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Abstract

Animacy is a well-documented factor affect-
ing language production, but its influence on
Language Models (LMs) in complex structures
like Object Relative Clauses (ORCs) remains
underexplored. This study examines LMs’ sen-
sitivity to animacy in English ORC structure
choice (passive vs. active) using surprisal-
based and prompting-based analyses, along-
side human baselines. In surprisal-based anal-
ysis, DistilGPT-2 best mirrored human prefer-
ences, while GPT-Neo and BERT-base showed
rigid biases, diverging from human patterns.
Prompting-based analysis expanded testing to
GPT-4o-mini, Gemini models, and DeepSeek-
R1, revealing GPT-4o-mini’s stronger human
alignment but limited animacy sensitivity in
Gemini models and DeepSeek-R1. Some LMs
exhibited inconsistencies between analyses, re-
inforcing that prompting alone is unreliable
for assessing linguistic competence. Corpus
analysis confirmed that training data alone can-
not fully explain animacy sensitivity, suggest-
ing emergent animacy-aware representations.
These findings underscore the interaction be-
tween training data, model architecture, and
linguistic generalization, highlighting the need
for integrating structured linguistic knowledge
into LMs to enhance their alignment with hu-
man sentence processing mechanisms.

1 Introduction

Animacy belongs to a set of semantic factors known
to affect language production due to its central-
ity in human communication (Cooper and Ross,
1975). Previous studies have found that the ani-
macy status of nouns affects how structures are
formed. Specifically, one commonly investigated
structure is object relative clauses (ORC). Many
studies found that ORCs with animate head nouns
are more likely to be produced in the passive struc-
ture instead of the active structure (e.g., Gennari
et al., 2012; Humphreys et al., 2016; Wu et al.,

2022). For example, English speakers overwhelm-
ingly prefer passive structures like (1-a) in Table
1 over their active counterparts (1-b), whereas in
describing an inanimate target, (1-c) and (1-d) are
equally probable.

The concept of animacy—distinguishing be-
tween living and non-living entities—is rooted
in human beings’ perceptual, cognitive, and lin-
guistic development (Gelman, 1981; Leslie, 1994;
Rakison and Poulin-Dubois, 2001). However,
transformer-based pre-trained language models
(LMs) learn solely from text, raising the question
of whether they exhibit human-like sensitivity to
animacy when processing complex syntactic struc-
tures like ORCs, or if their behavior differs due to
their text-based learning paradigm.

Recent studies have begun exploring this ques-
tion, finding that while some LMs demonstrate sen-
sitivity to animacy constraints, this varies across
models (Hanna et al., 2023; Kauf et al., 2023; Yun
et al., 2023), leaving open the question of whether
LMs encode animacy as an abstract linguistic fea-
ture or simply reflect statistical patterns in text.
Particularly relevant to the current study, Yun et
al. (2023) reported ChatGPT-3.5’s higher proba-
bility of generating active ORCs when the head
noun was inanimate and the agent noun was ani-
mate than when both were animate. However, their
study did not fully control for all possible animacy
configurations of head and agent nouns. And the
rapid advancement of LMs highlights the need for
continued research to refine our understanding of
their linguistic processing.

To address the gap, we use psycholinguistically
guided minimal pairs to systematically test how an-
imacy influences active vs. passive ORC structure
choice across a full list of animacy conditions: AA
(animate head noun + animate agent), IA (inani-
mate head noun + animate agent), AI (animate head
noun + inanimate agent), and II (inanimate head
noun + inanimate agent). This approach allows
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No. Cond. Head
Noun

Agent
Noun Structure Example

(1-a) AA animate animate passive the man who’s being punched by the woman
(1-b) AA animate animate active the man that the woman is punching
(1-c) IA inanimate animate passive the sandbag that’s being punched by the woman
(1-d) IA inanimate animate active the sandbag that the woman is punching

Table 1: Sample ORCs varied by head noun animacy.

us to determine whether LMs replicate humanlike
animacy effects or diverge from human processing,
providing insight into the role of animacy in LMs’
ORC structure selection.

2 Related Works

2.1 Animacy in object relative clauses

One of the widely studied structures affected by
animacy in psycholinguistics is the object relative
clause (ORC): the animacy status of nouns involved
in the ORC was found to affect whether the ORC
is produced in passive or active structures in many
languages (e.g., Gennari et al., 2012; Hsiao and
MacDonald, 2016; Rodrigo et al., 2018; Wu et al.,
2022). Specifically, the passive ORC is strongly
preferred when both the head noun and the agent
noun are animate (Condition AA), but this prefer-
ence diminishes when the head noun is inanimate
and the agent noun remains animate (Condition
IA).

