed-
its per human-written text typically ranges from
10 to 30, while for LLM-generated samples, it
ranges from 0 to 10 and is often close to 0. This
phenomenon is consistent across both formal and
informal writing, although human-written texts in
formal writing (XSum) contain relatively few gram-
matical errors. Furthermore, Figure 3 provides a
detailed comparison of the types of editing opera-
tions required for both text types. We analyze and
attribute these differences as follows:

Higher initial quality of LLM-generated texts.
LLM-generated texts typically require fewer addi-
tions and deletions, indicating higher initial quality.
This is due to extensive training on diverse datasets,
which helps LLMs produce grammatically correct
and well-structured sentences from the start.

Human-written texts and revision needs.
Human-written texts often involve more additions

and deletions. This indicates that human-written
drafts may contain more redundant information or
omissions, necessitating revisions for quality im-
provement. Since humans are more prone to over-
sights or mistakes, especially during rapid drafting.

Consistency in vocabulary choice of LLMs.
Since LLMs are trained on large-scale data and
operate probabilistically, they consistently select
vocabulary appropriate for the context, typically
requiring fewer word substitutions. In contrast,
human-written texts, influenced by personal habits
and variations in language usage, often require
more substitutions to optimize vocabulary usages.

3.3 Detection Using GECSCORE

Algorithm 1 GECSCORE-based Detection
Require: Sample xi, preliminary sample set X ,

grammar error correction model g, similarity
function Sim.

1: Expand sample set X ← X ∪ {xi}. ▷ Step 1
2: Prepare corrected sample set X̃ ← ∅. ▷ Step 2
3: for each xj in X do
4: x̃j ← g(xj)
5: X̃ ← X̃ ∪ {x̃j}
6: end
7: Initialize similarity scores set S ← ∅. ▷ Step 3

for each pair (xj , x̃j) in ⟨X, X̃⟩ do
8: sj ← Sim(xj , x̃j)
9: S ← S ∪ {sj}

10: end
11: Calculate and adjust threshold ϵ
12: ϵ = argmaxϵ′ (TPR(ϵ′) + (1− FPR(ϵ′)))
13: Compare with threshold ϵ. ▷ Step 5
14: if si > ϵ then
15: return True
16: else
17: return False

In response to our hypothesis, we formulate our
approach step by step, as shown in Algorithm 1.

Step 1 Similar to previous zero-shot methods,
GECSCORE requires a preliminary sample set
X = {x1, x2, . . . , xi−1} to help calculate the
threshold. Given the sample xi to be detected,
the entire sample set is expanded to X =
{x1, x2, . . . , xi−1, xi}, where i represents the total
number of samples used to construct the threshold.

Step 2 We first employ a grammar error correc-
tion function g, typically instantiated through a
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GEC model with an autoregressive or seq2seq ar-
chitecture, to generate grammatically corrected re-
sults X̃ = {x̃1, x̃2, . . . , ˜xi−1, x̃i}.

Step 3 We then use a similarity scoring met-
ric Sim to calculate the similarity scores S =
{s1, s2, ..., si−1, si} between the grammatical cor-
rected texts X̃ and the original texts X . In our
study, we use ROUGE2 (Sellam et al., 2020), which
achieves the best average performance (see Ta-
ble 2), as an example for scoring, and discuss other
similarity scoring metrics in Appendix D.2.

Step 4 Based on the calculation of the similar-
ity scores S for the entire sample set, determine
the optimal threshold ϵ for detection. This thresh-
old should achieve the best balance between the
true positive rate (TPR) and the false positive rate
(FPR). The more diverse the sample types in the
preliminary sample set, the better and more stable
the performance of GECSCORE.

Step 5 Finally, when comparing the input sample
xi with the threshold ϵ, if the score of xi is greater
than ϵ, the sample xi is more likely generated by
LLMs; otherwise, it is probably written by humans.

4 Experiment

4.1 Settings
Task Setup We define our task as black-box zero-
shot LLM-generated text detection, combining two
critical aspects: zero-shot and black-box detection.
Zero-shot refers to detecting LLM-generated text
without training on paired human-written and LLM-
generated samples, instead relying on inherent fea-
ture differences that objectively exist between the
two types of text. This allows thresholds derived
from one dataset or model (e.g., GPT) to generalize
effectively to others (e.g., Claude) with minimal
performance degradation. Black-box detection re-
flects real-world scenarios where the source model
is unknown. In such cases, traditional zero-shot
methods may rely on a surrogate model to perform
detection. In our study, we adopt this zero-shot
approach under the black-box setting and, follow-
ing Bao et al. (2023), use GPT-Neo-2.7B1 as the
surrogate model in our experiments.

Datasets Following the methodology of Detect-
GPT (Mitchell et al., 2023), we curated a dataset
of human-written texts from various daily domains

1https://huggingface.co/EleutherAI/gpt-neo-2.
7B

and typical LLM use cases, excluding SQuAD (Ra-
jpurkar et al., 2016) for the brevity of its text sam-
ples. Specifically, we selected XSum (Narayan
et al., 2018) to represent news writing, which typ-
ically exhibits a concise and formal writing style,
and Writing Prompts (Fan et al., 2018) to rep-
resent creative writing, which typically features
less structured narratives and a less formal style.
We extracted a balanced corpus comprising 500
samples from each domain, maintaining a mini-
mum threshold of 300 words per sample to en-
sure reliable detection and substantial content for
analysis. We use advanced generative models in-
cluding GPT-3.5- turbo (OpenAI, 2022), PaLM-
2-bison (Ghahramani, 2023), GPT-4o (OpenAI,
2024), Claude-3.5-Sonnet (Anthropic, 2024), and
Llama-3-70B (MetaAI, 2024) to verify the effec-
tiveness of our proposed method. Comprehensive
details of our dataset are listed in Appendix A.3.

