
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 232–243
May 3, 2025 ©2025 Association for Computational Linguistics

Transformers Can Model Human Hyperprediction in Buzzer Quiz

Yoichiro Yamashita, Yuto Harada, Yohei Oseki
University of Tokyo

{yamashita-yoichiro416, harada-yuto, oseki}@g.ecc.u-tokyo.ac.jp

Abstract

Humans tend to predict the next words dur-
ing sentence comprehension, but under unique
circumstances, they demonstrate an ability for
longer coherent word sequence prediction. In
this paper, we investigate whether Transform-
ers can model such hyperprediction observed
in humans during sentence processing, specifi-
cally in the context of Japanese buzzer quizzes.
We conducted eye-tracking experiments where
the participants read the first half of buzzer quiz
questions and predicted the second half, while
we modeled their reading time using the GPT-2.
By modeling the reading times of each word
in the first half of the question using GPT-2
surprisal, we examined under what conditions
fine-tuned language models can better predict
reading times. As a result, we found that GPT-2
surprisal effectively explains the reading times
of quiz experts as they read the first half of
the question while predicting the latter half.
When the language model was fine-tuned with
quiz questions, the perplexity value decreased.
Lower perplexity corresponded to higher psy-
chometric predictive power; however, exces-
sive data for fine-tuning led to a decrease in
perplexity and the fine-tuned model exhibited
a low psychometric predictive power. Overall,
our findings suggest that a moderate amount
of data is required for fine-tuning in order to
model human hyperprediction.

1 Introduction

It is widely recognized that the probability of a
word within a specific context (i.e., surprisal) af-
fects the difficulty of processing during incremental
human language comprehension (Hale, 2001; Levy,
2008). Based on this premise, researchers have
compared a variety of language models in terms
of how well their surprisal correlates with human
reading behavior (Wilcox et al., 2020; Kuribayashi
et al., 2021; Van Schijndel and Linzen, 2021).

However recent works found that this cannot
be applied to very large language models, which
provides a poorer fit to human reading times. Oh
and Schuler (2023) argues that larger Transformer-
based models ‘memorize’ sequences during train-
ing, and their surprisal estimates diverge from hu-
manlike expectations.

In those studies on cognitive modeling, self-
paced reading experiments and eye-movement cor-
pora are employed to utilize data regarding human
reading times (Kennedy et al., 2013; Asahara et al.,
2016; Futrell et al., 2018; Goodkind and Bicknell,
2018; Yoshida et al., 2021). These corpora typi-
cally use newspaper and novel texts as material and
measure the reading time required for participants
to read and comprehend the text. These works
have devoted much attention to understanding ev-
eryday sentence comprehension, particularly the
prediction of the next word (Kuribayashi et al.,
2021; Yoshida et al., 2021). In such typical sen-
tence comprehension, psycholinguistics research
has emphasized humans’ use of contextual informa-
tion to predict the next word while reading (Kutas
and Hillyard, 1984; Altmann and Kamide, 1999;
Kamide et al., 2003).

However, when comprehending a sentence un-
der specialized conditions such as buzzer quizzes,
humans can sometimes make predictions about the
whole sentence that go beyond the next word pre-
diction (hereafter referred to as “hyperprediction”).
This phenomenon requires comprehenders to antic-
ipate not only the next word but also the structure
of subsequent sentences. Although hyperprediction
is a highly advanced and complex aspect of human
predictive processing it has attracted little attention
so far and remains largely unexplored.

In this paper, we aim to fill this gap by eval-
uating the language models’ capacity to model
human predictive processes, particularly in tasks
emphasizing hyperprediction in the context of a
buzzer quiz. Buzzer quiz is a popular type of quiz
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Figure 1: The process of the experiment. Human total reading time measured in the eye-tracking experiment was
modeled with surprisal computed by pre-trained GPT-2 and fine-tuned GPT-2.

game (Tokuhisa, 2012), and buzzer quiz players are
known to engage in this predictive process (Izawa,
2021).

