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Introduction

CL4Health fills the gap among the different biomedical language processing workshops by providing a
general venue for a broad spectrum of patient-oriented language processing and multi-modal resear-
ch. The second workshop on patient-oriented language processing follows the successful inaugural
CL4Health workshop (collocated with LREC-COLING 2024), which clearly demonstrated the need for
a computational linguistics venue that focuses on language related to health of the public.

Such a venue is needed both to invigorate patient-oriented language processing research and to build
a community of researchers interested in this area. The growing interest in this topic is fueled by several
current trends:

1. a proliferation of online services that target patients, but do not always act in their best interests;

2. policy changes that allow patients to access their health records written in the professional verna-
cular, which may confuse the patients or lead to misinterpretation;

3. replacement of customer services with chat bots; and

4. the increasing tendency of patients to consult online resources as a second or even first opinion on
their health problems.

CL4Health aims to provide a general venue for presenting research and applications focused on patients’
needs, including summarizing health records for the patients, answering consumer-health questions using
reliable resources, detecting misinformation or potentially harmful information, and providing multimo-
dal information, such as video, if it better satisfies patients’ needs.

Broadly, CL4Health is concerned with the resources, computational approaches, and behavioral and
socio-economic aspects of the public interactions with digital resources in search of health-related infor-
mation that satisfies their information needs and guides their actions.

Shared Task

The Perspective-aware Healthcare Answer Summarization (PerAnsSumm) task organized by Shweta Ya-
dav, Md. Shad Akhtar, and Siddhant Agarwal focuses on providing different perspectives in the answers
to questions posted to online forums. The answer perspectives include personal experiences, factual in-
formation, and suggestions. More details about the task and the participating teams are provided in the
overview paper in this volume. The volume also includes the individual participating teams reports.

Submissions

The workshop invited papers concerning all areas of language processing focused on patients’ health
and health-related issues concerning the public. CL4Health received 50 valid submissions, of which 8
were rejected. Of the 35 submissions to the main workshop, 12 were accepted as oral presentations. The
work covers a wide range of topics focusing on patients’ well-being and healthcare. The topics include
patients’ perspectives on clinical trials recruitment, information seeking behavior, clinical question an-
swering and other forms of communication (including plain language, translation, speech recognition,
and dialog). The state-of-the-art technology contributions include retrieval augmented generation, va-
rious approaches to fine-tuning and leveraging large language models, as well as new benchmarks and
data collections.

As always, we are deeply grateful to the authors of the submitted papers and to the reviewers (listed
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elsewhere in this volume) who produced thorough and thoughtful reviews for each paper in a fairly short
review period. The Organizers are truly grateful to our amazing Program Committee, whose members
helped us determine which studies are ready to be presented and those which would benefit from additio-
nal experiments and analysis, as suggested by the reviewers. We hope that this workshop will inspire new
collaborations and research into patient-centered language technologies, in order to continue the valuable
contributions made by our community towards public health and well-being.

Dina Demner-Fushman, Sophia Ananiadou, Paul Thompson and Deepak Gupta (Organizers)
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Invited Talk
Bridging the Gap: Inclusive Artificial Intelligence for

Patient-Oriented Language Processing in Conversational
Agents in Healthcare

Kerstin Denecke
Department of Technology & Informatics, Bern University of Applied Sciences, Switzerland

Abstract: Conversational agents (CAs), such as medical interview assistants, are increasingly used in
healthcare settings due to their potential for intuitive user interaction. Ensuring the inclusivity of the-
se systems is critical to provide equitable and effective digital health support. However, the underlying
technology, models and data can foster inequalities and exclude certain individuals. This paper explo-
res key principles of inclusivity in patient-oriented language processing (POLP) for healthcare CAs to
improve accessibility, cultural sensitivity, and fairness in patient interactions. We will outline, how consi-
dering the six facets of inclusive Artificial Intelligence (AI) will shape POLP within healthcare CA. Key
considerations include leveraging diverse datasets, incorporating gender-neutral and inclusive language,
supporting varying levels of health literacy, and ensuring culturally relevant communication. To address
these issues, future research in POLP should focus on optimizing conversation structure, enhancing the
adaptability of CAs’ language and content, integrating cultural awareness, improving explainability, ma-
naging cognitive load, and addressing bias and fairness concerns.

Bio: Kerstin Denecke is Professor of Medical Informatics at the Department of Technology & Infor-
matics, Bern University of Applied Sciences. She researches and teaches at the Institute of Medical
Informatics on text mining in the clinical context and mobile health applications including dialogue-
oriented user interfaces. One of her research directions is inclusive design of digital health solutions for
older adults. The project on digital health solutions utilizes evidence-based approaches for prevention,
treatment, and health promotion.

vii



Table of Contents

PatientDx: Merging Large Language Models for Protecting Data-Privacy in Healthcare
Jose G. Moreno, Jesus Lovon-Melgarejo, M’rick Robin-Charlet, Christine Damase-Michel and

Lynda Tamine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Synthetic Documents for Medical Tasks: Bridging Privacy with Knowledge Injection and Reward Me-
chanism

Simon Meoni, Éric De La Clergerie and Théo Ryffel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Prefix-Enhanced Large Language Models with Reused Training Data in Multi-Turn Medical Dialogue
Suxue Ma, Zhicheng Yang, Ruei-Sung Lin, Youbao Tang, Ning Zhang, Zhenjie Cao, Yuan Ni,

Jing Xiao, Jieke Hou and Peng Chang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

SpecialtyScribe: Enhancing SOAP note Scribing for Medical Specialties using LLM’s
Sagar Goyal, Eti Rastogi, Fen Zhao, Dong Yuan and Andrew Beinstein . . . . . . . . . . . . . . . . . . . . . 34

Explainability for NLP in Pharmacovigilance: A Study on Adverse Event Report Triage in Swedish
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Abstract

Fine-tuning of Large Language Models (LLMs)
has become the default practice for improving
model performance on a given task. However,
performance improvement comes at the cost
of training on vast amounts of annotated data
which could be sensitive leading to significant
data privacy concerns. In particular, the health-
care domain is one of the most sensitive do-
mains exposed to data privacy issues. In this
paper, we present PatientDx, a framework of
model merging that allows the design of effec-
tive LLMs for health-predictive tasks without
requiring fine-tuning nor adaptation on patient
data. Our proposal is based on recently pro-
posed techniques known as merging of LLMs
and aims to optimize a building block merg-
ing strategy. PatientDx uses a pivotal model
adapted to numerical reasoning and tunes hy-
perparameters on examples based on a perfor-
mance metric but without training of the LLM
on these data. Experiments using the mortality
tasks of the MIMIC-IV dataset show improve-
ments up to 7% in terms of AUROC when com-
pared to initial models. Additionally, we con-
firm that when compared to fine-tuned models,
our proposal is less prone to data leak problems
without hurting performance. Finally, we qual-
itatively show the capabilities of our proposal
through a case study. Our best model is pub-
licly available at https://huggingface.co/
Jgmorenof/mistral_merged_0_4.

1 Introduction

Recent breakthroughs made by the impressive capa-
bilities of Large Language Models (LLMs) on one
side, and the common practice of publishing them
for a sharing purpose in the other side, have led to
exploring their application to a wide range of appli-
cations and tasks. Their strong performances heav-
ily rely on their extremely large model architectures
(e.g. PaLM and Med-PaLM (Singhal et al., 2023)
models with 540B parameters or its newer version
PaLM 2 (Anil et al., 2023) with 340B parameters)

and their training stage on massive datasets (e.g.,
3, 6 billions of tokens for PaLM 2). Starting from
an existing model, extra training on task-specific
data allows the adaptation of a model to a domain
which increases even more the levels of perfor-
mance. Specifically, in the medical domain, a huge
and increasing amount of work explored the use
of LLMs for patient care generally by using back-
bone LLMs fine-tuned on medical texts including
Meditron (Chen et al., 2023), Med-PaLM (Singhal
et al., 2023), BioBert (Lee et al., 2020), MIMIC
BERT (Du et al., 2021), BioMistral (Labrak et al.,
2024), Med42 (Christophe et al., 2024), and fur-
ther fine-tuned on patient-related task-specific data
from Electronic Health Records (EHR) and medi-
cal reports.

Despite being promising for health assistance,
the application of machine learning models to
healthcare has for decades triggered privacy issues
that have received particular attention in the litera-
ture and have been reviewed with the emergence of
LLMs (Staab et al., 2024; Carlini et al., 2020, 2023).
Several privacy-preserving techniques such as data-
sanitization (Zhao et al., 2022; Kandpal et al., 2022)
and differentially-private training (Yue et al., 2023;
Tang et al., 2024; Hong et al., 2024) algorithms
have been proposed to handle data leakage through
membership inference attack (Shejwalkar et al.,
2021; Hu et al., 2022) or training data extraction
(Salem et al., 2020; Carlini et al., 2020).
Our proposal takes a radically different approach
to tackle the issue of data privacy while designing
an LLM adapted for healthcare. We leverage re-
cent works on model merging (Ortiz-Jimenez et al.,
2024; Zimmer et al., 2024; Ilharco et al., 2022;
Matena and Raffel, 2022; Wortsman et al., 2022;
Davari and Belilovsky, 2023; Akiba et al., 2024),
well-established techniques today that efficiently
aggregate input model parameters to build out-
performing models that exhibit additionally better
abilities to generalize across data and tasks (Ortiz-
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Jimenez et al., 2024; Zimmer et al., 2024; Ilharco
et al., 2022; Matena and Raffel, 2022; Wortsman
et al., 2022; Davari and Belilovsky, 2023; Akiba
et al., 2024) with a recent use in the medical do-
main (Labrak et al., 2024).

