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Abstract

The rapid advancement of natural lan-
guage processing (NLP) technologies, such
as instruction-tuned large language models
(LLMs), urges the development of modern eval-
uation protocols with human and machine feed-
back. We introduce Evalica, an open-source
toolkit that facilitates the creation of reliable
and reproducible model leaderboards. This
paper presents its design, evaluates its perfor-
mance, and demonstrates its usability through
its Web interface, command-line interface, and
Python API.

1 Introduction

The emergent abilities, as exhibited by highly ca-
pable natural language processing (NLP) methods,
such as instruction-tuned large language models
(LLMs), urge the development of sound and reli-
able evaluation protocols. While the earlier meth-
ods could be reasonably evaluated on static datasets
or individual benchmarks, modern methods require
up-to-date benchmarks with live feedback from hu-
mans and machines (Faggioli et al., 2024). These
benchmarks are often represented as pairwise com-
parison leaderboards (Figure 1), as popularized by
LMSYS Arena (Chiang et al., 2024) and Alpaca-
Eval (Dubois et al., 2024) projects.

As the NLP methodology evolves rapidly, to-
day’s evaluation methods are often implemented in
computational notebooks and ad-hoc programs as
an afterthought, which introduces errors, incompat-
ibilities, and harms reproducibility and adoption.
To improve the engineering aspect of benchmark-
ing by reducing the number of methodological er-

Figure 1: Evalica facilitates the highlighted aspects of
leaderboard-making that involve aggregation of judge-
ments, scoring the models with bootstrapped confidence
intervals (CIs), and getting the final model ranks.

rors and simplifying the exchange and interpreta-
tion of the results, we present Evalica, an open-
source evaluation toolkit that facilitates and speeds
up the creation of reliable and reproducible NLP
model benchmarks,1 currently focused on the pref-
erence data. Based on our four-year experience in
the development of production-grade tooling for
quality control in crowdsourcing (Ustalov et al.,
2024), we built Evalica with three practical goals
in mind:

• make the popular evaluation practices avail-
able for a wide audience of users

• ensure the performance and correctness of the
offered implementations

• provide the best developer experience possible

The remainder of this paper is organized as fol-
lows. Section 2 reviews the related work and its
relationship with the declared goals. Section 3

1https://github.com/dustalov/evalica

https://github.com/dustalov/evalica
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shows Evalica’s design and how it satisfies these
goals. Section 4 describes the technical details of
the Evalica implementation, including the means
to ensure its correctness. Section 5 reports perfor-
mance benchmarks against alternative implementa-
tions. Finally, Appendix A demonstrates a Web, a
command-line , and a Python application program-
ming interfaces (API) of Evalica.

2 Related Work

The research community has been developing vari-
ous toolkits for ranking systems, such as Elo (1978)
and TrueSkill (Herbrich et al., 2006). In our analy-
sis, we distinguish several classes of them.

First, dedicated leaderboard building tools, such
as IFEval (Zhou et al., 2023), LMSYS Arena (Chi-
ang et al., 2024), Arena-Hard (Li et al., 2024), and
AlpacaEval (Dubois et al., 2024). These toolkits
were created by teams of researchers to implement
a specific novel evaluation methodology. The code
was generally written strictly tailored to the particu-
lar benchmark, requiring extra effort from the user
to apply it to their own dataset and domain. Due
to the high pace of today’s scientific research, cer-
tain software engineering best practices were often
omitted, such as test coverage, code documentation,
continuous integration, and data format compati-
bility. At the same time, some implementations
suffer from suboptimal computational performance
on larger realistic datasets, which were out of scope
of the original benchmarks.

Second, ranking system implementations, includ-
ing Rust packages Propagon2 and skillrating,3 a
Python package OpenSkill.py (Joshi, 2024), and
others. As these packages are often written by
skilled programmers in the best effort to bring cor-
rect implementations, these methods do not always
match the ones used in current best practices in
NLP evaluation. Also, the non-Python packages
require an additional non-trivial effort to integrate
with the existing Python code and notebooks.

Finally, application-specific toolkits like Elova-
tion,4 ArtistAssistApp,5 and Crowd-Kit (Ustalov
et al., 2024). These toolkits were built to accommo-
date user-generated content, usually in the form of
crowdsourcing annotation, and often do not follow
the methodology used in NLP evaluation.

