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Abstract

Report generation (RG) faces challenges in un-
derstanding complex medical images and es-
tablishing cross-modal semantic alignment in
radiology image-report pairs. Previous meth-
ods often overlook fine-grained cross-modal
interaction, leading to insufficient understand-
ing of detailed information. Recently, vari-
ous large multimodal models have been pro-
posed for image-text tasks. However, such
models still underperform on rare domain tasks
like understanding complex medical images.
To address these limitations, we develop a
new framework of Knowledge-guided Implicit
vision-language Alignment for radiology report
generation, named KIA. To better understand
medical reports and images and build alignment
between them, multi-task implicit alignment is
creatively introduced, forming comprehensive
understanding of medical images and reports.
Additionally, to further meet medical refine-
ment requirements, we design novel masking
strategies guided by medical knowledge to en-
hance pathological observation and anatomical
landmark understanding. Experiments on two
benchmark datasets show our KIA outperforms
previous state-of-the-art methods in report qual-
ity and clinical efficacy.

1 Introduction

In modern medicine, analyzing radioactive medical
images and writing reports are critical for diag-
nosing patient diseases. However, doctors spend
considerable time manually performing this com-
plex and laborious task, which may delay treat-
ment (Bruno et al., 2015). Therefore, automatic
report generation (RG) has garnered widespread
research attention (Jing et al., 2017; Zhang et al.,
2020; Akhter et al., 2023).

Unlike general image-to-text (I2T) generation
tasks, RG requires stronger semantic alignment
between images and reports, crucial for precisely
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Figure 1: Explicit image-report alignment requires sub-
stantial densely annotated data and lacks global cross-
modal interaction. In contrast, jointly masked multi-
modal modeling establishes implicit image-report align-
ment through autonomous learning.

identifying complex diseases. Some works attempt
to establish medical associations between images
and reports through explicit alignment. For in-
stance, AlignTransformer (You et al., 2021) aligns
image region-level features with several fixed dis-
ease tags. RGRG (Tanida et al., 2023) connects
individual sentences to visual anatomical structures
at the regional level, using manual annotation data.
As shown in Fig. 1(a), these methods suffer from
the need for extensive manual annotation and the
lack of comprehensive feature interaction. So it
is necessary to establish global and local semantic
alignment with reduced labor annotation costs.
Recently, several studies (Yan et al., 2021; Li
et al., 2023a) employed contrastive learning to es-
tablish semantic associations through implicit align-
ment, which does not rely on fine-grained manu-
ally annotated data. Although they achieved some
results, these associations remain limited to the
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global level, proving insufficient for distinguishing
complex diseases lacking obvious features. Now,
large multimodal models (e.g., GPT-4V (Achiam
etal., 2023), Gemini (Team et al., 2023)) have pow-
erful image-to-text generation capabilities. How-
ever, these models exhibit low performance on com-
plex tasks in rare domains such as medicine, which
demands greater expertise.

In this paper, we propose a knowledge-guided
implicit vision-language alignment framework
for radiology report generation, called KIA. We
achieve implicit alignment to promote the image-
text bimodal interaction without relying on a
large amount of additional manually annotated
data. Specifically, KIA incorporates three high-
level tasks: masked multimodal modeling (MMM),
global alignment (GA) and report generation (RG),
via joint multi-task training. To achieve lo-
cal alignment, two low-level tasks are proposed
within MMM: masked image modeling (MIM) and
masked language modeling (MLM), as shown in
Fig. 1b. These low-level tasks are inspired by joint
masked tasks in vision-language pre-training (e.g.,
MaskVLM (Kwon et al., 2022), MAMO (Zhao
et al., 2023)). To make full use of existing medical
knowledge, MIM adopts a novel strategy of sum-
marizing key patches for anatomical landmarks on
the image and masking them to enhance learning
of key features. MLM provides two new mask-
ing strategies, graph-guided and label-guided, that
extract key information from image features. Lever-
aging global image-report information, we design
GA, utilizing two low-level tasks, image-report
contrastive learning (IRC) and image-report match-
ing (IRM), for global modality alignment. Ulti-
mately, RG is implemented with global and local
information from above implicit alignment.

Our main contributions are as follows:

(1) We propose a novel framework, KIA, achiev-
ing comprehensive implicit alignment in image-
report pairs via multi-task training without the need
to manually annotate the data additionally.

(2) We propose a knowledge-guided masked
multimodal modeling method, which summarizes
knowledge of anatomical landmarks and disease
observations of interest in healthcare and uses this
knowledge to guide local implicit alignment.

(3) KIA achieves SOTA performance on MIMIC-
CXR and IU-Xray datasets in both language gener-
ation and clinical efficacy metrics. We also discuss
each alignment task in detail to demonstrate the
effectiveness of bimodal interaction.

2 Related Work

2.1 Vision-Language Alignment

Vision-Language Alignment (VLA) can be divided
into two categories: explicit and implicit alignment.

Explicit alignment methods (Li et al., 2020;
Zeng et al., 2022) use densely labeled data to di-
rectly construct relationships between specific el-
ements of the visual data and the corresponding
parts of the textual data.

Implicit alignment methods enable models to
discover local semantic associations between im-
ages and text on its own. Some methods (Radford
et al., 2021; Li et al., 2021, 2022; Wang et al.,
2022b; Huang et al., 2021) utilize contrastive learn-
ing for self-supervised image-text alignment, bring-
ing positive pairs closer while pushing negative
pairs apart. Some methods (Kwon et al., 2022;
Singh et al., 2022; Zhao et al., 2023) have achieved
masked multimodal modeling, promoting modal
alignment through local random masking of images
or text. With the emergence of multimodal large
language models (MLLMs), some methods (Liu
et al., 2024b; Bai et al., 2023) directly leverage
generative pre-training tasks for alignment.

To the best of our knowledge, our method is
the first to simultaneously apply multiple types of
vision-language implicit alignment in the RG task.