It remains unclear whether human hyperpredic-
tion occurs in more natural reading behaviors be-
yond quiz settings. However, this study focuses
specifically on buzzer quiz scenarios to first ex-
amine the extent to which language models can
simulate human hyperprediction.

In summary, our key contributions are as fol-
lows:

• This paper studies data collected from native
Japanese speakers, which complements most
studies using data collected in western lan-
guages.

• Our results demonstrate that the GPT-2 can
partially model human hyperprediction to
some extent.

• Analyses on fine-tuning reveal that fine-tuned
GPT-2 can model human hyperprediction
more accurately.

2 Related work

2.1 Prediction in human sentence processing
Psycholinguistics research spanning several
decades has consistently suggested that humans
engage in predictive processes while compre-
hending sentences (Ehrlich and Rayner, 1981;
Kutas and Hillyard, 1984; Altmann and Kamide,
1999; Kamide et al., 2003; Pickering and Garrod,
2013; Martin et al., 2018). Psycholinguists have
employed diverse methodologies to explore human
behavior in sentence comprehension. Altmann

and Kamide (1999) and Kamide et al. (2003)
employed the Visual World Paradigm and revealed
that humans utilize contextual cues within sen-
tences to predict upcoming words, such as direct
objects or verbs. Additionally, many researchers
conducted EEG experiments and demonstrated
that encountering a word unrelated to the context
elicits a large N400 response in readers, which is
associated with a semantic gap between a word and
its context (Kutas and Hillyard, 1984; Van Petten
and Kutas, 1990; Frank et al., 2015). Moreover,
the process of next-word prediction during human
sentence processing has been investigated and
recent research has highlighted the empoloyment
of the speech production system in generating
lexical predictions during sentence comprehension
(Martin et al., 2018). These studies emphasize that
humans utilize the preceding context as a crucial
cue for predicting upcoming words.

However, humans demonstrate the ability to pre-
dict longer sequences of words in a special situation
such as in a buzzer quiz (Izawa, 2021). Skilled quiz
players can answer correctly by only listening to
a few words of the question sentence. In this con-
text, they are not only required to predict the next
word but also anticipate the structure of the entire
sentence.

This ability to make strong predictions during
sentence comprehension is a crucial aspect of sen-
tence processing, but it has received limited atten-
tion in previous research. Therefore, this study
specifically focuses on human hyperprediction.
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Question Type

easy

easy

difficult

difficult

Table 1: Examples of parallel quizzes. In each question, the words in red in the first half are contrasted with those in
blue in the second half. The first and second quizzes are the easy type of parallel quizzes, and the third quiz is the
difficult type.

2.2 Surprisal theory
Surprisal theory is a widely accepted concept in
computational psycholinguistics, particularly in
cognitive modeling research. As Eq. (1) shows,
surprisal is calculated as the negative logarithm
of the probability of a word or sequence of words
occurring in a particular context.

Surprisalword = − logP (word|context) (1)

This theory proposes that the processing diffi-
culty of a word is determined by its predictability
within its preceding context (Hale, 2001; Levy,
2008; Smith and Levy, 2013). Put simply, the eas-
ier a word is to predict, the lower the cognitive load
associated with it. Surprisal serves as a measure
of its processing difficulty. In order to evaluate
“human-like” trends of the language models, stud-
ies have been conducted to compare the surprisal
calculated by language models with data obtained
from humans, such as eye movement and EEG
(Fossum and Levy, 2012; Smith and Levy, 2013;
Frank et al., 2015; Wilcox et al., 2020; Yoshida
et al., 2021).

For example, Wilcox et al. (2020) and Goodkind
and Bicknell (2018) compared various models by
computing how well their next-word expectations
predict human reading time behavior on naturalistic
text corpora, and found that the lower perplexity
of a model, the better its psychometric predictive
power.

The previous research most closely related to our
work is Kuribayashi et al. (2021). They used the
Japanese eye-tracking corpus BCCWJ and found
that lower perplexity in Japanese language models

did not always lead to better psychometric predic-
tive power. This contrasts with findings for English
language models. We observe the same trend in
this study on human hyperprediction.