One explanation for the preference for passive
ORCs is the animacy-based accessibility mecha-
nism (Gordon et al., 2001), which suggests that
animate nouns are conceptually salient and more
likely to take the subject role in ORCs, leading
to a passive preference (J. K. Bock and Warren,
1985). Alternatively, the similarity-based competi-
tion mechanism (K. Bock et al., 1992; McDonald
et al., 1993) argues that two animate nouns (e.g.,
man and woman in Table 1) create higher cogni-
tive load than inanimate-animate pair (e.g., sand-
bag and woman) due to conceptual competition
in working memory. To ease this load, speakers
prefer passives, which postpone the agent noun
(Gennari et al., 2012). While both mechanisms
predict animacy effects on ORC structure choice,
they differ in their explanations for the passive pref-
erence in animate-head ORCs. However, past stud-
ies have only tested two (AA, IA: Gennari et al.,
2012; Hsiao and MacDonald, 2016; Humphreys
et al., 2016; Wu et al., 2022) or three (AA, IA, AI:
Rodrigo et al., 2018) conditions, leaving gaps in

understanding the full scope of animacy effect.
Which structure would speakers prefer when pro-

ducing ORCs with inanimate head nouns and inan-
imate agents (condition II)? Would they equally
choose passive or active because there are no ani-
mate head nouns urgently in need of a subject role?
Or would they still strongly favor passives because
due to the cognitive load imposed by competition
between two similar inanimate nouns? Due to the
lack of studies incorporating all four animacy con-
ditions, the relationship between animacy status
and ORC structure preference is not clear. This
gap extends beyond psycholinguistics to LMs, as
investigating animacy-driven structure choices in
LMs can provide insights into whether they reflect
human-like processing or rely on different under-
lying mechanisms. Conversely, exploring these
patterns in LMs may also offer predictions about
what to expect in the underexplored conditions,
guiding future psycholinguistic research. To bridge
these gaps, the current study first exposes human
participants to all four animacy conditions to es-
tablish a baseline. This not only fills a critical gap
in psycholinguistics but also lays the groundwork
for evaluating LMs’ animacy-sensitivity in making
syntactic decisions in the following steps.

2.2 Animacy in LMs

The role of animacy in language modeling has
been a topic of interest in computational linguistics.
Early work by Elman (1990) showed that a simple
recurrent network trained on synthetic language
data formed distinct clusters for animate and inani-
mate entities, suggesting that basic LMs developed
animacy-sensitive representations.

More recent studies have examined how animacy
is integrated into broader linguistic behavior in
LMs. Kauf et al. (2023) found that LMs exhibit
sensitivity to animacy as it relates to selectional
constraints, indicating that animacy is integrated
into their broader event knowledge. Hanna et al.
(2023) found that LMs can infer animacy from con-
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textual cues and adjust their processing accordingly,
though not always to the same extent as humans.

Several studies have also explored how animacy
affects syntactic structure choice. Futrell and Levy
(2018) found that recurrent neural network lan-
guage models (RNN LMs) learn animacy as an
abstract feature that influences word order, though
its effect was weaker and less consistent than other
factors like constituent length. In a more targeted
investigation, Yun et al. (2023) prompted GPT-3.5
with sentence fragments and observed significantly
more active ORCs when the head noun was inan-
imate than when it was animate, suggesting that
animacy influences structural choices in LMs. Pa-
padimitriou (2024) found that animacy is a strong
predictor of subjecthood in mBERT’s embedding
space: animate nouns were more likely to be clas-
sified as agents, even when controlling for syntac-
tic role. This finding supports the idea that LMs
encode subjectivity in gradient and functionally-
driven ways, with animacy as a core dimension.

Building on this line of research, our study goes
beyond the typical binary manipulation of head
noun animacy in ORC configurations. We intro-
duce a four-way animacy design that systemati-
cally varies both head noun and agent animacy
across conditions (AA, IA, AI, II). Our investiga-
tion consists of three complementary experiments:
(1) surprisal-based analysis, (2) training corpus ex-
amination, and (3) direct prompting-based analysis.
Our goal is to determine whether LMs show an-
imacy sensitivity in ORC processing, and if so,
whether their animacy effects reflect an emergent
linguistic pattern or are merely artifacts of train-
ing data biases. We hypothesize that (1) LMs will
exhibit systematic surprisal-based animacy effects,
but with model variations, (2) corpus distributions
alone will not fully account for LMs’ structure
choices, and (3) prompting analysis will reveal
animacy-driven patterns in ORC selection for some
LMs, if not all.

