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Abstract

Alzheimer’s Disease (AD) dementia is a pro-
gressive neurodegenerative disease that nega-
tively impacts patients’ cognitive ability. Pre-
vious studies have demonstrated that changes
in naturalistic language samples can be useful
for early screening of AD dementia. However,
the nature of language deficits often requires
test administrators to use various speech elici-
tation techniques during spontaneous language
assessments to obtain enough propositional ut-
terances from dementia patients. This could
lead to the “observer’s effect” on the down-
stream analysis that has not been fully investi-
gated. Our study seeks to quantify the influence
of test administrators on linguistic features in
dementia assessment with two English corpora
the “Cookie Theft” picture description datasets
collected at different locations and test admin-
istrators show different levels of administrator
involvement. Our results show that the level
of test administrator involvement significantly
impacts observed linguistic features in patient
speech. These results suggest that many of sig-
nificant linguistic features in the downstream
classification task may be partially attributable
to differences in the test administration prac-
tices rather than solely to participants’ cogni-
tive status. The variations in test administrator
behavior can lead to systematic biases in lin-
guistic data, potentially confounding research
outcomes and clinical assessments. Our study
suggests that there is a need for a more standard-
ized test administration protocol in the devel-
opment of responsible clinical speech analytics
frameworks.!

1 Introduction

Alzheimer’s Disease (AD) dementia is a neurode-
generative disease that causes progressive decline
in cognitive function. Even though AD currently
has no cure, a timely diagnosis is imperative to

'Our code is available at https://github.com/
LinguisticAnomalies/turns
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alleviate negative consequences of delayed or ab-
sent diagnosis including emergency events, family
strife, and exposure to scam artists praying on the
vulnerable (Stokes et al., 2015). Changes in natural-
istic language samples collected from individuals
at high-risk for dementia have been identified as
one of the early signs of AD (Almor et al., 1999;
Blanken et al., 1987; Bucks et al., 2000), showing
its potential as an early screening tool. However,
analyzing speech samples is labor-intensive and
time-consuming. Contemporary studies predomi-
nately focus on automated prediction and detection
of such changes with language models with con-
siderable success in distinguishing the speech of
dementia patients and healthy controls (for recent
reviews, see Shi et al. (2023); Ding et al. (2024)).
Despite these advances, this line of research often
faces the limited data availability. As noted in Shi
et al. (2023), the majority of prior work focuses
on analyzing naturalistic speech samples using the
transcripts of “Cookie Theft” picture description
cognitive task produced by English-speaking co-
horts in the Pitt corpus (Becker et al., 1994).
While several prior studies have focused on con-
nected speech from non-English speaking partici-
pants (e.g., French (Rousseaux et al., 2010b), Span-
ish (Custodio et al., 2020), and German (Weiner
et al., 2016)), a very limited discussion has been
held in prior literature on the influence of test ad-
ministrators. Similarly, methods for data collection,
such as optimal sample duration, distance to the
microphone, and presence of background noise,
have not been standardized (Seyed Ahmad Sajjadi
and Nestor, 2012). In addition, the impaired com-
munication ability of people with dementia (Ash
et al., 2006; Hier et al., 1985; Rousseaux et al.,
2010a) creates additional barriers for their care-
givers (Eggenberger et al., 2012; Banovic et al.,
2018). This could also extend to neuropsycholog-
ical assessment batteries such as picture descrip-
tion tasks, which are used extensively by speech-
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language pathologists in the management of clients
with language disorders, including aphasia and de-
mentia (Cummings, 2019; Berube et al., 2019).
Prior works have demonstrated that test adminis-
trators often perform a variety of speech elicitation
techniques to extract additional propositions from
aphasic patients (Menn and Obler, 1989; Caplan
and Hanna, 1998). As a number of studies have
argued in favor of a similarity of linguistic behav-
ior in patients with dementia and aphasia (Gewirth
et al., 1984; Nicholas et al., 1985; Blanken et al.,
1987; Gumus et al., 2024), similar elicitation strate-
gies may be employed when collecting speech sam-
ples from dementia patients. This could lead to
the “observer effect” (Labov, 1973) in feature val-
ues as many distinct linguistic features are sensi-
tive to the length of the text sample. A previous
study (Petti et al., 2023) demonstrated that sam-
ple length is important for extracting the various
language features of AD by analyzing the speech
samples (e.g., public interviews, talk shows and
public speeches) from cognitively healthy public
figures and those diagnosed with AD dementia.
However, this previous study did not address the
influence of interviewers and their speech elicita-
tion techniques on collected speech. The impact of
test administrators/interviewers and the resulting
reliability of linguistic features in clinical settings
also remains understudied. This less-discussed gap
is particularly concerning given the potential for
these factors to introduce systematic biases in the
assessment of cognitive decline.