Our work uses eye movement data following
previous research. The surprisal calculated by the
“human-like” language model is expected to cor-
relate better with the human reading time of each
word.

3 Buzzer quiz in Japanese

Buzzer quiz is a type of quiz where participants
compete to answer questions quickly by buzzing
in with a buzzer. In a buzzer quiz, a moderator or
host reads out questions to the players. Each player
is equipped with a buzzer and when players know
the answer to a question, they buzz in to signal that
they want to answer. The first person or team to
buzz in gets the opportunity to answer the question.

While quiz players are listening to the question,
they are said to predict the rest of the question sen-
tence, not just the next word, but the entire sentence
(Izawa, 2021). Typically, the players try to buzz
the button even before the question is fully read.

In order to investigate human predictive process-
ing when reading quiz questions, we experimented
with parallel quizzes, which are typical among
Japanese quizzes and where prediction is said to be
important (Izawa, 2021). Parallel quizzes always
have a consistent format as follows:

For A,X(A) = xa, but what is X(B) ?

The first half of the question sentence is the premise
of the question and the second half is the main topic
of the question, where B can be partially predicted
from A.
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Figure 2: sentence-production task (+predic). Partic-
ipants read the first half of a parallel quiz and predict
what will follow. They orally answered the completion
of the question in the second screen.

Table 1 shows examples of parallel quizzes,
which contrast two elements in the first and second
halves of the question text. In terms of the ease of
predicting the second half of a question, parallel
quizzes fall into two categories. The first and sec-
ond questions of Table 1 are categorized as easy
parallel quizzes, which can be answered by only
listening to the first half of the question without
listening to the second half. For example, the first
parallel quiz on table 1 is about a football pitch.
The first half of the question sentence explains the
shorter edge of the pitch, then the quiz players can
predict that the longer edge of the pitch will be
contrasted and answer correctly (i.e., touchline) be-
fore the sentence is fully read. Skilled buzzer-quiz
players can answer this kind of parallel quiz very
quickly. On the other hand, in the third difficult
parallel quiz, the country contrasted with the word
“the United States of America” is not obvious, so
it is difficult to perfectly predict the second half of
the question.1

4 Experiment

Figure 1 illustrates the experimental procedure,
wherein human reading time was measured through
eye-tracking experiments. Subsequently, these data
were modeled using surprisal computed by lan-
guage models.

4.1 Eye-tracking experiment

We conducted an eye-tracking experiment to mea-
sure the time for reading and predicting parallel
questions.

1One of the quiz players who participated in our experi-
ment told that he was able to anticipate that the United Mex-
ican States would be contrasted with the United States of
America because the only two countries known as “United
States” in the world are the USA and Mexico.

Participants We recruited 32 native Japanese
speakers, aged 18 to 24. Among them, seven par-
ticipants were classified as experts due to their
previous involvement in quiz clubs during high
school or university, where they regularly partici-
pated in buzzer quiz activities. The remaining 25
novice participants had no prior experience with
such activities.

Before the experiment, each participant received
detailed information about the study procedures
and how their data would be used. Written consent
to participate in the experiment was obtained from
each participant.

Stimulus sentences In this experiment, we used
parallel quiz questions as stimulus sentences. All
of them were extracted from a corpus of Japanese
buzzer quiz questions called JAQKET.

We classified the quiz questions into two cate-
gories, easy and difficult, following the classifica-
tion criteria of Izawa (2021). 2 We prepared 20
easy parallel quizzes and 20 difficult quizzes. Easy
questions are those in which reading the first half
of the sentence clearly determines the continuation,
either leading to a single plausible second half or a
limited set of around two to three possible contin-
uations. In contrast, difficult questions are those
where predicting the second half is challenging,
either because multiple continuations remain possi-
ble or because significant domain-specific knowl-
edge is required to narrow down the possibilities.3

Additionally, 40 random quiz sentences were added
as fillers.