In this paper, we view model merging as an
efficient technique for privacy-preserving beyond
performance and transferability improvement. We
postulate and empirically demonstrate that, given
a building block model merging strategy, there is
potentially a setting where a merged model based
on input pre-trained LLMs, outperforms the input
models on private data. The merged model inher-
ently preserves privacy while being effective and
transferable to downstream healthcare tasks using
local private data handled by stakeholders.

Main contribution. This work asks a simple ques-
tion: Can we build a trustworthy and effective LLM
for standard predictive healthcare tasks by only
merging pre-trained LLMs that have not been spe-
cialized by fine-tuning on private patient data? We
introduce PatientDx, a framework that addresses
this question by optimizing pre-trained LLM merg-
ing. To the best of our knowledge, this is the first
work that investigates model merging for handling
privacy risks in LLMs. Through experiments us-
ing the widely used MIMIC-IV dataset (Johnson
et al., 2023), we show that: 1) using a Math LLM,
such as Tong et al. (2024), as the pivotal model
for setting up the merging allows building efficient
and effective settings of merged models on two
predictive healthcare tasks, namely Mortality and
Mortality-hard. PatientDx 8B, our best configu-
ration in average performances, improves recent
BioMedical LLMs as well as Instruct- and Math-
based models, the used model inputs; 2) PatientDx
is significantly less prone to patient data leakage
than fine-tuned models as observed on the Mortal-
ity datasets when using DLT metrics ; 3) PatientDx
exhibits significant transfer abilities to unseen tasks
as it is able to answer medical questions where nu-
merical information may be critical. Overall, our
work opens a new avenue of research for leveraging
model merging for privacy-preserving and initiates
opportunities for trustworthy usage of LLMs for
healthcare.

2 Related Work

2.1 Handling privacy risks of LLMs
The strong capabilities of LLMs have triggered a
debate and increased research work on privacy con-

cerns (Yan et al., 2024; Neel and Chang, 2023).
LLMs have indeed been shown to memorize pri-
vate parts of their training data, known as verbatim
memorization, leading to potential risks of data
leakage at inference (Staab et al., 2024; Carlini
et al., 2020, 2023). Carlini et al. (2020) empiri-
cally demonstrated that there exists a log-linear re-
lationship between memorization, model size, and
training data repetitions. Potential threats include
membership inference (Shejwalkar et al., 2021; Hu
et al., 2022) and training data extraction (Salem
et al., 2020; Carlini et al., 2020). Early methods
used for protecting data privacy is data sanitiza-
tion (e.g., anonymization) (Zhao et al., 2022; Kand-
pal et al., 2022). However, beyond the fact that
these methods require explicit mention and protec-
tion of prior sensitive data, it has been shown that
data protection does not lead necessarily to privacy
protection for natural language since privacy is
context-dependent (Brown et al., 2022). Differen-
tial privacy (Li et al., 2021; Bu et al., 2024) instead
focuses on adding to the data a formal noise that
avoids having access to individuals through several
techniques deployed at the fine-tuning stage such as
injecting random noise into training data (Yue et al.,
2023) or inference stage through in-context learn-
ing with private few-shot generation (Tang et al.,
2024) or privacy-preserving prompts (Hong et al.,
2024). Federated learning is another approach for
handling data privacy in LLMs (McMahan et al.,
2016) initially designed for model training in sites
where the data is stored across a distributed set of
devices. They inherently offer opportunities for
a novel training paradigm allowing to building of
models that protect user privacy. Several works
combined differential privacy with local federated
learning (FL) (McMahan et al., 2016; Kairouz et al.,
2021) to add formal guarantees. Only a few works
addressed federated learning with LLMs (Ye et al.,
2024). By designing the OpenFedLLM framework,
Ye et al. (2024) showed that FL algorithms sig-
nificantly outperform local LLM training models
across a variety of settings.

2.2 From model adaptation to model merging

Adapting LLM to a given task is a current way to
use LLMs. Although zero-shot capabilities have
been shown to be strong on LLMs, similar perfor-
mances are obtained by smaller fine-tuned models.
Fine-tuned models are usually stronger than their
vanilla counterparts or larger models because of
the extra exposition to the task-specific data to the
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cost of extra computational power. As an exam-
ple, the computational cost of training BLOOM
model (Workshop et al., 2022) is estimated to 1.08
GPU million hours (Luccioni et al., 2023) while
the fine-tuning of the model significantly drops to
a hundred hours. Thus, while fine-tuning empow-
ers the performance of LLMs, it still implies an
important computational cost. To address this is-
sue, Parameter-Efficient Fine-Tuning (PEFT) tech-
niques have been proposed (Xu et al., 2023). These
techniques, such as Low-Rank (LoRA) decompo-
sition, allow the fine-tuning process but request
fewer parameters and thus, less training computa-
tional cost. Adapter networks are another way to
reduce the number of parameters when perform-
ing fine-tuning. Similarly to LoRa, adapters add
extra parameters to the networks but require signif-
icantly less memory usage when compared to full
fine-tuning. Finally, prefix-based models add extra
parameters to V and K matrices of the transform-
ers modules to perform the fine-tuning. A detailed
review of literature in PEFT models can be found
in Xu et al. (2023). Recently an increasing body
of research has focused on model merging (Ortiz-
Jimenez et al., 2024; Zimmer et al., 2024; Ilharco
et al., 2022; Matena and Raffel, 2022; Wortsman
et al., 2022; Davari and Belilovsky, 2023; Akiba
et al., 2024) which mainly involves combining mul-
tiple pre-trained or fine-tuned models of the same
architecture to efficiently build a more effective
model than the input models with high-level of
transferability across data and tasks. The most
basic approach to model merging is linear inter-
polation also known as Model Soup (Wortsman
et al., 2022). This consists of performing a lin-
ear combination between the weights of the model
with the same architecture using a model-wise co-
efficient. Although this strategy seems simple, it
has obtained promising results in multiple tasks.
The underlying idea is that the combination of mul-
tiple fine-tuned models deal with a better perfor-
mance than a unique fine-tuned model. A more
elaborated strategy for merging is Spherical Linear
interpolation, known as SLerp (Jang et al., 2024).
This strategy is based on the angular combination
of the models. Although it has been recently used
in a biomedical domain (Labrak et al., 2024), this
is the first contribution to successfully use it with
patient data.

Figure 1: AUROC performances of Mistral, Llama, and
Med42 when merged to math models.

3 PatientDx: Model Merging for Patient
Data Privacy-Preserving

3.1 Motivation

Let us consider a standard setting of healthcare pre-
dictive task on patient data: given the EHR of a
patient p represented with EHR table T , the goal of
tasks τ for the LLMM is to make a medical pre-
diction by generating the patient outcome y ∈ Y ,
where Y is a set of classes, e.g., “Predict the mor-
tality of patient P”, with y = “Yes” or y = “No”.
By using a generative model, one common practice
is to convert table T into a textual input using a
serialization technique (Hegselmann et al., 2022;
Lovon-Melgarejo et al., 2024; Lovon et al., 2025)
and then feed it to the LLM using a prompt.
Our proposal is driven by two main observations:
- Observation 1. Patient data consist of both de-

mographics and clinical features including age, lab-
oratory measurements, diagnoses, and procedures
with fine-grained values of time-series clinical, fea-
tures (e.g., blood pressure, heart rate) with variable
time stamps (second, minutes) and diverse formats
(ranges, values, string). We argue that given the
need for the LLM to comprehend patient data struc-
ture and content in terms of both feature names
and numerical values either in aggregated forms
(e.g., average) or temporal series, without being
trained on such data, a backbone LLMM adapted
for numerical reasoning (e.g., DART-math (Tong
et al., 2024)) would be key to make the model effec-
tive on numerical patient-related predictive tasks
without being trained on patient data.
- Observation 2. Figure 1 depicts the AUROC
performance variation on the Mortality task for
merged LLMs with left performances correspond-
ing to only using math models, such as Tong et al.
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(2024) and right performances corresponding to
strong LLMs such as Mistral, Med42 or Llama
on the MIMIC-IV patient dataset (Johnson et al.,
2023). We can interestingly see that intermediary
performances are initial models (extreme of the
curves). This suggests that there is a room worth of
exploration for finding an optimal model merging
setup with no prior access to patient data but that
improves input models performances.

Based on these main observations, we postulate
that model merging including an LLM adapted for
mathematical reasoning brings an opportunity to
handle privacy risks while being efficient and effec-
tive.

3.2 PatientDx framework
We describe below the key ideas that drive
PatientDx to two main objectives.
Handling privacy risks: merging is setup with
only n input pre-trained LLMs or fine-tuned
LLMs on non-private dataM1M2 . . .Mn of the
same architecture with parameters θ1 θ2 . . . , θn.
Inherently, none of the input modelsMi handles
privacy risks both at training nor inference.
Optimizing task performance: Given a pilot task
τ with performance measurable using metric
m, PatientDx builds a single merged model
M∗

e with parameters θ∗ which reaches optimal
performance m(τ)∗. Thus, to build model M∗

e,
PatientDx relies on the core parametric merging
function f which introduces scalar-specific
hyperparameters λi such asM∗

e = f(λ∗,Mn
i=1)

and λ∗ = argmaxλi i=1...nm(τ). It should be
emphasized that PatientDx requires a metric for
optimizing merging hyperparameters such as
m(τ e)∗ ≥ m(τ)i without trainingM∗

e on private
data or further fine-tuning it post-merging.

