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Abstract

The significant of Computerized Adaptive Test-
ing (CAT) is self-evident in contemporary In-
telligent Tutoring Systems (ITSs) which aims
to recommend suitable questions for students
based on their knowledge state. In recent years,
Graph Neural Networks (GNNs) and Reinforce-
ment Learning (RL) methods have been increas-
ingly applied to CAT. While these approaches
have achieved empirical success, they still face
limitations, such as inadequate handling of con-
cept relevance when multiple concepts are in-
volved and incomplete evaluation metrics. To
address these issues, we propose a Knowledge
Graph Reasoning-Based Model for CAT (KG-
CAT), which leverages the reasoning power of
knowledge graphs (KGs) to capture the seman-
tic and relational information between concepts
and questions while focusing on reducing the
noise caused by concepts with low relevance
by utilizing mutual information. Additionally,
a multi-objective reinforcement learning frame-
work is employed to incorporate multiple evalu-
ation objectives, further refining question selec-
tion and improving the overall effectiveness of
CAT. Empirical evaluations conducted on three
authentic educational datasets demonstrate that
the proposed model outperforms existing meth-
ods in both accuracy and interpretability.

1 Introduction

In recent years, with the rapid development of com-
puter technology, ITSs have been widely applied
in the field of education. Compared with the tra-
ditional paper test, CAT has become a common
means of modern examination with its remark-
able advantages of automation and personalization
(Weiss and Kingsbury, 1984; Chen et al., 2015). As
illustrated in Figure 1(a), CAT primarily consists of
two main components: Cognitive Diagnosis Model
(CDM) and Selection Algorithm (SA). CDM uti-
lizes statistical or machine learning methods to
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estimate the current knowledge level of students
based on their historical interaction data. The most
commonly used CDMs include Item Response The-
ory (IRT) (Embretson and Reise, 2013) and Neural
Cognitive Diagnosis (NCD) (Wang et al., 2020a),
which are based on psychology and deep learning
respectively.
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Figure 1: (a) The components of CAT. (b) An example
of the relationship between questions and concepts.

In recent years, GNNs (Scarselli et al., 2009)
have demonstrated exceptional performance across
various fields, leading to their application in CAT
as well. (Nakagawa et al., 2019) represented con-
cepts and their relationships using nodes and edges,
but failed to account for distinctions between indi-
vidual questions associated with the same concept.
(Yang et al., 2021) and (Wang et al., 2023) incor-
porated questions into the graph structure by using
nodes to represent both the concepts and the ques-
tions, with an edge connecting each question to
its corresponding concept and successfully solved
the above problem. However, these approaches
overlook the natural distinction between concepts
and questions. Futhermore, existing studies have
failed to consider the potential impact of varying
concept relevance when a question involves mul-
tiple concepts during the training process. The
differing significance of each concept in relation
to the question may influence the overall learn-
ing outcomes, which has not been adequately ad-
dressed in prior work. Figure 1(b) is an example,
q1 contains concept Angle Sum of a Triangle and
Circle Center, q2 contains concepts Angle Sum of
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a Triangle and Pythagorean Theorem, q3 contains
concept Pythagorean Theorem and q4 contains con-
cept Circle Center. When predicting a student’s
probability of correctly answering question q2, it
is essential to leverage the historical response data
from questions related to q2. In this context, it is
more appropriate to prioritize information from q3
over q1, as q1 involves additional concepts, such
as Circle, which may introduce noise into the pre-
diction process. Meanwhile, previous studies (Bi
et al., 2020; Zhuang et al., 2022; Wang et al., 2023)
have only focused on limited objectives, neglecting
the important influence of question difficulty and
student similarity.

To address these issues, we propose a model
based on knowledge graph reasoning, which repre-
sents questions as nodes and concepts as edges to
better capture the semantic and relationship infor-
mation between them. To specifically reduce the
noise introduced by irrelevant concepts, we intro-
duce a disentanglement module that utilizes mutual
information. This module enhances the indepen-
dence of various concepts and helps mitigate the
impact of unrelated concepts on the prediction pro-
cess. Furthermore, acknowledging that existing
selection algorithms inadequately consider ques-
tion difficulty and student similarity, we integrate a
multi-objective reinforcement learning framework.
This addition ensures more accurate recommenda-
tions by incorporating these factors into the ques-
tion selection process.