Tasks In this experiment, participants performed
two types of tasks: a sentence-production task
(+predic) and a sentence-comprehension task (-
predic). These two tasks were shown to the partic-
ipants in a randomized order.4 In this experiment,
the total reading time (TRT) of each word on the
first screen was measured.

Figure 2 illustrates the process of a sentence-
production task. Participants viewed the first half of
a parallel quiz on the screen. They were instructed
that even though there was no set time limit, they
were encouraged to press the button as quickly as
possible once they found an idea to continue the

2In this book, Japanese buzzer quiz questions are catego-
rized into 25 patterns, and the classification of parallel quizzes
is also discussed.

3These questions were selected from a wide range of gen-
res to avoid bias.

4Each participant read 20 question sentences in +predic
condition and the other 20 in -predic condition.
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Figure 3: sentence-comprehension task (-predic). Par-
ticipants read a sentence and answer a comprehension
test on the following screen.

question.5 After pressing the button, they answered
aloud on the second screen.

Figure 3 depicts the procedure of the sentence-
comprehension task. The first half of a quiz was dis-
played as a declarative sentence. The participants
pressed the button after reading it and answered the
comprehension test on the next screen.

Hypothesis In the -predic condition, participants
were only required to comprehend the content of
the sentence. In contrast, in the +predic condi-
tion, they were tasked not only with understanding
the sentence but also with predicting its continua-
tion. In the current experiment, under time pressure,
words with longer reading times are expected to
serve as key cues for predicting subsequent sen-
tences. Consequently, we anticipated that a lan-
guage model capable of simulating human reading
times would assign greater informational content
(and thus lower probabilities) to these cue words.
Conversely, words that do not serve as cues for
predicting the latter part of the sentence—those
that participants would naturally expect to follow
based on the context—should be assigned higher
probabilities by the language model. For example,
in Figure 1, the word “Japan,” highlighted in red,
is associated with longer reading time.

4.2 Language models
The surprisal for each subword was calculated us-
ing GPT-2 (Radford et al., 2019) published by rinna
(Chou and Sawada, 2021) on Huggingface. Experi-
ments were conducted using both the pre-trained
model6 and fine-tuned models.

The surprisal for the ith subword wi is cal-
culated based on the next-token probabilities

5This replicates the situation in quiz competitions, where
participants must buzz in as quickly as possible.

6GPT-2 used in this experiment was rinna/japanese-
gpt2-medium(https://huggingface.co/rinna/
japanese-gpt2-medium). This model is published
under MIT license.

P (wi|w1, ..., wi−1) computed by the language
models:

Surprisali = − logP (wi|w1, ..., wi−1) (2)

Pre-trained GPT-2 GPT-2 calculated the sur-
prisal for each subword in the sentence utilized
in the eye-tracking experiment.

Fine-tuned GPT-2 We fine-tuned the GPT-2
with parallel quizzes extracted from resources such
as JAQKET(Suzuki et al., 2020), QuizWorks7,
and Quiz-No-Mori8. These corpora include both
datasets curated for academic research and question
collections compiled by quiz enthusiasts.9

From these corpora, we extracted 4,100 parallel
quizzes for fine-tuning. The dataset for fine-tuning
was divided into 10 splits of increasing size, rang-
ing from 10 to 4,100 data points(10, 100, 200, 300,
500, 700, 1,000, 1,500, 2,000, 4,100).10 For each
data size, we conducted fine-tuning five times us-
ing different seed values. The epoch number in
training was set to ten for each fine-tuning. For
conditions with 2,000 data points or fewer, the sen-
tences used for fine-tuning were randomly selected.
Importantly, none of the questions employed in
the eye-tracking experiments were included in the
fine-tuning data.

4.3 Evaluation metrics
Psychometric Predictive Power (PPP): The
surprisal measure serves as a commonly uti-
lized information-theoretic complexity metric. In
essence, a model’s ability to predict human reading
behavior is often assessed by comparing the sur-
prisal values computed by the model with the read-
ing times of human participants. Higher correspon-
dence between the trends of model-generated sur-
prisals and human reading times indicates greater
psychometric predictive power. Previous studies
have evaluated the psychometric predictive power
of language models by comparing the surprisal val-
ues generated by each model with human reading
times.