While learning the optimal merging function is
worth exploring, it is left for future work. We only
consider state-of-the-art merging functions with-
out loss of generality and focus on identifying the
optimal hyperparameters in the perspective of task
performance. We specifically consider n = 2 and
the two following merging functions:

• Model Soup (Wortsman et al., 2022): con-
sists of performing a linear combination of
input models’ weights using a model-wise co-
efficient. Formally θ∗ =

∑n
i=1 λiθi, where∑n

i=1 λi = 1 and ∀iλi > 0.

• SLerp (Jang et al., 2024): differently than

model soup, SLerp is based on the angu-
lar combination of the input models such as
θ∗ =

∑n
i=1

sin(λiΩ)
sin(Ω) θi, where

∑n
i=1 λi = 1

and ∀iλi > 0. For n = 2, Ω is the angle sub-
tended by the arc formed by the vectors

−→
θ1 ,
−→
θ2

and cos(Ω) =
−→
θ1 ×−→θ2 .

4 Experiments and results

We conduct experiments to answer the following
research questions:

• RQ1. Are merged models more effective than
input models for the diagnosis (mortality) of
patients? Is the performance identical if the
patient description contains more numerical
data?

• RQ2. Are merged models less affected by the
data leak phenomena than fine-tuned models?

• RQ3. Are merged models as effective as
the input models in downstream tasks? Are
they able to answer patient-related questions?
Are they useful in an information retrieval-
oriented task?

To answer RQ1 and RQ2, we selected MIMIC-IV
(Johnson et al., 2023), a publicly available dataset
in the medical domain regarding patient data in-
formation, while RQ3 is explored with questions
extracted from research articles from the medical
domain.

4.1 Dataset and experimental setup

The MIMIC-IV dataset (Johnson et al., 2023) was
used to run our experiments. In particular, we opted
for the Mortality configuration available in datasets
hub1 as described in Lovon-Melgarejo et al. (2024).
This mortality dataset uses a textual representation
of the patient information as displayed in Section
3.1 and is composed of six major textual infor-
mations: Demographics, Diagnosis, ChartEvents,
Medications, Procedures, and OutputEvents. Ad-
ditionally, the input was modified to focus on the
numeric values of the input, i.e. the CharEvents
and Medications sections. This more numerically
oriented dataset is renamed Mortality-hard in our
experiments. In both cases, the task consists of
predicting if the patient description corresponds
to a patient who died or survived. Statistics of
both datasets are shown in Table 1. Note that the

1https://huggingface.co/datasets/thbndi/Mimic4Dataset
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Mortality Mortality-hard

Features Full
ChartEvents

& Medications
Full text length (# char - avg) 3378.77 2423.73
Only digits length (# char - avg) 333.42 (9.86%) 327.63 (13.51%)
Only spaces (# char - avg) 503.20 (14.89%) 379.22 (15.64%)
Letters and punctuation (# char - avg) 2542.15 (75.23%) 1716.88 (70.83%)
Number of patients 6155 6155
Deceased patients 629 (10.22%) 629 (10.22%)

Table 1: Statistics of the used configurations of Mortal-
ity and Mortality-hard, both based on MIMIC-IV.

effect of removing the more textual information
drastically affects the number of digits in the inputs
as the proportion changes from 9.86% to 13.51%,
while the number of letter drops and spaces remain
in a similar proportion (≈15%).

In terms of hyper-parameter selection, for our
models and fine-tuned models, a k-fold partition of
the dataset with k equal to 2 was performed2. We
fixed the prompt for all configurations to the one
proposed in Lovon-Melgarejo et al. (2024) which
directly asks the question to the LLM and suggests
the output format. The full prompt was “You are an
extremely helpful healthcare assistant. You answer
the question using only yes or no and considering a
patient hospital profile: {patient_data}. Question:
Is the patient dead?. Answer (yes or no):”.

Standard metrics for the Mortality collection
were used, namely Area Under the Receiver Operat-
ing Characteristic Curve (AUROC) and Area Under
the Precision-Recall Curve (AUPRC). Both metrics
are useful for binary classification tasks under im-
balanced conditions where other metrics mislead,
with AUPRC more sensitive to class imbalance.
Regarding both datasets in Table 1, performances
lower than 0.5 and 0.1 are no better than random
for AUROC and AUPRC, respectively. Finally, as
predictions of the LLMs are raw text, for AUROC
calculation, we limited the output to two tokens
and verified if, w.r.t. the question, positive (“yes”,

“dead”, “1”) or negative (“no”, “survive”, “alive”,
“0”) words were part of the generated answer. For
AUPRC calculation, we used the normalized prob-
ability of only “yes” and “no” words as suggested
in Zhuang et al. (2024).

4.2 RQ1. Model merging effectiveness

In order to merge the models, we used a publicly
available tool called MergeKit (Goddard et al.,
2024). As input models and for the sake of sim-
plicity, we selected two foundation models, Mistral

2Only in test partition given the computational cost.

and Llama, and the consequent models based on
three categories:

• Biomedical: we included recent, strong and
widely evaluated LLMs including BioMistral3

(Labrak et al., 2024), Med424 (Christophe
et al., 2024), and Meditron5 (Chen et al.,
2023).

• Instruct: we studied two popular instruction
fine-tuned LLMs namely Mistral Instruct6

(Jiang et al., 2023) and Llama Instruct7 (Tou-
vron et al., 2023).

• Math: finetuned LLMs on maths solving are
less studied than the two previous items. How-
ever, we picked two models that fit the foun-
dation models namely Mathstral8 and DART-
math9 (Tong et al., 2024).

Note that multiple combinations of these models
are possible. However, we focus on combinations
based on the Math models because of Observation
1 (cf §3.1). For each combination of our proposed
models, we renamed θ∗ as follows:

• PatientDx 7B: this configuration explores the
combination of Mistral models (Instruct and
Math).

• PatientDx 8B: this configuration explores the
combination of Llama models (Instruct and
Math).

• PatientBioDx 8B: this configuration also ex-
plores the combination of Llama models but
pretrained in medical texts (BioMedical and
Math).

Our main results are presented in Table 2. The
LLM categories BioMedical, Instruct, and Math
represent strong LLM baselines grouped by their
specialization during the training10. The last cat-
egory, Merged Models, corresponds to our contri-
butions (λ∗ values to each θ∗ model are given in
the table). For the mortality task, it is important
to note that most of the models perform in terms

3BioMistral/BioMistral-7B
4m42-health/Llama3-Med42-8B
5epfl-llm/meditron-7b
6mistralai/Mistral-7B-Instruct-v0.1
7meta-llama/Llama-3.1-8B-Instruct
8mistralai/Mathstral-7B-v0.1
9hkust-nlp/dart-math-llama3-8b-prop2diff

10Training in general, even if some are full training and
others continual pretraining.

5

https://huggingface.co/BioMistral/BioMistral-7B
https://huggingface.co/m42-health/Llama3-Med42-8B
https://huggingface.co/epfl-llm/meditron-7b
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mathstral-7B-v0.1
https://huggingface.co/hkust-nlp/dart-math-llama3-8b-prop2diff


Mortality Mortality-hard Average
Category LLM AUROC AUPRC AUROC AUPRC AUROC AUPRC

BioMedical
Meditron 7B 0.5890 0.1031 0.5746 0.0832 0.5818 0.0932
BioMistral 7B (best) 0.5011 0.1213 0.4998 0.1213 0.5005 0.1213
Med42 8B 0.5015 0.2065 0.5000 0.1184 0.5008 0.1625

Instruct
Mistral 7B Instruct 0.5653 0.1433 0.4997 0.1033 0.5325 0.1233
Llama31 8B Instruct 0.5033 0.1150 0.5000 0.0906 0.5017 0.1028

Math
Mathstral 7B 0.5000 0.1594 0.5000 0.1110 0.5000 0.1352
DART math 8B 0.5005 0.1135 0.5039 0.0906 0.5022 0.1021

Merged
Models

PatientDx 7B (λ∗=0.8) 0.6057 0.1700 0.5000 0.1448 0.5529 0.1574
PatientDx 8B (λ∗=0.4) 0.6338 0.1834 0.5561 0.1345 0.5950 0.1590
PatientBioDx 8B (λ∗=0.7) 0.6101 0.1682 0.5375 0.0979 0.5738 0.1331

Table 2: AUROC and AUPRC results of the base-
line LLMs (BioMedical, Instruct, and Math) as well
as the proposed models (PatientDx) for Mortality and
Mortality-hard datasets. Largest score are marked in
bold and second largest underlined.

of AUROC metric close to 0.5 including BioMis-
tral, Llama Instruct, Med42, Mathstral, and DART
math. Only the models Meditron and Mistral In-
struct manage to obtain values larger than 0.55 but
lower than 0.6. In terms of AUPRC, Med42 is a
strong baseline (0.20) with a clear difference w.r.t.
other baselines (<0.16).

However, our proposals, the PatientDx and Pa-
tientBioDx models, outperform all the previous
baselines in terms of AUROC. In particular, Pa-
tientDx 8B configuration improves by 0.07 abso-
lute points, the strongest baseline. Also note, that
the gain of the PatientDx 8B model is larger than
0.1 (from 0.5005-0.5015 to 0.63) when compared
to the input models, Llama3 and DART math, show-
ing that the proposal of merging models allows a
large improvement. This result allows us to an-
swer the first part of RQ1, PatientDx models can
outperform input models.