In summary, the main contributions are as fol-
lows:

• We propose a Knowledge Graph Reasoning-
Based Model for Computerized Adaptive Test-
ing (KGCAT) to better capturing the relation-
ships and semantic information between ques-
tions and concepts while focus on introducing
mutual information to disentangle multiple
concepts and reduce the information interfer-
ence of unnecessary neighbors when aggregat-
ing nodes.

• We employ a multi-objective reinforcement
learning framework and incorporate new con-
siderations of question difficulty and student
similarity to optimize the overall performance
of the CAT model.

• We conduct extensive experiments on public
datasets to demonstrate that KGCAT outper-
forms existing methods in terms of accuracy

and interpretability.

2 Related Work

2.1 Computerized Adaptive Testing

In recent years, the improvement of CAT can be
mainly divided into two categories : CDM-based
models (Tong et al., 2022; Yang et al., 2021; Naka-
gawa et al., 2019) and SA-based models (Zhuang
et al., 2022; Wang et al., 2023; Bi et al., 2020;
Ghosh and Lan, 2021). (Yang et al., 2021) and
(Nakagawa et al., 2019) proposed the use of GNNs
to capture the relationships between concepts and
questions, guiding the model’s learning process.
On the other hand, (Tong et al., 2022) suggested
that in addition to the explicit relationships between
questions and concepts, the implicit connections,
derived from students’ responses, can also be lever-
aged to better structure these relationships. In con-
trast to these approaches, our method uses a knowl-
edge graph to represent both concepts and ques-
tions, simultaneously capturing their semantic and
relational information.

For the SA-based approaches, (Bi et al., 2020)
proposed a model-independent framework that con-
siders quality and diversity to support multiple CAT
scenarios. (Zhuang et al., 2022) and (Wang et al.,
2023) transformed CAT into a reinforcement learn-
ing problem and introduces similar metrics to guide
question selection. Building upon the metrics estab-
lished in prior research, we introduce novel evalua-
tion criteria to further guide the question selection
process.

2.2 Knowledge Graph

Knowledge Graphs (KGs) have become widely
adopted in recommendation systems due to their
ability to effectively capture and represent rela-
tionships between entities. Existing KG-based rec-
ommendation models can be broadly categorized
into three categories: embedding-based (Gao et al.,
2022; Cao et al., 2019), path-based (Catherine and
Cohen, 2016; Wang et al., 2019b), and GNN-based
(Wang et al., 2019a; Ai et al., 2018).

The embedding-based methods use KG embed-
ding techniques to construct knowledge graphs.
The path-based methods extract the paths from the
users to the items through the KG entities, and in-
put into RNN and memory network to guide the
recommendation. GNN-based methods use GNN
to learn long-range information through propaga-
tion. For example, (Wang et al., 2019a) explicitly
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modelled and captured high-order relationships be-
tween users and items in the GNN framework and
(Ai et al., 2018) constructed a knowledge graph at
a fine-grained intention level and preserved seman-
tics using relational dependencies. However, the
application of knowledge graphs in CAT scenarios
has not been fully explored. Therefore, our work
will focus on investigating the potential and appli-
cations of knowledge graphs in the CAT context.

3 Method

3.1 The structure of KGCAT
Figure 2 is an overall structure framework of
KGCAT, which mainly includes two modules:
KGSE (Knowledge Graph-Based State Encoder)
and DSMORL (Difficulty and Similarity-Based
Multi-Objective Reinforcement Learning). KGSE
encodes the student state st−1 input at time t into
s̃t and outputs it to DSMORL. DSMORL uses RL
to select the question qt, which will be combined
with the concept ct and response yt at time t+1 as
the input st at the next time.

3.2 KGSE
A question may involve multiple concepts, and
sometimes there is a certain overlap between these
concepts. In order to reduce the coupling between
these concepts, a question should be separated into
independent variables. Therefore, the feature of a
question is projected onto K latent spaces:

qi = {hi,1, hi,2, ..., hi,K}, hi,K ∈ R
dembed

K (1)

where h0i,K = σ(WK •xi) is the initial embedding,
WK is the K-th projection matrix, xi is the feature
vector and σ is the activation function.