2https://github.com/Refefer/propagon
3https://github.com/atomflunder/skillratings
4https://github.com/elovation/elovation
5https://github.com/eugene-khyst/
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Figure 2: Evalica has a core in Rust that is covered by
a comprehensive suite of tests in Python. We simplify
prototyping and increase test reliability by keeping an
independent implementation of each method in Python.

3 Design of Evalica

Evalica facilitates three tasks shown in Figure 1:
it provides optimized single-threaded implementa-
tions of rating systems, simplifies the computation
of confidence intervals for model scores, and offers
convenient routines to prepare visualizations.

Figure 2 outlines the architecture of Evalica. In
its core, there are performance-critical routines in
Rust that process the raw data. These core routines
are wrapped in convenient APIs for application
developers in other languages. These APIs were
responsible for transforming the representation into
the indexed format as used by the core routines.6

Examples of core routines are all the ranking al-
gorithm implementations and helper routines for
constructing win matrices.

We currently only support Python due to its pop-
ularity in machine learning. For the sake of re-
liability and ease of prototyping, we naïvely and
implemented all the methods additionally in Python
and built a comprehensive test suite that compares
the Python implementations with the Rust ones.
Other languages can be supported relatively easily
(as long as there exists a bridge between Rust and
that language), and improvements to the core im-
plementations and tests will improve the state of
all the derivative code.

We believe that these measures allowed satis-
fying the three goals mentioned in Section 1 ad-

6Models usually have names
like llama-3.1-405b-instruct and
claude-3-5-sonnet-20240620. Computers do not op-
erate with strings per se, so we need to transform such names
into the corresponding indices, e.g., 0 and 1.

https://github.com/Refefer/propagon
https://github.com/atomflunder/skillratings
https://github.com/elovation/elovation
https://github.com/eugene-khyst/pairwise-comparison
https://github.com/eugene-khyst/pairwise-comparison
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equately. Evalica accelerates popular evaluation
practices by shipping the corresponding implemen-
tations in a high-performing compiled program-
ming language, building on lessons learned from
previously developed software to increase the de-
veloper’s productivity.

4 Implementation Details

Evalica implements scoring approaches from popu-
lar benchmarks, such as Chatbot Arena and Arena-
Hard: Elo (1978) and Bradley and Terry (1952),
and average win rate. We ensured that they pro-
vided the same results as in these benchmarks.
The package also contains implementations of the
eigenvalue method (Bonacich, 1987), PageRank
(Brin and Page, 1998), tie-aware method of New-
man (2023), and trivial vote counting.

To invoke the implementation in Evalica (List-
ing 1), one needs to supply a vector of left objects
(xs), a vector of right objects (ys), a vector of win-
ner labels (winners), and, optionally, a vector of
example weights (weights) for style control, as
proposed in Li et al. (2024). Possible values of the
winner labels are “X won,” “Y won,” and “tie.” All
methods are available in a lightweight and uniform
functional API. We intentionally decided to avoid
making assumptions about the tabular form of data
as our experience in running Crowd-Kit (Ustalov
et al., 2024) in production showed that it required
an error-prone data transformation step that could
have been avoided.

Internally, Evalica does not operate with model
names, and core implementations require an index
to compare the model name to the unique numeri-
cal identifier (as described in Section 3). Since this
operation takes short yet non-negligible time, we
provided the possibility to pass the already built
index to save time during bootstrapping the con-
fidence intervals and other routines that require
resampling and recomputing the scores (Listing 2).

Besides the API, Evalica offers a built-in Web
interface and a command-line interface, see Ap-
pendix A for illustrative examples. More specif-
ically, the built-in Web interface follows a well-
known input-output separation paradigm from
Abid et al. (2019) and was created using the Gradio
toolkit (Figure 4).7 The command-line interface
was developed using the pandas library for data
manipulation (McKinney, 2010) and the tools avail-
able from the Python standard library (Figure 5).

7https://www.gradio.app/

After computing the scores and ranks, it is often
useful to visualize the pairwise win rates for the
compared models. Following Chiang et al. (2024),
we applied the Bradley and Terry (1952) definition
of such a quantity for all pairs of models i and j:

pij =
si

si + sj
,

where pij is the probability of model i winning
against the model j, si is the score of model i, and
sj is the score of model j.