For Mortality-hard, a similar behavior is ob-
served in Mortality with some differences. Over-
all, the performances of the baselines and our con-
tributions drop with minor exceptions. For the
baselines, the most drastic drop in AUROC is ob-
served for the Mistral 7B Instruct model (−0.0656)
while AUPRC is observed for the Med42 8B model
(−0.0881). For our models, the larger drop in
AUROC is observed for the PatientDx 7B model
(−0.1057), and in AUPRC is observed for the Pa-
tientBioDx 8B model (−0.0703). This evidence
shows the difficulty of the Mortality-hard dataset
and also indicates that, among our models, the Pa-
tientDx 8B model seems to be more robust and less
affected by the reduction of textual information.
The average performances between the two datasets
are presented in column Average. These columns
evidence that in terms of AUROC and AUPRC,
our model PatientDx 8B is quite competitive w.r.t.
recent biomedical baselines such as Meditron 7B

PatientDx 7B PatientDx 8B PatientBioDx 8B
0.6057 0.6338 0.6101

PatientDx w/o Math 0.5698 (↓ 5.9%) 0.4996 (↓ 21.1%) 0.5229 (↓ 14.2%)
PatientDx w/o SLerp 0.5034 (↓ 16.8%) 0.5765 (↓ 9.0%) 0.5035 (↓ 17.4%)
PatientDx w/o Math w/o SLerp 0.5023 (↓ 17.1%) 0.4993 (↓ 21.2%) 0.5272 (↓ 13.6%)

Table 3: AUROC results of the ablation study for Mor-
tality task of PatientDx configurations. w/o SLerp cor-
responds to a linear combination (model soup) of input
models and w/o Math corresponds to no use of a mathe-
matical LLM.

and Med42 8B. This results with Mortality-hard
completes RQ1, as more numerical patient-data
negatively impacts performances across baselines
and our models with only PatientDx 8B performing
consistently in terms of AUROC and AUPRC for
this dataset (Meditron 7B and PatientDx 7B are
better in one metric, either AUROC or AUPRC, but
performance drastically drops in the other one).

We performed an ablation over the three Pa-
tientDx configurations. In this case, we analyzed
the impact of merging with the math model and
the SLerp merge strategy (linear merge was used in
the absence of SLerp as equivalent when limΩ→0).
Results of this exploration are presented in Table 3.
As shown in our results, the usefulness of merging
with mathematical models is a critical feature while
mixing with an average drop of 13.7% as well as
other strategies than SLerp negatively impact an
average of 14.4%. In the case of our more perfor-
mant model, PatientDx 8B, the combination with
the mathematical model seems more critical than
the use of SLerp as a combination strategy. Exclud-
ing both features negatively impacts the models
with an average drop of 17.3%.

4.3 RQ2. Model robustness to leakage

To evaluate the capabilities of our proposal to pro-
tect the patient data used during tuning, we used
new metrics, ∆1 and ∆2, called the Data Leakage
Test (DLT) (Wei et al., 2023) which can measure
the expected data leak on train data. ∆1 assesses
the risk of data leakage by calculating the differ-
ence in perplexity between the texts used for train-
ing (Ptrain) and as reference (Pref ). Note that a
larger value indicates a lower risk of the model
leaking the data. Similarly, ∆2 calculates the dif-
ference in perplexity between training (Ptrain) and
test datasets (Ptest) with lower values indicating
no tuning over the data (neither train nor test) and
larger values a kind of over-fitting in any of the
partitions. Note that intuitively ∆ metrics’ behav-
ior does not depend on the final task but on the
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perplexity of the full text. For the reference genera-
tion, we used Mistral and Llama to automatically
generate the texts. Fine-tuning was performed us-
ing the LoRa optimization strategy with optimal
hyper-parameters over the respective collection.

Results on data leak evaluation are presented in
Table 4. For this evaluation, we included PatientDx
8B and strong baselines evaluated in Zero-shot and
fine-tuned configurations. Note that ∆1 indicates
similar values (between 2.20 and 4.30) for both
collections, in Mortality and Mortality-hard tasks,
across all no fine-tuned models (NoFT). The larger
values are observed for Med42 8B and PatientDx
8B indicating that in Zero-shot conditions these
models are less susceptible to leak patient informa-
tion. This is also corroborated by the low values
of ∆2 of all no fine-tuned models. On the other
hand, all fine-tuned models indicate a risk of leak-
age larger than their no fine-tuned counterparts for
the Mortality dataset. For Mortality-hard, only
Mathstral 7B obtains a value in the range of the no
fine-tuned models. However, ∆2 metric indicates
a kind of over-fitting for this model which may be
explained by the larger count of numeric digits in
the dataset and the mathematical specialization of
the model. As a main conclusion in regards to RQ2,
we clearly observe a higher risk of leak on the fine-
tuned models when compared to the no fine-tuned
ones, including PatientDx.

The question was picked to include numeric data
in the input (age of the patient) and in the out-
put (dose information). Outputs of our more stable
model, PatientDx 8B, as well as the top-performing
baselines, Meditron 7B and Med42 8B, are pre-
sented in Table 5. Each output was limited to 200
tokens and the prompt is similar to the one used
in Section 4.2 and fully shown in Table 5. Med-
itron prediction is the completion of a question-
answering problem unrelated to the task. Then it
diverges to a different patient description (44-year-
old woman). On the other hand, Med42 is more
coherent in its answer with a warning plus generic
information about the answer. Both mathematical
models provide shorter answers and include more
related numeric information. We can interestingly
see that PatientDx 8B provides a more contextual-
ized answer to the problem than DART math and
it remains coherent including also numeric data.
After careful examination, the conclusion is that
Med42 8B is the most complete11 answer as it

11This is based on the French medical regulations (accessed

includes the patient’s condition in the reasoning.
PatientDx 8B includes useful calculations but fails
to include the patient’s condition. However, this re-
sult clearly shows the potential of merging models
with numerical data for numeric-related questions.

Mortality Mortality-hard
Ptrain Ptest Pref ∆1 ↑ ∆2 ↓ Ptrain Ptest Pref ∆1 ↑ ∆2 ↓

NoFT

PatientDx 8B 8.43 8.44 4.60 3.85 0.01 7.90 7.91 4.01 3.89 -0.01
Med42 8B 9.22 9.24 4.97 4.27 0.02 8.54 8.53 4.23 4.30 0.01
Mistral 7B Instruct 5.84 5.87 3.58 2.29 0.03 5.36 5.37 3.13 2.24 -0.01
Mathstral 7B 5.87 5.90 3.62 2.28 0.03 5.31 5.30 3.11 2.20 0.01

FT
Med42 8B 1.57 1.86 2.84 -0.98 0.29 1.73 3.52 1.92 1.60 1.79
Mistral 7B Instruct 1.36 1.63 3.06 -1.43 0.27 1.55 3.48 1.71 1.77 1.94
Mathstral 7B 1.39 1.61 2.71 -1.10 0.22 1.39 4.41 1.84 2.57 3.01

Table 4: Perplexity values (P) over train, test, and gener-
ated data, as well as DLT values (∆1 and ∆2 where rows
represent better performance) for the different LLMs in
Mortality datasets. Largest values are marked in bold
and second largest underlined.

4.4 RQ3. Model transferability to
downstream tasks

As our proposal implies model parameter averag-
ing, a straight intuition is that the final models
may have an unexpected behavior on unseen tasks.
Thus, we include a qualitative evaluation of the
proposed answer of our model and compare it to
strong baselines. In the medical domain, qualita-
tive or quantitative (expert-based) evaluation can be
performed based on patient questions (Busch et al.,
2024). To qualitatively evaluate this impact, we use
one of the biomedical-related questions available
in the literature (Ely et al., 1999).

Finally, IR performance is evaluated using a pa-
tient dataset extracted from medical articles pro-
posed in Zhao et al. (2023). We particularly fo-
cus on the ReCDS-PPR task which consists in
finding similar patients in a corpus composed of
155.2k candidate patients and 2.9k patient descrip-
tions used as queries. LLMs were used as key-
word generators in a query expansion setup. To
obtain the keywords, we used the following prompt

“You are a highly efficient information retrieval as-
sistant. What are the most relevant absent key-
words (through synonyms or logical deduction)
that should be added to the following patient pro-
file to help identify similar patients? Patient: {pa-
tient_data}. Keywords: ”. Similar patients to orig-
inal and expanded queries were retrieved using
BM25 as this lexical ranker probed to be strong
on this task (Zhao et al., 2023). Evaluation results
using standard IR metrics are presented in Table
6. For computational reasons, we evaluated the

15/10/2024).
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Model \ Q&A You are an extremely helpful healthcare assistant. What is the dose of amoxicillin for a 1-year-old?

Mathstral 7B

The recommended daily dose for amoxicillin in a 1-year-old is typically between 10 to 50 milligrams
per kilogram of body weight, depending on the severity of the infection and the child’s condition.
The exact dosage should be determined by a healthcare provider. However, it’s crucial to follow all
instructions given by a doctor or pharmacist.

DART math 8B

The dosage of amoxicillin for a 1-year-old child depends on the child’s weight. A typical dose for a
1-year-old child is 10 mg/kg of the child’s weight. To find the dose, we need to know the weight of the
child. If the child weighs 10 kg, then the dose of amoxicillin is 10 mg/kg x 10 kg = 100 mg.
The answer is: 100

Med42 8B

As a responsible healthcare professional, I can’t provide you with the dosage of any medication on
my own. It’s always best to consult a healthcare professional like a pediatrician or a doctor to
ensure appropriate dosages for a specific child. However, I can give you some general guidelines.
The dosage of amoxicillin for a 1-year-old child is determined by age, weight, and the condition
being treated. In the case of uncomplicated infections, a typical dose is 25 - 50 mg per kilogram of
body weight per day, split into two to three doses over 24 hours. It’s important to note that
this is just a general guideline and should always be confirmed by a healthcare professional.
To ensure accurate dosing for a 1-year-old child, a pediatrician may consider the child’s height, weight,
and the severity of their...