Since the information carried by an entity is of-
ten incomplete, it is necessary to aggregate neigh-
bor nodes to learn richer features. However, not
all the information of neighbor nodes need to be
learned, the model should learn the neighbor nodes
related to the node and dilute the irrelevant parts
to learn richer features, so we propose a disentan-
gled knowledge graph aggregation module, which
is divided into two parts : 1) Similarity-Aware Ag-
gregation, 2) Mutual Information-Based Disentan-
glement.

Similarity-Aware Aggregation. In order to es-
timate the importance of each neighbor node in
aggregation, we propose a similarity-aware aggre-
gation strategy. It calculates the similarity of neigh-
bor nodes on each potential spatial component. The

greater the similarity, the more likely there is a con-
nection between the two nodes, so as to determine
whether to aggregate the two nodes. The correla-
tion between nodes and neighbor nodes is estimated
by each potential spatial component:

hl+1
i,k = σ(

∑
(i,c)ϵN̂(u)

αk
(i,j,c)ϕ(h

l
j,k, h

l
c, θc)) (2)

αk
(i,j,c) = softmax((eki,c)

T · ekj,c)

=
exp((eki,c)

T · ekj,c)∑
(j′,r)∈N̂(i) exp((e

k
i,c)

T · ekj,c)

(3)

ϕ(he, hc, θc) = (θc • he)− hr (4)

where hl+1
i,k denotes the representation of qi on the

k-th component after passing through the l-th layer,
θc = diag(wc) represents the projection matrix of
the concept c, eki,c = hi,k ◦ θc denotes the relation-
aware weight of qi on the k-th component, and
N̂(i) denotes the neighbor node of qi and itself.
Similarly, hlc is the representation of concept c after
passing through the l-th layer. hlc is updated with
layer-wise linear transformation with parameter
W l

c :
hl+1
c = W l

c • hlc (5)

By calculating the similarity of neighbor nodes
on K components and aggregating nodes with
large similarity, the output question vector Ẽq =
{hl+1

q,1 , h
l+1
q,2 , ..., h

l+1
q,K} and the concept vector

E ind
c = hl+1

c which is learned from the indirect re-
lationship are obtained. However, there is not only
a relationship between concepts and questions, but
also a connection between concepts. For example,
there may be a prerequisite relationship between
concepts, where concept 1 is the prior knowledge
of concept 2. In order to capture this relationship,
we use a graph attention network:

Edir
c =

∑
c′ϵNc

αc,c′WdirEc′ (6)

αc,c′ = Softmaxc′(attdir([WdirEc,WdirEc′])) (7)

where Ec is the input vector of concept c, c′ ∈
Nc, Nc is the neighbor node set of concept c,
Wdir is a trainable parameter, αc,c′ is the atten-
tion weight, att• is a linear layer with LeakyReLU
activation function and • is a join operation.
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Figure 2: The structure of KGCAT.

To distinguish the different information con-
tained in Edir

c and E ind
c , the attention vector P is

used to calculate the weights of them respectively :

µind = P T
ind • tanh(Wind • E ind

c + bind)

µdir = P T
dir • tanh(Wdir • Edir

c + bdir)
(8)

Finally, the concept vector Ẽc can be defined as :

Ẽc = µindE ind
c + µdirEdir

c (9)

Mutual Information-Based Disentanglement.
Although each question is mapped to K different
concept components, there is still a weak correla-
tion between these components and the relation-
ship between these components is not only linear.
Inspired by (Cheng et al., 2020b) and (Wu et al.,
2021), we propose utilizing mutual information to
achieve disentanglement. Mutual information can
measure the degree of nonlinear dependence be-
tween two random variables. Here, the decoupling
between components is achieved by using the con-
trastive log-ratio upper-bound MI estimator (Cheng
et al., 2020a). Since the conditional probability of
the same question on different conceptual compo-
nents cannot be obtained directly, a simple neural
network Q with variational distribution is proposed
to approximate the real conditional neural network.
The objective function is :

Lmi =
∑
u

∑
v

E(hi,u,hi,v)∼p(hi,u,hi,v)[log qθ(hi,u|hi,v)]

− E(hi,u,hi′,v)∼p(hi,u,hi,v)[log qθ(hi,u|hi′,v)]
(10)

Note that, u ̸= v and Q are trained simulta-
neously to minimize the KL divergence between
p(hi,u|hi,v) and qθ(hi,u|hi,v).