3 Psycholinguistic Data

Design Fruitful previous studies, including Gen-
nari and MacDonald (2009) with 82 native English
speakers, Montag and MacDonald (2015) with 30,
and Humphreys et al. (2016) with 16, have consis-
tently found that animacy affects the choice be-
tween passive and active ORCs, particularly in
Conditions AA and IA, using similar picture-based
elicitation tasks. In the current study, we used 20

illustrated scenes created with Procreate and sup-
plemented with licensed clip art (See Appendix A
for an example). Each scene depicted four dis-
tinct events, all involving the same action (e.g.,
hitting, pulling, pushing, chasing, lifting), vary-
ing by the animacy of the agent and patient: AA:
Animate Agent – Animate Patient (e.g., a woman
lifting a boy); IA: Animate Agent – Inanimate Pa-
tient (e.g., a woman lifting a box); AI: Inanimate
Agent – Animate Patient (e.g., balloons lifting a
boy); II: Inanimate Agent – Inanimate Patient (e.g.,
balloons lifting a box). We also included 50 filler
scenes depicting unrelated events (e.g., riding bikes,
playing cards), designed to elicit a range of struc-
tures including simple and subject relative clauses.
Participants viewed the images and responded to
questions. Their choice of active or passive rela-
tive clause structure was analyzed. As a proof-of-
concept psycholinguistic study, five adult native
English speakers each produced twenty responses.
Their structure choices were coded accordingly.
This preliminary study establishes a human base-
line for evaluating LM behavior, as no prior work
has systematically investigated all four animacy
configurations of ORCs.

Result Our preliminary results align with previ-
ous research in two key ways: (1) a general pref-
erence for passives overall (Gennari et al., 2012;
Montag et al., 2017), and (2) higher passive usage
in AA and AI compared to IA (e.g., Humphreys
et al., 2016; Rodrigo et al., 2018). As shown in
Figure 1, passive structures were strongly preferred
in AA (96%) over IA (63%), with a significant
difference (B = 2.69, p = 0.02∗) confirmed by
binomial mixed-effects logistic regression. AI also
showed a high passive rate (95%), comparable
to AA, consistent with findings by Rodrigo et al.
(2018) in Spanish and Japanese. Our study further
provides new insights into the II condition. While
II did not differ significantly from other conditions
(p > 0.5), its passive rate (82%) was noticeably
higher than IA (63%), suggesting that even with-
out an animate noun, similarity-based competition
between two inanimates may still promote passive
use.

These results reinforce the complex role of ani-
macy in ORC structure choice. The strong passive
preference in AA and AI aligns with the expec-
tation that animate head nouns favor the subject
position, making passivization the preferred struc-
ture (Gennari et al., 2012; Rodrigo et al., 2018).
The IA condition, which lacks both an animate
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Figure 1: Human responses: ORC structure choice by
animacy condition. AA represents ORCs with animate
head noun and animate agent; IA: inanimate head noun,
animate agent; AI: animate head noun, inanimate agent;
II: inanimate head noun and agent.

head noun and animacy congruence, showed the
lowest passive preference, suggesting that the ab-
sence of these factors results in weaker motivation
for passivization. The II condition, despite the
absence of an animate noun, exhibited a higher pas-
sive rate than IA, suggesting that similarity-based
competition may still influence structure choice
even among inanimate referents. While we ac-
knowledge the limitations of our sample size1, the
clear alignment of our findings with prior research
and the observed significant effects suggest that an-
imacy effects in ORC processing extend beyond a
simple binary contrast and involve a more complex
interaction between competition and accessibility
mechanisms.

4 LMs and Experiments

4.1 Surprisal-based analysis

Dataset Following our psycholinguistic paradigm
and previous research (e.g., Gennari and MacDon-
ald, 2009; Humphreys et al., 2016), we designed
experimental English prompt minimal pairs (Cong,
2022), each consisting of a written context story
and a pair of target sentences. Expanding on our
psycholinguistics experiment, we developed a set
of 384 prompt pairs, with 96 pairs per animacy
condition. Each pair includes both a passive ORC
target sentence and its active counterpart. For in-

1Our ongoing psycholinguistic research with 35 partici-
pants replicates these findings. Details will be published in a
forthcoming paper.

stance, in Table 2, the target sentences (passive:
“The baby that is held by the father is crying”; ac-
tive: “The baby that the father holds is crying”)
both serve as grammatically valid answers to the
final question in the context story. We hypothesize
that LMs will select different target sentences de-
pending on the animacy condition, despite potential
variations due to model differences.

Experimental Design and LMs We evaluated
the performance of various LMs on ORCs’ struc-
ture choice: DistilGPT-2 (Sanh et al., 2019), GPT-
Neo (Black et al., 2021; Gao et al., 2020), BERT-
large-uncased (Devlin et al., 2018), and the BERT-
base-uncased (Devlin et al., 2018). See Table 3
for summary. These differences, including size,
architecture (masked vs. causal), and training data
diversity, are likely to influence how each LM pro-
cesses syntactic structure and animacy-sensitive
patterns, and thus are important for interpreting
model–human comparisons.