4.1 Correctness and Reliability

We applied a set of reasonable means to ensure
correctness and reliability of the method implemen-
tations in Evalica. First, we implemented all the
methods independently in two different program-
ming languages, Rust and Python. We ensured
that the outputs for the same inputs are the same
between these implementations. Second, we em-
ployed property-based tests with the Hypothesis
library (MacIver et al., 2019) for Python, which
enumerated corner cases including empty or illegal
inputs to break the program.8 We covered all such
cases and provide reasonable numerical fallbacks,
where possible. Third, we compared the outputs
against the canonical scores from external bench-
marks. Fourth, we ensured that the test coverage is
no less than 100%, and the test suite was executed
on every revision in the repository.

4.2 Governance and Availability

We built Evalica using the trusted open-source
ecosystem. The source code of Evalica was avail-
able under the Apache License 2.0 on GitHub.9

Feature requests and code contributions were pro-
cessed using the Issues and Pull Requests features
on GitHub, correspondingly. We used continu-
ous integration on GitHub Actions to invoke per-
revision checks, including unit tests, linting, type
checking, test coverage measurement, and com-
putational performance testing. Public dashboards
with test coverage and performance tests were avail-
able on Codecov10 and Codspeed,11 correspond-
ingly. We used the trusted publishing approach
to release Python packages to PyPI for the Linux,
Windows, and macOS platforms.12 Our compiled

8https://github.com/HypothesisWorks/hypothesis
9https://github.com/dustalov/evalica

10https://codecov.io/gh/dustalov/evalica
11https://codspeed.io/dustalov/evalica
12https://pypi.python.org/pypi/evalica

https://www.gradio.app/
https://github.com/HypothesisWorks/hypothesis
https://github.com/dustalov/evalica
https://codecov.io/gh/dustalov/evalica
https://codspeed.io/dustalov/evalica
https://pypi.python.org/pypi/evalica
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Setup Time ↑

BT in Evalica 1.174± 0.009
Elo in Evalica 1.256± 0.019
Elo from Arena-Hard 3.778± 0.322
BT from Chatbot Arena 51.949± 1.797

Table 1: Performance of Evalica, Chatbot Arena, and
Arena-Hard on the Chatbot Arena dataset. Time is in
seconds; a 95% confidence interval is shown for ten
runs. Smaller is better. BT means Bradley and Terry
(1952), Elo means Elo (1978).

packages were forward compatible with any ver-
sion of Python newer than 3.8 due to the use of the
stable CPython ABI. We also released Evalica on
conda-forge for the users of Anaconda, a popular
distribution of scientific computing tools.13 Last
but not least, we published the developer documen-
tation on Read the Docs.14

5 Performance Tests

We performed two series of computational exper-
iments to study the running time of algorithm im-
plementations in Evalica after ensuring their cor-
rectness. First, we evaluated the difference in com-
putational performance between the current imple-
mentations in a popular benchmark and the ones
provided by Evalica. Second, we compared the
performance of core and naïve implementations of
all the methods inside Evalica. All the experiments
were run using CPython 3.13.1, NumPy 2.2.0, and
Evalica 0.3.2 on macOS 15.2 (Intel® Core™ i5-
8500 CPU, 32 GB RAM). All confidence intervals
were built using bootstrap with 10K samples and
95% significance level.

5.1 Chatbot Arena Experiment

We evaluated the performance of four setups in pro-
cessing the August 14, 2024 version of the Chatbot
Arena dataset (Chiang et al., 2024) that contained
1.7M pairwise comparisons of 129 models, ties
were not excluded.15 We compared four differ-
ent setups: an implementation of the Elo (1978)
ranking system in pure Python, as used in Chat-
bot Arena, an implementation of Bradley and Terry
(1952) in Python with scikit-learn (Pedregosa et al.,

13https://anaconda.org/conda-forge/evalica
14https://evalica.readthedocs.io/
15https://storage.googleapis.com/arena_

external_data/public/clean_battle_20240814_
public.json

Algorithm Rust Python

Average Win Rate 0.005± 0.000 0.006± 0.000
Bradley–Terry 0.005± 0.000 0.012± 0.000
Counting 0.005± 0.000 0.009± 0.000
Eigenvalue 0.005± 0.000 0.006± 0.000
Elo 0.005± 0.000 0.484± 0.004
Newman 0.006± 0.000 0.010± 0.000
PageRank 0.005± 0.000 0.006± 0.000

Table 2: Running time comparison of core Rust and
naïve Python implementations of methods in Evalica
on the LLMFAO dataset. Time is in seconds; a 95%
confidence interval for ten runs is shown for each imple-
mentation. Smaller is better.