To address this limitation, our study seeks to
quantify the influence of test administrators on
speech collected with the “Cookie Theft” picture
description task. Specifically, we analyze the quan-
tity and distribution of part-of-speech (POS) tags in
task transcripts collected from participants residing
in two distinct United States locations: Pennsyl-
vania and Wisconsin. We anticipate that test ad-
ministrators employ significantly more interactions
to elicit speech from dementia patients compared
to healthy controls, which may contribute to pa-
tients with dementia producing linguistic patterns
found to be associated with dementia, such as in-
creased use of repetitions (Hier et al., 1985), higher
pronoun usage (Almor et al., 1999), and elevated
lexical frequency (Bucks et al., 2000) when com-
pared to healthy controls. We analyze the Pitt cor-
pus and the Wisconsin Longitudinal Study (WLS)
(Herd et al., 2014) datasets from the Dementia
Bank. Both employ the “Cookie Theft” picture
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Figure 1: The “Cookie Theft” picture description stim-
uli.

description task from the Boston Diagnositc Apha-
sia Examination (Goodglass and Kaplan, 1983).
We aim to quantify the extent to which the lin-
guistic features commonly attributed to dementia
patients may be artifacts of the data collection and
test administration process.

The contributions of this work can be summa-
rized as follows: a) we examine patterns in how test
administrator involvement may relate to linguistic
features observed in patient speech and their associ-
ation with dementia vs. control classification; and
b) our analyses raise questions about how variations
in test administrator behavior might interact with
linguistic patterns in clinical assessments. These
observations point to opportunities for future re-
search to investigate the role of test administration
in linguistic analyses and clinical assessments.

2 Related Work

Verbal production tasks are common neuropsycho-
logical assessments for measuring language and
executive retrieval functions, with the category flu-
ency task being one of the most widely utilized in
clinical settings. In this task, participants are asked
to generate exemplars of specific semantic cate-
gories — such as animals or food — in a given time.
While the category fluency task has demonstrated
the diagnostic utility for AD screening (Monsch
et al., 1992; Cerhan et al., 2002), these assessments
are typically conducted in controlled clinical set-
tings and often require longitudinal observation be-
fore a final diagnosis can be made. Such controlled
testing environments can be insensitive to natu-
ralistic language patterns (Sabat, 1994) and may
miss early signs of linguistic deficits that manifest
in daily communications (Crockford and Lesser,
1994). In contrast, spontaneous speech has proven
to be a valuable source of information for assessing
an individual’s cognitive state (Bucks et al., 2000).



The “Cookie Theft” picture description task (Fig-
ure 1) is designed to elicit speech samples in patho-
logical cohorts. Participants are asked to describe
everything they observe in a picture where two
children collaborate to secretly take cookies from
a high cupboard shelf, while their mother is pre-
occupied washing dishes. Previous studies using
statistical analyses have demonstrated many lin-
guistic anomalies associated with AD progression,
such as increased use of repetitions (Hier et al.,
1985), higher pronoun usage (Almor et al., 1999),
and elevated lexical frequency (Bucks et al., 2000;
Cummings, 2019) compared to healthy controls.
Supervised machine/deep learning methods, includ-
ing transformer-based (Vaswani et al., 2017) neural
language models can learn to distinguish subtle lin-
guistic characteristics between dementia patients
and healthy controls with impressive classification
performance (for a review , see Ding et al. (2024)).
However, such models bring an additional chal-
lenge — often the best-performing models (i.e., neu-
ral language models) are least transparent, and the
less-accurate models (i.e., statistical models) are
easier to explain. Limited interpretability could ob-
scure the bias, which is particularly concerning in
clinical artificial intelligence development (Reddy,
2022).

Building upon the previous findings that longer
speech is important to extract distinguishable lin-
guistic features (Petti et al., 2023) and interaction
patterns between speakers are predictive of the
downstream classification task (Farzana and Parde,
2022), we build statistical models to investigate the
role of test administrator behavior in the manifesta-
tion of linguistic markers associated with demen-
tia. We show that the level of test administrator’s
engagement significantly impacts the linguistic fea-
tures observed in the patients’ speech.

3 Method

3.1 Data

We use two publicly available datasets resulting
from deploying the “Cookie Theft” picture descrip-
tion task during data collection: a) the Pitt cor-
pus® and b) the WLS? corpus. The Pitt corpus
includes recordings and corresponding transcripts
from 319 participants. 102 out of 319 participants

2https ://dementia.talkbank.org/access/English/
Pitt.html

3https ://dementia.talkbank.org/access/English/
WLS.html
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were classified as control subjects and 204 partici-
pants as patients categorized with any AD-related
label. Specifically, we restricted the original Pitt
corpus to a subset of 169 patients with an assign-
ment of probable AD dementia and 99 healthy con-
trols, resulting in 214 and 182 transcripts for AD
patients and healthy controls, respectively.