In our eye-tracking experiment, we quantified
the reading time for each character and computed

7https://quiz-works.com/
8https://quiz-schedule.info/quiz_no_mori/data/

data.htm
9The questions used in the eye-tracking experiment were

excluded from the fine-tuning training data.
10The fine-tuning process with the full dataset size (4,100

data points) required approximately 15 minutes using a single
NVIDIA Tesla T4 GPU.

236



the total reading time for each subword by sum-
ming the total reading times of all characters within
the subword. As described in the Experiment sec-
tion, in the +predic condition, longer reading times
are expected for words that serve as cues for pre-
dicting subsequent sentences. If language models
are capable of capturing human hyperprediction,
they would be expected to assign high surprisal
values to such keywords.

To examine the impact of surprisal on model-
ing human reading behavior, we employed a linear
mixed-effects regression (Baayen et al., 2008) with
the lmer function in the lme4 package (Bates et al.,
2015) in R (R Core Team, 2023). This model aimed
to predict the total reading time (TRT) of each sub-
word using the following formula:

log(TRT) ∼ surprisal+ length

+ is_first+ is_last+ lineN

+ segmentN+ log_freq

+ prev_length+ log_freq_prev

+ (1|subject_id) + (1|item_id) (3)

The detailed description of each variable is pro-
vided in table 3 in the Appendix.

The regression model included the surprisal fac-
tor with other baseline factors, which were previ-
ously examined in existing studies (Asahara et al.,
2016; Wilcox et al., 2020; Kuribayashi et al., 2021;
Yoshida et al., 2021). Factors found to be not sig-
nificant (p > 0.05) for modeling reading time were
excluded. The frequency (freq) of each subword
was calculated based on the occurrences of each
token within a corpus of 14 million paragraphs,
extracted from Japanese Wikipedia.

To isolate the effect of surprisal on reading time
modeling, we trained a baseline regression model
without including surprisal information. Following
the approach outlined by Wilcox et al. (2020), we
computed the mean by-segment difference of log-
likelihood between the model with surprisal values
and the baseline model. This metric is referred to
as ∆logLik. A ∆logLik score of zero indicates that
surprisal from a language model is ineffective at
all for reading time modeling. Conversely, a high
∆logLik score suggests that the language model’s
surprisal values are effective for modeling read-
ing time, indicating a high psychometric predictive
power.

condition
#data
points

∆logLik
(/105)

p

-predic 7869 1.602 0.00390
+predic 8361 1.856 0.0215

+predic, novice 6351 1.801 0.00463
+predic, expert 2010 2.140 0.0131
+predic, easy 4579 2.390 0.0115

+predic, difficult 3782 1.912 0.0215

Table 2: PPP (i.e., ∆logLik) for each condition of the
pre-trained GPT-2. These values are the mean per-word
∆logLik of the model on held-out test data, averaged
over 10-fold cross-validation. “#data points” is the num-
ber of reading time annotations used in our experiments.
p shows the p-values of paired permutation tests on 10
∆ logLik values of 10-fold cross-validation using bro-
man package on R.

Figure 4: Relationship between the size of data used
for fine-tuning (X-axis) and mean perplexity of the five
fine-tuned models with different seeds (Y-axis). As the
fine-tuning data set enlarges, a corresponding decrease
in perplexity is observed.

Considering the low amount of data, we report
mean per-word ∆logLik of the model on held-out
test data, averaged over 10-fold cross-validation as
suggested by Wilcox et al. (2020).

Perplexity (PPL): In order to evaluate if fine-
tuning enabled the language models to better pre-
dict the next word in parallel quizzes, we calcu-
lated the perplexity of each model. PPL is the
inverse geometric mean of next-word probabili-
ties P (wi|w1, ..., wi−1) in a text that consists of N
words (w1, w2, ..., wN ), and it is a typical evalua-
tion metric for unidirectional language models:

PPL =
N∏

i=0

P (wi|w1, ..., wi−1)
− 1

N (4)

A low perplexity (PPL) suggests that the lan-
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guage model effectively anticipates the next word
based on its contextual information. The goal of
training and fine-tuning language models is to min-
imize the perplexity computed by the model. In
our experiments, we evaluated the perplexity of a
language model using texts from the eye movement
data, ensuring they do not overlap with the training
dataset.