Baselines We evaluated our method against a
comprehensive suite of zero-shot detectors, includ-
ing Log-Likelihood (Solaiman et al., 2019), Rank
(Gehrmann et al., 2019), Log-Rank (Gehrmann
et al., 2019), LRR (Su et al., 2023), NPR (Su
et al., 2023), DetectGPT (Mitchell et al., 2023),
Fast-DetectGPT (Bao et al., 2023) and Revise-
Detect (Zhu et al., 2023). For supervised detectors,
we utilized the OpenAI suite2 of detectors, which
were fine-tuned on PLMs of RoBERTa-base and
RoBERTa-large architecture (Liu et al., 2019).

GEC Model The models we employed for per-
forming grammar error correction include:

• Generative LLMs: We use GPT-4o-
Mini (OpenAI, 2024) as the main GEC model
for the experiment, which is a lightweight and
cost-efficient model that ensures effective de-
tection tasks at low cost and low latency. This
model exhibits enhanced natural language un-
derstanding and reasoning capabilities, fulfills
the requirements for grammatical and stylis-
tic modifications, and supports multiple lan-
guages (Fang et al., 2023).

• Seq2seq LLMs: We also use COEDIT-L (Ra-
heja et al., 2023) as a low-cost alternative GEC
model for our method, providing an approach
without API overhead and faster than genera-
tive LLMs. The model is built on the Google’s

2https://github.com/openai/
gpt-2-output-dataset/tree/master/detector

https://huggingface.co/EleutherAI/gpt-neo-2.7B
https://huggingface.co/EleutherAI/gpt-neo-2.7B
https://github.com/openai/gpt-2-output-dataset/tree/master/detector
https://github.com/openai/gpt-2-output-dataset/tree/master/detector
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Dataset↓ Method↓
GPT-3.5 PaLM2 GPT-4o Claude-3.5 Llama-3 Avg.

AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

XSum

Log-Likelihood 91.39 86.99 93.05 88.73 78.93 70.10 93.34 89.45 97.25 97.31 90.79 86.92
Rank 76.49 67.24 72.95 64.81 61.00 51.38 75.96 67.25 86.35 76.95 74.55 65.13
Log-Rank 90.34 85.35 92.00 87.61 76.88 70.28 93.21 89.55 97.57 97.62 90.00 86.48
LRR 81.04 72.82 80.90 76.45 66.88 56.54 91.11 84.98 99.55 97.97 83.90 77.35
NPR 69.07 55.98 55.38 42.30 56.24 43.57 69.03 59.67 74.60 67.41 64.86 53.39
DetectGPT 40.17 02.34 43.08 18.00 56.75 47.71 62.00 59.81 60.41 52.31 52.48 36.43
Fast-DetectGPT 75.85 73.64 80.81 76.40 76.51 70.30 91.91 87.70 97.56 96.34 84.53 80.48
Revise-Detect 94.98 91.47 79.78 74.91 76.81 73.63 81.24 79.06 93.04 88.77 85.17 81.97
RoB-base 61.86 53.41 68.12 50.81 56.87 59.81 65.93 57.00 96.97 93.94 69.95 63.79
RoB-large 57.21 43.63 65.01 50.99 40.88 00.00 47.40 16.89 92.64 87.67 60.63 39.04
GECSCORE (GPT-4o-Mini) 99.25 95.69 94.31 92.29 98.97 95.04 99.14 96.55 98.38 94.29 98.01 94.77
GECSCORE (COEDIT-L) 98.55 95.00 92.30 86.42 89.87 83.35 97.37 92.30 95.79 89.15 94.78 89.24

WP

Log-Likelihood 97.18 93.62 97.01 92.15 94.96 89.56 97.58 93.65 99.55 98.40 97.26 93.48
Rank 94.04 86.65 91.01 83.28 86.74 79.44 89.62 82.23 94.87 88.21 91.26 83.96
Log-Rank 96.51 91.61 96.35 90.03 94.17 88.06 97.23 92.40 99.71 98.60 96.79 92.14
LRR 89.68 81.80 90.27 82.27 88.21 80.07 93.13 85.04 99.52 97.60 92.16 85.36
NPR 89.82 62.33 87.74 73.89 84.36 75.92 87.32 76.35 91.31 84.34 88.11 74.97
DetectGPT 83.35 62.06 78.01 70.11 89.47 87.29 85.55 83.95 92.48 87.96 85.77 78.67
Fast-DetectGPT 99.58 97.57 99.42 97.58 99.32 96.75 97.58 94.57 99.85 99.60 99.15 97.21
Revise-Detect 98.97 96.46 92.69 90.65 81.23 75.65 58.60 48.48 86.25 82.36 83.55 78.32
RoB-base 59.08 45.55 70.30 57.32 60.06 51.44 57.29 46.41 96.08 91.95 68.56 58.93
RoB-large 41.54 67.68 65.67 62.94 30.91 66.75 30.41 66.62 77.64 67.43 49.23 66.68
GECSCORE (GPT-4o-Mini) 99.23 98.07 99.44 98.07 99.18 97.46 98.39 95.53 99.49 97.37 99.23 97.30
GECSCORE (COEDIT-L) 98.92 98.08 97.28 97.10 96.02 90.66 98.98 93.27 99.07 96.52 98.05 95.53

Table 1: Baseline Comparisons across Datasets and Generative Models. Evaluates 10 baselines using AUROC and
F1-Score (%) on 2 datasets and 5 LLMs with 500 LLM-generated and 500 human-written samples per dataset.

Flan-T5-Large (Chung et al., 2022) architec-
ture, achieving SOTA results in various text
editing benchmarks.

Metrics We used the AUROC and F1-Score for
evaluation. Each experiment included an equal
number of samples from both LLM-generated and
human-written texts to ensure balance.