The WLS is a large-scale, extended longitu-
dinal study of a random sample of 10,317 men
and women who graduated from Wisconsin high
schools in 1957. The WLS participants were in-
terviewed up to 6 times between 1957 and 2011.
Several nueropsychological tests, including letter
fluency task and category fluency task were admin-
istered in both 2004 and 2011. The “Cookie Theft”
picture description task was introduced in 2011.
While the WLS participants were interviewed with
Telephone Interview for Cognitive Status-modified
(TICS-m) for a clinical proxy diagnosis in 2020, we
decide to follow a prior study (Guo et al., 2021) to
build a “noisy” label with statistically determined
age- and education-adjusted thresholds of 16, 14,
and 12 for participants in < 60, 60-79, and > 79
age ranges for the category fluency score, respec-
tively. This addresses a critical temporal aspect
in AD assessment, particularly given the 9-year
gap between speech data collection and clinical
assessment in the WLS dataset, contrasting with
the Pitt corpus where participants were diagnosed
at the time of speech collection. In supporting
this approach, the category fluency task, adminis-
tered concurrently with the “Cookie Theft” picture
description task in the WLS corpus, has demon-
strated the diagnostic utility on discriminating AD
patients and healthy controls, with sensitivity of
0.88 and specificity of 0.96 (Canning et al., 2004).
Additionally, the number of WLS participants who
completed both the cognitive tests and follow-up
clinical interview remained particularly small (<
35 labeled dementia patients), potentially limiting
the statistical power of our study.

As aresult, we restrict the original WLS dataset
to a total of 1,169 participants (1,017 healthy con-
trols and 152 dementia cased patients) who a)
agreed to participant in the “Cookie Theft” picture
description task and category fluency test in 2011;
b) had not been diagnosed with a mental illness
at the time of interview; and c) did not previously
have a stroke at the time of the interview. Given
the fact that the Pitt corpus contains dementia la-
bels obtained from clinical assessments conducted
concurrently with the picture description task, we



‘ Characteristics ‘ Pitt ‘ WLS ‘
| | Control | Dementia | Control | Dementia |
| Gender (%) | Female | 57(59.4) | 99(683) | 523(514) | 63(414) |
| | Male | 39(40.6) | 46(31.7) | 494(486) | 89(586) |
| # of transcripts | 182 | 214 | 1017 | 152 |
|

Age (mean (SD))

| 64.1(7.9) | 71.5(8.63) | 70.30 (4.14) | 70.20 (5.75) |

| Education (mean (SD)) | 13.9 (2.4) | 123 (2.8) | 13.77(3.01) | 12.64 (2.16) |

Table 1: Basic characteristics of the Pitt corpus and the WLS corpus before propensity score matching.

consider this to be an example of dementia detec-
tion. In contrast, the WLS dataset represents the
case of dementia prediction. Data characteristics
are provided in Table 1.

3.2 Preprocessing

We perform transcript pre-processing using TRES-
TLE (Toolkit for Reproducible Execution of
Speech Text and Language Experiments) (Li et al.,
2023) for both participants and test administrators.
Specifically, we remove non-ASCII characters, un-
intelligible words, and non-speech artifacts event
descriptions or gestures. We also retain the utter-
ances from participants in a relatively “raw” state,
in which we preserve repetitions, invited interrup-
tions, and speech repairs (self-revisions).

3.3 Topics Analysis

We segment the utterances from test administrators
into individual sentences and remove the duplicates
to establish a clean dataset for analysis. These ut-
terances are then clustered based on frequency in
each diagnostic group to understand the predomi-
nant conversation topics.

3.4 Linguistic feature extraction

Following the established evidence (Bucks et al.,
2000; Almor et al., 1999; Hier et al., 1985; Cum-
mings, 2019; Blanken et al., 1987), we focus our
the analysis of part-of-speech (POS) tags, lexical
frequency (LF), and type-to-token ratio (TTR) on
utterances from participants in the Pitt and WLS
corpora. We extract the counts of each POS tag for
each transcript using spaCy* with RoBERTa (Liu
et al., 2019) as the base model’. The log LF of
each transcript is calculated using the SUBTLEX
corpus (Brysbaert and New, 2009). Tokens that do
not appear in the SUBTLEX ¢ corpus are removed

“https://spacy.io/
5See Table 3 in Appendix for the full list of POS tags
analyzed in this study.
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as out-of-vocabulary items. TTR quantifies lexi-
cal diversity in speech samples, calculated as the
proportion of unique words to total words in the
transcript. We also count the number of clauses in
each transcript. In this study, we define a clause as a
syntactic unit centered around a verb that expresses
a proposition. As a proxy of syntactic complex-
ity (Caplan and Hanna, 1998), clause count has
been shown to be a sensitive linguistic feature for
detecting dementia from spoken samples (Seyed
Ahmad Sajjadi and Nestor, 2012; Pakhomov et al.,
2011).

Additionally, we define tfurn as the number
of utterances from either participants (denoted
as par_turns) or test administrators (denoted as
inv_turns) in each transcript. We extract the num-
ber of turns from test administrators from tran-
scripts for follow-up propensity score matching
(PSM).

3.5 Propensity score matching

Propensity score matching (PSM) (Austin, 2011)
is a statistical matching method to estimate the
effect of a treatment by accounting for the covari-
ates that predict receiving the treatment. PSM as-
signs a propensity score, which is the probability of
treatment assignment conditional on the observed
covariates. This conditional probability, serving
as a balancing score, matches each individual in
the treatment group to an individual in the control
group in controlled experiments.