L(hi,u,hi,v) = DKL[p(hi,u|hi,v)||qθ(hi,u, hi,v)] (11)

Here, p(hi,u|hi,v) is a Gaussian distribution and
alternately optimized with Lmi. By using mutual
information to propose the objective function, the
dependence between different components is weak-
ened, so that the relevant information is aggregated
as much as possible when the adjacent nodes are
aggregated, and the influence of irrelevant compo-
nents is reduced.

State Encoder. We define a student’s historical
interaction sequence as s̃i = f(si1, s

i
2, ..., s

i
t−1),

sit−1 = (qit−1, c
i
t−1, y

i
t−1) in reinforcement learn-

ing.
After the origin of the relation-aware question

vector Ẽq and the concept vector Ẽc are obtained
in Similarity-Aware Aggregation, the embedding
vector Wy = R2×d is used to transform the student
’s response xy into a real-valued embedding Ey ∈
Rd :

Ey = xyWy (12)

where xy is the one-hot encoding of response y.
Therefore, et′ at time t′ can be expressed as:

et′ = Ẽ t′
q

⊕
Ẽ t′
c ⊕ E t′

y (13)

where t′ ∈ [1, t− 1], et′ ∈ RD, D = 3d.

Et = [e1, e2, ..., et−1]
T ∈ R(t−1)×D (14)
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Due to the varying amount of information con-
tained in different responses, for example, answer-
ing a question correctly yields more information
than answering a question incorrectly, a self atten-
tion mechanism is introduced here :

Ẽt = Softmax(
(EtW

Q)(EtW
K)

T

√
dk

)(EtW
V ) (15)

where WQ, WK , W V are trainable parameters and√
dk is the scale factor.
After the self-attention mechanism, LayerNorm

and skip-connection are added, and Dropout is used
to avoid overfitting. The self-attention results are
processed using the average pooling layer to ob-
tain the student state s̃t ∈ RD for reinforcement
learning.

3.3 DSMORL
Based on the multi-objective reinforcement learn-
ing framework considering accuracy, diversity and
novelty proposed by (Wang et al., 2023), we add
two other objectives: difficulty and similarity. Then
Markov modeling based on multi-objective rein-
forcement learning is as follows :

max
π

J = max
π

1

n

n∑
i=1

[wT (
T∑

t′=1

γt′r(sit, q
i
t))]

= max
π

Ei∼π[w
T (

T∑
t′=1

γt′r(sit, q
i
t))]

(16)

where n is the number of students, qit is
the question selected according to the selec-
tion algorithm π in the state sit, r(sit, q

i
t) =

[rqua, rdiv, rnov, rdif , rsim] is the reward obtained
by selecting qit and w is a weight vector used to
calculate the importance of different reward com-
ponents. Consideration factors are introduced by
setting the reward values, including rqua ,rdiv and
rnov the same as original MORL, in addition, the
question difficulty rdif and the student similarity
rsim are also introduced here.

Difficulty. It is generally believed that if students
are given many very simple questions, their abil-
ity cannot be improved. If students are given too
many very difficult questions, they may answer
them casually because they are beyond their ability.
Neither of these situations can reflect the true level
of students. So the ability of student i as Di:

Di =
1

|Qi|
∑
q∈Qi

dq , dq =
1

n

n∑
j=1

rq,j (17)

where Qi is the set of questions that student i has
done, dq is the difficulty of question q, the higher
dq is, the more difficult the question is, n is the
number of times that question q is practiced by all
students, and rq,j is the response of student j to
question q. Assuming that the question q is selected
at time t, the difficulty reward is defined as:

rdif =

{
1, if |Di − dq| < xdif

0, otherwise
(18)

where xdif is a threshold set as 0.25 here.

