
Proceedings of the 31st International Conference on Computational Linguistics, pages 5789–5806
January 19–24, 2025. ©2025 Association for Computational Linguistics

5789

MURRE: Multi-Hop Table Retrieval with Removal
for Open-Domain Text-to-SQL

Xuanliang Zhang1, Dingzirui Wang1, Longxu Dou2, Qingfu Zhu1, Wanxiang Che1*

1Harbin Institute of Technology
2Individual Researcher

{xuanliangzhang, dzrwang, qfzhu, car}@ir.hit.edu.cn
doulongxu@gmail.com

Abstract

The open-domain text-to-SQL task aims to re-
trieve question-relevant tables from massive
databases and generate SQL. However, the per-
formance of current methods is constrained by
single-hop retrieval, and existing multi-hop re-
trieval of open-domain question answering is
not directly applicable due to the tendency to
retrieve tables similar to the retrieved ones but
irrelevant to the question. Since the questions
in text-to-SQL usually contain all required in-
formation, while previous multi-hop retrieval
supplements the questions with retrieved doc-
uments. Therefore, we propose the multi-hop
table retrieval with removal (MURRE), which
removes previously retrieved information from
the question to guide the retriever towards un-
retrieved relevant tables. Our experiments on
two open-domain text-to-SQL datasets demon-
strate an average improvement of 5.7% over
the previous state-of-the-art results.1

1 Introduction

Text-to-SQL, which simplifies database access and
facilitates efficient data querying, is an important
task in natural language processing (Qin et al.,
2022). Unlike the previous text-to-SQL task that
provides the question-relevant database tables2 (Yu
et al., 2018; Shi et al., 2024), a more realistic sce-
nario involves open-domain text-to-SQL, where
user questions are transformed into SQL across vast
databases. Therefore, open-domain text-to-SQL ne-
cessitates two main steps: retrieving relevant tables
and generating SQL based on the retrieved tables
and user question (Kothyari et al., 2023).

To bridge the semantic gap between natural lan-
guage user questions and structured database tables,
CRUSH (Kothyari et al., 2023) rewrites the user

*Corresponding Author
1Our code and data are available at

https://github.com/zhxlia/Murre.
2For brevity, we refer to database tables relevant to the

question as relevant tables in this paper.

First-Hop
Question: Which employee received the biggest bonus ?

Retrieved Table: Employee

Second-Hop (Supplement)
Supplement Question:
Which employee
received the biggest
bonus ? | Employee

Retrieved Table: Staff

Second-Hop (Removal)
Removal Question:
What is the biggest
bonus ?

Retrieved Table: Bonus

Figure 1: Comparison of multi-hop retrieval with supple-
mentary and removal. The same shapes denote similar
tables. Multi-hop retrieval with supplementary retrieves
tables similar to those already retrieved, even if they
are irrelevant to the question. In contrast, we employ
multi-hop retrieval with removal which can successfully
retrieve other relevant tables in the second hop.

question into potentially relevant tables for retrieval.
However, CRUSH employs single-hop retrieval,
limiting its performance, as the retrieval of certain
tables may depend on others, similar to multi-hop
retrieval in open-domain question answering (QA)
(Feldman and El-Yaniv, 2019; Xiong et al., 2021).
Nevertheless, directly adapting previous multi-hop
retrieval methods could easily retrieve tables that
are similar to those retrieved in previous hops but
irrelevant to the question since previous multi-hop
retrieval usually supplements the retrieved docu-
ments into the user question (Shao et al., 2023;
Chen et al., 2024a; Jeong et al., 2024), as illus-
trated in Figure 1. However, open-domain text-
to-SQL questions typically contain all necessary
information (Liu et al., 2021; Dou et al., 2023). For
instance, in the left part of Figure 1, the irrelevant
table "staff " is retrieved because it is similar to the
"employee" retrieved in the first hop.

To solve the above problem, we focus on explor-
ing the multi-hop table retrieval method applicable
to the open-domain text-to-SQL task, from the fol-
lowing two aspects: (i) We analyze why the multi-
hop retrieval methods of open-domain QA cannot

https://github.com/zhxlia/Murre

5790

be directly applied to open-domain text-to-SQL.
(ii) We propose a multi-hop table retrieval method
based on removal for open-domain text-to-SQL,
to ensure that the retrieved tables of each hop are
relevant to the user question rather than just similar
to the previously retrieved tables.

We first present that multi-hop retrieval of open-
domain QA cannot be directly used for open-
domain text-to-SQL. We discuss that existing multi-
hop retrieval methods are mainly to supplement the
retrieved documents to the user question. How-
ever, open-domain text-to-SQL needs to remove
retrieved information rather than supplement it be-
cause all the necessary information is involved in
the user question. We conduct analysis experiments
to prove our point of view.

Based on the above discussion, we propose
a method called MUlti-hop table Retrieval with
REmoval (MURRE), to enhance the performance
of open-domain text-to-SQL through multi-hop re-
trieval. As presented in the right part of Figure 1,
MURRE searches relevant tables employing multi-
hop retrieval, by removing the retrieved table infor-
mation from the question to ensure retrieved tables
relevant to the user question.

To validate the effectiveness of MURRE, we con-
duct experiments on two datasets, SpiderUnion and
BirdUnion, which are open-domain versions of
text-to-SQL datasets Spider (Yu et al., 2018) and
Bird (Li et al., 2023b). MURRE achieves an aver-
age improvement of 5.7% compared to the previous
state-of-the-art (SOTA) results, demonstrating its
effectiveness. Additionally, we calculate the av-
erage rank of relevant tables to demonstrate that
MURRE can effectively retrieve relevant tables that
are dissimilar to the previously retrieved tables,
confirming that our method can indeed remove the
retrieved information.

Our contributions are as follows:
• To enhance the retrieval performance in open-

domain text-to-SQL, we discuss why multi-hop
retrieval in open-domain QA can not be directly
applied to text-to-SQL.

• To ensure that the retrieved tables are relevant to
the user question, we present MURRE, prompting
LLMs to remove the retrieved information from
the question at each hop.

• To demonstrate the effectiveness of MURRE, we
conduct experiments on the SpiderUnion and Bir-
dUnion datasets, achieving an average improve-
ment of 5.7% compared with the previous SOTA
results, proving its effectiveness.

2 Analysis

In this section, we present that the multi-hop re-
trieval of open-domain QA cannot be directly
applied to the open-domain text-to-SQL. We first
discuss the multi-hop retrieval methods in open-
domain QA. Based on the above discussion, we
analyze and conduct experiments to show the inap-
plicability of existing multi-hop retrieval.

2.1 Multi-Hop Retrieval of Open-Domain QA
Multi-hop retrieval refers to retrieving with mul-
tiple hops, where each hop uses the information
that is retrieved in previous hops (Xiong et al.,
2021; Lee et al., 2022). Current multi-hop re-
trieval supplements the question with the retrieved
information, guiding to identify the documents rel-
evant to the currently retrieved documents (Chen
et al., 2024a; Zhao et al., 2023a; Press et al., 2023;
Li et al., 2023c; Jeong et al., 2024), since the
user question could not contain all the informa-
tion needed to retrieve all relevant documents. For
example, for the question "Ralph Hefferline was
a psychology professor at a university that is lo-
cated in what city?", we should first retrieve the
university where he works, supplement it into the
question, and then search for the city where the
university is located.

2.2 Previous Multi-Hop Retrieval is
Unsuitable for Open-Domain Text-to-SQL

Unlike open-domain QA, the questions in open-
domain text-to-SQL do not need retrieved infor-
mation to supplement because they usually con-
tain all the required information. For instance, in
Figure 1, the question "Which employee received
the biggest bonus?" contains all the relevant table
names. Therefore, we propose to remove the re-
trieved information from the question, to retrieve
the unretrieved relevant tables. Table 4 presents
that multi-hop retrieval with supplementary even
underperforms single-hop retrieval, proving the ne-
cessity of removing retrieved information.