Luz et al. (2020) introduces the AD Recogni-
tion through Spontaneous Speech (ADReSS) Chal-
lenge, providing researchers with the first available
benchmark that is acoustically pre-processed and
balanced in terms of age and gender, both of which
are risk factors for AD (Ruitenberg et al., 2001;
van der Flier and Scheltens, 2005). However, it
does not take into account the following possible
confounding factors: a) education level, (lower ed-
ucation level is a risk factor of dementia later in



life and contributes to the lower linguistic ability)
(Snowdon et al., 1996; Ngandu et al., 2007; Nguyen
et al., 2016; Caamaifio-Isorna et al., 2006); and b)
the influence of test administrators, who may per-
form a variety of speech elicitation techniques to
extract enough propositions from patients (Menn
and Obler, 1989; Caplan and Hanna, 1998) in a con-
strained task, such as the “Cookie Theft” picture
description task.

To address these concerns, we match the Pitt and
the WLS corpora on: a) years of education received,
and b) the number of turns from test administrators
using PSM. This resulted in a balanced Pitt corpus
with 167 transcripts for both dementia patients and
healthy controls, and a balanced WLS corpus con-
taining 152 transcripts for both dementia patients
and healthy controls.

3.6 Statistical models

We apply z-score normalization on the POS tags,
lexical frequency and TTR extracted from each
transcript and treat the number of turns from test
administrators as the random effects. We split the
original and the matched Pitt corpus into 70/30
training/test split. We fit a generalized linear mixed
models on the matched Pitt training split where we
treat the number of turns from test administrators
(inv_turns) as random effects. Our preliminary
results show that fitting such a model for matched
WLS data results in singularity (i.e., the random
effects of inv_turns variance-covariance matrix
is of less than full rank). Therefore we decide to
fit generalized linear model on the WLS corpus. In
addition, we compare the interaction model (mod-
els with interaction terms between inv_turns and
each linguistic feature) and naive models (models
without interaction terms) and apply backward se-
lection using Akaike’s Information Criteria (AIC)
(Akaike, 1998). AIC is an information-theoretic
approach that estimates the distance between can-
didate models and the true model on a log-scale,
which selects a parsimonious approximating model
for the observed data. Our preliminary results show
that interaction models achieve better fit with lower
AIC. We then continue our analysis with the result-
ing interaction model for Pitt corpus (M) and
WLS corpus (M ).

We also perform cross validation on each dataset
to test for internal validity. Specifically, we assess
the classification performance of M., on both
the matched Pitt test split and the matched WLS
corpus and Mys on the matched Pitt test split,
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respectively.

4 Results

The results of PSM for the Pitt and the WLS corpus
can be found in Table 4 and Table 5 in Appendix,
respectively. We observed that many linguistic
features preserved imbalance even after PSM, with
standardized mean difference (SMD) > 0.1 (Zhang
et al., 2019). It should be noted that SMD does not
indicate the differences in the direction of the scale
(Chandler et al., 2019) (i.e., cannot substitute the p-
value from significance testing). We also observed
that the WLS participants obtained a higher level
of education than the Pitt participants (one-sided
Wilcoxon rank sum test p-value < 0.001). These
observations suggest that additional, potentially
unaccounted-for variability may be influencing the
results. Thus we proceeded with further quantita-
tive and qualitative analyses.

4.1 Topics analysis

We found that test administrators’ utterances usu-
ally cover the following topics: a) initiation of the
task (e.g., “and there’s a picture” and “what’s going
on in this picture”); b) acknowledgment of progress
(e.g., “okay”); c) speech elicitation (e.g., “anything
else”, “if you see anything else” and “is there any-
thing else”); and d) ending the task (e.g., “alright”,
“thank you”, “that’s fine" and "good”). For the Pitt
corpus, test administrators said “anything else?”
more frequently to dementia patients (18 times)
than to healthy controls (10 times). In contrast,
the WLS test administrators used the same level
of speech elicitation for both groups (dementia pa-
tients: 2 times; healthy controls: 2 times).

4.2 Test administrator interaction styles

We observed a moderate negative correlation
(Spearman’s p = —0.481) between the number
of turns used by Pitt test administrators and partic-
ipants’ Mini-Mental State Examination (MMSE)
scores. Pitt test administrators interacted more with
dementia patients who had lower MMSE scores,
likely in an effort to elicit sufficient speech for
analysis. As shown in Table 2, Pitt test admin-
istrators used 3 more turns on dementia patients
compared to healthy controls whereas the WLS test
administrators uses similar number of turns on both
diagnostic groups.
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Figure 2: The estimated coefficients and the corresponding 90% confidence intervals of M and M. The blue
points and ranges indicate that the confidence interval does not cross zero, suggesting the estimate is statistically
significant, whereas the dark gray points and ranges indicate that the confidence interval crosses zero, suggesting

the estimate is not statistically significant.