5 Results

5.1 GPT-2

Table 2 shows the psychometric predictive power
(i.e., ∆logLik) for each condition of the pre-trained
GPT-2. In the +predic condition, the surprisal
term was found to be significantly effective in the
regression model (p < 0.05). In the sentence-
production experiment (i.e., +predic condition), the
participants read the first half of parallel quiz ques-
tions, and predicted what would follow. Therefore,
these findings suggest that the pre-trained language
model can effectively model the reading time asso-
ciated with human hyperprediction when reading a
parallel quiz question.

5.2 Fine-tuned GPT-2

Figure 5 illustrates the relationship between the size
of the dataset used for fine-tuning and psychomet-
ric predictive power (∆logLik) of language models
in +predic condition (i.e., sentence-production ex-
periment). Each point represents a language model,
with the Y-axis indicating the model’s psychomet-
ric predictive power (higher scores indicate better
performance) and the X-axis indicating the size
of the dataset. The number of data points used
for fine-tuning ranged from 10 to 4,100: 10, 100,
200, 300, 500, 700, 1,000, 1,500, 2,000, and 4,100.
The plot for 100 represents the PPP value of the
pre-trained model.

Blue points represent the modeling of the read-
ing time for novice participants, while red points
represent expert participants.

As Figure 4 shows, the perplexity tended to de-
crease as the number of data used for fine-tuning
increased.

Novice participants Language models fine-
tuned with parallel quiz questions exhibited higher
psychometric predictive power values than the pre-
trained model. Increasing the amount of data used
for fine-tuning resulted in a smaller increase in psy-
chometric predictive power.

The maximum value of psychometric predictive
power was achieved with the language model fine-
tuned with 1,500 sentences in the +predic, novice,
easy condition and 1,000 sentences in the +predic,
novice, difficult condition.

Expert participants The highest psychometric
predictive power for the fine-tuned model, regard-
less of the number of data points used, was ob-
served when expert participants read easy types
of parallel quizzes (i.e., +predic, expert, easy con-
dition). We believe that the high PPP values re-
flect the longer reading times for keywords of the
question sentences in the +predic condition when
experts read easy quiz questions.

In both easy and difficult conditions, the psycho-
metric predictive power of fine-tuned models in-
creased with the number of data points used for fine-
tuning. The maximum psychometric predictive
power was reached at 2,000 (+predic, expert, easy
condition) or 1,500 data points (+predic, expert, dif-
ficult condition); however, beyond this threshold,
a sharp decrease in psychometric predictive power
was observed. Interestingly, across all four condi-
tions, the peak psychometric predictive power did
not coincide with the maximum quantity of training
data.

6 Discussion

In this study, we focused on a phenomenon defined
as hyperprediction, where humans are thought to
predict not just the immediate next word, as is
typically assumed during sentence comprehension,
but also longer sequences of words and overall
sentence structure. We utilized cognitive model-
ing techniques to examine if language models can
capture this particular aspect of human prediction
processing ability.

The pre-trained GPT-2 demonstrated its highest
psychometric predictive power in the +predic, ex-
pert, easy condition, where human hyperprediction
was expected to be most prominent. Conversely, it
exhibited lower scores in the +predic, novice, diffi-
cult conditions, where hyperprediction was more
challenging. Our findings suggest that even the
pre-trained GPT-2 can partially capture human hy-
perprediction.