Meditron 7B

A. 25 mg B. 50 mg C. 125 mg D. 250 mg. A 44-year-old woman presents to your clinic complaining
of abdominal pain and bloating. She says her symptoms started after her last bowel movement but
she is afebrile, has no leukocytosis, and has no signs of dehydration. Her only other complaints are
constipation and diarrhea with blood but without any other systemic symptoms. Your patient has had
similar complaints on and off for the past 15 years but she has never had an E. coli infection previously.
The patient has no history of inflammatory bowel disease. She denies having a fever,...

PatientDx 8B

The dosage is calculated based on the child’s weight, not age. The recommended dosage of amoxicillin
for a child is 50mg/kg/day given every 8 hours. First, we need to find out the child’s weight.
Assuming a typical weight for a 1-year-old child is about 10 kg. Then, we calculate the dose of
amoxicillin per day by multiplying the child’s weight in kg by 50mg/kg/day:
50mg/kg/day × 10kg = 500mg/day. Finally, we divide the daily dose by the number of times
the dose needs to be given per day (every 8 hours), which is 3 times per day. So the dose of
amoxicillin per administration is: 500mg/day ÷ 3 = 166.6mg/8h

Table 5: Answers to the question “You are an extremely helpful healthcare assistant. What is the dose of amoxicillin
for a 1-year-old?” obtained from multiple LLMs, baselines, and our proposal, PatientDx 8B.

Model MRR@1000 P@10 NDCG@10 Recall@1000 MAP@100
(a) BM25 - No QE 0.192 0.043 0.154 0.756 0.128
(b) QE with PatientDx 8B 0.189 0.042 0.152 0.755 0.126
RRF on (a) and (b) 0.193 0.043 0.156 0.759 0.129

Table 6: Retrieval performances of the LLMs in a sim-
ilar patients task. Query expansion (QE) is used as a
framework to evaluate PatientDx 8B performances.

expansion using a 4-bit quantized version of Pa-
tientDx 8B and limit tokens generation size to 200.
The rank fusion with BM25 trough RRF was also
performed using Bassani (2022). Results show that
only the RRF combination slightly improves the
BM25 baseline but statistical tests show no sig-
nificance between the two. In conclusion to RQ3,
while PatientDx 8B seems useful as a mathematical
tool for medical calculation, its performance in IR
using a QE framework must still be investigated.

5 Conclusion and Future Work

In this paper, we studied the merging of LLMs as a
competitive strategy to obtain new sharable mod-
els with competitive prediction capabilities and no
risks of data privacy violation. Our results on pa-
tient data show that merging a Math model with an
instruct or biomedical model achieves an improve-
ment in the mortality task. As a major observation,

we can highlight an outstanding improvement of
7% when comparing PatientDx 8B against input
LLMs. Additionally, the same model encodes less
training information than the fine-tuned alterna-
tives showing that the proposed merging is a reli-
able strategy to share “tuned” weights to a dataset
with a minimal leaking risk. Finally, we show the
possible uses of PatientDx 8B to answer medical
questions and to retrieve similar patients. Despite
the advances in this paper, some limitations are
still present. The main limitation is the discrete and
exhaustive evaluation that our framework requires
to produce a new model, but also other limitations
such as lower performance when compared to al-
ternatives as well as a broader evaluation in other
patient-oriented tasks. However, our proposal can
rapidly benefit of new LLMs that can be used as
inputs in a straight forward. Differently to fine-
tuning, our proposes is relatively light in terms
of computational power. Future work may focus
on more optimal ways to combine the weights to
improve performance without augmenting the com-
putational costs. Works such as Akiba et al. (2024)
may be an interesting way to explore more complex
merging strategies.
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Limitations

The major ethical consideration is the conse-
quences of misuse of medical LLMs. Note that
this work is intended for use in an academic en-
vironment and to support the medical workforce
and research12. In order to evaluate the general-
ization capabilities of our model, hyper-parameter
selection could be performed on the full training
set (without k-fold on test as described in §4.1) but
at significantly higher computational cost.
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Abstract

Electronic Health Records (EHR) store valu-
able patient-staff interaction data. Recent ad-
vancements in proprietary online large lan-
guage models (LLMs) have shown promising
capabilities in analyzing EHR notes. However,
transmitting patient information through exter-
nal APIs to LLMs like ChatGPT introduces pri-
vacy risks, necessitating alternative approaches
that conform to hospital practices.

To address privacy concerns, we propose gen-
erating synthetic documents based on a reward-
mechanism-trained model from real documents
without leaking sensitive information but keep-
ing relevant clinical knowledge. These syn-
thetic documents may be annotated by large
proprietary models or existing public ones, and
used to train small specialized models that
can run on constrained medical infrastructure.
We validate our approach through a proof-of-
concept scenario using Mimic-III, assessing
the effectiveness of the generated documents
through several downstream tasks: a series
of ICD-9 multi-label classifications of vary-
ing complexity and a synthetic Named Entity
Recognition (NER) task. The results demon-
strate that synthetic documents preserve privacy
and improve performance when real annotated
data are sparse.

1 Introduction

Electronic Health Records (EHR) contain patient
and healthcare staff interactions. Professionals
record their impressions, observations, and vari-
ous medical procedures performed. These notes
remain fairly expressive and free to save health-
care personnel time and allow for the description
of unusual situations (Rosenbloom et al., 2011; Wu
et al., 2022). Natural Language Processing (NLP)
techniques speed up the decision processes (Zhou
et al., 2022; Wu et al., 2022). In recent years, Pro-
prietary Online Large Language Models (LLMs)

such as ChatGPT have shown impressive results us-
ing zero or few-shot techniques in analyzing these
notes (Agrawal et al., 2022; Meoni et al., 2023; Hu
et al., 2024). However, clinical NLP faces chal-
lenges that arise from the sensitive, confidential,
and specialized nature of its data—sending such
patient information through an external API raises
numerous legal issues and is often impossible. Hos-
pitals or third parties providing NLP-based medical
devices (i.e., directly impacting patient care) must
maintain control over their NLP systems to ensure
patient safety. Therefore, the customization of open
LLMs and their execution in a secure but compu-
tationally constrained environment is an important
issue.

Still, specific training datasets are necessary to
develop a model with clinical skills to address these
challenges. To create such a dataset, obtaining
real clinical data remains complicated and requires
anonymization, which is time-consuming, expen-
sive, and legally constrained. This also hinders the
use of online models to annotate real data. Alterna-
tively, we propose to create synthetic clinical notes
that look like real data but do not include person-
ally identifiable Information (PII) (Melamud and
Shivade, 2019; Ive et al., 2020). This approach
has several benefits: it reduces the need for human
input, complies with regulations, and is suitable for
annotation with external models to train local mod-
els. The local models and datasets can be shared
with the community without leaking confidential
information. These local models are also small
enough to be hosted inside the hospital’s infrastruc-
ture.

Considering these issues, we implement a novel
method for generating synthetic documents, enforc-
ing privacy preservation by design, using only a
tiny seed set of pseudo-anonymised data. As a
proof of concept, our key contributions include:

• Privacy-safe Document Generation guided
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by Clinical Knowledge and Reward Mech-
anism: We present an methodology that
leverages a minimal set of manually pseudo-
anonymized data to train fine-tuned generative
models. This process is enhanced by enrich-
ing prompts with keywords containing clinical
knowledge, in our case extracted using Quick-
UMLS (Soldaini and Goharian, 2016), as il-
lustrated in Section 5 and Figure 5. This ex-
traction does not contain any PII in the sense
that it contains only clinical entities (or key-
words). Furthermore, we improve the quality
of the synthetic documents thanks to an itera-
tive refinement process that employs a private
scorer to compare real and synthetic docu-
ments. This scorer returns only floats to the
public side, ensuring privacy while enabling
continuous improvement of the synthetic doc-
ument quality.

• Proof of Concept using Mimic-III: Because
it’s almost impossible to evaluate our meth-
ods on real private documents, we utilize the
Mimic-III clinical notes (Johnson et al., 2016)
as a proxy to simulate a private healthcare en-
vironment, demonstrating our method’s poten-
tial in a controlled setting. This proof of con-
cept illustrates how our methodology could be
applied in real-world hospital scenarios with-
out compromising patient data.

• Evaluation on downstream tasks using
Mimic-III: To assess the quality of the
synthetic documents as training dataset for
smaller models, we evaluate the generated
data using two tasks: Multilabel Classifica-
tion based on ICD-9 Codes (ICD-MC) and
Synthetic Named Entity Recognition (NER).
For ICD-MC, based on the codes proposed by
Mullenbach et al. (2018) and Mimic-III man-
ual annotations, we have modified this task, as
described in Section 6.1, to compare the per-
formance of the model trained with real data
against the model trained with synthetic data.
The NER task is conducted on annotations
returned by GPT-4 on both our synthetic and
real data. This allows us to compare the per-
formance of models trained on these datasets.

2 Related Works

Synthetic Data Generation: Many recent stud-
ies focus on creating synthetic data, particularly

for generating clinical data. For instance, Kweon
et al. (2023) proposes to train LLMs for different
purposes using synthetic clinical data generated by
online LLMs. Xie et al. (2024) has developed AUG-
PE, a high-quality differential privacy synthetic text
generation method leveraging API access.