3 Methodology

3.1 Task Definition
Our work mainly focuses on the open-domain text-
to-SQL task, which can be formally defined as:
Given a user question q, database tables T = {ti}
and a number of retrieved tables N , suppose the
tables relevant to q are T q = {tqi }, MURRE aims
to retrieve N tables T q

N , where T q ⊆ T q
N .

5791

User Question
Which employee
got the biggest
bonus?

Table
baseball.award(
award id, league
id, …)

Table
hire.employ(emp
loyee id, name,
age, …)

User Question
hire.bonus(bonu
s)

Table
hire.bonus(empl
oyee id, bonus,
…)

Table
hire.shop(shop
id, name,
location, ...)

Table
hire.hiring(shop
id, employee id,
…)

User Question
None

 Early Stop1. Retrieval

1st Hop 2nd Hop

・・・

・・・

・・・

・・・
Table
baseball.vote(aw
ard id, league id,
...) Probability

 0.2 0.4 0.6 0.8 1.0

2. Removal

2. Removal

2. Removal

1. Retrieval 2. Removal

2. Removal

2. Removal

Figure 2: An overview of MURRE. Each hop consists of: (i) Retrieval: retrieving tables similar to the question;
(ii) Removal: removing the retrieved information from the user question and representing the unretrieved information
in the tabular format with LLM. We employ the beam search paradigm maintaining multiple retrievals at each hop.
The color depth represents the probability that the table is relevant to the question of the hop, and ✓ denotes the
relevant table. We demonstrate an example that early stops at the second hop for brevity.

3.2 Overview

The overview of MURRE is illustrated in Figure 2.
To reduce the error cascades in multi-hop retrieval,
we adopt the beam search paradigm inspired by
Zhang et al. (2024). In MURRE, each hop can be
divided into two phases: Retrieval (§3.3) and Re-
moval (§3.4). In each hop, we first retrieve the rel-
evant tables by calculating their probability that is
relevant to the question. To avoid retrieving similar
to the previous retrieved tables but irrelevant tables,
we remove the retrieved information from the user
question using LLM. MURRE repeats the Retrieval
and Removal phases until reaching the maximum
hop limit H or meeting the early stop condition.
After the multi-hop retrieval, we score (§3.5) each
table based on its probability that is relevant to the
user question and select the top-N tables as the
input for generating SQL. In Appendix A, we ex-
plore how to handle the situation when no table in
the database is relevant to the user question.

3.3 Retrieval

The Retrieval phase aims to identify B tables cor-
responding to the user question qh,b, where B is
the beam size and qh,b denotes the user question
at hop h and beam b. We embed the user ques-
tion and each table into vectors and then compute
their relevance probability to the user question. Let
Emb(x) represent the embedding vector of x, the
probability is expressed as Equation 3.1.

P̂ (ti|qh,b) = Norm(
Emb(ti) · Emb(qh,b)
|Emb(ti)||Emb(qh,b)|

) (3.1)

We compute the probability using the cosine sim-
ilarity between the question and table vectors, ap-
plying the Norm function to ensure the conditional
probabilities sum to one. The detailed represen-
tations of the table and the normalization method
are provided in Appendix B and Appendix C, re-
spectively. We then select the top B tables with the
highest probabilities as the retrieval results for the
current hop question qh,b.

In the previous hop of retrieval, there are B
beams and each beam corresponds to B retrieved
tables obtained at the current hop, resulting in a to-
tal of B ×B retrieval results. Following the beam
search paradigm, we then choose B results from
these for the subsequent Removal phase, with the
selection method detailed in §3.5.

3.4 Removal

The Removal phase is designed to mitigate the
retrieval of tables that are similar to previously
retrieved ones yet irrelevant to the user question. To
achieve the above goal, this phase prompts LLMs
to remove the information of retrieved tables in
Pathh,b (which includes all retrieved tables from
hop 1 to hop h on the path of beam b) from the user
question q, and express the unretrieved information
in the form of a table with some demonstrations,
following the previous work (Kothyari et al., 2023).
The removal question is used to guide the retriever
for the next hop.

Considering that different user questions require
varying numbers of tables, to prevent additional
hops from introducing errors, we instruct LLMs to

5792

assess whether the retrieved tables in Pathh,b are
sufficient to answer q, i.e., early stop. In detail, we
prompt the LLM to generate a special mark when
removing the retrieved information (e.g., "None"
in Figure 2) to indicate that the retrieved tables are
sufficient to answer the user question q, ceasing
further retrieval as soon as this early stop mark
is produced. The prompts used for removal are
presented in Appendix B.

3.5 Score

The aforementioned multi-hop retrieval process
maintains B paths at each hop, containing tables
that could exceed or fall short of the required num-
ber of tables N . Therefore, this phase aims to
score all the tables based on their probabilities to
retain the most relevant tables used for generating
SQL, which consists of two parts: (i) scoring the re-
trieval path Score_Path(Pathh,b); (ii) scoring the
retrieved table Score_Table(ti).

Retrieval Path Score First, we address the calcu-
lation of the retrieval path score, where each node
on the path corresponds to the retrieved table on a
beam of one hop. As discussed in §3.3, the score
of each retrieval path represents the probability that
the last table in the path is retrieved, given its cor-
responding question at the last hop. Following the
derivation in Appendix D, the score of a retrieval
path is computed as the product of all the probabil-
ities P̂ in the path.

Table Score Building on the retrieval path score,
we describe the calculation to score a retrieved
table ti. Since each table could have multiple
scores across various hops and beam retrievals,
we propose a table scoring algorithm to effec-
tively integrate these scores. Considering the
potential interrelation of question-relevant tables,
we aim to ensure that all retrieved tables col-
lectively are the most relevant to the question.
Thus, the higher the retrieval path score, the
higher the score of the tables in the path. Specif-
ically, let Pathti denote all retrieval paths con-
taining table ti, we calculate the table score as:
Score_Table(ti) = maxt∈Pathti

Score_Path(t).
Finally, we select TQ

N = {t1, ..., tN} with the high-
est Score_Table(ti) as our retrieval results. The
detailed algorithm is provided in Appendix E. Ap-
pendix F elaborates on enhancing the table scoring
algorithm to address ambiguous entities or syn-
onyms in user questions or tables.

Dataset #Table
1 2 3 4 All

SpiderUnion 395 214 43 6 658
BirdUnion 364 943 207 20 1534

Table 1: The distribution of questions based on the num-
ber of relevant tables (#Table) on the SpiderUnion and
BirdUnion. All refers to the total number of questions
in the dataset.

4 Experiments

4.1 Experiment Setup

Dataset To evaluate the effectiveness of MURRE,
we validate it on two open-domain text-to-SQL
datasets: SpiderUnion (Kothyari et al., 2023) and
BirdUnion, which combine the tables of Spider (Yu
et al., 2018) and Bird (Li et al., 2023b), follow-
ing previous works (Kothyari et al., 2023; Chen
et al., 2024b). Spider is a widely used cross-domain
dataset for the text-to-SQL task, while Bird is more
reflective of real-world scenarios, featuring more
complicated queries. Table 1 presents the distribu-
tion of questions based on the number of tables re-
quired. Further details on Spider and Bird datasets
are provided in Appendix G.

Metric We employ recall and complete recall
as evaluation metrics for retrieval, and Execution
Accuracy (EX) (Yu et al., 2018) for text-to-SQL.
Recall (r@) measures the proportion of relevant
tables retrieved from all relevant tables, following
previous work (Kothyari et al., 2023). Unlike other
open-domain tasks (e.g., open-domain QA), retriev-
ing all relevant tables is critical for generating cor-
rect SQL in open-domain text-to-SQL. Therefore,
we introduce complete recall (k =), which is the
proportion of examples where all relevant tables are
retrieved. For text-to-SQL, we follow (Gao et al.,
2023a) in using Execution Accuracy (EX) to assess
the correctness of execution results by comparing
the predicted SQL to the gold standard.

Model We utilize SGPT (Muennighoff, 2022) to
embed tables and user questions without additional
fine-tuning, following the previous work (Kothyari
et al., 2023). For the Removal phase and SQL gen-
eration, we use gpt-3.5-turbo3 to predict. The
detailed descriptions of SGPT and gpt-3.5-turbo
are provided in Appendix H.