Similarity. Using user similarity to recommend
products for users is a commonly used method in
recommendation systems. Specifically, if the shop-
ping habits of user ui and user uj are similar, ui
is likely to be interested in what uj has purchased,
and the purchase probability is high. This idea can
be used to recommend questions for students who
may be interested in or that he may potentially need
to practice. Here, the jaccard coefficient is used
to measure the similarity between student si and
student sj :

similarity(si, sj) =
|Qsi ∩Qsj |
|Qsi ∪Qsj |

(19)

The candidate similar question set Qi of si is
obtained by all the question sets done by sj whose
similarity with si is higher than xsim :

Qi = (

n⋃
j=1

Qsj )/Qsi (i ̸= j,

similarity(si, sj) > xsim)

(20)

Assuming that the question qt is selected at time
t, the similarity reward is defined as:

rsim =

{
1, if qt ∈ Qi

0, otherwise
(21)

Then, a reward r(sit, q
i
t) = [rqua, rdiv, rnov,

rdif , rsim] is defined, and the weight of each
reward component can be set by the binary vector
w. We uses Actor-Critic as the recommender,
policy network which is a fully connected layer
with the parameter ϕπ as the actor from the
distribution π(qt|st;ϕπ) sampling selection
question and a fully connected layer value network
with a parameter ϕv as a critic to evaluate the state.
Given a state, the critic output vector V (st;ϕπ) =
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[V (st)qua, V (st)div, V (st)nov, V (st)dif , V (st)sim]
is used to predict the expected return. To maximize
the weight sum J in Equation (16), multi-objective
PPO (Schulman et al., 2017) is used here.

The advantage value of qt is defined as the actual
return of a state-action pair minus the predicted
value of this state:

A(st, qt) =
∑
t′=t

γt′−tr(st′, qt′)− V (st) (22)

In order to convert A into a scalar, the weight
vector w is used here, and each component in w
corresponds to the quality, diversity, novelty, diffi-
culty, and similarity objectives. Here, the clipped
surrogate loss is applied to update the action pa-
rameters:

L1 =− Eτ πold
[Min{ π(qt|st)

πold(qt|st)
wTA(st, qt),

Clip(
π(qt|st)

πold(qt|st)
, 1− ϵ, 1 + ϵ)wTA(st, qt)}]

(23)

The critic loss is proposed based on the expecta-
tion that the expected return is as close as possible
to the actual return:

L2 =
1

2
wT ||V (st)− γt′−tr(st′, qt′)||

2 (24)

The final multi-objective PPO loss function is :

L = L1 + αL2 (25)

where α is the balance parameter.

4 Experiment

4.1 Dataset and Setting
We conduct experiments on three public datasets
(Assist2009 (Feng et al., 2009), Junyi (Chang et al.,
2015), Eedi (Wang et al., 2020b)). These datasets
record the data of students’ questions on the online
education platform. After removing the data with
the length of the student interaction sequence less
than 40, the statistical data of the three datasets
after processing are shown in Table I.

The experiment is divided into training, test and
verification set according to the proportion of 80
% -10 % -10 %. At the same time, the data of each
student is divided into candidate data set and meta-
data set according to the proportion of 80 % -20
%. The data in the metadata set is considered to
be the student’s historical interactive records, and
the data in the candidate data set may be recom-
mended to the students according to the selection

DataSet Assist2009 Junyi Eedi
Student 1,360 20,395 4,918
Question 17,751 2,835 948
Concept 123 40 86
Interactions 239,919 2,537,898 1,382,727
Concepts per Question 1.2 1.0 4.0
Question per Concept 172.7 70.9 44.28
Positive Label Rate 0.55 0.62 0.69

Table 1: Statistics of the Datasets Used in the Experi-
ments.

algorithm. These two data sets are randomly gener-
ated in each training phase to prevent overfitting. In
the experiment, the weight factor w = [1, 1, 1, 1, 1],
the potential space projection number K = 3 and
the results when the step=10, 20 are shown. Set
xdif = 0.25, xsim = 0.1, γ = 0.5 in Equation (22),
ϵ = 0.2 in Equation (23), batch size is 128, embed-
ding dimension d = 16. The dropout factor in the
self-attention mechanism is 0.1. The optimizer is
Adam optimizer, the learning rate is 0.02, and the
loss balance factor is 1. The experiment directly
uses the parameters of baselines in the original text
to ensure their best effect. Since only Junyi pro-
vides the premise relationship, (Gao et al., 2021) is
used to construct the concept directed graphs in the
other two datasets.