The surprisal from GPT-2 correlates better with
the reading times of experts rather than novices,
and with the +predic condition over the -predic
condition. We consider that this result potentially
implies the following: These results suggest that
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Figure 5: Relationship between the size of data used for fine-tuning (X-axis) and psychometric predictive power, i.e.,
∆logLik (Y-axis). Error bars are standard errors of by-fold mean ∆logLik per token, using 10-fold cross-validation
for five fine-tuned models with different seeds. The plot for 100 represents the PPP value of the pre-trained model.

the language processing of GPT-2 aligns more with
the hyperprediction capabilities of experts, who ex-
cel at predicting longer word sequences, rather than
the prediction processing of average humans dur-
ing normal reading. This may also suggest that the
reason language models such as GPT-2 don’t repli-
cate the average human behavior is that, at least in
some instances, they emulate expert behavior.

Furthermore, if the language model’s surprisal
can successfully model human hyperprediction,
this might suggest that when humans quickly an-
swer questions in a buzzer quiz, they are not di-
rectly outputting the answer from a limited portion
of the question. Instead, they may be anticipating
the continuation of the question—much like how
the language model operates—before providing
their answer.

The fine-tuned models exhibited the highest psy-
chometric predictive power in the +predic, expert,
easy condition. This condition, characterized by
participants’ familiarity with parallel quizzes and
their ease in making predictions, can be considered
to reflect human hyperprediction. Language mod-
els demonstrated an ability to capture this aspect of
human sentence processing.

As Figure 4 shows, the process of fine-tuning
resulted in a decrease in perplexity, indicating that
language models became more adept at predict-
ing the next word in parallel quizzes. Specifically,
when fine-tuned with 1,500 or 2,000 parallel quiz
sentences or less, lower perplexity corresponded to
higher psychometric predictive power, suggesting
improved model performance.

However, the GPT-2 model fine-tuned with the

most data did not necessarily exhibit the highest
psychometric predictive power value. This could
be attributed to the excessive data causing the
model’s surprisal to the sentence to decrease exces-
sively. Consequently, the model may have failed
to prioritize important words that typically require
longer human reading time. This trend aligns with
previous findings in Japanese language modeling
research (Kuribayashi et al., 2021), which argue
that lower perplexity does not always equate to
human-like performance. A similar trend has been
reported by Oh and Schuler (2023). They revealed
that very large language models underestimated
human processing difficulty. Our results align with
these assertions.

7 Conclusion

This study investigated human hyperprediction in
buzzer quizzes. Human hyperprediction during
sentence processing involves not only predicting
the next word, but also longer sequences of words
and the overall structure of the sentence, which
distinguishes it from regular prediction process-
ing in sentence comprehension. In this study, we
conducted experiments to test whether language
models can capture this particular aspect of human
predictive processing ability.

Our results showed that the pre-trained GPT-2
partially modeled human reading time while read-
ing parallel quizzes, which suggested that language
models can indeed capture aspects of human hyper-
prediction.

Furthermore, language models fine-tuned with
parallel quizzes modeled human hyperprediction
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in buzzer quizzes better than the pre-trained GPT-2.
Specifically, the highest predictive power was ob-
served in conditions where hyperprediction would
be most prominent (i.e., +predic, expert, and easy
condition). Notably, fine-tuning resulted in a sig-
nificant increase in predictive power values. How-
ever, excessive fine-tuning data (exceeding 1,500
or 2,000 data points) led to a decrease in perplexity
and subsequently to reduced psychometric predic-
tive power. This trend aligns with findings reported
in previous work (Kuribayashi et al., 2021). Over-
all, our findings suggest that a moderate amount of
data is required for fine-tuning in order to model
human hyperprediction.

Limitations

In this study, we focused on hyperprediction during
the reading of quiz questions and the subsequent
prediction of their continuations. Hyperprediction
in human sentence processing is particularly promi-
nent in the context of buzzer quizzes. However, the
occurrence of hyperprediction in more general sen-
tence comprehension remains an open question for
future investigation. Exploring other contexts in
which hyperprediction may manifest is a promising
direction for future research.