3Document for gpt-3.5-turbo

https://platform.openai.com/docs/models/gpt-3-5

5793

Dataset Model Method k = 3 k = 5 k = 10 k = 20 r@3 r@5 r@10 r@20

SpiderUnion

SGPT-125M
Single-hop 54.3 66.0 75.4 82.2 63.0 73.1 80.7 86.3
CRUSH† 60.2 71.3 80.7 86.8 68.9 76.3 83.4 88.9
MURRE 65.0 74.2 81.0 85.3 70.2 77.5 82.3 86.9

SGPT-5.8B
Single-hop 76.3 86.8 94.1 97.6 84.0 91.5 96.2 98.7
CRUSH† 68.2 80.1 88.4 92.2 75.5 85.1 91.2 94.5
MURRE 86.0 93.5 96.7 97.3 89.3 94.3 96.8 97.5

BirdUnion

SGPT-125M
Single-hop 39.0 50.3 62.1 70.9 54.0 63.2 73.3 80.9
CRUSH† 42.1 56.1 70.2 77.7 60.2 70.0 79.5 86.1
MURRE 51.4 62.7 72.9 78.3 64.8 72.7 79.6 84.2

SGPT-5.8B
Single-hop 55.3 67.3 79.4 86.4 72.9 80.8 88.6 92.8
CRUSH† 52.2 63.5 78.4 88.1 70.0 77.9 87.5 93.0
MURRE 69.1 80.1 88.7 92.7 81.0 87.6 92.6 95.4

Table 2: The complete recall (k) and recall (r) of MURRE, compared with Single-hop and CRUSH on SpiderUnion
and BirdUnion, using SGPT-125M and SGPT-5.8B as the embedding models. † denotes our run since the perfor-
mance difference led by the API change. The best results of each dataset and model are annotated in bold.

Comparing System In our experiments, we com-
pare MURRE with the following methods: (i)
Single-hop, which retrieves tables based on the
user question in a single hop; (ii) CRUSH (Koth-
yari et al., 2023), which retrieves tables in a single
hop by converting the user question into a table
format through hallucination.

Implement Details We set the beam size to 5, as
it provides the best performance with the smallest
size (see §4.5.1). The maximum hop (abbreviated
as max hop) is set to 3 because over 98% of ques-
tions in SpiderUnion and BirdUnion require ≤ 3
tables (see Table 1). We use a 9-shot prompt for Spi-
derUnion and an 8-shot prompt for BirdUnion to re-
move the retrieved information, given the larger ta-
ble scales in BirdUnion compared to SpiderUnion.

4.2 Main Result

The main results of our experiments are presented
in Table 2. Compared to CRUSH, MURRE demon-
strates significant improvements across datasets
and models of different scales, with an average in-
crease of 5.7% in recall and complete recall over
the previous SOTA, which validates the effective-
ness of our method. We can also see that:

The improvement of MURRE on BirdUnion is
more significant than on SpiderUnion. Since
the questions in BirdUnion typically require more
tables (see Table 1), requiring multi-hop retrieval
of MURRE more to obtain multiple relevant tables,
thereby enhancing retrieval performance.

As the number of top-ranked tables grows, the
retrieval performance of MURRE slows down.

Improving metrics with a high number of top-
ranked tables necessitates retrieving relevant tables
that are highly dissimilar to the user question, mak-
ing the metrics challenging to enhance. Especially,
for some metrics (e.g., k = 20, r@20), the perfor-
mance of MURRE declines slightly because remov-
ing retrieved information shifts the focus toward
retrieving increasingly dissimilar tables.

Text-to-SQL Experiments We conduct text-to-
SQL experiments on SpiderUnion and BirdUnion
using the user question and retrieved tables as the
input, as shown in Table 3. The performance
of MURRE exceeds that of both Single-hop and
CRUSH, validating the effectiveness of our method.
As the number of input tables increases, EX im-
provements slow beyond 10 tables because too
many irrelevant tables hinder the model from fo-
cusing on the relevant ones. This also underscores
the necessity of MURRE in enhancing the retrieval
performance with a limited set of top-ranked tables
in the open-domain text-to-SQL task.

4.3 Ablation Studies

To demonstrate the effectiveness of our method, we
conduct ablation experiments on SpiderUnion, with
results presented in Table 4. We select SpiderUnion
corresponding to Spider for subsequent experi-
ments because Spider is the mainstream text-to-
SQL dataset. Since SGPT-125M and SGPT-5.8B
exhibit similar trends across datasets and methods
(see Table 2 and 3), we select SGPT-125M as the
embedding model employed for subsequent experi-
ments, considering both the embedding speed and
the retrieval recall (Muennighoff et al., 2023).

5794

Model Method SpiderUnion BirdUnion
r@3 r@5 r@10 r@20 r@3 r@5 r@10 r@20

SGPT-125M
Single-hop 43.9 50.0 53.2 54.1 11.2 13.4 17.1 18.5
CRUSH 47.3 50.9 55.9 59.6 14.5 17.1 19.0 20.5
MURRE 50.3 54.1 54.7 57.4 16.0 16.8 19.4 20.0

SGPT-5.8B
Single-hop 54.9 60.6 61.6 63.7 16.9 17.3 18.3 20.4
CRUSH 49.8 56.4 60.3 60.8 16.8 18.0 19.7 21.1
MURRE 62.5 64.4 64.4 66.7 20.9 21.8 22.0 22.4

Table 3: EX for predicted SQL based on the user question and varying numbers of retrieved tables.

Method k = 3 k = 5 k = 10 r@3 r@5 r@10

MURRE 65.0 74.2 81.0 70.2 77.5 82.3
w/o removal 46.2 (−18.8) 56.7 (−17.5) 67.2 (−13.8) 50.6 (−19.6) 60.7 (−16.8) 70.0 (−11.6)
w/o tabulation 54.6 (−10.4) 64.9 (−9.3) 75.5 (−5.5) 63.4 (−6.8) 72.5 (−5.0) 80.9 (−1.4)
w/o early stop 52.6 (−12.4) 64.9 (−9.3) 71.0 (−10.0) 57.1 (−13.1) 67.0 (−10.5) 72.2 (−10.1)

Table 4: The ablation results on evaluating MURRE, compared with splicing the question with retrieved tables
(denoted as w/o removal), querying the rest information with natural language after removing retrieved information
(denoted as w/o tabulation), and without employing the mechanism of early stop (denoted as w/o early stop) on
SpiderUnion with SGPT-125M.

The Effectiveness of Removal To demonstrate
the effectiveness of Removal which removes re-
trieved information from the user question, we com-
pare its performance against the popular multi-hop
retrieval method in open-domain QA, which di-
rectly splices the user question with retrieved tables
at each hop. Compared with MURRE, the perfor-
mance of the splicing method drops significantly,
underscoring the effectiveness of Removal which
alleviates retrieving similar but irrelevant tables.

The Effectiveness of Tabulation To prove the
effectiveness of transforming questions into a tabu-
lar format (abbreviated as tabulation), we query the
removed questions with natural language. The re-
sults indicate that, compared to querying with natu-
ral language, tabulation significantly enhances per-
formance, validating its effectiveness in MURRE.
The prompt without tabulation is presented in Ap-
pendix B.

The Effectiveness of Early Stop To verify the
effectiveness of early stop in MURRE, we compare
the results without using this mechanism, where the
model does not generate the special early stop mark.
The performance without the early stop shows a
significant decline, demonstrating that its inclusion
in MURRE is crucial for maintaining performance.

4.4 Analysis
In the analysis experiments, we use k = 5 as the
evaluation metric, with detailed explanations in Ap-
pendix I. Additionally, we discuss the efficiency of

87.0%

14.9%

Similar Candidate (80)

Semantic Gap (14)

Figure 3: The proportion of performance improvements
achieved by MURRE in addressing various limitations,
compared to Single-hop. The numbers in parentheses in
the legend represent the number of improved examples.