2.2 Image Captioning and Radiology Report
Generation

RG is the extension of image captioning (Vinyals
et al., 2015; Anderson et al., 2018) in the medi-
cal domain. Many approaches attempt to adapt
image captioning methods for RG. For instance,
some methods (Jing et al., 2017; Yuan et al., 2019)
generate medical reports leveraging visual feature
extractors and language generators. Other methods
enhance image and report understanding through
feature alignment. AlignTransformer (You et al.,
2021) aligns region-level image features with dis-
ease tags. RGRG (Tanida et al., 2023) estab-
lishes alignment between image regions and report
phrases using object detection. ConVIRT (Zhang
et al., 2022) and DCL (Li et al., 2023a) enhance
global alignment via contrastive learning.

There are also some methods (Yang et al., 2022;
Huang et al., 2023; Li et al., 2023a) that begin to
use additional knowledge to assist in RG. Unlike
these methods, we use this knowledge to guide
implicit alignment.
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Figure 2: Illustration of our proposed KIA framework. Five components are used to perform unimodal and
multimodal tasks: image (cross-modal) encoder (I-Enc and I-CMEnc), text (cross-modal) encoder (T-Enc and
T-CMEnc) and text decoder (T-Dec). Five tasks (of three categories) are trained jointly in the framework, including
masked image modeling (MIM), masked language modeling (MLM), image-report contrastive learning (IRC),

image-report matching (IRM) and report generation (RG).

3 Methodology

In this section, we first present architecture in
Sec. 3.1, and then introduce three implicit align-
ment tasks: knowledge-guided masked multimodal
modeling in 3.2, contrastive global alignment in
Sec. 3.3 and image to report generation in Sec. 3.4.

3.1 Model Architecture

Our architecture comprises five components for
unimodal and multimodal tasks, as shown in Fig. 2.
Image Encoder. We utilize the Vision Trans-
former (ViT) (Dosovitskiy et al., 2020) as the im-
age encoder. It divides an image [ into patches
and encodes them into a sequence of embeddings,
incorporating a [CLS] token for global features.

Text Encoder. We use BERT (Devlin et al.,
2018) as the text encoder. It encodes a sequence
of text tokens of report R, incorporating a [CLS]
token for global features.

Image (Text) Cross-Modal Encoder. Benefit-
ing from the Transformer based architecture, the
image (text) encoders can be easily extended to
cross modal encoders by integrating cross-attention
layers. Specifically, we enable bimodal interaction
with an additional cross-attention layer between

self-attention and FFN.

Text Decoder. The text decoder has the same
structure as the text cross-modal encoder, except
for replacing bi-directional attention with causal
attention.

Dynamic Cross-Attention and Parameter
Sharing. To enhance training efficiency, we reuse
components across different modules as much as
possible. Specifically, a cross attention layer is
dynamically added to the unimodal encoder to per-
form multimodal tasks. A layer of computing oper-
ation in a component is:

Xy =LN(SA(X;-1) + Xj-1) (1a)

P {LN(CA(XZ,E(*)) + X)), if multimodal
X, otherwise

(1b)

X; = LN(FFN(X)) + X)) (Ic)

where SA, CA, LN, and FFN respectively refer
to the multi-head self-attention, multi-head cross-
attention, layer normalization, and feed forward

network modules(Vaswani et al., 2017). E™) is the
encoded feature sequence from the other modality.
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3.2 Knowledge-Guided Masked Modeling

Instead of the random masking strategy used in pre-
vious methods, we use medical information, such
as pathological observations and anatomical land-
marks, as a guide for MMM.
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Figure 3: Given an image, we merge the key patches
of mentioned landmarks in the report to obtain the final
key masked patches.

Anatomy knowledge guided MIM (Anatomy-
MIM). MIM enhances the image encoder’s ability
to extract features through self-supervised learn-
ing. However, existing unimodal MIM is unsuit-
able for medical images, since the pathology of
the masked portion cannot be inferred solely from
the unmasked portion. Thus, we utilize the image
cross-modal encoder to interact with the report fea-
tures to assist image reconstruction, thereby implic-
itly promoting semantic alignment between images
and reports. Benefiting from the basically fixed
position of the chest in radiological images, it is
feasible to summarize key patches corresponding
to anatomical landmarks, such as left lung and car-
diac silhouette. We summarize the top 20 patch
positions for 34 regions using a small number of
images. Details of key patches are provided in the
Appendix A. Then anatomy knowledge is used as
a guide to mask the images. Masking key anatomy
patches can compel the image cross-modal encoder
to reconstruct the image based on report features,
prompting the model to seek correspondences be-
tween image disease regions and text disease de-
scriptions. Specifically, as shown in Fig. 3, for each
image, we extract its anatomical landmarks men-
tioned in the report using simple word matching,
then merge all key patches corresponding to these
landmarks. The masking probabilities for different
patches are as follows:

Pxey, if patch ¢ is in key anatomical locations
pi =
! Pother,

otherwise

(@3]

Nkey * Pkey + (N - Nkey) * Pother = N - Ptotal (3)

where N and Ny, represent the total number of
patches and the number of key patches, respectively.
For pyota1, we adopt the optimal experimental value
of 0.6 from SimMIM (Xie et al., 2022), while pycy
is elevated to a higher value, such as 0.9, to encour-
age the model to reconstruct the regions described
in the report. In the experimental section we also
present the impact of different py., values on model
performance. The MIM objective is defined as:

Lyviv = E(I,R)~DHIM — filempneIm )1, @)

where fr_carEne(+) is the image cross-modal en-
coder, I, is the masked image, w is the report
features, and superscript M denotes that we only
calculate the loss for the masked positions.
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Figure 4: Graph-guided and label-guided masking
strategies. The light-colored nodes of the graph rep-
resent the tokens to be masked. OBS and ANAT are
abbreviations for observation and anatomy, respectively.

Graph knowledge guided MLM (Graph-
MLM). The masked language modeling (MLM)
task introduced by BERT (Devlin et al., 2018)
has been widely used as a self-supervised pre-
training task for natural language understanding.
For general random text token masking methods,
some masked tokens can be easily inferred based
on the textual context. For example, in the sen-
tence “the heart size [MASK] within normal lim-
its”, the [MASK] token can easily be deduced as
“is” solely based on the textual context. This sim-
plicity does not facilitate encouraging the model
to understand the connection between medical re-
ports and images. So we design graph knowledge-
guided MLM, as shown in Fig. 4a. In medical
reports, most sentences take the form of describ-
ing the presence or absence of a disease symp-
tom in a location in the image. We utilize Rad-
Graph (Jain et al., 2021) tool to extract the raw
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report into graph form as follows:[Observation]
located at [Anatomy]. We use this graph as a
knowledge guide to mask [Observation] part or
[Anatomy] part of each sentence in the report ran-
domly. This strategy forces the model to deter-
mine which [Anatomy] an [Observation] is lo-
cated at or what [Observation] an [Anatomy]
has, enhancing the interaction between images and
reports.