4.2 Main Results

The experimental results in Table 1 demonstrate
that GECSCORE consistently achieves the high-
est average AUROC on the XSum and Writing
Prompts datasets. Notably, when GPT-4o-Mini
is used as the GEC model, it exhibits remarkable
capability in detecting LLM-generated text. Specif-
ically, GECSCORE (GPT-4o-Mini) delivers stable
and outstanding performance across all datasets,
with an average AUROC of 98.6%. Compared to
the SOTA detector Fast-DetectGPT, GECSCORE

achieves an average improvement of 6.78% in AU-
ROC and 7.19% in F1-Score. Additionally, GEC-
SCORE (GPT-4o-Mini) surpasses all supervised
detectors, achieving a 29.36% improvement in AU-
ROC and a 34.67% increase in F1-Score. Further-
more, although the XSum dataset poses greater
challenges compared to Writing Prompts, GEC-

SCORE (GPT-4o-Mini) achieves the best AUROC
across most LLM settings, ranking second only
to LRR in the case of Llama-3. This highlights
its superior detection capability for formal writing
texts. On the Writing Prompts dataset, while Fast-
DetectGPT proves to be a strong competitor, GEC-
SCORE (GPT-4o-Mini) demonstrates comparable
performance, further showcasing its robustness.

4.3 Feature Contributions

Our approach leverages two key features: Differ-
ences in Grammatical Errors and Differences
in LLM Correction Preferences. Our baseline
design validates the relevance of these two fea-
tures. Overall, the inherent differences in gram-
matical errors between the two types of text serve
as the primary factor for distinguishing between
them. The experimental results of GECSCORE

(COEDIT-L) provide strong evidence for this con-
clusion (see Table 1). Unlike GPT-4o, COEDIT-L
is a seq2seq model specifically fine-tuned for the
GEC task. However, it lacks the correction prefer-
ences exhibited by LLMs. The results show that
GECSCORE (COEDIT-L) achieves an AUROC of
98.05% on Writing Prompts and 94.78% on XSum,
outperforming the SOTA method Fast-DetectGPT.

The contribution of differences in LLM correc-
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tion preferences was less significant than that of
differences in grammatical errors. Specifically, we
compared the results of our method with Revise-
Detect (Zhu et al., 2023), a method that relies
solely on LLM correction preference differences
(i.e., the consistency of LLM outputs before and
after revision). As shown in Table 1, the AU-
ROC of Revise-Detect is approximately 15% lower
than that of GECSCORE (COEDIT-L). Nonethe-
less, differences in LLM correction preferences
enhance the performance and robustness of our ap-
proach. For example, on the XSum dataset, the
average AUROC of GECSCORE (GPT-4o-Mini)
is 98.01%, while the average AUROC of GEC-
SCORE (COEDIT-L) is 94.78%. This additional
performance improvement of GPT-4o-Mini can be
attributed to the correction preferences of the LLM.

In summary, we found that explicitly guiding the
LLM to perform specific feature-related tasks (e.g.,
grammatical error correction) can more effectively
extract the feature differences between two cate-
gories of text. This approach can improve detection
performance compared to a simple rewriting task.

4.4 Ablation Study

We investigated the factors influencing the effi-
cacy of GECSCORE, focusing on the scoring met-
ric, GEC model, and text size. The experimental
settings are described in Appendix D. Figure 4
presents the results of our empirical analysis. Scor-
ing metrics are identified as a critical factor affect-
ing the effectiveness of GECSCORE.

4.4.1 Impart of Scoring Metric
Metrics that integrate semantic understanding and
analyze language units at a granular level often
yield better results in our approach. Specifically,
ROUGE2 (Lin, 2004) achieves optimal perfor-
mance (see Table 2) when GPT-4o-Mini is used
as the GEC model, with an average AUROC of
97.89%. It also ranks second when COEDIT-L
is employed. Additionally, metrics that consider
longer sequences and semantic changes, such as
ROUGEL (Lin, 2004), BARTScore (Yuan et al.,
2021b), and METEOR (Banerjee and Lavie, 2005),
exhibit strong performance. However, not all
semantic-based metrics perform equally well. The
effectiveness of such metrics heavily depends on
task-specific fine-tuning. While neural-based met-
rics like BERTScore (Zhang et al., 2020a) and
BLEURT (Sellam et al., 2020) show potential, their
poor task-specific adaptation makes them less sen-

sitive to subtle linguistic changes. This limitation
leads to weaker performance, with BERTScore
achieving only 85.71% average AUROC and show-
ing inconsistent stability across text sizes.

Metrics that evaluate overall structure and
lexical accuracy also perform strongly. These
metrics, such as TER (Snover et al., 2006),
chrF (Popovic, 2015), and BLEU (Papineni et al.,
2002), achieve average performances of approx-
imately 93.54%, 94.48%, and 94.96%, respec-
tively, across both GECSCORE employing GPT-
4o-Mini and COEDIT-L. Their detection abilities
improve with text size, maintaining consistent per-
formance. In contrast, edit-based metrics like Edit
Distance (Navarro, 2001) focus more on surface-
level changes, leading to greater variability in per-
formance.

4.4.2 Impart of GEC Model
Generative LLMs (GPT-4o-Mini) demonstrate
stronger average performance as the GEC model
for our method. While both GPT-4o-Mini and
COEDIT-L generally perform consistently, GPT-
4o-Mini excels on scoring metrics like ROUGE1,
ROUGE2, GLEU, and METEOR. They also show
stronger detection capabilities on samples with text
sizes ranging from 150 to 300 words. However, for
texts of approximately 100 words, GECSCORE

(GPT-4o-Mini), based on metrics that evaluate
structure and lexical accuracy, such as BLEU and
TER, exhibits weaker performance, achieving only
about 80% AUROC. In contrast, it performs well
using metrics based on semantic understanding and
sequence transformation, such as ROUGE and ME-
TEOR. For shorter texts or when lower overhead is
needed, the Seq2seq (COEDIT-L) model serves as
a suitable alternative.

4.4.3 Impart of Text Size
As text size increases, most metrics show either
improvement or stabilization in AUROC. GEC-
SCORE generally performs better with longer texts,
suggesting that additional information in longer
texts enhances evaluation accuracy. When using
GPT-4o-Mini as the GEC model, GECSCORE typ-
ically maintains consistent performance across var-
ious text sizes. However, for shorter texts of ap-
proximately 100 words, there is slight variation in
performance among metrics. Despite this, GEC-
SCORE with GPT-4o-Mini remains robust in the
optimal metric, ROUGE2, maintaining over 98%
AUROC for texts exceeding 200 words. In contrast,
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Metrics→ BERTScore Edit Distance BLEURT TER chrF BLEU ROUGEL METEOR BARTScore GLEU ROUGE1 ROUGE2

GPT-4o-mini 86.39 86.84 91.79 93.41 94.27 94.65 95.67 95.97 96.10 96.17 96.77 97.89

COEDIT-L 85.03 91.54 90.91 93.67 94.69 95.28 94.63 94.90 89.88 94.95 93.08 95.01

Table 2: Average AUROC (%) of the performance of the difference scoring metrics and scoring metrics for different
text sizes. ROUGE2 achieves the best performance among all scoring metrics for GECSCORE (GPT-4o-mini) and
the second best performance among all scoring metrics for GECSCORE (COEDIT-L), which we use as an example
in this paper.