MURRE in Appendix J, the reasons we use the orig-
inal user question at the first hop in Appendix K,
and the impact of SQL hardness in Appendix L.

4.5 Why MURRE improve compared with
Single-hop method?

To explore why MURRE enhances retrieval perfor-
mance, we analyze its improvement compared with
Single-hop in Figure 3. We observe that: (i) Simi-
lar Candidate means that many irrelevant candidate
tables are similar to the question. MURRE allevi-
ates the limitation by removing the retrieved infor-
mation, allowing the model to focus on retrieving
tables not yet retrieved. (ii) Semantic Gap refers
to the semantic distinction between the natural lan-
guage question and the relevant tables. MURRE

tabulates the question concerning the retrieved in-
formation, aligning the question more closely with
tables in terms of domain and vocabulary, thus nar-
rowing the semantic gap (Martino et al., 2023; Li

5795

1 2 3 4 5 6 7 8
55

60

65

70

75

80

Beam size

C
om

pl
et

e
re

ca
ll

k = 3

k = 5

Figure 4: The complete recall with different beam sizes
on SpiderUnion with SGPT-125M.

Max Hop #Table
1 2 3 ≥ 4 All

1 73.7 59.8 25.6 50.0 66.0
2 73.2 77.6 58.1 50.0 73.4
3 74.2 78.0 58.1 50.0 74.2
4 74.2 78.0 58.1 50.0 74.2

Table 5: Complete recall k = 5 of MURRE with varying
max hops. SpiderUnion is divided based on the number
of relevant tables per question (denoted as #Table). All
represents the entire SpiderUnion dataset. The best
results for each #table division are annotated in bold.

et al., 2024). Detailed examples illustrating the ad-
vantages of MURRE are provided in Appendix M,
with the statistical criteria in Appendix N.

4.5.1 How Does Beam Size Affect the
Performance?

To observe the impact of different beam sizes on
the retrieval performance, we compare the perfor-
mance of MURRE with different beam sizes, as
shown in Figure 4. (i) When MURRE does not em-
ploy beam search, i.e., with a beam size of 1, per-
formance degrades rapidly, suggesting that beam
search mitigates the effects of error cascade. (ii) As
the beam size increases, complete recall improves
significantly until a beam size of 5, after which per-
formance either plateaus or declines. This indicates
that while employing beam search enhances perfor-
mance, a beam size ≤ 5 introduces too many irrel-
evant tables, increasing computational cost without
further performance improvement.

4.5.2 How Does the Number of Hops Affect
the Performance?

To verify the effectiveness of multi-hop retrieval in
MURRE, we compare the performance with vary-
ing the number of max hops, as shown in Table 5.

1 2 3
0

2

4

6

8

10 9.3

5.29 5.28

Max Hop

A
ve

ra
ge

R
an

k

1st 2nd 3rd
0

20

40

60

80

100
100

57.1

0.46

Hop

Pr
op

or
tio

n

Figure 5: The left part is the average rank of relevant
tables with different numbers of max hops on the Spi-
derUnion using MURRE. The right part is the proportion
of questions that are not early stopped with different
hops on the SpiderUnion using MURRE.

The results indicate: (i) MURRE performs opti-
mally when the number of max hop is greater than
or equal to the number of required tables. (ii) For
questions requiring 1 or 2 tables, the best perfor-
mance is achieved at a max hop of 3. Since MURRE

can enhance performance for the questions that re-
trieve irrelevant tables by guiding to obtain unre-
trieved relevant tables in subsequent hops. (iii) For
questions requiring 1 table, performance slightly
decreases because removing retrieved information
from such questions could easily introduce errors.
(iv) The performance of requiring ≥ 4 tables re-
mains unchanged because improving complete re-
call k = 5 requires all relevant tables included in
the top 5 retrieved, which is challenging.

4.5.3 Can MURRE Reduce the Average Rank
of Relevant Tables?

To verify MURRE can remove the retrieved infor-
mation from the question and retrieve relevant ta-
bles that are not similar to previously retrieved
tables, we calculate the average rank of relevant
tables at different maximum hops, as shown in
the left part of Figure 5. The figure presents that:
(i) MURRE significantly enhances the average rank
of relevant tables, with the most notable improve-
ment occurring at a maximum hop of 2. This is
because most questions in SpiderUnion require 1
or 2 tables (see Table 1), requiring two hops to ob-
tain unretrieved relevant tables. (ii) Conversely, the
improvement at a maximum hop of 3 is weak, as
only a small number of questions require ≥ 3 ta-
bles but also because, and most questions complete
retrieval before the third hop.

As illustrated in the right part of Figure 5, the
proportion of retrieving at different hops in MURRE

closely matches the distribution of the number of
relevant tables in Table 1. We set the maximum
hop to 3 also because most user questions stop
retrieving in the third hop.

5796

1st 2nd 3rd
0

20

40

60

80

100

0.0
10.4 11.1

53.3

79.2 78.2

100.0 97.1 98.0

Hop

r@
5

r@5 = 0 0 < r@5 < 1 r@5 = 1

Figure 6: The r@5 during hops, categorizing Spi-
derUnion according to the r@5 in the first hop which
falls into different intervals.

4.5.4 How Does the Previous Errors Affect
Subsequent Performance?

To analyze the error cascades in MURRE, we di-
vide questions based on first-hop results: r@5 = 0,
0 < r@5 < 1, and r@5 = 1, and compare perfor-
mance across hops, as shown in Figure 6. The error
cascades in MURRE are minimal and significantly
compensated by the performance improvements.

We observe that: (i) For questions whose r@5 =
0 in the first hop, all the top 5 tables retrieved are
irrelevant. MURRE improves performance by re-
moving retrieved information from the questions,
thereby eliminating interference from irrelevant ta-
bles. (ii) For questions with 0 < r@5 < 1 in
the first hop, some of the top 5 tables are irrele-
vant. MURRE significantly enhances performance
by removing the retrieved information from the
user question and focusing on unretrieved informa-
tion. Performance in the third hop slightly declines
mainly because most questions in SpiderUnion in-
volve ≤ 2 relevant tables, and additional hops may
introduce errors. (iii) For questions whose r@5 = 1
in the first hop, performance in subsequent hops is
slightly reduced as all relevant tables are retrieved,
causing subsequent hops to introduce minor errors.

5 Related Work

5.1 Text-to-SQL

The text-to-SQL task aims to convert user questions
into SQL queries, facilitating efficient database
access (Qin et al., 2022). LLM-based methods
have become mainstream in text-to-SQL due to
their superior performance with minimal annotated
data (Li et al., 2023a; Gao et al., 2023a). For ex-

ample, Li and Xie (2024) propose using LLMs
to predict execution results of test cases, deter-
mining the correctness of candidates SQL queries.
However, most previous methods do not focus on
open-domain text-to-SQL, and exist a gap with real-
world applications. Therefore, CRUSH (Kothyari
et al., 2023) uses LLMs to guess potentially rele-
vant tables for retrieval. DBCopilot (Wang et al.,
2024) trains a schema router to identify relevant
tables. Chen et al. (2024b) propose a re-ranking
relevance method by fine-tuning DTR models.

However, existing methods are constrained by:
(i) single-hop retrieval; (ii) requiring fine-tuning,
which is resource-intensive and domain-specific.
To solve these problems, we propose a multi-hop ta-
ble retrieval method for open-domain text-to-SQL.

5.2 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) denotes
retrieving information in extra knowledge bases
to support accurate and reliable LLM generation
(Chen et al., 2024a). Existing RAG works employ
either single-hop retrieval (Ma et al., 2023; Zheng
et al., 2024) or multi-hop retrieval, where questions
in each hop can be generated in two ways (Gao
et al., 2023b): (i) splicing the question with the
current and previous retrieval results (Shao et al.,
2023; Jeong et al., 2024), or (ii) using LLMs to in-
tegrate the retrieved results into the question (Press
et al., 2023; Trivedi et al., 2023; Li et al., 2023c).