Label knowledge guided MLM (Label-MLM).
Some existing methods (Irvin et al., 2019; Smit
et al., 2020) can extract disease labels from re-
ports. We use disease label as a kind of guiding
knowledge for multimodal alignment, i.e., label
knowledge-guided MLM. Specifically, the report is
labeled using the CheXpert (Irvin et al., 2019) tool,
containing 14 common clinical abnormalities, e.g.,
atelectasis, lung opacity. Then we use these 14 la-
bels to build a label report “In this radiology image,
atelectasis is present, cardiomegaly is absent, ... ,
lung opacity is absent.”. Finally we replace present
and absent in the label report with the [MASK] to-
ken to obtain the masked report. This masking
strategy forces the text model to query image in-
formation to determine whether an abnormality is
present or absent.

For Graph-MLM and Label-MLM, the masked
report is used as input to the text cross-modal en-
coder, interacting with image features for report
reconstruction. The MLM objective is defined as:

Lyvim = E(I,R)~D£CE(?J]1¥[7 f’lj“w—C]vIEnc(U7 Rm)) (5)

where fr_caenc(+) is the text cross-modal en-
coder, v is the image features, R, is the masked
report, yr is the one-hot label from ground-truth
text tokenization, Lo g(+) is the cross-entropy loss
function, and the superscript M denotes calculation
of loss only at masked positions.

3.3 Contrastive Global Alignment

We also utilize two contrastive global alignment
tasks to further promote modal alignment.
Image-Report Contrastive Learning (IRC).
We follow ALBEF (Li et al., 2021) and BLIP (Li
et al., 2022) using momentum contrastive learn-
ing approach. Similarities between an image [
and report R, s(I, R) and s(R, I), are obtained af-
ter mapping them to the same dimensional space
with linear projection. After softmax activation, we
calculate image-to-report and report-to-image simi-

larity: (1) = 2t ey and o ()

where 7 is a learnable parameter and K represents
the length of the queue in momentum-based con-
trastive learning. The IRC objective is defined as:

1
Lirc = SEa,r)~D [Lop(y™™(I),p" (1))
+ Lop(y™ (R),p™ (R))]

(©)

where Lo is the cross-entropy loss function and
y*(+) is ground truth of image-report similarity in
one-hot form, based on constructed positive and
negative pairs.

Image-Report Matching (IRM) predicts
whether an image-report pair matches or not. In
our architecture, both image and text cross-modal
encoders can accomplish this task. For simplicity,
we just use the text cross-modal encoder. We prefix
the report sequence with a special token [MATCH]
and feed it to the text cross-modal encoder. The
embedding of the [MATCH] token is connected to
a binary classification header to calculate the loss.
The IRM objective is defined as:

Lirm = ]E(I,R)~D£BCE(Z/IRM7 p"M(I,R) (D

where Lo is the binary cross-entropy loss func-
tion and 4/ *M is a 2-dimensional one-hot form of
ground-truth label.

3.4 Image to Report Generation

Image-to-text generation is a commonly used im-
plicit alignment method in MLLMs (Bai et al.,
2023; Liu et al., 2024b). Additionally, it is the ulti-
mate task for the automatic medical report genera-
tion (RG). After prefixing a special token [START]
to the report sequence, we feed it into the text de-
coder for language model autoregressive training.
Report generation objective is defined as:

N
Lra = — Zi:l log P(x;|x<i,v) )

where v represents the image features, and N is
the number of report tokens.

The five tasks mentioned above are trained
jointly in our framework. The final training ob-
jective is the weighted sum of the objectives of the
five training tasks:

L= XLy + 2Ly + AsLire + AaLirm + AsLra

®
where A¢_5) are hyperparameters (all set to 1 by
default).
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Dataset Methods B-1 B-2 B-3 B-4 ROUGE-L METEOR CIDEr
R2Gen (Chen et al., 2020) 0470 0.304 0.219 0.165 0.371 0.187 -
PPKED (Liu et al., 2021) 0.483 0.315 0.224 0.168 0.376 - 0.351
R2GenCMN (Chen et al., 2022) 0475 0.309 0.222 0.170 0.375 0.191 -
MSAT (Wang et al., 2022a) 0481 0.316 0.226 0.171 0.372 0.190 0.394

IU-Xray DCL (Li et al., 2023a) - - - 0.163 0.383 0.193 0.586
METransformer (Wang et al., 2023)  0.483 0.322 0.228 0.172 0.380 0.192 0.435
PromptMRG (Jin et al., 2024) 0.401 - - 0.098 0.281 0.160 -
BootstrapLLLM (Liu et al., 2024a) 0.499 0.323 0.238 0.184 0.390 0.208 -
KIA (Label) 0.501 0.325 0.240 0.183 0.375 0.207 0.559
KIA (Graph) 0.503 0.329 0.242 0.188 0.385 0.208 0.641
R2Gen (Chen et al., 2020) 0.353 0.218 0.145 0.103 0.277 0.142 -
PPKED (Liu et al., 2021) 0.360 0.224 0.149 0.106 0.284 0.149 -
R2GenCMN (Chen et al., 2022) 0.353 0.218 0.148 0.106 0.278 0.142 -
MSAT (Wang et al., 2022a) 0.373 0.235 0.162 0.120 0.282 0.143 0.299

MIMIC-CXR KiUT (Huang et al., 2023) 0.393 0.243 0.159 0.113 0.285 0.160 -
UAR (Li et al., 2023b) 0.363 0.229 0.158 0.107 0.289 0.157 0.289
PromptMRG (Jin et al., 2024) 0.398 - - 0.112 0.268 0.157 -
BootstrapLLM (Liu et al., 2024a) 0402 0.262 0.180 0.128 0.291 0.175 -
KIA (Label) 0413 0.272 0.185 0.136 0.305 0.164 0.307
KIA (Graph) 0415 0.274 0.187 0.138 0.307 0.167 0.316

Table 1: Comparison with state-of-the-art methods on IU X-Ray and MIMIC-CXR datasets. Label represents using
label-guided MLLM and Graph represents using graph-guided MLM. The best results are in boldface and the second
best results are underlined. B-{1-4} are abbreviations for BLEU-{1-4}.