Figure 4: Impact of Different GEC Models and Scoring Metrics Performance on Different Text Sizes. The plot
displays the AUROC across varying text sizes. The x-axis represents the number of words of the text, while the
y-axis indicates the corresponding detection performance of GECSCORE with different settings.

GECSCORE with COEDIT-L shows greater vari-
ability, struggling to achieve strong performance
on XSum until the text size exceeds 300 words.
While most metrics improve with larger text sizes,
GECSCORE using metrics such as mBERTScore,
BERTScore, and BLEURT may face limitations
when evaluating longer texts.

4.5 Reliability in the Wild
4.5.1 Varied Text Sources
Our detector is designed to achieve high general-
izability and usability across various domains and
generative models. To evaluate its effectiveness,
we compared its performance with other detection
techniques across diverse datasets and models. As
shown in Figure 4, our method consistently outper-
forms others on the XSum and Writing Prompts.
In contrast, zero-shot methods struggle more with
XSum than with Writing Prompts, likely due to the
distinct stylistic features of these domains.

Our method stands out by maintaining impres-
sive performance on texts generated by various
models, with an average AUROC of 96%. No-
tably, GECSCORE (GPT-4o-Mini) achieves an AU-
ROC of more than 94% and an F1-score of 92%
across all evaluation settings. Our analysis reveals
that the type of generative model further ampli-

fies the impact of domain type on current zero-
shot methods. For example, on the XSum dataset,
Fast-DetectGPT (Bao et al., 2023) achieves over
90% AUROC on data generated by Claude-3.5 and
Llama-3, but only around 80% AUROC on data
generated by GPT-3.5, PaLM2, and GPT-4o. Addi-
tionally, the black-box zero-shot detection method
Revise-Detect (Zhu et al., 2023) demonstrates com-
petitive performance on text generated by GPT-3.5-
turbo, achieving an AUROC score of 96.97%. How-
ever, its performance on text generated by other
LLMs, such as PaLM2, is less consistent, achiev-
ing only 79.78% AUROC on XSum but reaches
up to 92.69% on Writing Prompts, with an aver-
age AUROC of only 80.14% across all settings. In
contrast, GECSCORE maintains consistent and re-
liable performance across domains and generators.
This highlights its potential to remain competitive
even in other unknown domains or generators.

4.5.2 Generalization on Text Source
Cross-Domain We evaluated the generalization
ability of GECSCORE across the XSum and Writ-
ing Prompt datasets. For these two domains, we
used one as training data to determine the deci-
sion threshold and tested its performance on the
other dataset. The results in Table 3 show that
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GECSCORE (GPT-4o-Mini) demonstrates better
generalization ability in cross-domain scenarios
compared to other baseline methods. For example,
when using the threshold trained on XSum to detect
Writing Prompt and using the threshold trained on
Writing Prompt to detect XSum, the performance
of GECSCORE (GPT-4o-Mini) decreased by an
average of only 3.39% in terms of AUROC. In
contrast, Fast-DetectGPT’s performance decreased
by an average of 8.12% in terms of AUROC. Fur-
thermore, GECSCORE (GPT-4o-Mini) consistently
maintains optimal performance, staying above 94%
AUROC, demonstrating strong robustness.

Dataset XSum→WP WP→ XSum

Log-Likelihood 91.70 (↓05.48) 76.00 (↓15.39)
Rank 84.60 (↓09.44) 68.90 (↓07.59)
Log-Rank 88.99 (↓07.52) 70.50 (↓19.84)
LRR 79.40 (↓10.28) 71.00 (↓10.04 )
NPR 79.21 (↓10.61) 63.20 (↓05.87)
DetectGPT 51.27 (↓32.08) 48.58 (↓00.00)
Fast-DetectGPT 93.19 (↓06.39) 66.00 (↓09.85)
Revise-Detect 91.00 (↓07.97) 88.40 (↓06.58)
Rob-base 56.60 (↓02.48) 59.10 (↓02.76)
GECSCORE (GPT-4o-Mini) 97.60 (↓01.63) 94.10 (↓05.15)
GECSCORE (COEDIT-L) 89.50 (↓09.42) 80.29 (↓18.26)

Table 3: Results of Cross-Domain in terms of AUROC
(%). The values in parentheses represent the perfor-
mance decrease compared to in-distribution testing.

Cross-Generator We generalize GECSCORE be-
tween datasets generated by GPT-3.5 and Claude-
3.5 in a similar setting to Cross-Domain. As shown
in Table 4, GECSCORE (GPT-4o-Mini) also has
better generalization capabilities than other base-
lines on Cross-Generator, with performance drop-
ping by an average of only 3.6% AUROC. The
average performance remains at over 95% AU-
ROC, exhibiting a trend similar to that observed
in Cross-Domain scenarios. Notably, the average
performance of GECSCORE (COEDIT-L) drops by
only 4.71% AUROC in Cross-Generator scenarios
but decreases significantly by 13.84% AUROC in
Cross-Domain scenarios. This indicates its limita-
tion in Cross-Domain, while maintaining accept-
able performance in Cross-Generator scenarios.