To enhance retrieval in open-domain text-to-
SQL, we adopt multi-hop retrieval. However, pre-
vious methods are unsuitable for this task, because
adding retrieved tables to the question could lead to
the retrieval of similar yet irrelevant tables, unlike
other tasks, where questions require supplementary.
Therefore, we remove retrieved information from
the question for next-hop retrieval.

6 Conclusion

In the paper, we propose MURRE to address the
challenge that multi-hop retrieval in other open-
domain tasks cannot be directly applied to open-
domain text-to-SQL. Compared with previous
methods, MURRE removes the retrieved informa-
tion from the question to ensure the retrieved tables
are relevant to the question. Experimental results
demonstrate the effectiveness of MURRE on two
open-domain text-to-SQL datasets. Our method
achieves new SOTA results compared to previous
methods, with an average of 5.7% improvement.

5797

Limitations

We discuss the limitations of our work from the
following two aspects. (i) Considering the applica-
bility, the multi-turn text-to-SQL task is common
in real scenarios (Yu et al., 2019a,b), while we do
not discuss the solutions of open-domain multi-turn
text-to-SQL. We leave improving our method to
apply to multi-turn text-to-SQL for future work.
(ii) From the performance perspective, our method
does not consider the performance improvement
brought by the text-to-SQL feedback (Trivedi et al.,
2023; Yu et al., 2023). We leave the retrieval recall
improvement leveraging the results of text-to-SQL
for future work. handles ambiguous entities or syn-
onyms within the natural language questions or
database schemas. Although our method achieves
significant improvements, future work can improve
our method from the aspects of applicability and
recall further.

Ethics Statement

Every dataset and model used in the paper is ac-
cessible to the public, and our application of them
adheres to their respective licenses and conditions.

Acknowledgment

We gratefully acknowledge the support of the Na-
tional Natural Science Foundation of China (NSFC)
via grant 62236004, 62206078, 62441603 and
62476073.

References
Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.

2024a. Benchmarking large language models
in retrieval-augmented generation. Proceedings
of the AAAI Conference on Artificial Intelligence,
38(16):17754–17762.

Peter Baile Chen, Yi Zhang, and Dan Roth. 2024b. Is ta-
ble retrieval a solved problem? exploring join-aware
multi-table retrieval. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2687–
2699, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Longxu Dou, Yan Gao, Mingyang Pan, Dingzirui Wang,
Wanxiang Che, Jian-Guang Lou, and Dechen Zhan.
2023. Unisar: A unified structure-aware autoregres-
sive language model for text-to-sql semantic parsing.
International Journal of Machine Learning and Cy-
bernetics, 14(12):4361–4376.

Yair Feldman and Ran El-Yaniv. 2019. Multi-hop para-
graph retrieval for open-domain question answering.

In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 2296–
2309, Florence, Italy. Association for Computational
Linguistics.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023a.
Text-to-sql empowered by large language models: A
benchmark evaluation. ArXiv, abs/2308.15363.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2023b. Retrieval-
augmented generation for large language models: A
survey. ArXiv, abs/2312.10997.

Kazuma Hashimoto, Iftekhar Naim, and Karthik Ra-
man. 2024. How does beam search improve span-
level confidence estimation in generative sequence
labeling? In Proceedings of the 1st Workshop on
Uncertainty-Aware NLP (UncertaiNLP 2024), pages
62–69, St Julians, Malta. Association for Computa-
tional Linguistics.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong Park. 2024. Adaptive-rag: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. In NAACL.

Chris Kamphuis, Arjen P. de Vries, Leonid Boytsov,
and Jimmy J. Lin. 2020. Which bm25 do you mean?
a large-scale reproducibility study of scoring variants.
Advances in Information Retrieval, 12036:28 – 34.

Kezhi Kong, Jiani Zhang, Zhengyuan Shen, Balasub-
ramaniam Srinivasan, Chuan Lei, Christos Falout-
sos, Huzefa Rangwala, and George Karypis. 2024.
Opentab: Advancing large language models as open-
domain table reasoners. In The Twelfth International
Conference on Learning Representations.

Mayank Kothyari, Dhruva Dhingra, Sunita Sarawagi,
and Soumen Chakrabarti. 2023. CRUSH4SQL:
Collective retrieval using schema hallucination for
Text2SQL. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing. Association for Computational Linguistics.

Hyunji Lee, Sohee Yang, Hanseok Oh, and Minjoon
Seo. 2022. Generative multi-hop retrieval. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing. Association for
Computational Linguistics.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Resdsql: decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of
the Thirty-Seventh AAAI Conference on Artificial In-
telligence and Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence and Thirteenth
Symposium on Educational Advances in Artificial
Intelligence. AAAI Press.

Jiarui Li, Ye Yuan, and Zehua Zhang. 2024. Enhancing
llm factual accuracy with rag to counter hallucina-
tions: A case study on domain-specific queries in pri-
vate knowledge-bases. Preprint, arXiv:2403.10446.

https://doi.org/10.1609/aaai.v38i16.29728
https://doi.org/10.1609/aaai.v38i16.29728
https://aclanthology.org/2024.acl-long.148
https://aclanthology.org/2024.acl-long.148
https://aclanthology.org/2024.acl-long.148
https://doi.org/10.18653/v1/P19-1222
https://doi.org/10.18653/v1/P19-1222
https://api.semanticscholar.org/CorpusID:261276437
https://api.semanticscholar.org/CorpusID:261276437
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://aclanthology.org/2024.uncertainlp-1.6
https://aclanthology.org/2024.uncertainlp-1.6
https://aclanthology.org/2024.uncertainlp-1.6
https://arxiv.org/abs/2403.14403
https://arxiv.org/abs/2403.14403
https://arxiv.org/abs/2403.14403
https://api.semanticscholar.org/CorpusID:210837588
https://api.semanticscholar.org/CorpusID:210837588
https://openreview.net/forum?id=Qa0ULgosc9
https://openreview.net/forum?id=Qa0ULgosc9
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2022.emnlp-main.92
https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1609/aaai.v37i11.26535
https://arxiv.org/abs/2403.10446
https://arxiv.org/abs/2403.10446
https://arxiv.org/abs/2403.10446
https://arxiv.org/abs/2403.10446

5798

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-
liang Li, Kevin Chang, Fei Huang, Reynold Cheng,
and Yongbin Li. 2023b. Can LLM already serve as
a database interface? a BIg bench for large-scale
database grounded text-to-SQLs. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Xiaonan Li, Changtai Zhu, Linyang Li, Zhangyue
Yin, Tianxiang Sun, and Xipeng Qiu. 2023c. Lla-
trieval: Llm-verified retrieval for verifiable genera-
tion. ArXiv, abs/2311.07838.

Zhenwen Li and Tao Xie. 2024. Using llm to se-
lect the right sql query from candidates. Preprint,
arXiv:2401.02115.

Qian Liu, Dejian Yang, Jiahui Zhang, Jiaqi Guo, Bin
Zhou, and Jian-Guang Lou. 2021. Awakening la-
tent grounding from pretrained language models for
semantic parsing. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 1174–1189, Online. Association for Computa-
tional Linguistics.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting in retrieval-
augmented large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5303–5315, Singa-
pore. Association for Computational Linguistics.

Ariana Martino, Michael Iannelli, and Coleen Truong.
2023. Knowledge injection to counter large language
model (llm) hallucination. In The Semantic Web:
ESWC 2023 Satellite Events, pages 182–185, Cham.
Springer Nature Switzerland.

Niklas Muennighoff. 2022. Sgpt: Gpt sentence embed-
dings for semantic search. ArXiv, abs/2202.08904.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. MTEB: Massive text embedding
benchmark. In Proceedings of the 17th Conference of
the European Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah Smith, and Mike Lewis. 2023. Measuring and
narrowing the compositionality gap in language mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2023. Association for Computa-
tional Linguistics.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022.
A survey on text-to-sql parsing: Concepts, methods,
and future directions. ArXiv, abs/2208.13629.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. En-
hancing retrieval-augmented large language models
with iterative retrieval-generation synergy. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023. Association for Computational
Linguistics.

Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang,
and Zhi Yang. 2024. A survey on employing large
language models for text-to-sql tasks. Preprint,
arXiv:2407.15186.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2023. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics.

Shuai Wang, Shengyao Zhuang, and Guido Zuccon.
2021. Bert-based dense retrievers require interpo-
lation with bm25 for effective passage retrieval. In
Proceedings of the 2021 ACM SIGIR International
Conference on Theory of Information Retrieval, IC-
TIR ’21. Association for Computing Machinery.

Tianshu Wang, Hongyu Lin, Xianpei Han, Le Sun, Xi-
aoyang Chen, Hao Wang, and Zhenyu Zeng. 2024.
Dbcopilot: Scaling natural language querying to mas-
sive databases. Preprint, arXiv:2312.03463.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao,
Min-Yen Kan, Junxian He, and Qizhe Xie. 2023.
Self-evaluation guided beam search for reasoning.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Wenhan Xiong, Xiang Li, Srini Iyer, Jingfei Du, Patrick
Lewis, William Yang Wang, Yashar Mehdad, Scott
Yih, Sebastian Riedel, Douwe Kiela, and Barlas
Oguz. 2021. Answering complex open-domain ques-
tions with multi-hop dense retrieval. In International
Conference on Learning Representations.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A

https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://api.semanticscholar.org/CorpusID:265157583
https://api.semanticscholar.org/CorpusID:265157583
https://api.semanticscholar.org/CorpusID:265157583
https://arxiv.org/abs/2401.02115
https://arxiv.org/abs/2401.02115
https://doi.org/10.18653/v1/2021.findings-acl.100
https://doi.org/10.18653/v1/2021.findings-acl.100
https://doi.org/10.18653/v1/2021.findings-acl.100
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://api.semanticscholar.org/CorpusID:246996947
https://api.semanticscholar.org/CorpusID:246996947
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://api.semanticscholar.org/CorpusID:251903737
https://api.semanticscholar.org/CorpusID:251903737
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2407.15186
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.1145/3471158.3472233
https://doi.org/10.1145/3471158.3472233
https://arxiv.org/abs/2312.03463
https://arxiv.org/abs/2312.03463
https://openreview.net/forum?id=Bw82hwg5Q3
https://openreview.net/forum?id=EMHoBG0avc1
https://openreview.net/forum?id=EMHoBG0avc1
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://doi.org/10.18653/v1/D19-1204

5799

conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511–4523, Florence, Italy.
Association for Computational Linguistics.

Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu.
2023. Augmentation-adapted retriever improves gen-
eralization of language models as generic plug-in. In
Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics.

Jiahao Zhang, Haiyang Zhang, Dongmei Zhang, Yong
Liu, and Shen Huang. 2024. End-to-end beam re-
trieval for multi-hop question answering. In 2024
Annual Conference of the North American Chapter
of the Association for Computational Linguistics.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong
Wen. 2023a. Dense text retrieval based on pretrained
language models: A survey. ACM Trans. Inf. Syst.
Just Accepted.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023b. A survey of large language models. Preprint,
arXiv:2303.18223.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,
Heng-Tze Cheng, Ed H. Chi, Quoc V Le, and Denny
Zhou. 2024. Take a step back: Evoking reasoning via
abstraction in large language models. In The Twelfth
International Conference on Learning Representa-
tions.

https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/2023.acl-long.136
https://doi.org/10.18653/v1/2023.acl-long.136
https://arxiv.org/abs/2308.08973
https://arxiv.org/abs/2308.08973
https://doi.org/10.1145/3637870
https://doi.org/10.1145/3637870
https://arxiv.org/abs/2303.18223
https://openreview.net/forum?id=3bq3jsvcQ1
https://openreview.net/forum?id=3bq3jsvcQ1

5800

A How to Address the Scenarios Where
No Relevant Tables Exist

In this section, we discuss how our method can
be improved to solve the situation that there are
no tables that are relevant to the user question in
the given databases (Yu et al., 2019a). According
to the existing open-domain database tables, we
can manually annotate or synthesize relevant and
irrelevant questions to train a discriminator. For
each user question, before retrieving the relevant
tables, we can use the discriminator to determine
whether the question is irrelevant to the existing
tables. And if the question is irrelevant, we can
directly output the feedback, and no longer retrieve
tables and generate SQL (Jeong et al., 2024).

B Prompts for Removal

In the section, we show the prompts we use to
remove retrieved information from the question
on SpiderUnion (see Table 6) and BirdUnion (see
Table 7). We also show the prompt without tabu-
lation which is used in §4.3, as shown in Table 8.
Each table is represented in the form of “database
name.table name(column name, column name, ...)”
following Kothyari et al. (2023). We only show the
first two examples here limited by pages. The code
and the whole prompt will be public in the future.

C Normalization Method

In this section, we show how to normalize the
cosine similarity into a probability distributed be-
tween 0 and 1 present in Equation 3.1. We define
the cosine similarity between the question q vector
and the table ti vector as s, which is distributed
between −1 and 1. And we use Equation C.1 to
normalize the cosine similarity s.

Norm(s) =
s+ 1

2
(C.1)

Moreover, Norm(s) is proportional to s, that is,
the greater the cosine similarity s, the greater
P̂ (ti|q), that is, the greater the probability that the
table ti is retrieved by q.

D Score of the Retrieval Path

In this section, we prove the calculation process
of the retrieval path probability present in §3.5.
First of all, we define the retrieval path Pathh,b

as Equation D.1, where qh,b represents the user

question of hop h and beam b, and tq
h,b

ph represents
the table retrieved by qh,b ranked at ph.

Pathh,b = ((q1,b, tq
1,b

p1), ..., (qh,b, tq
h,b

ph
)) (D.1)

According to the discussion in §3.3, the score of
each retrieval path Pathh,b can be regarded as the
probability that the last table in the path tq

h,b

ph is
retrieved in the case of the user question at last hop
qh,b. Formally, it can be summarized as:

Score_Path((q1,b, tq
1,b

p1), ..., (qh,b, tq
h,b

ph
))

=P̂ ((q1,b, tq
1,b

p1), ..., (qh,b, tq
h,b

ph
))

=P̂ (tq
h,b

ph
|qh,b) · P̂ ((q1,b, tq

1,b

p1), ..., (qh−1,b, tq
h−1,b

ph−1
))

=...

=

h∏
j=1

P̂ (tq
j,b

pj |q
j,b)

(D.2)
Therefore, we multiply all P̂ on the retrieval path
as the score of the path.

E Table Scoring Algorithm in MURRE

In this section, we detail the table scoring algorithm
(Algorithm 1), which is discussed in §3.5.

F How to Handle Ambiguous Entities or
Synonyms

In this section, we present how our method can
be improved to handle ambiguous entities or syn-
onyms within user questions or database tables.
When scoring the retrieved tables, in the face of
multiple similar tables retrieved due to ambiguous
entities or synonyms, we can additionally consider
the correlation between tables and select tables
with higher relevance scores of other retrieved ta-
bles (Chen et al., 2024b).

G Dataset Details

In this section, we introduce in detail the source
dataset of SpiderUnion and BirdUnion datasets
which we use. Spider (Yu et al., 2018) is a multi-
domain mainstream text-to-SQL dataset that con-
tains 658 questions, with an average of 1.48 tables
per question in the dev-set. Bird (Li et al., 2023b),
as a text-to-SQL dataset, is closer to the actual sce-
nario featuring its larger scale and more difficult
questions. Bird contains 1534 questions, with an
average of 1.92 tables per question in the dev-set.

5801

Given the following SQL tables, your job is to complete the possible left SQL tables given a user’s request.
Return None if no left SQL tables according to the user’s request.

Question: Which models are lighter than 3500 but not built by the ’Ford Motor Company’?
Database: car_1.model list(model id, maker, model)
car_1.cars data(id, mpg, cylinders, edispl, horsepower, weight, accelerate, year)
car_1.car names(make id, model, make)
Completing Tables: car_1.car makers(maker)

Question: Which employee received the biggest bonus? Give me the employee name.
Database: employee_hire_evaluation.evaluation(employee id, year awarded, bonus)
employee_hire_evaluation.employee(employee id, name, age, city)
Completing Tables: None
...