In the current analysis, the preference for a par-
ticular answer is measured by the surprisal score
of each target sentence given by LMs (Cong et al.,
2023; Hale, 2001; Michaelov and Bergen, 2022).
For GPT-type LMs, surprisal was calculated as the
negative log probability of the word given left con-
text (Levy, 2013). We computed the surprisal score
at the sentence level. When the LMs tokenizer
splits the target in more than one token, we take the
average of the surprisal score of its subtokens (See
Appendix B for out-of-vocabulary (OOV) ratios
by animacy condition for each LM). For BERT-
type models, which are bidirectional and trained
via a masked language modeling objective, sur-
prisal was calculated as the sum of the negative log
probabilities of each word, conditioned on both its
preceding and following context—normalized by
the total number of tokens in the sentence. This
sentence-level surprisal aligns with BERT’s bidi-
rectional training: unlike autoregressive models
that rely solely on left context, denoising autoen-
coding models like BERT and RoBERTa are ex-
plicitly trained to make word predictions based on
both left and right contexts. Our surprisal calcu-
lation for BERT therefore mirrors its underlying
architecture and learning objective, supporting a
more principled comparison with GPT-style mod-
els. To keep consistency in operation, we used
minicons (Misra, 2022) for both BERT and GPT-
type LMs, specifically the scorer module for the
masked language models such as BERT (i.e., the
scorer.MaskedLMScorer class), and standard au-
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Context Story Structure Target Sentence
There are two babies, a mother, and a father in the
scene. The father holds the crying baby. The mother
holds the smiling baby. Which baby is crying?

Passive The baby that is held by the father is cry-
ing.

Active The baby that the father holds is crying.

Table 2: Example prompt pair for surprisal analysis.

Model Arch. Size Training
Data

BERT-base masked 110M BooksCorpus,
Wikipedia

BERT-large masked 340M BooksCorpus,
Wikipedia

DistilGPT-2 causal 82M OpenWebText
GPT-Neo causal 1.3B The Pile

Table 3: Summary of LMs used in the surprisal-based
analysis.

toregressive language models such as DistilGPT-2
(i.e., the scorer.IncrementalLMScorer class). When
the passive structure in a prompt pair receives a
lower mean surprisal score than its active counter-
part, we coded the outcome variable choose-psv as
1, otherwise as 0.

For statistical analysis, binomial logistic mixed-
effects model was fitted for each LM with choose-
psv as the dependent variable, Animacy as the main
predictor (categorical). The random-effects struc-
ture included only Items. The LME4 package in
R (Bates, 2014) was used for statistics modeling.
Post-hoc comparisons were conducted with the em-
means package (Lenth, 2019), applying Tukey ad-
justments for pairwise comparisons. Our imple-
mentation is available on our Github page.

Results Figure 2 shows structure selection rates
by animacy for each LM, with darker bars indi-
cating passive selection and lighter bars represent-
ing active selection. Several key patterns emerged.
First, different LMs exhibited distinct structural
biases: BERT-large (B = 0.79, p < 0.001), BERT-
base (B = 2.71, p < 0.001), and DistilGPT-2
(B = 0.92, p < 0.001) showed overall strong
passive preference, whereas GPT-Neo significantly
favored actives across conditions, shown by its sig-
nificant negative intercept (B = −0.78, p < 0.01).

Next, for each LM, the results (see Figure 2)
showed significant animacy effects for BERT-large
(p < 0.001), DistilGPT-2 (p < 0.01), and GPT-
Neo (p < 0.001), while BERT-base did not reach

significance (p = 0.06). BERT-large showed sig-
nificantly lower passive selection rates in IA and
AI conditions compared to AA and II, suggesting
that BERT-large is less likely to choose passives
when the head noun and agent differ in animacy
features.

DistilGPT-2 chose significantly fewer passives
in IA, indicating an increased selection for actives
when the head noun is animate and the agent is
inanimate. GPT-Neo, unlike other models, showed
a stronger passive preference in IA compared to AI
and II. BERT-base, due to its exceptionally high
passive selection rates across all conditions, did not
exhibit significant effect of animacy.

To evaluate the alignment between LMs and
human responses, we conducted Pearson corre-
lation analyses and RMSE (Root Mean Square
Error) calculations between each LM’s passive
selection rates and human data. The results re-
ported DistilGPT-2’s highest Pearson correlation
(r = 0.98) and lowest RMSE (0.14), suggesting
closer alignment with human patterns. GPT-Neo
showed the lowest Pearson correlation (r = −0.66)
and highest RMSE (0.55), indicating its substantial
divergence from human patterns. Figure 3 visu-
alizes passive selection rates across animacy con-
ditions for each LM, with the red line represent-
ing human response patterns from psycholinguistic
data. The figure further highlights DistilGPT-2’s
closer alignment to human behavior (navy blue
line), while GPT-Neo exhibits the greatest diver-
gence (light blue line).