2011), as used in Arena-Hard, and Rust implemen-
tations of these two methods in Evalica. For that,
we ran every setup ten times to simulate the realis-
tic problem of confidence interval estimation that
does often appear in model leaderboards. As the
results in Table 1 indicate, Evalica’s implementa-
tions of ranking methods outperformed the current
ones as used in the benchmarks by up to 46 times
without any involvement of multi-threading pro-
cessing. Although this was expected since Python
is an interpreted language and Rust is a compiled
language, we believe that the Evalica’s combina-
tion of performance and ergonomics would allow
running more experiments within the same time
budget. At the same time, performing computation
in multiple threads, e.g., processing one sampling
round per thread, would allow one to better use of
the modern multi-core CPUs and reduce the com-
putation time by multiple times.

5.2 Rust vs. Python in Evalica Experiment

We evaluated the performance of all the methods
implemented in Evalica’s core in Rust against their
naïve implementations in Python. Despite the
name, these Python implementations were writ-
ten using NumPy (Harris et al., 2020), a highly
optimized library built on decades of successful
performance engineering work for numerical com-
putation in C and Fortran. We used the dataset from
a smaller benchmark called LLMFAO (Ustalov,
2023), which had 9K pairwise comparisons for 59
LLMs, gathered in October 2023 using crowdsourc-
ing. As the results in Table 2 show, the differences
between core and naïve implementation were sta-
tistically significant, according to the permutation
test (p < 0.01), but the effect size was not no-
ticeable on that scale due to the efficient NumPy

https://anaconda.org/conda-forge/evalica
https://evalica.readthedocs.io/
https://storage.googleapis.com/arena_external_data/public/clean_battle_20240814_public.json
https://storage.googleapis.com/arena_external_data/public/clean_battle_20240814_public.json
https://storage.googleapis.com/arena_external_data/public/clean_battle_20240814_public.json
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Figure 3: Performance scaling analysis of the Rust implementations in Evalica on the synthetic version of the
Chatbot Arena dataset. Both scales are logarithmic. Time is in seconds, dataset size is the number of pairs; a 95%
confidence interval is shown for ten runs. Lower is better.

routines used in the pure Python implementations.
One important exception was Elo, whose equiva-
lent implementation in Rust appeared to be more
than 96 times faster than in Python due to the ef-
ficient compiler optimizations. At the same time,
the Rust implementations had a smaller runtime
variance and more predictable performance, which
should be useful on larger-scale datasets.

5.3 Scaling on Synthetic Data Experiment
We analyzed the relationship between dataset size
and computation time using Evalica on a synthetic
dataset derived from Chatbot Arena as the origi-
nal dataset was already larger than most existing
preference-based NLP datasets. We selected seven
dataset sizes, ranging from 101 to 107 pairs, with
each size increasing by a factor of ten. For each
size, we sampled the required number of pairs with
replacement from Chatbot Arena ten times to study
the time variance. Computation times were mea-
sured using Rust implementations of the methods
available in Evalica, and we constructed 95% con-
fidence intervals using bootstrapping. Figure 3
shows that the relationship between dataset size
and computation time scales linearly for all meth-
ods, indicating good scalability. However, there are
clear performance differences for small input sizes,
with methods like Newman (2023) being slower
initially but converging to similar trends as input
size increases. Note that our analysis was limited
by the number of models in the version of Chatbot
Arena used in our experiments.