Table 6: The prompt we use for the SpiderUnion with gpt-3.5-turbo.

Given the following SQL tables, your job is to complete the possible left SQL tables given a user’s request.
Return None if no left SQL tables according to the user’s request.

Question: What was the growth rate of the total amount of loans across all accounts for a male client between 1996 and 1997?
Database: financial.client(client_id, gender, birth_date, location of branch)
financial.loan(loan_id, account_id, date, amount, duration, monthly payments, status)
Completing Tables: financial.account(account id, location of branch, frequency, date)
financial.disp(disposition id, client_id, account_id, type)

Question: How many members did attend the event ’Community Theater’ in 2019?
Database: student_club.Attendance(link to event, link to member)
Completing Tables: student_club.Event(event name, event date)
...

Table 7: The prompt we use for the BirdUnion with gpt-3.5-turbo.

H Model Details

In the section, we introduce the models SGPT
and gpt-3.5-turbo used in our experiments.
SGPT (Muennighoff, 2022) is the popular retrieval
Single-hop, employing a decoder-only architecture
and showing excellent performance on tasks such
as sentence matching. gpt-3.5-turbo (Zhao et al.,
2023b) has undergone instruction fine-tuning and
human alignment and has superior in-context learn-
ing and inference capability.

I The Evaluation Metric in Analysis
Experiments

In this section, we explain the reasons for using
complete recall k = 5 as the evaluation metric in
the analysis experiments. The increasing trend of
the performance in the text-to-SQL becomes slow
or even drops when inputting retrieved tables more
than 5 as shown in Table 3, and considering that
SpiderUnion and BirdUnion require up to 4 tables
for each question, so in the following analysis, we
are mainly concerned with the performance of the
top 5 retrieval results. Furthermore, complete recall
k = 5 is a more strict indicator than recall@5, so

we mainly utilize complete recall k = 5 as the
evaluation metric in analysis experiments.

J Discussion on Efficiency

In this section, we discuss the comparison of effi-
ciency between MURRE and CRUSH. Because of
each user question, CRUSH needs to use LLM to
predict the relevant tables once, and then retrieve all
the tables according to the LLM prediction once.
So the time complexity of CRUSH is shown in
Equation J.1, where n is the number of user ques-
tions.

T (CRUSH) = O(2 · n)
= O(n)

(J.1)

Suppose that the number of hop is H and the
beam size is B in MURRE. For each user question,
MURRE needs to retrieve all the tables first, and
input LLM for removal according to the retrieved
top B tables. In the subsequent hops, each hop
needs to retrieve B times and remove information
B times with LLM. Therefore, the time complexity

5802

Remove information appearing in the database from the question .
Return None if the database is totally correspond to the question .

Question: Which models are lighter than 3500 but not built by the ’Ford Motor Company’?
Database: car_1.model list(model id, maker, model)
car_1.cars data(id, mpg, cylinders, edispl, horsepower, weight, accelerate, year)
car_1.car names(make id, model, make)
Rewritten Question: What is the car makers of the ’Ford Motor Company’?

Question: Which employee received the biggest bonus? Give me the employee name.
Database: employee_hire_evaluation.evaluation(employee id, year awarded, bonus)
employee_hire_evaluation.employee(employee id, name, age, city)
Rewritten Question: None
...

Table 8: The prompt we use for the SpiderUnion with gpt-3.5-turbo without tabulation.

Algorithm 1 The table scoring algorithm in MURRE

Input: The similarity corresponding to each table t in each hop h: all_paths =
[[(table11, score11), . . . , (table1H , score1H)], . . . , [(tableP1, scoreP1), . . . , (tablePH ,scorePH)]],
the number of max hops H , the number of all paths P .
Output: The scores of each table t

1: Initialization : table_score← {}
2: for each_path in all_paths do
3: score← 1 ▷ Initialize the score
4: for example in each_path do
5: score = score× example [1] ▷ Calculate the score of the path
6: end for
7: for example in each_path do
8: table_score [example [0]]← max(score, table_score [example [0]])

▷ Update the table score with the max path score
9: end for

10: end for
11: return table_score

of our method is present in Equation J.2.

T (MURRE) = O((1 +B + (H − 1) ·B · 2) · n)
= O(B ·H · 2 · n)
= O((B ·H) · n)

(J.2)

It can be found that although our method has
significantly improved the performance compared
with CRUSH, our method is less efficient. How-
ever, existing work shows that using reasoning ef-
ficiency for improving the reasoning performance
has a wide range of practical application value (Yao
et al., 2023; Xie et al., 2023; Press et al., 2023;
Hashimoto et al., 2024). Therefore, in practical
applications, how to choose B and H in MURRE

to achieve a balance between retrieval efficiency
and effect should be carefully considered.

K Why Retrieve with the Original
Question at the First Hop

To demonstrate the effectiveness of MURRE which
employs the original user question at the first hop
rather than the tabulation question, we conduct ex-
periments, with the results presented in Table 9.
The results show that starting with tabulation ques-
tion in table form reduces the retrieval performance,
thereby validating the effectiveness of MURRE.
eThe decline in performance is attributed to the
absence of the retrieved table to provide domain-
constraining information, which increases errors
when the question is tabulated at the first hop.

L Impact of SQL Hardness

In this section, we show the performance of
MURRE on SQL of different hardness levels. We
categorize the SQL and its corresponding question

5803

Dataset Method k = 3 k = 5 k = 10 k = 20 r@3 r@5 r@10 r@20

BIRDUunion MURRE 69.1 80.1 88.7 92.7 81.0 87.6 92.6 95.4
w tabulation at the first hop 52.2 63.6 78.4 88.1 70.0 78.0 87.5 93.0

SpiderUnion MURRE 86.0 93.5 96.7 97.3 89.3 94.3 96.8 97.5
w tabulation at the first hop 69.3 80.2 88.3 92.2 76.1 85.1 91.1 94.5

Table 9: The comparison between MURRE and the method of tabulationg the question at the first hop, with using
SGPT-5.8B as the embedding and using gpt-3.5-turbo to tabulate.

Method Easy Medium Hard Extra All

Single-hop 70.5 71.1 55.8 51.3 66.0
MURRE 71.8 76.0 73.3 73.1 74.2

Table 10: Complete recall k = 5 of MURRE compared
with the Single-hop in different SQL hardness levels on
SpiderUnion. Extra denotes extra hard. All refers to
the performance of the whole SpiderUnion dataset. The
best results of different hardness are annotated in bold.

Question
What is the most populace city that speaks English?

Tables
city_record.city(city id, city, hanyu pinyin, regional population, …)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, …)
…

Retrieved Tables (top 3)
CRUSH: (r@3 = 50.0)
farm.city(city id, official name, status, area km 2, population, …)
world_1.city(id, name, country code, district, population)
geo.city(city name, population, country name, state name)

MURRE: (r@3 = 100.0)
world_1.city(id, name, country code, district, population)
world_1.countrylanguage(countrycode, language, is official, …)
city_record.city(city id, city, hanyu pinyin, regional population, …)

Figure 7: A case study comparing MURRE with CRUSH.
Green indicates relevant tables, while red indicates ir-
relevant ones. Each table is represented as “database
name.table name(column names)”. r denotes recall.

according to the SQL hardness criteria (Yu et al.,
2018) and calculate the retrieval performance of
different hardness levels, as shown in Table 10.
MURRE improves performance more significantly
for more difficult SQL questions. Because more
difficult SQL often requires more tables to operate
and query, the Single-hop is challenging to retrieve
all relevant tables merely in a single hop, while
our method can retrieve more relevant tables with
multi-hop retrieval by removing the retrieved infor-
mation from the question at each hop.