4.2 OpenWeb corpus analysis

While surprisal-based experiment found varying
degrees of animacy sensitivity in LMs, an open
question remains: Is this sensitivity an emergent
linguistic property or merely a reflection of the dis-
tribution in the training data? Specifically, do LMs
assign surprisal scores based on inherent animacy
effects, or are these scores simply mirroring the
animacy-driven distribution of ORCs in the train-
ing data?

Method To address this question, we exam-
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Figure 2: Structure selection rate by animacy and LM
according to surprisal-based analysis.

Figure 3: Passive selection pattern comparison between
LMs and human data.

ined the structural distribution of active and pas-
sive ORCs across animacy conditions in the Open-
Web corpus (Gokaslan and Cohen, 2019), an open-
source reproduction of OpenAI’s WebText dataset,
which was used to train GPT-2. We randomly
selected over 8,000 sentences from the corpus
and used a custom syntactic parsing pipeline us-
ing SpaCy to automatically extract sentences con-
taining ORCs. The extraction procedure iden-
tified ORCs based on the presence of a head
noun, an embedded verb phrase, and an agent
noun—accounting for both overt and omitted rel-
ative pronouns. Manual examination of the au-
tomatically identified ORCs was conducted and
only those with correct annotations were retained.
Each validated ORC was then categorized as ac-

tive or passive, and the animacy status of both the
head noun and agent noun was annotated. This
allowed us to quantify the frequency of active and
passive ORC structures across different animacy
conditions.

Then, we conducted Pearson correlation tests
to assess whether the ORC distribution in Open-
Web alone could account for the animacy-driven
ORC patterns found in human responses, to iden-
tify which LMs’ surprisal scores best aligned with
human responses, and to determine whether incor-
porating corpus data could enhance the explanatory
power of LMs in modeling human behavior.

Results Only 1.34% of our examined sentences
were found to contain a complete ORC. As shown
in Table 4, these ORCs are skewed toward actives
(71.03%) over passives (28.97%) and are imbal-
anced by animacy, with IA conditions dominating
(66.36%). Particularly, active IA ORCs alone ac-
count for 53.27% of all ORCs, suggesting a pro-
nounced structural bias in the training corpus. In
contrast, AA and AI conditions are rare, compris-
ing only 4.67% and 1.87% of the total ORCs, re-
spectively.

Struct. AA
(%)

IA
(%)

AI
(%)

II
(%)

Sum
(%)

Passive 0.93 13.08 0.93 14.02 28.97
Active 3.74 53.27 0.93 13.08 71.03

Total 4.67 66.36 1.87 27.10 100

Table 4: ORCs found in OpenWeb sample grouped by
animacy and structure.

Pearson correlation tests (Table 5) indicate that
corpus data alone has low predictive power for
both human responses (R2 = 0.12, p = 0.66)
and DistilGPT-2’s surprisal values (R2 = 0.26,
p = 0.49). While the corpus shows moderate pre-
dictive power for GPT-Neo (R2 = 0.78, p = 0.12),
the negative correlation (r = −0.89) suggests that
GPT-Neo follows an opposite trend from corpus-
based distributions.

Among the four tested LMs (DistilGPT2, GPT-
Neo, BERT-large, and BERT-base), DistilGPT2
accounted for the highest variance in human re-
sponses (R2 = 0.96, p = 0.02), explaining 95.6%
of the variance with statistical significance. Adding
OpenWeb further increased the explained variance
to 98.7%, but the lack of significance suggests that
the combined model did not outperform DistilGPT-
2 alone. The other three LLMs showed weaker
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alignment with human behavior. GPT-Neo exhib-
ited strong divergence, as indicated by its negative
estimates and low R2 values, suggesting an op-
posite structure preference. BERT-large explained
only 9% of the variance (not significant), indicating
it is a weak predictor of human responses. BERT-
base captured 88.4% of the variance but was not
significant, and incorporating OpenWeb did not
improve its predictive power.

4.3 Prompting-based analysis
LMs To further strengthen our investigation, we
conducted a supplementary analysis using prompt
engineering. In addition to the four previously
examined LMs, we included four recent state-of-
the-art models: GPT-4o-mini (Achiam et al., 2023),
Gemini-1.5-flash (Team et al., 2023), Gemini-2.0-
flash, and DeepSeek-R1 (Guo et al., 2025). This
analysis used the same dataset as the surprisal anal-
ysis, which consists of 384 context stories paired
with sentences containing passive and active ORCs.