Our study focused on Japanese parallel quizzes
and employed an eye-tracking experiment to mea-
sure the total reading time for each subword in
parallel quiz questions. However, in buzzer quiz
competitions, questions are typically orally read
aloud. Players utilize intonation and prominence
cues to consider the answer to the quiz, particularly
in parallel quizzes where the moderator emphasizes
the contrasted words in the first half of the question.
Skilled players use phonological cues to anticipate
the answer and buzz in as quickly as possible. Fu-
ture research could explore incorporating these oral
reading dynamics into language models.

Additionally, buzzer quiz players are influenced
by various factors, including game rules and com-
petitors’ scores. Factors like strict penalties for
wrong answers may lead players to hesitate to
buzz in unless they reach a reliable prediction for
the question’s continuation. Conversely, players
with lower scores may adopt a more aggressive
approach, buzzing in even without full certainty
about the answer. These varying confidence levels
in predicting subsequent question text may differ
from the prediction in the simplified situation of our
eye-tracking experiment. Future studies can further

explore these nuanced factors to gain a comprehen-
sive understanding of quiz players’ hyperprediction
and the language model’s ability to capture such
hyperprediction.

Additionally, this eye-tracking experiment re-
cruited a relatively small number of expert partici-
pants. There are 40 target items and 40 filler items,
and given that the sentences are short, a total of 32
participants were few.

As for the statistical analysis, surprisal value
was calculated for each subword. The GPT-2 to-
kenizer utilized in our experiment was trained us-
ing the Byte Pair Encoding (BPE) method. Con-
sequently, since Japanese language is not written
with a space between words, subwords that include
a word boundary exist, resulting in reading time
analyses based on subwords rather than individ-
ual words. For future work, training a tokenizer
using a method that does not contain word bound-
aries within a single subword could allow for more
cognitively valid analyses.

Ethical considerations

The eye-track experiment conducted in our work
was approved by the research ethics committee of
the university.

Buzzer quiz is a game of knowledge where par-
ticipants may feel defeated if they are unable to
answer a question. Prior to conducting the eye-
tracking experiment, we emphasized to participants
that the purpose of the experiment was not to assess
their knowledge level. We made efforts to ensure
that participants felt comfortable and performed
naturally, without undue stress or pressure.

The data collected in this experiment included
the timing of participants’ button presses and the
reading time of each word, calculated from their
gaze location on the screen. These data were
anonymized by assigning a random subject ID to
each participant, thereby ensuring the separation of
personal information from experimental data.

We aimed to ensure fair payment. As mentioned
in the paper, our participants were recruited from
the university and received compensation of 1,000
yen for their one-hour participation in the experi-
ment. The compensation amount was determined
following the university’s guidelines.

Furthermore, in line with the ACL 2023 Policy
on AI Writing Assistance, we utilized ChatGPT by
OpenAI and Grammarly for writing assistance.
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Factor name Type Description
surprisal num surprisal calculated by each language model

TRT num total reading time for each token
length int the number of characters

is_first factor the leftmost token within the line
is_last factor the rightmost token within the line
lineN int the serial number of the line where the token is displayed

segmentN int the serial number of the token within the line
log_freq num log of the frequency of the token

prev_length int length of the previous token
prev_freq num log_freq of the previous token
subject_id factor ID assigned to each participant
item_id factor ID assigned to each item

Table 3: Factors used in regression models.

n_layer 24
n_embd 1024
n_head 16

n_position 1024
vocab_size 32000

Table 4: Model architecture of GPT-2 we used in our work.

Optimizer AdamW
Learning rate 5e-05

Number of epochs 10
Dropout rate 0.1
Batch size 1

Table 5: Hyperparameters for our fine-tuning.

A Factors used in regression model

Table3 shows the description of the factors used
in our regression models. Factors found to be not
significant (p > 0.05) for modeling reading time
were excluded.

The frequency of a token (used in log_freq)
was calculated using 14 million paragraphs ex-
tracted from Japanese Wikipadia.

B Model architecture

The model architecture of GPT-2 we used in our
work is shown in Table4. The model is available
on Hugging Face. 11

C Hyperparameters

Hyperparameters for our work are shown in Table
5, which followed default settings.

11https://huggingface.co/rinna/japanese-gpt2-medium
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