M Case Study

In this section, we compare our methods with other
retrieval methods through specific examples to il-
lustrate the advantages of our methods. Firstly,
we demonstrate a case study with MURRE com-
pared with CRUSH, as shown in Figure 7. We
can see that CRUSH fails to retrieve the table
"world_1.countrylanguage" within the top 3 results
due to its single-hop retrieval limitation, as the re-
trieval of table "world_1.countrylanguage" relies
on the table "world_1.city". In contrast, MURRE

employs multi-hop retrieval with a beam size of
3, increasing the probability of selecting relevant
tables at each hop. Additionally, we eliminate
the retrieved information in "world_1.city" from
the question, which aids the model in retrieving
"world_1.countrylanguage" that was previously
missed.

We also present one example in detail comparing
MURRE with the Single-hop, without beam search
and without Removal respectively in Table 11, Ta-
ble 12, and Table 13. We set the beam_size to 3,
max hop to 3, and MURRE stops early at the second
hop.

As shown in Table 11, the Single-
hop retrieval fails to retrieve the table
"world_1.countrylanguage" at top 3 limited
by the single-hop retrieval since the retrieval of
table "world_1.countrylanguage" relies on the
table "world_1.city". As displayed in Table 12,
MURRE without beam search method is affected by
error cascades, because the table city_record.city
with the highest retrieval ranking in hop 1 is
irrelevant to the question. Removing based on the
irrelevant city_record.city table lead to retrieval
errors in subsequent hops. As present in Table 13,
MURRE without Removal adds the retrieved tables
directly to the user question, so that the subsequent
retrieved tables are similar to the currently
retrieved tables. For example, the irrelevant table
"city_record.hosting city" retrieved in hop 2 is
similar to the table "city_record.city" retrieved in

5804

Question
What is the most populace city that speaks English?

Single-hop (r@3 = 50.0)
Retrieved Tables (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, town city, zip postcode, state province county, country)

MURRE (r@3 = 100.0)
Retrieved Tables, hop = 1 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, town city, zip postcode, state province county, country)
Removal Questions
city_record.language(city id, language, percentage)
world_1.countrylanguage(countrycode, language, is official, percentage)
e_government.languages(language id, language name, language code, population)
Retrieved Tables, hop = 2 (top 3)
world_1.city(id, name, country code, district, population))
world_1.countrylanguage(countrycode, language, is official, percentage)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
Removal Questions
None
None
None
(Early Stop)

Table 11: Detailed case study comparing MURRE with Single-hop. The green means the relevant table, while the
red means irrelevant. Each table is expressed in the form of “database name.tabel name(column names)”. r denotes
recall.

hop 2, which are both about "city" information, but
ignore the information of "language". Our method
focuses on retrieving tables about "language" by
removing the information "world_1.city" in the
retrieved tables, and successfully retrieves two
relevant tables.

N Statistical Criteria of Limitations

To facilitate statistics on the number of results re-
flected in the two limitations of Similar Candidate
and Semantic Gap, we set the following rules.

For the limitation of Similar Candidate, the sta-
tistical standard is that if the irrelevant table that
is incorrectly retrieved has the same token as the
question, it is considered a Similar Candidate er-
ror. If the same token appears in the schema as
in the question, the cosine similarity between the
table and the question after embedding is also high,
making it challenging to identify the relevant tables
(Kamphuis et al., 2020; Wang et al., 2021; Li et al.,
2023c; Kong et al., 2024; Wang et al., 2024).

For the limitation of Semantic Gap, the statistical
standard is that if the relevant table that has not
been retrieved does not have the same token as the
question, it is considered a Semantic Gap error. If
the question does not overlap with any token in

the relevant tables, the retrieval similarity is also
low, representing the semantic gap to some extent
(Reimers and Gurevych, 2019).

5805

Question
What is the most populace city that speaks English?

MURRE without beam search (r@3 = 0.0)
Retrieved Tables, hop = 1 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, town city, zip postcode, state province county, country)
Removal Question
city_record.language(city id, language, percentage)
Retrieved Tables, hop = 2 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
city_record.hosting city(year, match id, host city)
city_record.match(match id, date, venue, score, result, competition)
Removal Question
None
(Early Stop)

MURRE (r@3 = 100.0)
Retrieved Tables, hop = 1 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, town city, zip postcode, state province county, country)
Removal Questions
city_record.language(city id, language, percentage)
world_1.countrylanguage(countrycode, language, is official, percentage)
e_government.languages(language id, language name, language code, population)
Retrieved Tables, hop = 2 (top 3)
world_1.city(id, name, country code, district, population))
world_1.countrylanguage(countrycode, language, is official, percentage)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
Removal Questions
None
None
None
(Early Stop)

Table 12: Detailed case study comparing MURRE with MURRE without beam search. The green means the relevant
table, while the red means irrelevant. Each table is expressed in the form of “database name.tabel name(column
names)”. r denotes recall.

5806

Question
What is the most populace city that speaks English?

MURRE without Removal (r@3 = 50.0)
Retrieved Tables, hop = 1 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, town city, zip postcode, state province county, country)
Spliced Questions
What is the most populace city that speaks English?; city_record.city(city id, city, hanzi, hanyu pinyin,
regional population, gdp)
What is the most populace city that speaks English?; world_1.city(id, name, country code, district, population)
What is the most populace city that speaks English?; e_government.addresses(address id, line 1 number building,
town city, zip postcode, state province county, country)
Retrieved Tables, hop = 2 (top 3)
city_record.hosting city(year, match id, host city)
county_public_safety.city(city id, county id, name, white, black, amerindian, asian, multiracial, hispanic)
world_1.country(code, name, continent, region, surface area, indepdent year, population, life expectancy, gnp, gnp old,
local name, ...)
Spliced Questions
What is the most populace city that speaks English?; world_1.city(id, name, country code, district, population);
city_record.hosting city(year, match id, host city)
What is the most populace city that speaks English?; world_1.city(id, name, country code, district, population);
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
What is the most populace city that speaks English?; city_record.city(city id, city, hanzi, hanyu pinyin, regional population,
gdp);
city_record.hosting city(year, match id, host city)
Retrieved Tables, hop = 3 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
city_record.hosting city(year, match id, host city)
world_1.city(id, name, country code, district, population)

MURRE (r@3 = 100.0)
Retrieved Tables, hop = 1 (top 3)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
world_1.city(id, name, country code, district, population)
e_government.addresses(address id, line 1 number building, town city, zip postcode, state province county, country)
Removal Questions
city_record.language(city id, language, percentage)
world_1.countrylanguage(countrycode, language, is official, percentage)
e_government.languages(language id, language name, language code, population)
Retrieved Tables, hop = 2 (top 3)
world_1.city(id, name, country code, district, population))
world_1.countrylanguage(countrycode, language, is official, percentage)
city_record.city(city id, city, hanzi, hanyu pinyin, regional population, gdp)
Removal Questions
None
None
None
(Early Stop)

Table 13: Detailed case study comparing MURRE with MURRE without Removal. The green means the relevant
table, while the red means irrelevant. Each table is expressed in the form of “database name.tabel name(column
names)”. r denotes recall.

	Introduction
	Analysis
	Multi-Hop Retrieval of Open-Domain QA
	Previous Multi-Hop Retrieval is Unsuitable for Open-Domain Text-to-SQL

	Methodology
	Task Definition
	Overview
	Retrieval
	Removal
	Score

	Experiments
	Experiment Setup
	Main Result
	Ablation Studies
	Analysis
	Why Murre improve compared with Single-hop method?
	How Does Beam Size Affect the Performance?
	How Does the Number of Hops Affect the Performance?
	Can Murre Reduce the Average Rank of Relevant Tables?
	How Does the Previous Errors Affect Subsequent Performance?

	Related Work
	Text-to-SQL
	Retrieval-Augmented Generation

	Conclusion
	How to Address the Scenarios Where No Relevant Tables Exist
	Prompts for Removal
	Normalization Method
	Score of the Retrieval Path
	Table Scoring Algorithm in Murre
	How to Handle Ambiguous Entities or Synonyms
	Dataset Details
	Model Details
	The Evaluation Metric in Analysis Experiments
	Discussion on Efficiency
	Why Retrieve with the Original Question at the First Hop
	Impact of SQL Hardness
	Case Study
	Statistical Criteria of Limitations