4.2 Performance Comparison

To verify the effectiveness of KGCAT, the exper-
iment compared KGCAT with MAAT (Bi et al.,
2020), BOBCAT (Ghosh and Lan, 2021), NCAT
(Zhuang et al., 2022) and GMOCAT (Wang et al.,
2023), basing IRT and NCD respectively. In this
work, the models predict the results of students’
responses to questions (correct or incorrect). Table
II and Table III are the results at step = 10 and 20
with AUC ( area under the ROC curve ) and ACC (
accuracy ) as metrics. The overall performance of
KGCAT is better than baselines. This indicates that
using knowledge graph to learn the semantic and
relational information of questions and concepts,
as well as considering the difficulty of questions
and the similarity of students, is beneficial for im-
proving the performance of CAT. KGCAT some-
times performs worse than baselines with fewer
steps, but as the steps increase, its AUC and ACC
will continue to increase and reach their optimal.
This proves the superiority of reinforcement learn-
ing in longer-term scenarios. At the same time,
NCAT, GMOCAT, KGCAT, which use reinforce-
ment learning methods, are superior to other meth-
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Dataset Assist2009 Junyi Eedi
CDM IRT NCD IRT NCD IRT NCD
step 10 20 10 20 10 20 10 20 10 20 10 20

MAAT 68.82 69.70 69.38 71.17 77.39 78.21 77.53 78.40 70.50 70.50 71.44 74.51
BOBCAT 69.44 70.97 70.63 71.80 78.70 79.17 78.21 79.46 70.78 73.32 71.45 74.55

NCAT 69.49 71.06 70.93 71.68 78.87 79.13 78.41 79.56 70.90 73.19 71.03 73.75
GMOCAT 70.02 72.08 71.33 72.99 79.44 80.19 79.60 80.09 73.23 75.30 73.57 75.49
KGCAT 71.15 72.50 71.98 73.62 79.85 80.94 79.84 80.95 73.58 75.68 73.63 75.91

Table 2: AUC comparison results of all the baselines and proposed models on 3 Datasets.The best results are in bold
and the second best results are underlined.

Dataset Assist2009 Junyi Eedi
CDM IRT NCD IRT NCD IRT NCD
step 10 20 10 20 10 20 10 20 10 20 10 20

MAAT 66.30 67.57 67.84 69.52 74.51 75.48 74.88 75.38 64.38 66.15 64.58 66.71
BOBCAT 66.21 67.88 68.63 69.94 75.66 76.51 75.21 76.45 64.90 66.97 65.62 67.69

NCAT 66.32 68.36 68.38 69.44 76.05 75.70 75.47 76.40 64.97 66.92 65.59 67.84
GMOCAT 67.32 68.99 69.31 70.63 75.07 76.23 75.60 76.72 66.81 68.55 67.06 69.01
KGCAT 67.81 69.67 69.75 71.28 75.51 76.90 75.61 76.98 67.00 68.85 67.20 69.18

Table 3: ACC comparison results of all the baselines and proposed models on 3 Datasets.The best results are in bold
and the second best results are underlined.

ods that do not use reinforcement learning, which
can also prove the effectiveness of reinforcement
learning in the application of selection algorithms.
The improvement of KGCAT on Assist2009 and
Junyi is higher than that on Eedi.This is because on
the Assist2009 and Junyi datasets, each question
involves an average of 1.2 and 1 concepts.When
we project each question to 3 latent spaces, more
conceptual information is captured, while on Eedi,
each question involves an average of 4 concepts,
and projecting the question to 3 latent spaces may
cause information loss.