Methods \ Precision Recall FI-Score
R2Gen 0.333 0.273 0.276
KnowMat 0.458 0.348 0.371
KiUT 0.371 0.318 0.321
DCL 0.471 0.352 0.373
KIA w/o MIM 0.496 0.392 0.438
KIA w/o MLM 0.486 0.359 0.413
KIA (ours) 0.504 0.425 0.461

Table 2: Comparison of CE metrics on MIMIC-CXR
dataset. w/o is the abbreviation of without.

4 Experiments

4.1 Datasets

Experiments are conducted on two widely used
datasets: IU-Xray and MIMIC-CXR.

IU-Xray (Demner-Fushman et al., 2016) con-
tains 7,470 radiology images and 3,955 reports.
Each report corresponds to either a frontal view
or a combination of a frontal and a lateral view.
We adopt the same data partitioning as Chen et al.
(2020) for a fair comparison.

MIMIC-CXR (Johnson et al., 2019) is the
largest radiology dataset, containing 377,110 im-
ages and 227,835 reports. We use the official
train/val/test splits following Chen et al. (2020).

4.2 [Evaluation Metrics and Settings

We apply the most widely used natural language
generation (NLG) metrics and clinical efficacy

(CE) metrics to evaluate our model’s performance.
NLG Metrics include BLEU-n (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005),
ROUGE-L (Chin-Yew, 2004), and CIDEr (Vedan-
tam et al., 2015). We use the MS-COCO caption
evaluation tool ! to calculate these metrics.

CE Metrics , recently proposed to measure the
clinical correctness of generated reports, utilize
the CheXpert (Irvin et al., 2019) labeling tool to
annotate 14 clinical abnormality categories in the
generated reports. We calculate precision, recall,
and F1 scores using the ground truth. As the IU-
XRay dataset lacks officially available CheXpert
labeled data, we only calculate CE metrics on the
MIMIC-CXR dataset.

Implementation Details. We use
ViT/B16 (Dosovitskiy et al., 2020) as the
image encoder and a pre-trained BERT (Devlin
et al.,, 2018) as the text encoder. The training
process is divided into two stages. In stage one, all
five tasks are trained jointly for 40/10 epochs on
the TU-Xray/MIMIC-CXR dataset. In stage two,
only the report generation task is further trained
for an additional 5 epochs to adapt to the final
task. The model is trained on a single NVIDIA
4090 GPU with a batch size of 32. The learning
rate is initialized at le-4 and undergoes a linear
decay with a decay rate of 0.98. The optimizer

"https://github.com/tylin/coco-caption
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is RAdam (Liu et al., 2019) with a weight decay
of 0.05. All hyperparameters are tuned on the
validation set, using the checkpoint with the best
CIDEr score for testing.

0.6 Graph-MLM
Label-MLM

Figure 5: The clinical efficacy F1-score for six clinical
abnormalities using { Graph,Label }-MLM.

4.3 Main Results

Baselines. We conduct a quantitative compari-
son using existing SOTA methods. These meth-
ods can be categorized into four groups: memory-
driven models, including R2Gen (Chen et al.,
2020) and R2GenCMN (Chen et al., 2022); medi-
cal/expert knowledge-enhanced models, including
PPKED (Liu et al., 2021), MSAT (Wang et al.,
2022a), DCL (Li et al., 2023a), KiUT (Huang
et al., 2023), and METransformer (Wang et al.,
2023); cross-modal alignment enhancement mod-
els, including UAR (Li et al., 2023b); and large
language model-based medical models, including
BootstrapLLM (Liu et al., 2024a). Additionally, we
perform a qualitative comparison with some gen-
eral multimodal large language models, including
GPT-4V (Achiam et al., 2023).

NLG Results. The results in Tab. 1 show that
our KIA outperforms existing methods on most
NLG metrics and achieves SOTA performance.
Specifically, our KIA achieves 0.188 and 0.138
BLEU-4 on IU-XRay and MIMIC-CXR, respec-
tively (2% and 8% improvement). In terms of
ROUGE-L and METEOR, our method also shows
competitive performance. Notably, our CIDEr
scores of 0.641 and 0.316 on two datasets achieve
considerable improvements of 9% and 6%, show-
ing that reports generated by KIA are highly rele-
vant to the image content and accurately reflect im-
portant information. This illustrates that the multi-
task implicit alignment we designed can effectively
enhance the understanding of images and reports.

Clinical Correctness. We also evaluate CE
metrics on MIMIC-CXR dataset of our method in
comparison to other baseline methods. As shown
in Tab. 2, our method significantly outperforms

previous state-of-the-art methods. The improve-
ment is attributed to our strategy of using graph-
guided, label-guided and anatomy-guided masking,
enabling the model to fully learn crucial medical
information. It is worth noting that, although the
label-guided masking strategy performs lower than
the graph-guided masking strategy on NLG met-
rics, it exhibits better performance on CE metrics
as shown in Fig. 5. This demonstrates that per-
forming MLM based on clinical abnormalities can
enhance clinical correctness.

4.4 Ablation Study

In this section, we conduct ablation studies to inves-
tigate the contribution of each task in our proposed
KIA. Tab. 3 shows the quantitative analysis of NLG
metrics for different combinations of tasks.

Effect of Anatomy-MIM. The Anatomy-MIM
(setting b) leads to an improvement in NLG met-
rics over general MIM (setting a), with an average
increase of +6.5% compared to +5.9%. In addition,
we conduct experiments under multiple MIM mask
probability combinations. In the Appendix B we
demonstrate the performance of the model with
different combinations of masking probabilities,
which exemplifies the effectiveness of masking key
regions with high probability.