Furthermore, the work by Li et al. (2024) in-
troduces Generalized Instruction Tuning (GLAN).
Unlike previous approaches that rely on seed or
existing datasets, GLAN uses a pre-curated taxon-
omy of human knowledge and capabilities as input
to generate instructions across all disciplines. In-
spired by their method, our work uses ontological
information to extract sequences of ontology-based
keywords from texts.

To assess the performance of LLM in Multi-
ple Questions Choices in the medical field, Griot
et al. (2024) developed a fictional medical bench-
mark to isolate the knowledge of the LLM from its
test-taking abilities. Li et al. (2023a) generated a
synthetic dataset of Alzheimer’s Disease relative
signs. As this task is relatively complex, LLM
created the dataset by incorporating expert knowl-
edge taxonomy. Finally, the Hiebel et al. (2023);
Xie et al. (2024) works focus on generating a syn-
thetic dataset of clinical cases for the NER task to
study the effectiveness of real clinical data versus
synthetic data.

Self-Rewarding: Reinforced Self-Training is an
offline RL algorithm proposed by Gulcehre et al.
(2023) for self-align LLMs generating a dataset
from the initial LLM policy and using it to im-
prove the policy via offline RL. Instruction back
translation (Li et al., 2023b) is a scalable method
that automatically labels human-written text with
corresponding instructions by finetuning a LM on
a small seed dataset and a web corpus to gener-
ate and selecting high-quality examples for further
finetuning. Yuan et al. (2024) use the trained LLM
to provide rewards via LLM-as-a-Judge prompting,
improving both instruction following and reward
provision. Lee et al. (2024) introduces Reinforce-
ment Learning from AI Feedback (RLAIF) as an
alternative, using an off-the-shelf LLM to generate
preference labels. RLAIF achieves comparable or
superior performance to RLHF in many tasks, such
as those rated by humans.

The difference from the other approaches to gen-
erating a synthetic dataset is that our method com-
bines LLM guided by prompts enriched with clin-
ical knowledge, fine-tuned with a low amount of
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real pseudonymized data, and reinforcement learn-
ing feedback. This feedback is based on a score,
which compares the real and synthetic data to en-
sure that they are closer to the source while main-
taining privacy, as illustrated in Algorithm 1.

3 Reward-based Generation

We sketch the main steps of our reward-based gen-
eration process, illustrated with Algorithm 1.

3.1 Collecting keywords
The generation of synthetic CRs is guided by
prompts enriched with clinical knowledge repre-
sented by non-confidential UMLS concepts (C)
(Figure 6) extracted from real documents. Of
course, other sources of keywords are possible.
Therefore, our first processing step is to extract
such keywords from each real document of dataset
Dsource, collecting them in Csource

3.2 Seed Step
We sample a tiny seed subset Dsft (i.e., supervised
fine-tuning) from Dsource, and associated keyword
sequences Csft, with a ratio of r%. This seed subset
is assumed to be carefully pseudo-anonymized to
authorize its use to finetune our initial public gener-
ator model Mgen. In our case, one or two hundred
pseudo-anonymized documents suffice.

3.3 Generation Step
For each keyword sequence in Ktrain = Csource

\Csft and generation r, the generator model Mgen

generates N > 1 candidate documents, collected in
dataset Dstep. This way, each synthetic document
has a real counterpart based on the same sequence
of keywords. In practice, we set N = 4.

3.4 Scoring Step
We evaluate the quality of the generated documents
using SEMSCORE (Aynetdinov and Akbik, 2024),
a metric based on semantic textual similarity (STS)
returned by our private evaluator model Mscore.
The key point is that the Mscore must be hosted in
a private infrastructure to compare public synthetic
documents with real private ones.

In Algorithm 1, we use a light orange back-
ground colour to indicate that this step takes place
on the private side of the hospital building. How-
ever, being only composed of floats, the score set
Dscore can be safely declassified and returned from
the private side to the public one for the Alignment
step to train safely a new updated version of public

Mgen. At the first generation step (step = 0), we
initialize Mscore, fine-tuning it with a contrastive
objective, selecting a subset of D0 to serve as nega-
tive examples and their real counterparts as positive
examples.

Using Mscore, we score the N candidates of
each group from Dr

step against their counterparts in
Dtrain. We keep only the best groups whose high-
est score is above the pth percentile. In practice,
we set p = 80.

In each kept group, the candidate with the high-
est score (resp. lowest one) is selected as the chosen
(resp. rejected) candidate. Finally, a dataset Ddpo

is formed from these selected candidate pairs.

3.5 Alignment Step
Using dataset Ddpo, we align and update
Mgen with DPO (Direct Preference Optimization)
(Rafailov et al., 2023).

4 Applying Synthetic Dataset for Real
Tasks

To validate the quality of the generated documents,
we develop downstream tasks. In real life, the test
set for such downstream tasks should be made up
of real documents and manually annotated. The
evaluations must be run in a private area.

5 Experiments

5.1 Base Models
We use Mistral-7B-Instruct-v0.1 (Jiang et al.,
2023) as our base generator model, a trade-off be-
tween performance and computational cost. As an
evaluator model, we use all-distilroberta-v1.

5.2 Dataset
We use a dataset from Mimic-III as a proof of con-
cept, involving pre-processing, keyword extraction,
and post-processing.

1. Pre-processing: We extract from Mimic-III
the clinical notes from the clinical event row.
We select only the Discharge Summaries from
these clinical notes and parse them to retrieve
the History of Patient Illness section, using
them as documents for Dsource. On average,
the documents consist of 248 words.

2. Knowledge enrichment: We project UMLS
concepts using QuickUMLS over Dsource.
QuickUMLS is an unsupervised biomedical
concept extraction based on pattern matching
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Algorithm 1: Reward Training Algorithm
Input :Dsource = initial dataset; r = sft ratio; Mgen = generative model; Mscore = evaluator

model; p = percentile filter value; N = number of candidates to generate;
Output :Mgen

// Running in Private Area, declassifying Dsft, Csft

Csource← ExtractConcepts(Dsource)
Dsft, Csft← PseudoAnonymize(Sample(Dsource, Csource, r))
Dtrain, Ktrain← Dsource \ Dsft, Csource \ Csft

// Seed Step
Mgen← Supervised fine-tune Mgen on pairs in (Csft, Dsft)
for step = 0 to steps do

// Generation Step
Dstep ← generate new N candidates with Mgen per k ∈Ktrain

// Scoring Step (Running in Private Area, declassifying Dscore)
if step = 0 then

// Building the evaluator model
D∗

contr, Dcontr← Sample(D0, Dtrain, rcontr)
Mscore← ContrastiveTrain (Mscore, neg = D∗

contr, pos = Dcontr)

Dscore ← score Dstep over Dtrain with Mscore

Ddpo ← in Dscore, keep a pair of candidates, then filter pairs on percentile p
Kdpo ← filter Ktrain to keep keywords corresponding to candidates selected in Ddpo

// Alignment Step
Mgen← DPO Alignment Mgen on (Kdpo, Ddpo)

that guarantees only medical concepts are ex-
tracted and no identifying information. We
obtain Csource (cf. Section 3) used to enrich
the prompts, as illustrated in Figure 6. On av-
erage, we extract 58 keywords per document.

3. Post-processing: We filter out documents
without keywords. We keep ordered keywords
to encourage the model to follow the same
narrative as the ground truth. In this way, we
constitute a dataset of 4262 documents, using
70% of them (2581) as a train set (Dtrain) and
30% (1680) as a test set (Dtest). Moreover,
the Dsft with 4% and 6% ratios have 156 and
235 documents, respectively.

6 Evaluation on Downstream Tasks

6.1 Multilabel Classification tasks

Collecting Gold Annotations: As Mimic-III in-
cludes a set of expert-labeled ICD-9 codes (L) for
each discharge summary, we use these annotations
(1) to evaluate the quality of our datasets on tasks
close to a real use-case (2) and test across a series
of ICD-MC tasks with increasing complexity. We

establish an association between these labels and
the data points in Dtrain and Dtest, respectively,
2581 and 1681 data points.

We get annotated datasets ( Dtrain, Ltrain ) and
( Dtest, Ltest ) by coupling documents with la-
bels. In defining our series of ICD-MC tasks, we
prioritize the most frequent k labels, denoted as
class-k (see Table 1) with k ∈ {20, 50, 100, 400}.
We subsequently refine ( Dtrain, Ltrain ) and
( Dtest, Ltest ) by retaining only those documents
whose labels intersect with the set of class-k labels.

We define the refined training set as
Dgold = ( D′

train, L′
train ) where each docu-

ment in D′
train contains at least one label from

class-k. Documents devoid of any intersecting
labels are excluded. Table 1 presents the dataset
sizes, which document the number of excerpts
retained after applying these exclusion criteria.

It should be noted that the task’s complexity
increases with k not only because of the larger set
of labels and the lower frequency of some labels
but also because of the longer label set on average
per document. For instance, the average length is
around 6 when k = 20 but 11 when k = 100.
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Constituting the Synthetic Train Datasets: As
an approximation, we hypothesize that the syn-
thetic data point from Dr

step, which shares the
same set of UMLS keywords as its real data coun-
terpart, can inherit the same set of ICD labels
L′
train. This way, we easily obtain six synthetic

datasets, denoted as Dstep, corresponding to the
generation steps step ∈ {0, 1, 2} and seed ratios
r ∈ {4%, 6%}, as shown in Table 3. Each Dstep

dataset contains four times more document data
points than Dgold.