4.5.3 Paraphrase Attack
In practical applications, LLM-generated text de-
tectors may be exposed to attacks simulating hu-
man post-editing of LLM-generated text (Wu et al.,
2023). To evaluate the effectiveness and robust-

Dataset GPT→ Claude Claude→ GPT

Log-Likelihood 87.30 (↓06.04) 85.40 (↓05.99)
Rank 70.20 (↓05.76) 69.30 (↓07.19)
Log-Rank 87.90 (↓05.31) 84.20 (↓02.44)
LRR 83.50 (↓07.61) 72.90 (↓08.14 )
NPR 65.65 (↓03.38) 63.65 (↓05.42)
DetectGPT 49.41 (↓12.59) 44.37 (↓00.00)
Fast-DetectGPT 79.10 (↓12.81) 67.20 (↓08.65)
Revise-Detect 66.48 (↓14.76) 75.50 (↓19.48)
Rob-base 63.00 (↓02.93) 58.60 (↓03.26)
GECSCORE (GPT-4o-Mini) 95.59 (↓03.55) 95.60 (↓03.65)
GECSCORE (COEDIT-L) 91.80 (↓05.57) 94.70 (↓03.85)

Table 4: Results of Cross-Generator in terms of AU-
ROC (%). The values in parentheses represent the per-
formance decrease compared to in-distribution test.

ness of our approach, we follow the approach of
Sadasivan et al. (2023) and use a T5 paraphrase
model3 to perform the paraphrase attack on our
detector. The results presented in Table 6 indicate
that the performance of all baseline methods de-
creases significantly when faced with paraphrased
text. Specifically, all zero-shot methods experience
an average decrease in performance of 12.93% AU-
ROC when encountering paraphrase attacks. In
contrast, our method achieves the most competitive
detection performance in the paraphrase attack sce-
nario, demonstrating superior detection capability.

5 Conclusion

In this paper, we propose the hypothesis
that human-written texts typically contain more
grammati- cal errors than LLM-generated texts,
as observed from the perspective of LLMs, and
we verify this through a statistical analysis exper-
iment. To improve the performance of detectors
in real-world black-box scenarios, we introduce
a simple yet effective zero-shot detection method
called GECSCORE. GECSCORE is a black-box
tool that can effectively identify text generated by
LLMs without access to the source model or a
large amount of training data. Experimental re-
sults demonstrate that GECSCORE surpasses the
current SOTA detectors, including both supervised
and zero-shot methods. Furthermore, GECSCORE

exhibits strong reliability in various real-world sce-
narios, showing robust performance across texts
from different sources, strong generalization abil-
ity, and resistance to paraphrase attacks.

3https://huggingface.co/Vamsi/T5_Paraphrase_
Paws

https://huggingface.co/Vamsi/T5_Paraphrase_Paws
https://huggingface.co/Vamsi/T5_Paraphrase_Paws
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Limitations

• Textual Integrity For GECSCORE to func-
tion effectively, it is crucial that the text sam-
ples being analyzed are complete. Fragmented
sentences can be inadvertently completed by
the GEC model, which may disrupt and con-
fuse GECSCORE’s detection mechanism.

• Grammar Attacks A noteworthy potential at-
tack on GECSCORE involves injecting gram-
matical errors into the samples. This could
significantly increase the chances of LLM-
generated text being mistaken for human-
written text. However, this approach may not
be practical in real-world scenarios, as intro-
ducing grammatical errors would degrade the
quality of the text and damage the author’s
reputation. Furthermore, we do not consider
texts that have been grammatically corrected
by the LLM, as such texts cannot be strictly
defined as human-written.
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A Experimental Settings

A.1 Black-box Zero-shot Detection Task

Our research focuses on black-box zero-shot LLM
generated text detection, under the stipulation that
our proposed method has not been trained on any
human-written and LLM-generated text pairs or
has access to the source model of generated text.

Zero-shot Detection Our zero-shot detection
setup aligns with previous mainstream works such

as DetectGPT (Mitchell et al., 2023) and Fast-
DetectGPT (Bao et al., 2023), where specific fea-
tures are extracted from a sample set to distinguish
between human-written texts and those generated
by LLMs. The term “zero-shot” indicates that the
differences in the features used objectively exist
between the two types of texts. Therefore, by de-
termining a predefined feature classification thresh-
old, it is possible to detect generated texts from any
LLMs or domains. As shown in Section 4.5.2, the
threshold extracted from the XSum dataset can be
effectively applied to the Writing Prompts dataset,
while the threshold obtained from GPT-generated
texts works seamlessly on the Claude-generated
texts, with almost no performance degradation.

Black-box Detection This research focus is
particularly consistent with real-world scenar-
ios, where the specific identity of the genera-
tive model employed for text generation often re-
mains obscured. This means that identifying LLM-
generated text from an unknown model is increas-
ingly important, and we refer to this task as the
“Black-box Detection Task.”

The setting of the “Black-box Detection Task”
significantly distinguishes our approach from both
traditional zero-shot detection methods and super-
vised fine-tuning classifiers. Traditional zero-shot
detection methods require access to the language
model to identify text token irregularities. However,
in the “Black-box Detection Task,” the traditional
zero-shot method must rely on a surrogate model
instead of the source model to perform the detec-
tion task. In contrast, supervised classifiers that
are fine-tuned typically harness language models
to distill vectorized representations of textual fea-
tures, a process contingent on a substantial corpus
of annotated samples for training purposes.

Our zero-shot methodology diverges from these
traditional strategies by incorporating an auxiliary
grammatical error correction (GEC) model, which
accentuates and leverages the grammatical discrep-
ancies between human-written text and text gener-
ated by LLMs. In this study, we primarily conduct
experiments under the “Black-box Detection Task”
settings. Following the experiments of Bao et al.
(2023), we use GPT-Neo-2.7B4 as the surrogate
model for the traditional zero-shot method.