Dataset/Condition Participants’ | Test admin-
turns (mean | istrators’

(SD)) turns (mean

(SD))

\ Before | Control | 13.55(6.04) | 3.16 (1.77)
Pitt | matching | Dementia | 13.54 (6.98) | 6.10 (4.48)
\ After | Control | 13.44(5.97) | 3.34(1.73)
| matching | Dementia | 12.38 (5.60) | 4.38 (1.85)
\ Before | Control | 1439 (7.91) | 0.75(1.53)
WLS | matching | Dementia | 11.97 (7.04) | 0.82 (1.79)
\ After | Control | 13.80(7.76) | 0.82 (1.62)
| match | Dementia | 11.97 (7.04) | 0.82 (1.79)

Table 2: The number of turns from participants and test
administrators in the Pitt and the WLS corpus, before
and after matching.

4.3 Quantifying the administrator effect

The Pitt model As shown in Figure 2(a), we
found that the number of test administrators’ turns
remain positive and significant (8 = 0.331, p-value
< 0.05) in the My, suggesting that a more interac-
tive test administrator dynamic is associated with a
higher probability of developing dementia. We also
observed that pronoun usage (5 = 2.93, p-value <
0.001) showed a strong positive association with a
higher probability of developing dementia. Interest-
ingly, we observed significant interactions between
test administrators’ turns and various linguistic fea-
tures, including TTR (8 = —0.146, p-value <
0.001), the usage of pronoun usage (5 = —0.330,
p-value < 0.05), auxiliary (8 = —0.417, p-value
< 0.001), adposition (8 = 0.382, p-value < 0.05),
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and particle (8 = 0.191, p-value < 0.001).

The WLS model As showed in Figure 2(b), we
observed fewer significant predictors in M 5. In-
terestingly, we observed that, while the usage of
pronoun (3 = —0.76, p-value <0.1) showed signif-
icantly negative association with having a dementia
diagnosis, its interactions terms with the number of
test administrators’ turns demonstrated an opposite
directional effects (8 = 0.620, p-value < 0.05).

The predicted effects of the interaction terms
As shown in Figure 3(a), we observed that M
predicts a dramatic increase in the probability of
having a dementia diagnosis from 0.1 to 0.8 as con-
versations went longer for participants who used
lower level of pronoun during the test. For par-
ticipants with average pronoun usage (at mean,
shown in green), M maintained consistent pre-
dicted probabilities of having a dementia diagnosis
throughout all conversation lengths. Conversely,
participants with high pronoun usage showed an
initial high probability of approximately 0.8 for
have a dementia diagnosis in shorter conversations,
which gradually decreased to 0.7 as conversation
went longer. As we observed in Figure 3(b), par-
ticipants with lower TTR (shown in red) had an
increasing probability of having a dementia diag-
nosis as the number of turns from test adminis-
trators increased, rising dramatically from around
0.5 to nearly 0.95 over 10 turns. Notably, partic-
ipants with higher TTR (shown in blue) showed
a contrasting pattern - their probability of having
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Figure 3: The predicted values and confidence intervals of the interaction terms between linguistic markers and
inv_turns. The level of usage are denoted in color, where red indicates the lower usage (1 SD below the mean),
green indicates the average usage, and blue indicates higher usage (1 SD above the mean). The x-axis indicates the

number of turns from test administrators.

a dementia diagnosis actually decreased slightly
as conversations went longer, dropping from 0.5
to 0.35. Furthermore, we found that the predic-
tive probabilities of pronoun usage and TTR varies
systematically with inv_turns. Collectively, Fig-
ure 3 suggests an interesting diagnostic transition:
at a lower level of test administrator involvement
(inv_turns < 3, typical for healthy controls), pro-
noun usage provides greater diagnostic utility; at
moderate involvement (inv_turns = 4, typical
for matched dementia patients), both features offer
complementary values; while at a higher involve-
ment levels ((inv_turns > 6, typical for dementia
patients before PSM), TTR becomes the dominant
discriminative marker. This suggests that different
linguistic features gain or lose diagnostic utility
depending on the degree of administrator involve-
ment.

4.4 Cross validation: classification
performance

M, achieved accuracy of 0.67, precision of 0.69,
recall of 0.56, and F; score of 0.62 on the matched
Pitt test split, respectively. Interestingly, M, did
not generalize well to the original WLS corpus,
reaching accuracy of 0.59, precision of 0.13, recall
of 0.38, and F; score of 0.19, respectively. M
performed similarly on the matched WLS corpus,
reaching accuracy of 0.50, precision of 0.50, recall
of 0.38, and F; score of 0.43, respectively. My
also generalized poorly to the matched Pitt corpus,
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with accuracy of 0.55, precision of 0.54, recall of
0.47, and F; score of 0.50 on the matched Pitt test
split.

5 Discussion

Our key findings are as follows. First, we show
that many linguistic features previously studied in
AD dementia progression appear to vary with level
of test administrator involvement. Second, the ob-
served variability between two corpora underscores
the importance of considering administrator behav-
ior as a potential confounding variable in linguistic
analyses of clinical populations. These findings
collectively suggest that some of the linguistic fea-
tures commonly observed in dementia patients may
be affected by the data collection processes rather
than cognitive decline alone.