Effect of {Graph, Label}-MLM. We evaluate
three distinct masking strategies: general MLM,
Graph-MLM and Label-MLM. The Graph-MLM
(setting d) consistently outperforms general MLM
(setting ¢) and closely rivals Label-MLM (setting e).
The superior performance of Graph-MLM, with an
average NLG metric increase of +6.3%, underlines
the ability of capturing the key medical information
from the image. Tab. 2 shows that the model has
some decrease in CE metrics in the absence of
the MLM, demonstrates the significant effect of
using the MLM task to establish alignment between
images and reports.

Effect of multi-task learning. The model set-
tings f, g and the proposed KIA model illustrate the
benefits of multi-task learning. The culmination of
the multi-task learning approach is best exemplified
in the KIA (our proposed), which includes all tasks
with optimized masking strategies. It achieves the
highest increase in performance metrics, with an
average NLG improvement of +15.1%.

Effect of parameter sharing. The Tab. 4 indi-
cates that parameter sharing can reduce the number
of model parameters from 283M to 120M, enhanc-
ing the training efficiency. The regularization effect
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Settings | MIM MLM IRC IRM RG | BLEU-4 ROUGE-L METEOR CIDEr AVG.A
Base | v | 0164 0.361 0.200 0.474 -
(a)  (General) v 0.171 0.373 0.201 0.547  +5.9%
(b) v (Anatomy) v 0.172 0.372 0.203 0553  +6.5%
(©) v (General) v 0.168 0.361 0.206 0.525  +4.0%
(d) v (Graph) v 0.173 0.365 0.205 0.550  +6.3%
(e) V (Label) v 0.171 0.360 0.203 0.538  +4.7%
) | v(Anatomy) v (Graph) v | 0179 0.374 0.207 0.588  +10.1%
() \ v oV v | 0176 0.379 0.203 0.545  +7.2%
KIA | v(Anatomy) (Graph) v v v | 0188 0.385 0.208 0.641  +15.1%

Table 3: Ablation results on IU-Xray dataset using different combinations of tasks, where “General” stands for
“General masking”, “Anatomy” stands for “Anatomy-MIM”, “Graph” stands for “Graph-MLM?”, and “Label” stands
for “Label-MLM?”. The “AVG.A” column presents the average improvement of all NLG metrics.

Ground Truth Report

Baseline Generated Report

GPT-4V Generated Report KIA (Ours) Generated Report

Input Image

pa and lateral views of the chest
were obtained. there is right

pa and lateral views of the chest

middle lobe consolidation
involving the medial segment.
otherwise the lungs are clear. no
large pleural effusion or
pneumothorax.

. bony
structures are intact. no free air
below the right hemidiaphragm.
..., pneumonia is present, lung

frontal and lateral views of the
chest were obtained. the
mediastinal and hilar contours
are normal. the pulmonary
\vasculature is normal. lungs are
clear. no pleural effusion or
pneumothorax is seen. there are
no acute osseous abnormalities.

This chest X-ray displays the
lungs, ribcage, and heart
contour. The lungs are clear,

and there are no visible breaks in
the bones. Further medical
interpretation is required for a
detailed assessment.

(Prompt: Provide a report on

provided. airspace consolidation
is noted within the right middle
lobe compatible with pneumonia.
otherwise the lungs are clear. no
effusion or pneumothorax.

. no free air below the
right hemidiaphragm. clips in the
right upper quadrant noted.

opacity is absent, ... a)

b)| this X-ray Image.) c) d)

Figure 6: Examples of reports generated by the baseline method, GPT-4V and proposed KIA. Sentences correspond-
ing to ground-truth report in the generated report are annotated with the same color.

Methods | #params BLEU-4 CIDEr
w/o Parameter Sharing 283M 0.166 0.456
w/ Parameter Sharing 120M 0.188 0.641

Table 4: Comparison of model performance and param-
eter quantity with and without parameter sharing.

of parameter sharing improves the model’s BLEU-
4 metric on IU-Xray from 0.166 to 0.188.

Analysis of each component. Our KIA imple-
ments multiple image-text implicit alignment tasks
within a simple model architecture. The MIM and
MLM tasks primarily focus on aligning local fea-
tures, which is crucial for medical images that em-
phasize specific local areas of disease. Moreover,
the guidance of medical knowledge can further en-
hance this alignment effect, as shown in Tab. 3(a-e).
Moreover, the final medical report generation re-
quires a summary diagnosis from a global perspec-
tive, making global alignment tasks equally impor-
tant for chest X-ray report generation, as indicated
in Tab. 3(g). Ultimately, multi-task collaborative
training simultaneously enhances the model’s abil-
ity to extract both local and global features, thereby
maximizing model performance.

4.5 Qualitative Analysis

We conduct qualitative analysis from various per-
spectives. First, we compare reports generated by
different methods. Second, we also visualize cross-
modal attention in masked modeling. To verify
the effectiveness of implicit alignment of image
and text, we conduct qualitative analysis of masked
modeling and globa alignment. Due to space limi-
tations, we put this part in the Appendix C.

Report Generation. Fig. 6(b-d) shows the re-
ports generated by the baseline (only RG is trained),
GPT-4V (Achiam et al., 2023) and our method.
Comparison to ground-truth report reveals that our
model extracts more medical diagnostic informa-
tion from images than baseline model and GPT-4V.

Cardiomegaly is [MASK]

Consolidation is [MASK]

Lung opacity is [MASK] Pneumonia is [MASK]

e 83
ln.l

Figure 7: Attention visualization of [MASK] token on
images. The ground-truth of [MASK] token is “present”
or “absent”.
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Attention Visualization. To explore model
interpretability, we visualize attention maps of
[MASK] tokens interacting with images in label-
guided MLM, as shown in Fig. 7. Highlighted
regions indicate where the model places its atten-
tion when determining [MASK] token value, which
is categorized as “present” or “absent” for clini-
cal abnormalities like cardiomegaly, consolidation,
etc. The attention heatmap demonstrates our model
indeed focuses attention on key locations during
MLM, showing effective alignment.