Method Each LM was prompted to select the
more appropriate syntactic structure based on the
given context. The structured prompt explicitly in-
structed the model as follows: "Read the following
context carefully, which includes a short story and
a question at the end. Two possible answers are
provided. Your task is to choose the answer that
sounds most natural to a native English speaker.
Please respond with either "1" for the first option
(Passive) or "2" for the second option (Active)".

Same as surprisal-based analysis, LMs’ choice
was recorded as 1 for passive and 0 for active in
the variable choose-psv for each trial. The passive
selection rate was calculated as the proportion of
trials in which the model selected passive within
each animacy condition.

For model comparison, we computed Pearson
correlation, MSE and RMSE. Pearson correlation
evaluates the linear relationship, while RMSE quan-
tifies the average deviation of model predictions
from human responses, with lower values indicat-
ing better fit. Together, these measures provide a
comprehensive evaluation of how closely or differ-
ently each LM perform compared to human.

Design Considerations While our human ex-
periment used picture-based elicitation (See Ap-
pendix A for an example), we opted for a con-
trolled, text-based prompting design in this anal-
ysis. This choice was made to avoid confounds
introduced by image recognition and visual reason-
ing, which current LMs may not reliably handle

in a standardized way. Instead, we used context
stories that mirrored the structural and referential
properties of the original visual stimuli, allowing
us to isolate syntactic preference.

That said, a potential alternative design could
involve describing the visual scene and posing a
direct question (e.g., “Who is wearing red?”), then
analyzing the model’s free-text response. Such a
design could more closely simulate the referential
pressure that led to ORC production in humans and
may be explored in future work.

Results As shown in Figure 4, the structure
choices made by different LMs in the prompt engi-
neering experiment show great variation. Several
noticeable patterns emerged. First, BERT mod-
els (BERT-large, BERT-base) exhibit limited varia-
tion in response, overwhelmingly favoring passive
ORCs (near 100%) across all conditions. Gem-
ini models (Gemini-1.5-flash, Gemini-2.0-flash),
on the other hand, strongly prefer actives, with
Gemini-2.0-flash selecting active ORCs in nearly
100% of all conditions. Both model families seem
to lack human-like variation in structure choice.
GPT models (DistilGPT2, GPT-Neo, GPT-4o-mini)
and DeepSeek-R1 show more variation. ANOVA
analysis confirms significant differences among
LMs compared to human responses (df = 8,
p < 0.001). Post-hoc tests indicate that while all
LMs deviate from human responses to some ex-
tent, GPT-4o-mini exhibits the smallest difference
(diff. = 0.19, p = 0.01).

Model evaluation (see Figure 5) showed GPT-
4o-mini as the top performer, with the highest cor-
relation to human data (estimate = 0.98), high-
est explained variance (R2 = 96.4%), and lowest
RMSE (estimate = 0.21). BERT models (espe-
cially BERT-base) performed the worst, as they
explained almost no variance in human data and
had weak correlations. DistilGPT2 and GPT-Neo
showed moderate alignment, indicating they cap-
ture some trends but weren’t very strong predictors.
Gemini models and DeepSeekR1 performed incon-
sistently, they had low variance explained and high
RMSE, suggesting they aren’t reliable in matching
human responses.

5 Discussion

5.1 LMs show animacy sensitivity with
model-specific variations

Our surprisal-based and prompting-based analyses
revealed LMs’ varying sensitivity to animacy in
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R2 Adjusted R2 F-statistic p-value

How Corpus Explains Human Responses
OpenWeb (corpus) 0.12 -0.33 0.26 0.66

How Corpus Explains GPT Models
DistilGPT-2 0.26 -0.12 0.69 0.49
GPT-Neo 0.78 0.67 7.13 0.12

How LMs Explain Human Responses
DistilGPT-2 0.96 0.93 42.93 0.02*
DistilGPT-2 + OpenWeb 0.99 0.96 37.11 0.12
GPT-Neo 0.44 0.16 1.58 0.34
GPT-Neo + OpenWeb 0.72 0.15 1.26 0.53
BERT(large) 0.09 -0.36 0.20 0.70
BERT(large) + OpenWeb 0.18 -1.43 0.12 0.90
BERT(base) 0.88 0.83 15.29 0.06
BERT(base) + OpenWeb 0.93 0.80 6.95 0.26

Table 5: Regression results: corpus vs. LMs and human ORC structure choice.
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Figure 4: Passive selection rate by animacy and LM in
prompting-based analysis