The observation of interactive test administra-
tor dynamics in the Pitt corpus is consistent with
prior work (Menn and Obler, 1989; Caplan and
Hanna, 1998), which report that the test administra-
tor needs to induce enough propositional utterances
from participants in the constrained task such as the
“Cookie Theft” picture description task. However, it
is often noted that dementia patients are incapable
of producing complex utterances due to the pro-
gression of the disease. As such, an interactive test
administrator dynamic may lead to overestimation
of a patients’ linguistic ability in some cases.

Our results further suggest that these interac-
tion patterns influence downstream dementia clas-



sification, which is consistent with a prior work
(Farzana and Parde, 2022). Our study further quan-
tifies the influence of test administrator behavior,
demonstrating how the varying levels of investiga-
tor involvement between groups may confound our
interpretation of linguistic markers as diagnostic in-
dicators. Our results highlight the need to interpret
linguistic markers not as isolated indicators, but
as features embedded within an interactive context
that includes test administrators’ role in shaping
the discourse. Further research design might ben-
efit from explicitly accounting for and potentially
controlling test administrator involvement when
developing screening criteria based on linguistic
features.

Our findings suggest a nuanced relationship be-
tween linguistic markers, administrator interaction
patterns, and their predictability for cognitive de-
cline. The consistently high predicted probability
of a higher probability of developing dementia for
participants with elevated pronoun usage (shown
by the stable high probabilities in the blue line in
Figure 3(a)) supports existing literature on pronoun
over-usage (Almor et al., 1999; Jarrold et al., 2014;
Cummings, 2019) as a linguistic marker of cogni-
tive decline. However, our results also indicate that
this relationship may be masked or amplified by
test administrators’ interaction styles, as evidenced
by varying predicted probability trajectories across
different conversation lengths. Similarly, while
the observed TTR patterns also align with previ-
ous findings (Hier et al., 1985) that lower lexical
diversity indicates cognitive decline, the dramatic
increase in predicted probability for participants
with lower TTR during longer conversations sug-
gests that the established observations might be
influenced by the test administrators’ interaction
patterns, suggests that these established linguistic
markers may be partially attributable to differences
in the test administration practices rather than the
true construct measures of cognitive decline.

The disparities of classification performance of
two models — M, for detecting AD dementia,
and M, for predicting dementia — confirms the
often-observed challenges of developing robust and
generalizable models for dementia detection and
prediction. While M, demonstrated moderate
performance on its test split, it generalized poorly
on the WLS corpus where precision and F; score
dropped dramatically. M ,’s slight improvement
in performance on the matched vs. original WLS
corpus suggests that the PSM may somewhat miti-
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gate the confounding effect, but not fully resolve
the cross-corpus and cross-task generalization is-
sues. Similarly, M, showed limited generaliza-
tion on the Pitt corpus. This consistent under-
performance across corpora suggests the signifi-
cant challenge of creating models that can reliably
detect or predict dementia. Our results also suggest
the need of considering corpus- and population-
specific characteristics in the model development.
Factors such as demographic differences, test ad-
ministrating styles, and the temporal aspect of de-
mentia progression (i.e., detection vs. prediction)
may contribute to the observed lack of cross-corpus
and cross-task generalizability.

The variability between two corpora suggests
that some linguistic markers previously attributed
to dementia may be specific to certain data col-
lection protocols rather than universal linguistic
anomalies associated with the disease’s progres-
sion. M demonstrates reasonable performance
on its own test split, suggesting that within a single
dataset, certain linguistic patterns may indeed be
indicative of cognitive decline after controlling for
the influence of test administrators. However, its
substantially degraded performance on the WLS
corpus points out a critical issue: linguistic mark-
ers that appear robust within one population may
not translate effectively to another. This lack of
cross-corpus generalizability persists when we val-
idate M5 on the Pitt corpus - the performance
of My, actually worsens on the matched Pitt test
split. These findings collectively suggest that the
linguistic anomalies associated with AD progres-
sion may be highly context-dependent, influenced
by factors such as data collection protocols, test
administrator dynamics, and population-specific
characteristics. This indicates the need for cau-
tion when interpreting linguistic markers of cog-
nitive decline, developing specialized neural lan-
guage models, and validating findings across di-
verse datasets and populations.

While the speech samples produced by popula-
tion with high clinical risks are scarce, incorporat-
ing text corpora drawn from different sources (also
known as confounding by provenance) presents
both opportunities and challenges for detecting lin-
guistic anomalies in AD dementia. Previous studies
demonstrate that treating the provenance of a tran-
script (i.e., Pitt vs. WLS) as a secondary target for
prediction (Guo et al., 2021) and data augmentation
(Liu et al., 2021; Bertini et al., 2022; Duan et al.,
2023, inter alia) could lead to performance im-



provements. However, our results suggest the need
for extra caution in such applications. These dis-
parities suggest these approaches, if not carefully
implemented, may introduce additional confound-
ing variables rather than identifying true indicators
of cognitive impairment. As such, the observed
lack of cross-corpus and cross-task generalizabil-
ity may explain why fine-tuned neural language
models generalize less-than-ideal to other speech
samples produced by populations at high clinical
risk (Li et al., 2022; Farzana and Parde, 2023).