4https://huggingface.co/EleutherAI/gpt-neo-2.
7B
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A.2 Hypothesis Validation Settings

To validate our hypothesis, we conducted a com-
parative analysis of grammatical errors in human-
written texts and those generated by LLMs. Due
to the significant resource demands of manual an-
notation, we opted to use GPT-4o for identifying
and annotating errors instead of relying on hu-
man annotators. Our experimental dataset includes
human-written samples from Writing Prompts
and texts generated by GPT-3.5-turbo (Ope-
nAI, 2022), PaLM-2-bison (Ghahramani, 2023),
Claude-3.5-Sonnet (Anthropic, 2024), and Llama-
3-70B (MetaAI, 2024). We set the temperature
parameter of GPT-4o (OpenAI, 2024) to 0.01 and
max_tokens to 1000. The prompt used for identify-
ing and counting grammatical errors is as follows:� �
[

{'role': 'user', 'content ': 'Text1
is the original text , Text2 is the
grammatical error corrected version of
Text1. Please analyze how many
grammatical errors were corrected in
Text2 compared to Text1 , and list them.
Then , categorize the statistics
according to the three editing types:
addition , deletion , and modification.
Please end the result with "Total: (a
number), Addition: (a number), Deletion:
(a number), Substitution: (a number)".

Text1: <orignal_text >
Text2: <grammatical_corrected_text >'

}
]� �
1: Message for identifying and counting grammatical

errors

In the message context, <original_text>
refers to the original text, and <grammati-
cal_corrected_text> refers to the text after
grammar error correction.

A.3 Datasets Settings

Human Datasets We follow Mitchell et al.
(2023) and select human-written texts covering var-
ious everyday domains and practical LLM appli-
cation cases to construct an LLM-generated text
dataset. Specifically, XSum (Narayan et al., 2018)
is used to represent news writing, and Writing
Prompts (Fan et al., 2018) is used to represent
creative writing. We did not use SQuAD (Ra-
jpurkar et al., 2016) because its text samples are
too short. For our experiments, we extracted a
balanced set of 500 human-written samples and
500 LLM-generated samples for the detection task.

This was done to ensure a robust and rigorous anal-
ysis. Furthermore, we imposed a stringent criterion
for the length of the text samples: each sample in
our study was required to contain a minimum of
300 words to facilitate a more accurate assessment
of our approach’s reliability.

Generative Models and Settings We use ad-
vanced generative models including GPT-3.5-
turbo (OpenAI, 2022), PaLM-2-bison (Ghahra-
mani, 2023), GPT-4o (OpenAI, 2024), Claude-
3.5-Sonnet (Anthropic, 2024), and Llama-3-
70B (MetaAI, 2024) to verify the effectiveness of
our proposed method. Comprehensive details of
our dataset are listed in Appendix A.3.

The temperature setting for text generation was
maintained at the default value of 1 to foster the
generation of creative content. Furthermore, the
parameters top_p and top_k were configured to
40 and 0.96, respectively. We provide the first
sentence of the text as a prefix to guide the model
to perform the generation task. In order to ensure
the length consistency of the LLM-generated text
and human-written text, we set min_length to 800
and max_length to 1024. This ensured the pro-
duction of sufficiently lengthy texts, which were
subsequently truncated to lengths closely mirror-
ing those of human-written samples, all the while
maintaining sentence integrity.

For closed-source models, we use API services
to perform text generation tasks in the form of con-
versations. Referring to the experimental prompt of
Fast-DetectGPT (Bao et al., 2023), we instructed
the models to assume the personas of news and fic-
tion writers to generate news articles and narrative
stories respectively. The temperature of text gen-
eration also uses the default parameter 1. We pro-
vide the “word length” and “first sentence text” of
the human-written sample in the prompt as <word
count> and <prefix> to provide additional informa-
tion to guide the LLMs generate a text that aligns
with the specified requirements. The specific API
Messages are as follows:� �
[

{'role': 'system ', 'content ': 'You
are a News writer.'},

{'role': 'user', 'content ': 'Please
write an article with about <word count >
words starting exactly with: <prefix >'

},
]� �

2: Message for XSum
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Generative Model Model Path / Service Parameters

GPT-3.5- turbo (OpenAI, 2022) OpenAI/gpt-3.5-turbo N/A
PaLM-2-bison (Ghahramani, 2023) Google/chat-bison@002 N/A
GPT-4o (OpenAI, 2024) OpenAI/gpt-4o N/A
Claude-3.5-Sonnet (Anthropic, 2024) Anthropic/Claude-3.5-Sonnet N/A
Llama-3-70B (MetaAI, 2024) meta-llama/Meta-Llama-3-70B 70B

Table 5: Details of the source models that is used to generate LLM-generated text.

� �
[

{'role': 'system ', 'content ': 'You
are a Fiction writer.'},

{'role': 'user', 'content ': 'Please
write an article with about <word count >
words starting exactly with: <prefix >'

},
]� �

3: Message for Writing Prompts

A.4 Details of the Compared Detection
Methods

The details of the baseline methods we compared
in our experiments are as follows:

Log-Likelihood This method employs a lan-
guage model to calculate the log probability for
each token within a text (Gehrmann et al., 2019;
Kirchenbauer et al., 2023). Specifically, we cal-
culate the average log probabilities of all tokens,
thereby producing a score that reflects the text’s
Log-Likelihood. Higher scores indicate a greater
probability of the text being LLM-generated.

Rank In this approach, the absolute rank of each
word within a text is determined based on its pre-
ceding context (Gehrmann et al., 2019). A text’s
overall score is then calculated by averaging these
rank values across all tokens. Similar to Log-
Likelihood, lower scores suggest a higher prob-
ability of the text being LLM-generated.

Log-Rank This method evaluates the contextual
prominence of each token in a text using the Log-
Rank metric (Gehrmann et al., 2019). Unlike the
traditional Rank metric, which relies on absolute
word ranks, Log-Rank applies a logarithmic trans-
formation to each token’s rank value. The pro-
cess involves computing the logarithm of rank po-
sitions for all tokens and aggregating these log-
transformed ranks into a composite score.

LRR Su et al. (2023) proposed the Log-
Likelihood Log-Rank Ratio (LRR), an improved
zero-shot method that combines Log-Likelihood

and Log-Rank to enhance detection performance
by providing complementary information. Texts
with higher LRR scores are more likely to be gen-
erated by the target LLM.

NPR The Normalized Perturbed Log-Rank
(NPR) (Su et al., 2023) applies perturbations to
text to exploit differences in sensitivity between
LLM-generated and human-written texts. LLM-
generated texts typically show a more substantial
increase in Log-Rank scores after perturbations,
leading to higher NPR scores for LLM-generated
texts compared to human-written texts.