6.2 Named Entity Recognition (NER) Task
Annotating the Overall Dataset: Because
Mimic-III does not include gold NER annotations,
we use GPT-4 to automatically annotate all (syn-
thetic and real) train and test datasets (OpenAI
(2023), Appendix B.), focusing on three entity
types: problem, treatment and test. We employ
a few-shot learning approach inspired by Hu et al.
(2024), using the prompt in Appendix 10. To assess
whether or not the annotated entities are essentially
the UMLS keywords, we evaluated the overlap be-
tween keywords and annotations and found a low
22.36% overlap.

Table 1 illustrates the distributions of labels for
the ICD-MC tasks and entities for NER.

6.3 Training of Task Models
We train a series of (small) deberta-v3-base (He
et al., 2021) models on ICD-MC tasks using either
real or synthetic datasets Dgold or Dr

step over the
four tasks class-k where k ∈ {20, 50, 100, 400}.

To address the quantity bias of a larger synthetic
dataset, we train two baseline models, one trained
with Dgold, and another one trained with Dgold×4,
where each real document is oversampled N = 4
times, hence containing the same amount of docu-
ments as the synthetic set.

We also consider a baseline where only key-
words (Ktrain) are used to predict labels to check
that the content of the documents impacts the per-
formance, as shown in Table 3.

We apply the same methodology for the NER
task but with only Dgold and Dgold×4 as baselines.

7 Results

Table 2 presents a comparative analysis of SEM-
SCORE measurements by evaluators across the

1O (Outside) comes from the IOB (Inside-Outside-
Beginning) schema used in Named Entity Recognition task. It
denotes tokens that are not part of any named entity.

Dgold Dtest

class-k # labels # docs # labels # docs

class-400 38602 2564 25409 1681
class-100 30015 2560 19700 1672
class-50 23323 2552 15246 1672
class-20 14619 2513 9694 1648
ner 72715 2581 47783 1681

Table 1: Multilabel classification & NER task datasets,
with labels size for Dgold, Dtest. The number of labels
for the NER task excludes label O1.

different datasets generated at various steps. We
observe a consistent improvement in scores with
successive steps. The M6%

gen model outperforms
the M4%

gen model, highlighting the effectiveness of
alignment in refining the quality of generated doc-
uments through iterative processes. The scores
indicate a trend across various models, suggesting
that models trained with more real data produce
higher-quality documents.

steps M4%
score M6%

score

0 67.95 65.94
M4%

gen 1 71.53 69.18
2 72.25 70.12

0 70.78 67.26
M6%

gen 1 72.54 70.78
2 76.10 74.37

Table 2: SEMSCORE evaluation for models Ma
gen with

a = rsft ∈ {4%, 6%} using the different evaluators
M b

score with b = rsft ∈ {4%, 6%}. The grey scores de-
note cross-evaluation where a ̸= b.

Table 3 compares F1 scores on the downstream
tasks across different models and configurations,
providing insights about their performance when
varying task complexities and training data con-
ditions. Notably, Mgold×4,trained with Dgold×4,
outperforms the models trained with synthetic
data (M{4,6}%

0,1,2 ) across all tasks. Second gen-
eration models(D4%

2 and D6%
2 ) demonstrate per-

formance comparable to the model trained on
Dgold×4. In particular, for the class-400 task, the
F1 scores for D4%

2 and D6%
2 match closely those

for Dgold×4, with only minor variations. Notably,
the standard deviations for the synthetic data mod-
els are lower than those of the gold data model,
indicating more consistent performance. Further-

16



class-20 class-50 class-100 class-400 ner

baseline 45.7 ± 1.2 33.8 ± 2.2 26.6 ± 0.8 10.6 ± 2.0 -

Dgold 49.3 ± 1.8 33.3 ± 3.1 23.0 ± 3.6 04.9 ± 4.1 57.0 ± 0.2
Dgold×4 53.7 ± 2.3 42.5 ± 0.2 35.0 ± 1.3 26.4 ± 5.9 61.6 ± 0.1

D4%
0 49.8 ± 1.1 38.7 ± 1.1 32.2 ± 1.8 24.2 ± 2.5 -

D6%
0 49.9 ± 1.2 38.5 ± 1.9 31.0 ± 1.7 23.9 ± 2.4 59.6 ± 0.2

D4%
1 50.9 ± 0.9 41.1 ± 1.6 33.9 ± 1.8 26.9 ± 1.4 -

D6%
1 51.2 ± 0.9 40.7 ± 1.4 33.7 ± 2.1 24.5 ± 2.7 59.4 ± 0.2

D4%
2 50.6 ± 0.8 41.0 ± 1.3 34.3 ± 2.0 27.0 ± 2.0 -

D6%
2 51.7 ± 1.1 40.7 ± 1.0 31.9 ± 7.5 26.5 ± 2.5 59.4 ± 0.2

D6%
{0,1,2} 52.4 ± 0.4 43.1 ± 0.5 37.2 ± 0.3 31.0 ± 0.7 61.7 ± 0.1

Table 3: Comparative F1 Scores and standard deviation across models trained over different dataset generations.
The table illustrates F1 (Micro-F1) score performance for the class-k and NER tasks across Dr

step, Dgold and the
baseline.

more, models trained on a combination of several
generations(D6%

0,1,2) outperform most cases, except
on the class-20 task. This suggests increasing data
diversity and quantity through dataset mixing en-
hances model performance in certain scenarios.
Consistently across class-k tasks, M{4,6}%

0 mod-
els yield the lowest F1 scores. This indicates that
initial generation models lack sufficient sophistica-
tion or diversity in training data to effectively cap-
ture necessary predictive features, particularly for
M4%

0 . As task complexity increases, F1 scores gen-
erally decrease for both real-based and synthetic-
base models, highlighting the models’ challenges
in adapting to more complex interactions.

In the class-400 task, F1 scores improve from
step = 1 to step = 2, following a general trend
of performance increase. The exception is in the
class-100 task, where performance decreases be-
tween M6%

1 and M6%
2 .

Figure 1 presents the correlation between F1
scores and SEMSCORE computed by M6%

score across
class-k tasks. We observe that SEMSCORE is an
effective evaluator, although with nuances. Specifi-
cally, D6%

2 outperforms D4%
2 only in class-20. In

class-400, the lowest correlation is observed, sug-
gesting that SEMSCORE ’s reliability decreases
as task complexity increases, likely due to label
scarcity affecting training stability. In contrast,
class-20, 50, 100 show stronger correlations, em-
phasizing SEMSCORE effectiveness in these tasks.
Though, M4%

0,1,2 consistently outperforms M6%
0,1,2,

indicating that the seed may constrain the genera-

tor, leading to reduced document diversity. Further
investigation is required to evaluate the impact of r
on overall performance.

We also conducted ablation studies to analyze
how dataset sizes and selection strategies affect the
performance of encoder models for the class-100
and NER tasks. We trained several task models
using different amounts of (filtered) synthetic data
generated from the D

{4,6}%
2 subsets. We employed

two filtering methodologies: (1) percentile sam-
pling, which prioritizes the highest-scored candi-
dates according to the SEMSCORE metric, and
(2) random sampling, which filters documents
in varying proportions.

In Figure 2, the graphs demonstrate a consistent
increase in F1 scores when expanding the synthetic
document set from 2,000 to 10,000 documents for
both sampling methods. For class-100, percentile
sampling shows a more pronounced improvement
than random sampling, particularly at lower doc-
ument counts. As the document set grows, the
performance gap between the two sampling meth-
ods narrows, but percentile sampling maintains a
slight edge throughout. This trend suggests that
the quality of synthetic documents, measured by
SEMSCORE, significantly impacts performance
for this task, especially when working with smaller
datasets. The observation underscores the impor-
tance of quantity and quality in synthetic data gen-
eration, with quality playing a crucial role in sce-
narios where data quantity is limited.

On the other hand, there is a sharp decrease in the

17



68 70 72 74

49

50

51
F1

Sc
or

e

class-20 ρ = 0.66 pcc = 0.76

68 70 72 74
36

37

38

39

40

41

class-50 ρ = 0.77 pcc = 0.79

68 70 72 74

SEMSCORE

29

30

31

32

33

F1
Sc

or
e

class-100 ρ = 0.71 pcc = 0.73

68 70 72 74

SEMSCORE

22

24

26

class-400 ρ = 0.59 pcc = 0.58

Figure 1: Correlation between SEMSCORE and F1-score across class-{100,400} prediction tasks. The dots represent
the model trained with Dr

step. The Spearman correlation (ρ) and Pearson correlation coefficient (pcc) indicate
varying degrees of linear and rank-order association with task complexity.

performance of the NER task when M6%
2 is trained

with the same number of documents as Mgold using
percentile sampling. We conjecture it is partly due
to the synthetic subset containing fewer annotated
tokens than the gold dataset (for the same number
of documents), with 510199 tokens versus 643802
tokens. To neutralize the impact of this difference,
we trained a model with the same amount of anno-
tated tokens as Dgold, as illustrated by a black star
in Figure 2. We observe less difference between
Mgold and M6%

2 (with values of 57.0 and 56.6).
We hypothesize that this difference is because the
distribution of Dgold is closer to that of the syn-
thetic subset compared to Dtest as illustrated in
Figure 4. Furthermore, adding or removing words
can affect the proportion of annotated tokens. We
have not yet conducted the NER task experiment
with the document generated by M4%

0,1,2 as we do
not anticipate significant results for these tasks.