While the automated analysis of spoken lan-
guage produced by population with high clini-
cal risk remains a valuable component of early-
screening cognitive assessment, the observed influ-
ence of test administrator dynamics on AD-related
linguistic anomalies calls for a re-evaluation of cur-
rent methods. Researchers and clinicians should
exercise caution when interpreting the linguistic
features of the “Cookie Theft” picture description
task, as they may be partially artifacts of the data
collection itself. Our results call for a standard-
ized test administration to minimize the variabil-
ity in administrator engagement, and the need for
population- and language-specific norms for assess-
ments.

6 Conclusion

Our study explored the relationship between test
administrator involvement and linguistic features
in dementia assessments using the “Cookie Theft”
picture description task. The patterns we observed
raise questions about how established linguistic fea-
tures might be shaped by the dynamics of test ad-
ministration alongside cognitive status. Our study
brings the potential benefits of considering admin-
istrator behavior in future development of clinical
speech analytics frameworks.

Limitations

The work presented here has several limitations.
While our analysis identifies significant correla-
tions between the test administrator interactions
and linguistic features, we should note that our
study design does not establish a direct causal link.
Future experimental studies with standardized ad-
ministrator protocols would be necessary to estab-
lish such a link. Second, the size of the datasets
used in this study is considerably small, which is
a common concern in this line of research (Petti
et al., 2020). Moreover, all datasets used in this
study are in American English, and many partic-
ipants are representative of White, non-Hispanic
American residents, which certainly limits the gen-
eralizability to other languages and ethnic groups.
In this study, we only focus on analyzing POS tags
for both datasets, which is a limited feature set
for detecting cognitive impairment. Future stud-
ies should explore comprehensive linguistic and
acoustic features (i.e., Fraser et al. (2015)) to estab-
lish a more definitive measurement of the effects
of test administrator engagement. We acknowl-
edge that there are linguistic differences between
the two corpora studied in this work (Johnstone
et al., 2015), which may affect the comparability
of results across datasets. We should also note that
while category fluency task has demonstrates the
clinical utility for dementia screening; it is, how-
ever, not a complete clinical diagnosis, which may
not capture the full spectrum of cognitive decline
and could potentially lead to misclassification of
some participants.
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Appendix

POS tags | Name
ADJ | Adjective

|
\
| Adposition |
|
|

|

|

| ADP

| ADV | Adverb

| AUX | Auxiliary

‘ CCONIJ ‘ Coordinating
conjunction

| DET | Determiner |

| INTJ | Interjection |

| NOUN | Noun |

| PART | Particle |

| PRON | Pronoun |

| PROPN | Proper noun |

‘ SCONJ ‘ subordinating
conjection

| VERB | Verb |

Table 3: The Universal POS tags
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Before matching After matching ‘

Features ‘

\ |

| | Level | Control | Dementia | SMD | Level | Control | Dementia | SMD |
| Number of transcripts (1) | 182 | 214 | | | 167 | 167 | |
‘ Education (mean (SD)) ‘ 13.92 (2.42) ‘ 12.28 (2.81) ‘ 0.629 ‘ ‘ 13.66 (2.24) ‘ 12.53 (2.93) ‘ 0.434 ‘
| Age(mean(SD) | 64.08(791) | 71.51(8.63) | 0.897 | | 64.27(7.85) | 71.46(8.63) | 0871 |
| Gender (| _Female | 114(626) | 147(687) | 0.128 | Female | 104(623) | 116(695) | 0152 |
| | Male | 68374) | 67(313) | | Male | 6337.7) | 51305 | |
| PRON (mean(SD)) | 15.03(9.85) | 17.18(1236) | 0.193 | | 14.72(9.48) | 1559 (10.80) | 0.086 |
| PROPN (mean (SD)) | 0.12(0.51) | 025(0.65) | 0.227 | | 0.13(0.53) | 0.14(0.46) | 0.024 |
‘ NOUN (mean (SD)) ‘ 24.93 (13.94) ‘ 19.41 (11.06) ‘ 0.439 ‘ ‘ 24.57 (13.96) ‘ 19.37 (10.88) ‘ 0.416 ‘
| ADJ(mean(SD) | 406(3.52) | 321(347) | 0243 | | 388(338) | 3.16(348) | 0211 |
| ADV(mean(SD) | 391(375 | 543(503) | 0342 | | 381(3.79) | 465395 | 0217 |
| CLAUSE (mean (SD)) | 20.13(9.22) | 20.43 (11.00) | 0.030 | | 1972(892) | 18.87(921) | 0.093 |
| AUX(mean(SD)) | 13.18(636) | 11.66(7.09) | 0224 | | 13.02(632) | 11.22(6.55) | 0281 |
| VERB (mean(SD)) | 16.81(8.17) | 1570(8.79) | 0.131 | | 1649 (7.94) | 15.00(8.06) | 0.186 |
|  ADP(mean(SD)) | 11.58(722) | 929(632) | 0338 | | 11.35(7.05) | 950(640) | 0274 |
|  DET(mean(SD) | 16.65(9.07) | 13.73(7.97) | 0342 | | 1640 (9.01) | 13.79(8.05) | 0306 |
‘ PUNCT (mean (SD)) ‘ 24.41 (10.80) ‘ 23.96 (12.13) ‘ 0.040 ‘ ‘ 24.23 (10.67) ‘ 22.23 (9.90) ‘ 0.195 ‘
|  CCONJ(mean(SD)) | 568(4.28) | 5.84(4.15) | 0038 | | 559(420) | 585@21) | 0063 |
| PART (mean(SD)) | 277(225) | 321(Q274) | 0.174 | | 259211 | 309250) | 0214 |
|  SCONJ(mean (SD)) | 163(246) | 127(1.78) | 0.171 | | 158(246) | L18(1.72) | 0.189 |
| INTI (mean(SD)) | 5.16(402) | 621(683) | 0.187 | | 507(397) | 566461 | 0.138 |
| LF(mean(SD) | 8.16(0.36) | 836(047) | 0479 | | 815(0.37) | 830(045) | 0358 |
|  TTR(mean(SD)) | 033(0.05 | 031(0.06) | 0373 | | 0340005 | 032(0.06) | 0286 |
| par_tums (mean (SD)) | 13.55(6.04) | 13.54(6.98) | 0.003 | | 1344(597) | 1238(5.60) | 0.183 |
| inv_turns (mean (SD)) | 3.16(1.77) | 6.10(4.48) | 0.863 | | 333(1.73) | 438(185) | 0589 |
| mmse(mean(SD)) | 29.13(L11) | 18.54(5.11) | 2.864 | | 29.08(1.13) | 19.50(4.50) | 2.920 |