4.3 Ablations and Discussion

In order to prove the effectiveness of each module
of KGCAT, the ablation experiment was carried
out on the Eedi dataset. KGCAT-KG, KGCAT-H,
and KGCAT-S represent the models of KGCAT
replacing knowledge graph with ordinary GNN, re-
moving question difficulty and student similarity
rewards respectively. By setting w = [1, 1, 1, 0, 1]
and w = [1, 1, 1, 1, 0] in Equation (16), KGCAT-
H and KGCAT-S were realized respectively. In
Figure 3, the performance of KGCAT decreased
regardless of which module was removed when
step = 20, which proved that each module plays a
role in improving the performance of the model.
Among them, the performance of KGCAT-H and
KGCAT-S decreased rapidly, indicating the impor-

tance of question difficulty and student similarity
in the selection of questions, and further proving
the superiority of reinforcement learning. In order
to explore the optimal values of xdif and ssim, we
conducted additional experiments on Eedi dataset.

Figure 3: The Results of Ablation Experiments.

Projection number K analysis. In Section 3.2,
it is mentioned that in order to learn more abundant
features, the questions are projected into K poten-
tial spaces. In order to explore the most suitable
K value, we conducted experiments. Due to the
limitation of computing power, K here only takes
values from 1 to 3. The results are shown in Figure
4. When K = 3, the results are the best, which is in
line with cognition. The more space the questions
are projected into, the more different semantics can
be learned and the performance of the model can
be improved. The influence of KGCAT-KG on the
model in the ablation experiment is not as good
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as that of KGCAT-H and KGCAT-S. It may also
because the value of K is not large enough to learn
richer semantic information.

Figure 4: AUC and ACC Performance Comparison with
Different K value.

xdif analysis. Figure 5 shows the distribution of
question difficulty on Eedi. Most of the questions
are of medium difficulty, which is consistent with
the distribution of question difficulty in most ed-
ucation platforms. The experimental results are
shown in Figure 6. AUC and ACC have the best
effect when xdif = 0.25, and the effect gradually
deteriorates as the values are taken at both ends.
This is because if the value of xdif is smaller, the
fewer questions meeting the conditions, resulting
in part of the questions that are actually useful
for the model are also filtered, making the effect
worse. However, if the value of xdif is too large,
which will reduce the screening effect on the ques-
tions, which will also reduce the performance of
the model.

Figure 5: The Probability Density Distribution of Ques-
tion Difficulty.

xsim 0.1 0.2 0.3 0.4 0.5
Students 4,914 4,908 4,875 4,766 4,463

Table 4: The Number of Students with Different xsim.

Figure 6: AUC and ACC Performance Comparison with
Different xdif .

Figure 7: AUC and ACC Performance Comparison with
Different xsim.

xsim analysis. Table IV is the number of students
whose length of candidate similar question sets
Qi is greater than 0 under different xsim. When
xsim > 0.4, the number of students with candidate
similar question sets begins to decline rapidly. In
order to make as many students as possible have
their own candidate similar question sets, the AUC
and ACC of the model were calculated by using
xsim ≤ 0.5. As shown in Figure 7, when xsim =
0.1/ 0.2, the overall performance is better. Mean-
while, the value of xsim should not be too large,
and as many students as possible should have their
own candidate similar question sets.

5 Conclusion

To enhance the effectiveness of personalized edu-
cation recommendations, we propose a Knowledge
Graph Reasoning-Based Model for Computerized
Adaptive Testing (KGCAT). This model leverages
the reasoning ability of the knowledge graph, so as
to deeply learn the relationship between questions
and concepts and introduces a disentanglement
module that uses mutual information to reduce
noise by minimizing the influence of low-relevance
neighbor nodes. Additionally, by incorporating re-
inforcement learning into the decision-making pro-
cess, the model considers both question difficulty
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and student similarity in a multi-objective manner,
allowing for more accurate question recommen-
dations. Finally, a series of experiments demon-
strate the model’s effectiveness and improved inter-
pretability

6 Limitation

While KGCAT effectively utilizes mutual informa-
tion to reduce noise and improve recommendation
accuracy, processing large-scale knowledge graphs
with numerous concepts and questions could intro-
duce computational challenges, potentially limiting
scalability.Additionally, the integration of mutual
information for concept disentanglement and multi-
objective reinforcement learning introduces added
complexity to the hyperparameter tuning process,
requiring considerable time and effort to optimize
components such as learning rates, reward struc-
tures, and mutual information thresholds.
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