5 Conclusion

In this paper, we propose KIA, a method lever-
aging masked multimodal modeling, contrastive
alignment and image-to-text tasks to facilitate com-
prehensive implicit alignment between radiology
images and reports. By performing multi-task
training in a simple framework, the model’s under-
standing of medical images significantly improves,
enhancing report generation. With our designed
knowledge guided masked modeling, the image
and report modalities are fully interacted, improv-
ing extraction of critical medical information. Ex-
perimental results on two benchmarks show our
proposed framework effectively contributes to au-
tomatic radiology report generation quality.

6 Limitation

Our research has achieved image-text alignment
in the chest X-ray field to generate chest X-ray
reports. It should be noted that we have not yet
conducted experiments in other medical domains
beyond chest X-rays. Due to the scarcity of data
in other medical fields, we plan to fine-tune the
pre-trained KIA model with a small amount of data
from other medical domains in future work to vali-
date the generalization capability of our approach.

In addition, our method can train a better medical
image feature encoder, but we did not introduce a
larger text decoder. In the future, we will further
expand our method on large language models with
more than 7B parameters.

7 Ethical Consideration

Our study used two chest X-ray datasets, [U-Xray
and MIMIC-CXR, which are publicly available for
scientific research. They were downloaded from
the official dataset website. We followed the ethical
consideration of the source dataset and only used

the dataset for scientific research in this paper, not
for any other purpose.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Yasmeena Akhter, Richa Singh, and Mayank Vatsa.
2023. Ai-based radiodiagnosis using chest x-rays: A
review. Frontiers in Big Data, 6:1120989.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2018. Bottom-up and top-down attention for image
captioning and visual question answering. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 6077-6086.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization, text
reading, and beyond.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-

tion, pages 65-72.

Michael A Bruno, Eric A Walker, and Hani H Abujudeh.
2015. Understanding and confronting our mistakes:
the epidemiology of error in radiology and strate-
gies for error reduction. Radiographics, 35(6):1668—
1676.

Zhihong Chen, Yaling Shen, Yan Song, and Xiang Wan.
2022. Cross-modal memory networks for radiology
report generation. arXiv preprint arXiv:2204.13258.

Zhihong Chen, Yan Song, Tsung-Hui Chang, and
Xiang Wan. 2020. Generating radiology reports
via memory-driven transformer. arXiv preprint
arXiv:2010.16056.

Lin Chin-Yew. 2004. Rouge: A package for automatic
evaluation of summaries. In Proceedings of the Work-
shop on Text Summarization Branches Out, 2004.

Dina Demner-Fushman, Marc D Kohli, Marc B Rosen-
man, Sonya E Shooshan, Laritza Rodriguez, Sameer
Antani, George R Thoma, and Clement J McDon-
ald. 2016. Preparing a collection of radiology ex-
aminations for distribution and retrieval. Journal
of the American Medical Informatics Association,

23(2):304-310.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kiristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

4104



Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arxiv 2020. arXiv
preprint arXiv:2020.11929.

Shih-Cheng Huang, Liyue Shen, Matthew P Lungren,
and Serena Yeung. 2021. Gloria: A multimodal
global-local representation learning framework for
label-efficient medical image recognition. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3942-3951.

Zhongzhen Huang, Xiaofan Zhang, and Shaoting Zhang.
2023. Kiut: Knowledge-injected u-transformer for
radiology report generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 19809-19818.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu,
Silviana Ciurea-Ilcus, Chris Chute, Henrik Marklund,
Behzad Haghgoo, Robyn Ball, Katie Shpanskaya,
et al. 2019. Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison.
In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 590-597.

Saahil Jain, Ashwin Agrawal, Adriel Saporta,
Steven QH Truong, Du Nguyen Duong, Tan Bui,
Pierre Chambon, Yuhao Zhang, Matthew P Lungren,
Andrew Y Ng, et al. 2021. Radgraph: Extracting
clinical entities and relations from radiology reports.
arXiv preprint arXiv:2106.14463.

Haibo Jin, Haoxuan Che, Yi Lin, and Hao Chen. 2024.
Promptmrg: Diagnosis-driven prompts for medical
report generation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
2607-2615.

Baoyu Jing, Pengtao Xie, and Eric Xing. 2017. On
the automatic generation of medical imaging reports.
arXiv preprint arXiv:1711.08195.

Alistair EW Johnson, Tom J Pollard, Nathaniel R Green-
baum, Matthew P Lungren, Chih-ying Deng, Yifan
Peng, Zhiyong Lu, Roger G Mark, Seth J Berkowitz,
and Steven Horng. 2019. Mimic-cxr-jpg, a large pub-
licly available database of labeled chest radiographs.
arXiv preprint arXiv:1901.07042.

Gukyeong Kwon, Zhaowei Cai, Avinash Ravichan-
dran, Erhan Bas, Rahul Bhotika, and Stefano Soatto.
2022. Masked vision and language modeling for
multi-modal representation learning. arXiv preprint
arXiv:2208.02131.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In International Conference on Ma-
chine Learning, pages 12888-12900. PMLR.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare,
Shafiq Joty, Caiming Xiong, and Steven Chu Hong
Hoi. 2021. Align before fuse: Vision and language
representation learning with momentum distillation.
Advances in neural information processing systems,
34:9694-9705.

Mingjie Li, Bingqian Lin, Zicong Chen, Haokun Lin,
Xiaodan Liang, and Xiaojun Chang. 2023a. Dynamic
graph enhanced contrastive learning for chest x-ray
report generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 3334-3343.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang,
Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, et al. 2020. Oscar: Object-
semantics aligned pre-training for vision-language
tasks. In Computer Vision—-ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part XXX 16, pages 121-137. Springer.

Yaowei Li, Bang Yang, Xuxin Cheng, Zhihong Zhu,
Hongxiang Li, and Yuexian Zou. 2023b. Unify, align
and refine: Multi-level semantic alignment for ra-
diology report generation. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 2863-2874.

Chang Liu, Yuanhe Tian, Weidong Chen, Yan Song,
and Yongdong Zhang. 2024a. Bootstrapping large
language models for radiology report generation. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 18635-18643.