ORC structure choice, aligning with Hanna et al.
(2023). The surprisal-based analysis reveals that
DistilGPT-2’s lower passive selection rate in IA
compared to AA and AI aligns well with human
data and psycholinguistic predictions (Gennari et
al., 2012; Hsiao and MacDonald, 2016). Accord-
ing to the similarity-based competition mechanism
(Gennari et al., 2012), passives should be more fre-
quent in animacy-congruent conditions (AA and
II). Among the tested LMs, only BERT-large fol-
lowed this expected pattern, while BERT-base con-
sistently over-selected passives, diverging from hu-
man data. Similar to Ettinger (2020), we report
greater sensitivity of BERT-large to linguistic con-
straints than BERT-base. GPT-Neo showed a gen-
eral preference for actives but unexpectedly showed
its highest passive rate in IA, contradicting human
data and psycholinguistic theories.
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Figure 5: Evaluation of LMs’ performance by human
responses in prompting-based analysis

Some LMs performed inconsistently across
prompting- and surprisal-based analyses.
DistilGPT-2 and BERT-large performed poorly
in prompting, explaining only 11.55% and 0.75%
of human variance, respectively, likely due to
fundamental task differences. As Hu and Levy
(2023) pointed out, prompting is not a substitute
for direct probability measurements in LMs, and
results may vary within the same LM.

Among the four newly tested LMs in prompting-
based analysis, GPT-4o-mini best mirrored human
patterns, despite an overall lower rate of passive
selection. In contrast, Gemini models (Gemini-1.5-
Flash and Gemini-2.0-Flash) showed minimal vari-
ation across animacy conditions, suggesting that
their internal representations likely do not align
with established linguistic theories (Cong, 2024).
Gemini-2.0-Flash, in particular, overwhelmingly
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favored active structures (∼100%), justifying its
choices by claiming actives sound more direct and
natural in English, whereas passives feel overly for-
mal. DeepSeek-R1 exhibited structural variation
across animacy conditions but in a theoretically
ungrounded way. While psycholinguistic studies
consistently report higher passive rates in AA than
IA (Gennari et al., 2012; Hsiao and MacDonald,
2016), DeepSeek-R1 showed little distinction be-
tween these conditions, deviating from both human
behavior and psycholinguistic predictions.

5.2 Training data alone fails to explain
animacy sensitivity in LMs

Our analysis of ORC distribution in OpenWeb sug-
gests that training data alone is a weak predictor
of LMs’ structure choices, as reflected in surprisal
results. While training data influences LM behav-
ior (Chai et al., 2024), it fails to fully account for
observed animacy effects, challenging the idea that
these effects stem solely from training biases. In-
stead, our findings suggest that some LMs, par-
ticularly DistilGPT-2 (surprisal-based) and GPT-
4o-mini (prompting-based), develop emergent an-
imacy sensitivity beyond exposure, aligning with
human data and psycholinguistic predictions (Gen-
nari et al., 2012; Hsiao and MacDonald, 2016),
despite training corpus’ limited explanatory power.
DistilGPT-2 alone explains 95.6% of the variance
in human responses, indicating that its animacy sen-
sitivity cannot be attributed to corpus distributions
alone.

That said, the predominance of active ORCs in
IA conditions in the corpus may still contribute
to LMs’ preference for active structures in these
cases. This pattern is consistent with Roland et al.
(2007), they also found higher percentage of active
ORCs in IA conditions compared to AA in both
the Brown corpus (IA: 53%, AA: 25%) and the
Switchboard corpus (IA: 69%, AA: 9%). Our cor-
pus analysis revealed an even stronger dominance
of active ORCs in IA conditions, reinforcing the
influence of corpus-based biases.

Ultimately, while corpus distributions shape
structure choices to some extent, they fail to ex-
plain the deeper, human-like patterns observed in
surprisal-based and prompting-based analyses. The
strong alignment between certain LMs and human
responses suggests that animacy sensitivity in LMs
arises from more than just statistical learning—it
may reflect deeper linguistic generalization.

5.3 Optimize LMs with psycholinguistic
knowledge

Despite carefully controlled input pairs and explicit
instructions, many LMs failed to capture human-
like animacy effects, with only a few demonstrating
satisfactory sensitivity. Gemini-1.5-Flash, Gemini-
2.0-Flash, DeepSeek-R1, and GPT-Neo showed
little alignment with human patterns.

It is likely that these LMs struggle with the
syntactic-semantic interface required for ORC
structure choice processing, particularly when two
structures convey the same meaning. Their train-
ing on large, diverse datasets may not emphasize
fine-grained semantic features that guide human
sentence processing. Future LM development and
optimization could benefit from explicit integra-
tion of semantic and syntactic knowledge and tar-
geted training on animacy effects and structural de-
pendencies. Moving beyond surface-level pattern
recognition towards deeper linguistic representa-
tion would improve LMs’ alignment with human-
like reasoning and formal (psycho-)linguistic theo-
ries.