DetectGPT Mitchell et al. (2023) introduced De-
tectGPT, a method that evaluates changes in a
model’s log probability function in response to
slight text modifications. The underlying theory
posits that LLM-generated texts are often situ-
ated at local optima of the model’s log probabil-
ity function, resulting in a decrease in log proba-
bility for perturbed machine-generated texts. In
contrast, similar perturbations applied to human-
written texts may result in either an increase or
decrease in log probability.

Fast-DetectGPT While DetectGPT has demon-
strated strong zero-shot detection capabilities, its
high computational cost has limited its practical
application. Bao et al. (2023) introduced Fast-
DetectGPT, which leverages conditional probabil-
ity curvature to highlight word choice differences
between LLMs and humans. By replacing Detect-
GPT’s perturbation technique with a more efficient
sampling method, Fast-DetectGPT achieves a re-
markable 340-fold increase in detection speed com-
pared to DetectGPT, while maintaining high per-
formance across various test scenarios.

Revise-Detect Zhu et al. (2023) proposed a zero-
shot, black-box method to detect LLM-generated
texts by revising the target text with the ChatGPT
model. The hypothesis is that ChatGPT will make
fewer changes to LLM-generated texts compared
to human-written texts, as the former align more
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closely with the generative patterns and statistical
models used by LLMs. A higher similarity between
the original text and its ChatGPT-modified version
indicates a greater likelihood of the text being LLM-
generated.

OpenAI Detector Solaiman et al. (2019) re-
leased a dataset containing GPT-2 outputs and Web-
Text samples to facilitate research on distinguish-
ing human-written texts from LLM-generated ones.
Using this dataset, they fine-tuned classifiers5 of
RoBERTa-base and RoBERTa-large architecture
for LLM-generated text detection.

B Robustness Against Paraphrase Attack

The robustness of the detection method to ad-
versarial challenges is of paramount importance,
particularly in practical applications where LLM-
generated text detectors may face potential attacks,
such as human post-editing of the LLM-generated
text. Related works on detection defenses and at-
tacks have been comprehensively summarized in
recent studies (Ghosal et al., 2023; Wu et al., 2023).
To rigorously evaluate the efficacy of our proposed
method, we introduce a paraphrase attack to test
the robustness of the detector. Paraphrase attacks
were executed using a T5 paraphraser,6 which is
designed to reformulate text while retaining its orig-
inal meaning.

The results in Table 6 show that the performance
of all methods drops significantly when faced with
paraphrased text. Specifically, all zero-shot meth-
ods suffer an average performance degradation of
12.93% AUROC under paraphrase attacks. In con-
trast, our method demonstrates strong robustness
and achieves the most competitive detection perfor-
mance under paraphrase attacks. Moreover, it main-
tains robust detection capability across all attack
scenarios, with minimal performance degradation.

C Samples Distribution Ablation Study

We discuss the impact of using different sample
sizes n to compute the threshold for our method.
Specifically, we further validate the robustness of
our method under various settings, where the bal-
ance between LLM-generated samples and human-
written samples is adjusted. Our experimental re-
sults on the XSum and Writing Prompts datasets

5https://github.com/openai/
gpt-2-output-dataset

6https://huggingface.co/Vamsi/T5_Paraphrase_
Paws
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Figure 5: Effect of the Balanced Sample Set Size n.

(as shown in Figure 5) demonstrate that our method
achieves stable performance across these scenarios
using randomly sampled n sample sets. With only
64 samples, our method consistently exceeds 92%
on performance metrics for the XSum dataset and
95% for the Writing Prompts dataset. Furthermore,
when n reaches 256, the detector’s performance
remains nearly constant.

D Settings of Similarity Metrics and Text
Size Ablation Study

D.1 Ablation Settings

We verified the impact of different similarity met-
rics on our proposed approach. To achieve this, we
initially employed an n-sentence sliding window
technique to augment our dataset. Specifically, we
systematically segmented each text sample into all
possible complete text fragments using a sliding
window mechanism based on n sentences. This ap-
proach enhanced the diversity of text lengths within
our corpus. Subsequently, we conducted a compre-
hensive analysis of the length distribution of the
augmented samples and extracted those that closely
matched specific text lengths for further evaluation.

D.2 Details of Similarity Metrics

The similarity metrics we used in our study are as
follows:

BLEU The Bilingual Evaluation Understudy
(BLEU) score (Papineni et al., 2002) is a widely
used method for assessing the quality of machine
translation and is also employed to evaluate the sim-
ilarity between generated text and reference text
in text generation tasks (Haque et al., 2022). The
BLEU score calculation is based on the precision of
n-grams (Manning and Schutze, 1999), which ex-
amines the frequency with which n-gram sequences
in the generated text appear in the reference text.
In our setting, the “reference” denotes the text un-

https://github.com/openai/gpt-2-output-dataset
https://github.com/openai/gpt-2-output-dataset
https://huggingface.co/Vamsi/T5_Paraphrase_Paws
https://huggingface.co/Vamsi/T5_Paraphrase_Paws
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Datasets→ XSum Writing Prompts
Method ↓ GPT-3.5 PaLM2 GPT-4o Claude-3.5 Llama-3 Avg. GPT-3.5 PaLM2 GPT-4o Claude-3.5 Llama-3 Avg.