Fenglin Liu, Xian Wu, Shen Ge, Wei Fan, and Yuexian
Zou. 2021. Exploring and distilling posterior and
prior knowledge for radiology report generation. In
Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 13753—
13762.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024b. Visual instruction tuning. Advances in
neural information processing systems, 36.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2019. On the variance of the adaptive learning rate
and beyond. arXiv preprint arXiv:1908.03265.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PMLR.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami,
Guillaume Couairon, Wojciech Galuba, Marcus

4105



Rohrbach, and Douwe Kiela. 2022. Flava: A founda-
tional language and vision alignment model. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15638—-15650.

Akshay Smit, Saahil Jain, Pranav Rajpurkar, Anuj Pa-
reek, Andrew Y Ng, and Matthew P Lungren. 2020.
Chexbert: combining automatic labelers and expert
annotations for accurate radiology report labeling
using bert. arXiv preprint arXiv:2004.09167.

Tim Tanida, Philip Miiller, Georgios Kaissis, and Daniel
Rueckert. 2023. Interactive and explainable region-
guided radiology report generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7433-7442.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566-4575.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural image
caption generator. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,

pages 3156-3164.

Zhanyu Wang, Lingqiao Liu, Lei Wang, and Luping
Zhou. 2023. Metransformer: Radiology report gener-
ation by transformer with multiple learnable expert
tokens. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
11558-11567.

Zhanyu Wang, Mingkang Tang, Lei Wang, Xiu Li, and
Luping Zhou. 2022a. A medical semantic-assisted
transformer for radiographic report generation. In
International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages
655-664. Springer.

Zifeng Wang, Zhenbang Wu, Dinesh Agarwal, and Ji-
meng Sun. 2022b. Medclip: Contrastive learning
from unpaired medical images and text. In 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jian-
min Bao, Zhuliang Yao, Qi Dai, and Han Hu. 2022.
Simmim: A simple framework for masked image

modeling. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 9653-9663.

An Yan, Zexue He, Xing Lu, Jiang Du, Eric Chang,
Amilcare Gentili, Julian McAuley, and Chun-Nan
Hsu. 2021. Weakly supervised contrastive learning
for chest x-ray report generation. arXiv preprint
arXiv:2109.12242.

Shuxin Yang, Xian Wu, Shen Ge, S Kevin Zhou, and
Li Xiao. 2022. Knowledge matters: Chest radiology
report generation with general and specific knowl-
edge. Medical image analysis, 80:102510.

Di You, Fenglin Liu, Shen Ge, Xiaoxia Xie, Jing Zhang,
and Xian Wu. 2021. Aligntransformer: Hierarchical
alignment of visual regions and disease tags for med-
ical report generation. In Medical Image Computing
and Computer Assisted Intervention—-MICCAI 2021 :
24th International Conference, Strasbourg, France,
September 27-October 1, 2021, Proceedings, Part
111 24, pages 72-82. Springer.

Jianbo Yuan, Haofu Liao, Rui Luo, and Jiebo Luo.
2019. Automatic radiology report generation based
on multi-view image fusion and medical concept en-
richment. In Medical Image Computing and Com-
puter Assisted Intervention—-MICCAI 2019: 22nd In-
ternational Conference, Shenzhen, China, October
13-17, 2019, Proceedings, Part VI 22, pages 721—
729. Springer.

Yan Zeng, Xinsong Zhang, and Hang Li. 2022. Multi-
grained vision language pre-training: Aligning texts
with visual concepts. In International Conference on
Machine Learning, pages 25994-26009. PMLR.

Yixiao Zhang, Xiaosong Wang, Ziyue Xu, Qihang Yu,
Alan Yuille, and Daguang Xu. 2020. When radiol-
ogy report generation meets knowledge graph. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 12910-12917.

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christo-
pher D Manning, and Curtis P Langlotz. 2022. Con-
trastive learning of medical visual representations
from paired images and text. In Machine Learning
for Healthcare Conference, pages 2-25. PMLR.

Zijia Zhao, Longteng Guo, Xingjian He, Shuai Shao,
Zehuan Yuan, and Jing Liu. 2023. Mamo: Fine-
grained vision-language representations learning
with masked multimodal modeling. In Proceedings
of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 1528-1538.

A Key Anatomical Patches

We summarize anatomical positional knowledge
based on a small amount of annotated data, namely
key patches corresponding to 34 anatomical posi-
tions, as shown in Fig. 8. Due to the positional
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stability of chest X-ray images, these patches have
a high degree of adaptability on different images.
Naturally, we do not need these patches to com-
pletely and accurately cover a specific part of an
image like object detection datasets, as they are
only used as prior knowledge to guide MIM im-
plicit alignment tasks.

Abdomen Rortic arch Cardiac silhouette Carina Cavoatrial junction

Left apical zone

Left cardiac silhouette Left cardiophrenic angle Left clavicle Left costophrenic angle  Left hemidiaphragm  Left hilar structures

Left lung Mediastinum

Rightatrium  Right cardiac silhouetteRight cardioph

Right mid lung zone

Right upper lung zone

Figure 8: Key patches corresponding to 34 anatomi-
cal landmarks. Each landmark corresponds to 20 key
patches. (Zoom to view)

B Different Image Mask Probabilities

Total mask prob | Key mask prob | BLEU-4 | CIDEr

0.6 1.0 0.137 0.314
0.6 0.8 0.136 0.314
0.6 0.6 0.131 0.308
0.6 0.4 0.131 0.301
0.9 0.9 0.135 0.310
0.6 0.9 0.138 0.316

Table 5: Performance on the MIMIC-CXR dataset with
different combinations of mask probabilities. The com-
bination of 0.6+0.9 is the best experimental result we
obtained.

As shown in Tab 5, the total mask probability of
0.6 and the key patch of 0.9 yield the best perfor-
mance, improving by 2.5% on CIDEr compared to
the general 0.6 mask probability. High-probability
masking in key regions forces the model to ob-
tain information from the report for reconstruction,
while avoiding simple reconstruction based on the
surrounding patches.

C More Qualitative Analysis

Anatomy-MIM with and without Real Report
Raw Image Masked Heart Part Mildly enlarged heart. ~ Heart size is normal.

Alealals

b) {Graph, Label}-MLM with and witho

right middle lobe o
there is [MASK] [MASK] [MASK] consolidation involving the medial segment...
left lower lobe X

present /' absent
...pneumonia is [MASK], lung opacity is [MASK],...
absent” x present X

Figure 9: Example of cross-modal interaction in MMM.