Table 4: The differences of linguistic features before/after matching on the Pitt corpus

| Features | Before matching | After matching |
| | Level | Control | Dementia | SMD | Level | Control | Dementia | SMD |
| Number of transcripts (n) | 1017 | 152 | | | 152 | 152 | |
| Education (mean (SD)) | 1377 (301) | 12.64(2.16) | 0431 | | 12622.18) | 12.64(2.16) | 0.006 |
| Age(mean(SD) | 7030(4.14) | 7020(575) | 0021 | | 7081(3.77) | 7020(575) | 0.126 |
| PRON(mean(SD)) | 1520(993) | 11.16(8.05) | 0447 | | 1437891 | 11.16(8.05) | 0377 |
| AUX(mean(SD)) | 1076(6.63) | 7.81(548) | 0.485 | | 9.75(625) | 7.81(548) | 0330 |
| VERB (mean(SD)) | 1682(9.08) | 12.71(7.19) | 0.502 | | 1525(.91) | 1271(7.19) | 0336 |
| ADP(mean(SD)) | 1153(6.74) | 857(5.71) | 0474 | | 100777 | 85771 | 0262 |
|  DET(mean(SD) | 1699(9.87) | 1222(7.23) | 0.551 | | 15.03(8.00) | 1222(7.23) | 0368 |
| NOUN (mean (SD)) | 29.00 (16.89) | 2238 (13.71) | 0.430 | | 26.86 (14.61) | 22.38 (13.71) | 0316 |
| PUNCT (mean (SD)) | 26.61 (1324) | 21.68 (11.74) | 0.393 | | 2547 (11.87) | 21.68 (11.74) | 0321 |
| CCONJ(mean(SD)) | 547(4.83) | 343(3.62) | 0478 | | 502(499) | 343(3.62) | 0365 |
| ADJ(mean(SD) | 389(75) | 230237 | 0509 | | 302293 | 230237 |0272 |
| PART (mean(SD)) | 2.83(246) | 240(2.14) | 0.186 | | 263225 | 240(2.14) | 0.105 |
| SCONJ(mean(SD)) | 1.55(1.92) | 0.90(1.36) | 0390 | | 138(1.60) | 0.90(1.36) | 0324 |
|  ADV(mean(SD)) | 4.06(3.98) | 293(34l) | 0305 | | 377(G.60) | 293(341) | 0240 |
| INTS (mean(SD)) | 1.88(291) | 1.50(2.58) | 0.139 | | 199280) | 1.50(258) | 0.181 |
| LF(mean(SD) | 8.06(043) | 8.05(044) | 0.033 | | 8.02(042) | 8.05(044) | 0.057 |
| TTR(mean(SD) | 035(0.06) | 037(0.07) | 0303 | | 036(006) | 0.37(007) | 0.189 |
| CLAUSE (mean (SD)) | 21.01 (10.44) | 17.21(9.26) | 0.385 | | 19.819.14) | 1721(9.26) | 0282 |
| PROPN (mean (SD)) | 0.07(0.36) | 002(0.18) | 0.170 | | 014055 | 00200.18) | 0288 |
| par_turns (mean (SD)) | 14.39(7.91) | 11.97(7.04) | 0.323 | | 13.88(6.68) | 11.97(7.04) | 0.278 |
‘ inv_turns (mean (SD)) ‘ 0.75 (1.53) ‘ 0.82 (1.79) ‘ 0.044 ‘ ‘ 0.77 (1.25) ‘ 0.82 (1.79) ‘ 0.034 ‘

Table 5: The differences of linguistic features before/after matching on the WLS dataset
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