6 Conclusion

We believe that Evalica will foster the creation of
reliable and reproducible benchmarks for future
NLP systems. We define several potential direc-
tions of further work: (1) implementing a larger set
of use cases widely used in practice, including con-
fidence interval construction out of the box and ad-
ditional ranking algorithms, (2) bringing additional
performance and memory optimizations, and (3)
supporting other popular programming languages
with good interoperability with Rust, including
JavaScript and Ruby. To the best of our knowl-
edge, Evalica is the first attempt to offer drop-in
accelerated preference-based benchmarks, which
affects their computational performance and numer-
ical reliability. We expect that a broader adoption
of Evalica will result in faster iteration times, more
useful experiments, and fewer model-selection mis-
takes.
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A Usage Examples

>>> from evalica import elo, pairwise_frame, Winner
>>> result = elo(
... xs=["pizza", "burger", "pizza"],
... ys=["burger", "sushi", "sushi"],
... winners=[Winner.X, Winner.Y, Winner.Draw],
... )
>>> result.scores
pizza 1014.972058
burger 970.647200
sushi 1014.380742
Name: elo, dtype: float64
>>> df_scores = pairwise_frame(result.scores)
>>> df_scores # can be used for plotting the pairwise win rate

pizza sushi burger
pizza 0.500000 0.500003 0.501499
sushi 0.499997 0.500000 0.501496
burger 0.498501 0.498504 0.500000

Listing 1: An example of computing Elo ranking and the corresponding pairwise win rates with Evalica. Other
methods can be applied similarly with a trivial modification: bradley_terry, average_win_rate, etc. See
https://github.com/dustalov/evalica/blob/master/Tutorial.ipynb for an executable example.

# index the compared models to save time by not re-indexing them at each round
*_, index = evalica.indexing(

xs=df["model_a"], # series with model A identifiers
ys=df["model_b"], # series with model B identifiers

)

bootstrap: list["pd.Series[str]"] = [] # assuming model names are strings

for r in range(BOOTSTRAP_ROUNDS):
# for reproducibility, set the random seed equal to the number
# of the bootstrapping round
df_sample = df_arena.sample(frac=1.0, replace=True, random_state=r)

# estimate the Bradley-Terry scores for the given sample
result_sample = evalica.bradley_terry(

xs=df_sample["model_a"],
ys=df_sample["model_b"],
winners=df_sample["winner"],
index=index # use the index built above to speed up

)

bootstrap.append(result_sample.scores)

# this is a data frame with BOOTSTRAP_ROUNDS rows,
# each row represents the score of each model at the r-th round
df_bootstrap = pd.DataFrame(bootstrap)

# this is a data frame with confidence intervals of scores
# for each compared model
df_bootstrap_ci = pd.DataFrame({

"lower": df_bootstrap.quantile(.025),
"rating": df_bootstrap.quantile(.5),
"upper": df_bootstrap.quantile(.975),

}).reset_index(names="model").sort_values("rating", ascending=False)

Listing 2: An example of bootstrapping a 95% confidence interval of Bradley and Terry (1952) scores with
Evalica and pandas (McKinney, 2010). Any other supported model can be applied after a trivial modification. For
simplicity, we do not show an example with scipy.stats.bootstrap (Virtanen et al., 2020), yet it is possible. See
https://github.com/dustalov/evalica/blob/master/Chatbot-Arena.ipynb for an executable example.

https://github.com/dustalov/evalica/blob/master/Tutorial.ipynb
https://github.com/dustalov/evalica/blob/master/Chatbot-Arena.ipynb
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Figure 4: A screenshot of the Evalica’s Web interface with the LLMFAO benchmark (Ustalov, 2023). On the
left, there are the input file, algorithm choice, and additional parameters. On the right, there is a table with the
ranking results and a win rate plot. For the sake of brevity, we showed only a truncated output, with no columns
corresponding to the number of compared pairs and the current rank of the model. A live example can be accessed
at https://huggingface.co/spaces/dustalov/pair2rank.

$ head -n6 food.csv | column -ts,
left right winner
Pizza Sushi left
Burger Pasta right
Tacos Pizza left
Sushi Tacos right
Burger Pizza left
$ evalica -i food.csv bradley-terry | column -ts,
item score rank
Tacos 2.509025136024378 1
Sushi 1.1011561298265815 2
Burger 0.8549063627182466 3
Pasta 0.7403814336665869 4
Pizza 0.5718366915548537 5

Figure 5: An example of using a command-line interface of Evalica to process a file in the comma-separated values
format and print the item ranks and estimated scores.

https://huggingface.co/spaces/dustalov/pair2rank
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