6 Conclusion

To conclude, we found that LMs exhibited animacy
sensitivity, though the extent varied across mod-
els, as reflected in their ORC structure choices.
While some models aligned closely with human
data, others diverged significantly, highlighting
variation in how LMs process animacy in syntactic
structures. DistilGPT-2 and GPT-4o-mini showed
the strongest alignment, while Gemini models,
DeepSeek-R1, and GPT-Neo failed to capture ani-
macy effects meaningfully.

While training data influences LM behavior to
some extent, it does not fully explain their animacy
sensitivity, suggesting that some models develop
emergent linguistic generalizations beyond mere
statistical learning. To improve LMs’ alignment
with human cognition, future development should
integrate psycholinguistic insights, refine semantic-
syntactic training, and move beyond surface-level
pattern learning. Strengthening linguistic represen-
tations will inspire the development of psychologi-
cally plausible models.

Limitations

While this study offers valuable insights into LMs’
sensitivity to animacy in English ORC structure
choice, several limitations remain.
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Our current surprisal analysis computed aver-
age surprisal across tokens at the sentence level.
While this approach simplifies comparison across
sentence types, future work could adopt additive
surprisal values, which better reflect joint probabil-
ities over token sequences. Moreover, exploring
surprisal at more localized levels—such as word-
or phrase-level surprisal given left context—may
better align with psycholinguistic processing and
production (for this, we thank our anonymous re-
viewer for the suggestion). In addition, analyzing
surprisal using a binary outcome variable (choose-
psv) was conducted to mirror human production,
but using raw surprisal differences as the dependent
measure could potentially yield additional insights.
This is an alternative analysis that can be done in fu-
ture work to identify more fine-grained distinctions
in model preferences.

Our psycholinguistic proof-of-concept study in-
volved a limited number of human participants.
While our findings are consistent with prior liter-
ature documenting animacy effects—particularly
in AA, IA, and AI conditions—a larger sample
size would strengthen empirical comparisons with
LMs. Furthermore, in this project, we did not col-
lect separate animacy norming data for our stimuli,
which could improve future experimental control
and interpretation in the future.

Our corpus analysis used a representative sam-
ple of the OpenWeb corpus to approximate natural
distributional patterns, but it does not reconstruct
LMs’ full pretraining data. Broader corpus compar-
isons and controlled datasets would offer a more
robust estimate of the linguistic patterns LMs are
exposed to.

Lastly, although not the focus of the current
work, future studies could incorporate layer-wise
probing to explore whether animacy effects arise
during lexical encoding, syntactic composition, or
higher-level integration processes.
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A Appendix: Psycholinguistic
Experiment Procedure

Figure 6 presents an example trail from the elicita-
tion task used in the psycholinguistic experiment.
Participants viewed the image for 3 seconds be-
fore hearing a prompt question (e.g., “Who wears
red?”). They then responded based on their obser-
vation of the scene. To encourage the production
of ORCs without directly instructing participants,
we told them their responses would help another
participant identify characters or objects in the im-
ages. To prevent reliance on surface-level features
like color (e.g., “red”) or position (e.g., “on the
left”), participants were informed that these fea-
tures would change for the next group, while the
actions would remain constant. This setup subtly
prompted the use of ORCs by emphasizing actions
as the most stable and reliable descriptors.

Figure 6: Sample stimulus image illustrating an ORC
elicitation scenario

B Appendix: Surprisal-based analysis:
out-of-vocabulary ratio

To ensure that surprisal differences across animacy
conditions were not artifacts of tokenization, we ex-
amined the out-of-vocabulary (OOV) rates for each
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LM by animacy condition. We acknowledge that
word-level splits in subword tokenization may re-
duce the psycholinguistic validity of surprisal at the
individual item level. However, Nair and Resnik
(2023) found that BPE surprisal retains predictive
power when comparing condition-level means—a
pattern directly relevant to our study design, and
that BPE-based models like GPT-2 still yield reli-
able surprisal–reading time correlations at the ag-
gregate level.

Figure 7 shows the OOV percentage across an-
imacy condition within each LM in our surprisal-
based analysis. We see that OOV rates within
each LM were quite consistent across animacy
conditions. For example, BERT models ranged
from 19.6% (AA) to 21.5% (II), while GPT models
ranged from 33.9% (IA) to 36.5% (AI/II) (Distil
GPT2 and GPT neo, BERT-base and BERT-large
were combined due to the same OOV score). This
stability across conditions suggests that differences
in surprisal are unlikely to be driven by variability
in tokenization. Thus, while GPT-based models
naturally exhibit higher OOV due to their subword
vocabularies, the uniformity of these rates across
animacy conditions allows for meaningful interpre-
tation of surprisal trends in line with the broader
goals of our study.

Figure 7: OOV by animacy by LM
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