Masked Modeling. To verify the effectiveness
of masked modeling alignment, we construct ex-
periments under different circumstances. Specif-
ically, as shown in Fig. 9a, with different reports
given, the reconstruction of the heart part of the
image differs and corresponds to the semantics of
the report, illustrating our MIM modeling interacts
across modalities. The effects of MLM modeling
with and without images shown in Fig. 9b simi-
larly illustrate that the masked modeling of text is
also based on image modality information. The
cross-modal interaction is the source of the ability
of the final report generation task to understand the
semantics of the images.

i Rank1-- ing degree: 0.64
E impression: 1. Unchanged bibasilar opacities are consistent with
Use [MATCH] token 1 |atelectasis or consolidation and pneumonia should be considered in the
to retrieve reports ' appropriate clinical context. 2. Improved pulmonary edema.

* |Findings: Portable AP chest radiograph is obtained with the patient in
i [the semi-erect position. Tracheostomy noted. Cardiomediastinal
E silhouette is unchanged; bulging of the pulmonary outflow tract reflects
1 |enlargement of pulmonary arteries and suggests underlying pulmonary
i |arterial hypertension. Pulmonary edema has slightly improved
H ' compared to the prior study. Small right pleural effusion is unchanged. !
: i |Again bibasilar opacifications are noted and are suggestive of atelectasis| |
i 1 |or consolidation. 1

Query Image

i i Rank 2 - Matching degree: 0.62

H E impression: No significant interval change since prior. Pulmonary
1 | |vascular congestion. Bibasilar opacities potentially due to atelectasis;
1 i |however, infection is not excluded.
¢ |Findings: Single portable view of the chest is compared to previous
i |exam from ___. Tracheostomy tube is again noted. Left PICC tip is
E not clearly delineated on the current exam. Again there is mild
i |pulmonary vascular congestion. Streaky opacities at the lung bases
i |suggestive of atelectasis; however infection cannot be excluded.
i Cardiomediastinal silhouette is stable as are the osseous and soft tissue

E structures. (Ground Truth)

Figure 10: Example of image-text retrieval.

Global Alignment. We utilize the [MATCH]
token in the IRM task for binary classification
to judge whether an image-text pair matches.
Based on the classification probability, we obtain
a global matching degree for the image-text pair,
and thereby implement a simple image-to-text re-
trieval task. As shown in Fig. 10, for a given image,
although the ground truth is not the top in the re-
trieval result, the retrieved highly matched reports
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Input Image

Ground Truth Report

GPT-4V Generated Report

InternVL Generated Report

This chest X-ray displays the lungs,
ribcage, and heart contour. The lungs
are clear,

, and there are no visible
breaks in the bones. Further medical
interpretation is required for a
detailed assessment.

The lungs appear clear without
obvious signs of consolidation or
abnormal opacities suggesting no
apparent pneumonia or other lung
pathology.

. There are no evident
abnormalities in the bones or soft
tissues surrounding the thoracic area.

GPT-40 Generated Report

KIA (Ours) Generated Report

pa and lateral views of the chest
were obtained. there is right
middle lobe consolidation
involving the medial segment.
otherwise the lungs are clear. no
large pleural effusion or
pneumothorax.

. bony
structures are intact. no free air
below the right hemidiaphragm.
..., pneumonia is present, lung
opacity is absent, ...

The lung fields appear clear and well-|
aerated without evident
consolidations, masses, or pleural
effusions.

, with no visible
signs of enlargement. The
diaphragms are well-demarcated,
and the costophrenic angles appear
sharp, suggesting no fluid
accumulation. Bony structures,
including the ribs and clavicles, show
no apparent fractures or

pa and lateral views of the chest
provided. airspace consolidation is
noted within the right middle lobe
compatible with pneumonia. otherwise
the lungs are clear. no effusion or
pneumothorax.

. no free air below
the right hemidiaphragm. clips in the
right upper quadrant noted.

abnormalities.

Figure 11: More qualitative results of different multimodal large language models including GPT-4V, GPT-40 and
InternVL. Sentences corresponding to ground-truth report in the generated report are annotated with the same color.
The underlined statement indicates inconsistency with the narrative in the ground truth report.

are indeed extremely similar, showing our method
effectively aligns the global semantics of medical
images and reports.

D Qualitative Results of more MLLMs

We test more existing advanced multimodal large
language models, including GPT-4V, GPT-40, and
InternVL, as shown in Fig. 11. Although general
multimodal large models can provide report-style
descriptions of chest X-ray images, they struggle
with handling certain disease details. For example,
both GPT-40 and InternVL incorrectly conclude
that there is no consolidation in the image, which
contradicts the actual report. The reports generated
by our KIA method align more closely with the
content of the ground truth report.

E Error Case Analysis

We show an error case in Fig 12, revealing incon-
sistencies in report generated by KIA versus the
ground truth (GT) report. We respectively calculate
the matching degree of the GT report and the report
generated by KIA with the [MATCH] token in the
IRM task, and observe that the matching degree of

GT

Error Case

impression: Improved pulmonary edema.
Findings: Moderate to severe cardiomegaly is
stable. Pacer leads are in standard position.
ET tube is in standard position. Left IJ catheter|
tip is in the mid SVC . Right PICC is in
unchanged position. NG tube tip is out of view
below the diaphragm. Vascular congestion has|
Matching degree:|iMProved. Bibasilar atelectasis have improved.
Bilateral effusions right greater than left are
unchanged

o
o
3

Matching degree KIA Generated

:: 0.01 ::

the monitoring and support devices are in
constant position . the lung volumes remain
low with areas of atelectasis at both the right
and the left lung bases . no new parenchymal
opacities . no pneumothorax . no larger pleural
effusions . unchanged size of the cardiac
silhouette . no pulmonary edema .

Figure 12: Example of error case.

GT is much higher than that of the report generated.
This indicates that there is still a situation of poor
generation when the alignment is good. We believe
that this is because text generation requires a much
larger model compared to the understanding task.
Therefore, on the basis of our well-aligned model,
introducing LLM as the text generator is a potential
research.
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