Zero-shot Methods

Log-Likelihood 76.94 79.84 48.31 76.00 94.70 75.96 85.55 85.63 72.07 77.50 93.98 82.95
Rank 61.69 57.61 40.62 58.39 74.04 58.07 80.59 79.26 65.67 67.41 84.05 75.40
Log-Rank 76.56 78.82 48.06 76.89 95.46 75.96 84.05 84.15 71.59 76.92 94.87 82.72
LRR 72.32 74.07 49.41 76.94 97.31 74.01 77.50 77.32 69.21 73.98 95.77 78.76
NPR 55.32 45.60 39.04 53.61 61.98 51.51 72.65 76.14 65.03 68.34 80.73 72.18
DetectGPT 27.17 30.55 33.42 47.51 42.76 36.68 58.62 67.40 79.48 74.81 81.96 72.05
Fast-DetectGPT 47.90 65.70 43.79 69.14 91.75 63.26 92.52 93.82 80.26 74.72 97.71 87.81
Revise-Detect 91.23 79.43 72.17 82.71 87.48 82.20 96.72 94.29 77.11 65.41 86.01 83.91

Supervised Methods

RoB-base 60.08 61.84 52.86 57.09 88.55 64.88 52.98 60.30 52.86 52.89 83.58 60.92
RoB-large 57.47 60.13 42.32 40.60 76.65 55.43 35.82 51.97 35.10 32.81 59.58 43.06

Our Zero-shot Method: GECSCORE

GECSCORE (GPT-4o-Mini) 94.58 71.06 93.77 83.11 94.05 87.71 92.76 94.04 85.92 83.31 85.22 88.25
GECSCORE (COEDIT-L) 78.43 67.76 68.87 77.34 70.82 72.64 96.17 96.28 92.26 93.56 93.80 94.41

Table 6: Comparison with 10 other baselines on 2 given datasets and 5 given generative models in paraphrased
data settings. The evaluation metric is AUROC(%). We evaluate using 500 LLM-generated samples and 500
human-written samples per dataset.

der detection, while the “hypothesis” refers to its
revised counterpart. The BLEU score ranges from
0 to 1, with 1 indicating a perfect match. A higher
BLEU score signifies greater similarity between
the original text and its revised version.

TER The Translation Edit Rate (TER)
score (Snover et al., 2006) is a metric pri-
marily used in machine translation evaluation
to assess the amount of editing required for a
translated text to match a reference translation.
Unlike BLEU, which focuses on the precision of
matching n-grams, TER calculates the number
of edits (insertions, deletions, substitutions, and
shifts) needed to transform the hypothesis into one
of the references. The TER score ranges from 0 to
infinity. A lower TER score is preferable, and a
TER score of 0 indicates a perfect match between
the hypothesis text and the reference text.

ChrF The Character n-gram F-score (chrF) is a
metric for machine translation evaluation that cal-
culates the similarity between generated text and
reference text using character n-grams instead of
word n-grams (Popovic, 2015). This method pro-
vides a detailed measure of textual similarity at the
character level, capturing finer linguistic nuances
that word-level metrics may overlook. Similar to
the BLEU score, chrF scores range from 0 to 1,
with higher chrF scores indicating greater similar-
ity between the generated and reference texts.

Edit Distance Edit Distance (Navarro, 2001) is a
metric used to quantify the dissimilarity between
two text strings by calculating the minimum num-
ber of operations required to transform one string
into the other. These operations typically include
insertions, deletions, or substitutions of charac-
ters. Unlike metrics that assess similarity or quality
of text generation based on semantic or syntactic
matches, Edit Distance provides a straightforward,
operation-based measure of difference. The score,
which can range from 0 upwards, directly corre-
sponds to the number of edit operations needed. A
score of 0 indicates identical strings, while higher
scores signify greater disparity.

ROUGE The Recall-Oriented Understudy for
Gisting Evaluation (ROUGE) score (Lin, 2004) is
a set of metrics designed to evaluate the quality of
summaries by comparing them to a set of reference
summaries. It is particularly valuable in tasks such
as text summarization and text generation, where
the goal is to capture the essence of the original text.
Similar to the BLEU score, ROUGE scores range
from 0 to 1, with 1 indicating a perfect overlap. A
higher ROUGE score signifies greater similarity
between the generated text and the reference.

GLEU The General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018)
is a comprehensive suite of resources aimed at the
advancement, assessment, and analysis of natural
language understanding (NLU) systems. Among
these, the STS-B (Semantic Textual Similarity
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Benchmark) task is designed to evaluate the ability
of NLU systems to determine the semantic sim-
ilarity between pairs of sentences. Systems are
required to assign a similarity score ranging from 1
to 5 to each sentence pair, where 1 indicates mini-
mal semantic similarity and 5 denotes a very high
degree of semantic similarity.

METEOR The Metric for Evaluation of
Translation with Explicit ORdering (METEOR)
score (Banerjee and Lavie, 2005) is an advanced
metric designed to address some of the limitations
of earlier evaluation methods, such as BLEU, by
incorporating a more sophisticated analysis of
word-to-word matches between the translated text
and the reference translations. It is particularly
useful in translation evaluation and other natural
language processing tasks requiring an accurate
measure of semantic and syntactic alignment.
Unlike the BLEU score, METEOR accounts for
exact word matches, synonymy, and stemming
matches, while introducing a penalty for word
order differences. METEOR scores range from 0
to 1, with 1 indicating an exact match between the
generated text and the reference.

BLEURT BLEURT (Sellam et al., 2020) is a
learning-based evaluation metric based on BERT,
specifically designed for assessing English text gen-
eration. Traditional evaluation methods, such as
BLEU and ROUGE, may not correlate well with
human judgment. BLEURT addresses this by mod-
eling human judgment using a few thousand poten-
tially biased training examples. A higher BLEURT
score signifies greater similarity between the origi-
nal text and its revised version.

BERTScore BERTScore (Zhang et al., 2020b) is
a metric for evaluating the quality of text genera-
tion. It compares the similarity between candidate
and reference texts using contextual embeddings
from BERT, a pre-trained language model. Un-
like traditional metrics (e.g., BLEU), which rely
on exact word matches, BERTScore captures se-
mantic meaning by calculating cosine similarity
between embeddings. This enables it to account
for synonyms and variations in phrasing, making it
a robust tool for assessing natural language genera-
tion tasks.

BARTScore BARTScore (Yuan et al., 2021b) is
an evaluation metric designed for natural language
generation tasks like summarization and transla-
tion. It leverages the BART model to assess the

quality of generated text by comparing it to refer-
ence texts and measuring their similarity. This ap-
proach is versatile, allowing for multi-dimensional
evaluations by considering different directions of
similarity, such as from generated to reference text.
It functions in an unsupervised manner, meaning
it does not require additional annotated data, mak-
ing it an efficient and adaptable tool for assessing
the quality and relevance of generated content in
various applications.
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