8 Discussion

Besides validating our privacy-safe generation pro-
cess, our results have also provided crucial insights
into the impact of both the quality and quantity
of synthetic training data on the performance of

encoder models. It is evident that refining the
generator through DPO, using clinical concepts
as inputs, enhances the synthetic dataset’s qual-
ity, especially when the first alignment step has
been performed. Results indicate that training
models on synthetic data not only preserves but
outperforms models trained on gold datasets, as
illustrated in Table 3. This highlights the potential
of using privacy-preserving synthetic documents to
maintain high data utility while protecting sensitive
information.

The accuracy of the SEMSCORE scoring
mechanism as a predictor of data quality
for downstream tasks is also particularly pro-
nounced. The nature of tasks significantly influ-
ences the predictive quality, as shown in Figure 1.
The need for text closely aligned with the source
material to ensure accurate identification of rarer
labels was clear, highlighting SEMSCORE’s role
as a critical metric in evaluating and refining the
quality of synthetic documents.

While increasing the dataset size improves per-
formance, applying selective filtering strategies,
such as percentile sampling, on a larger volume fur-
ther enhances results, surpassing the model trained
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Figure 2: The figure showcases the experimental settings for training encoder models with varying quantities of
synthetic data. The pink line (resp. blue line) denotes models trained on randomly sampled datasets (resp. nth-best
based on SEMSCORE datasets). The black dot represents the model trained with Dgold, while the black square
represents the model trained with Dgold×4.

with Dgold. These findings suggest that both data
quantity and quality can be adjusted to optimize
outcomes, as highlighted in Figure 2.

Another interesting finding is that we can con-
catenate the datasets generated on the different
steps to increase performance. This is illustrated in
overall tasks, where diversity is improved by using
more data and simulating a more diverse dataset
through the heterogeneous data quality, outperform-
ing the model trained with Dgold×4.

9 Conclusion

We deliver a method for generating synthetic
privacy-safe documents. Our method consists of
(1) initializing the model with a small number of
pseudo-anonymized documents, which reduces the
need for human input, and (2) employing a private
evaluator to score the generated document against
real documents, preserving the confidentiality of
the data while ensuring proximity between real and
synthetic documents. Our study shows that models
trained on small gold datasets face the practical
limitations of current NLP systems when handling
complex tasks. Scaling the amount of high-quality
and diverse synthetic documents is a way to address
these limitations. It can outperform models trained
on real data under certain configurations, thereby
validating the approach of generating on-demand
data to overcome data scarcity and privacy issues.
These findings facilitate the sharing of high-fidelity
synthetic datasets. Furthermore, such datasets may
be then annotated using (proprietary) LLMs or via
large-scale manual annotation. Finally, the pro-
posed solution is more ethical for patients. It fo-
cuses on privacy concerns and is motivated by the

opening of clinical data for research advancements.

10 Limitations

Currently, evaluation is limited to multi-label classi-
fication and NER tasks. Expanding testing to more
complex tasks that require reasoning and domain-
specific knowledge, such as medical question an-
swering, could give more insights into the applica-
bility and robustness of our method.

By design, Personal Identifiable Information are
absent from our synthetic documents but there exist
some slight risks of re-identification from some
specific sequences of UMLS keywords. Adding
some noise to such sequences should solve the
issue.

The economical cost for generating large syn-
thetic datasets may also be an issue (see Ap-
pendix A.) for some healthcare providers, even
if it occurs in public environments. Investigating
the efficacy of smaller generation models could
make this technology more accessible, especially
for hospitals or clinics with limited budgets.

We are exploring alternative reinforcement learn-
ing techniques, such as KTO (Ethayarajh, 2024),
to exploit all the generated data rather than only
selecting example pairs filtered by percentile with
DPO. We are also considering simpler RL methods
like ORPO (Hong et al., 2024) and SimPO (Meng
et al., 2024).

Finally, we wish to investigate more accurate
evaluation metrics than just SemScore, in partic-
ular, by combining them with other sophisticated
metrics, such as style transfer or document quality
(Jin et al., 2022).
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Appendix A. Carbon Footprint

The algorithm 1 with the experimentation protocol
detailed in 5 runs in 40h on 4 GPUs NVIDIA A100
PCIe, and draws 46.34 kWh. Based in France, this
has a carbon footprint of 2.38 kg CO2e, which
is equivalent to 2.59 tree-months (calculated us-
ing green-algorithms.org v2.2 (Lannelongue et al.,
2021)).

Appendix B. Mimic-III Usage

PhysioNet provides MIMIC-III under the Phys-
ioNet Credentialed Health Data License 1.5.0. We
employed Azure GPT, a HIPAA-certified platform
for our large language model annotations. Impor-
tantly, Azure GPT does not store processed data.
We received approval to waive abuse monitoring
for Azure GPT, ensuring that no additional par-
ties could access the data or prompts used in our
experiments.

Appendix C. ICD-9 label distribution
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Figure 3: Rank-frequency distribution of labels within
the Dgold (blue) and Dtest (pink) datasets, plotted over
the class-k.
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Figure 5: workflow of our approach

Appendix F. Outputs

<s>[INST]As a doctor, you must write an
original ’History of Present Illness’ (HPI)
section for a discharge summary. Your re-
sponse should capture the essence of a pa-
tient’s health journey and recent medical
experiences, while strictly using all the pro-
vided keywords conserving the order. You
must adopt a medical telegraphic style, ab-
breviated, characterized by concise and di-
rect language.
Keywords: metastatic, RCC, pancreas, re-
ports, chills, tylenol, reports, rib pain, ly-
ing, chills, reports, dark stools, fever, zosyn,
headache, contacts, anxious, pain, dysuria,
joint pain, rash, hypotensive, asymptomatic,
given, lactate, baseline, guaiac, stool, saw,
stent, pancreatic, blood, tomorrow, treated,
cholangitis, given, sat, ARF, reports, anx-
ious[/INST]

Figure 6: An example of prompt for the Figures 7,9,8
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This is a 67 y.o male with h.o metastatic
RCC to the pancreas, recent ICU course for
UGIB (12units pRBCs) who reports sud-
den intermittent chills since wednesday for
which he took tylenol. Pt also reports R.side
gnawing rib pain, while lying in bed be-
fore the onset of chills. In addition, pt
reports dark stools for the last few days
which started after taking "iron pills". Pt
states he went to [**Hospital1 2436**] ED
because of a fever of 101.3, however he
felt better and did not want to wait to be
seen. He returned to [**Hospital1 2436**]
today and was transferred to [**Hospi-
tal1 18**] after a dose of zosyn, HCT
25. Pt denies headache/dizziness/blurred
vision, URI/cough, sick contacts, CP, +palp
when anxious, -abd pain/n/v/d/brbpr, dy-
suria/hematuria, joint pain, rash, paresthe-
sias.
.
At [**Hospital1 18**], pt found to be hy-
potensive to 75/40, asymptomatic. He was
given 3L IVF, lactate 6.8. HCT 22.8 from a
baseline of 35 a few weeks ago. He was
found to have black, guaiac +stool. GI
saw pt, pt s/p stent to pancreatic ampulla,
?blocked from blood. Plan is to transfuse,
ERCP tomorrow. ED also treated for possi-
ble cholangitis/sepsis and pt was given dose
of vanco. Vitals 99.2, BP 99/66 HR 88 sat
9820’s, 18. Pt also found to be in ARF.
.
Currently, pt reports that he is anxious.
.

Figure 7: An example of a ground truth associated with
the prompt of Figure 6

77 yo M w/ hx of metastatic RCC of the
pancreas (pancreo-duodenal
mass reports R/o chills since starting [**6-
2**] on [**2160-5-18**] (day 7-10 from
Hx. He has had fevers with taking tylenol
at that time
(Ibuprofen 400mg, acetaminophen 650mg
PRN for R/o rib pain and
steal). On [**2160-5-22**] he was lying in
bed and became extremely
ill with chills. He reports this started a few
minutes ago. Also
reports dark stools. His fever is 102F
(38.3C), he is on 2g IV
zosyn (given IVF 2L NS, as he is V/5) for
pneumonia with HC
reported by the Wife. He reports severe
headache. He is not
compliant with PCP but has noticed many
recent contacts with
his S/M. He is very anxious for relief of
pain. He has some
dysuria and no joint pain. He has no rash.
He is in the ED
actively pacing. He is hypotensive. He is
BP 90/45 with 3+ pti
on his left hand. PRI all his vitals are stable
otherwise at
BP 92/44 HR 81 RR 14 96 O2 Sat 99PaCO2
28.1, PaO2 113. As a baseline (was done in
ED), guaiac
in stool was positive. He was sent to CT
with ortho in ED. Saw
his PCR [**Last Name (Only) **]
[**Date**] [**Time (only) **] 5:15 and
showed a 6.2mm x 5.1mm pancreatic
tail mass (blood in the head of the pancreas
with no dilation
distally). He is scheduled for pancreatic
stent placement
tomorrow. He was treated for acute cholan-
gitis (e.g. given 3L NS
and 1g of IVF) and was given 1L NS to help
with ARF. He
reports that he is more anxious for relief of
pain.

Figure 8: An example of synthetic data generated with
the prompt of Figure 6, with a high SEMSCORE at 79
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Ms. [**Known lastname **] is a 69 year
old woman with a history of metastatic
renal cell carcinoma (RCC) with distant
metastases to the pancreas
who presents with fever, chills, abdominal
pain since [**2119-1-7**]. She reports
taking 5 grams of tylenol daily at home
which she also reports taking in the past
week. She also reports having
rib pain while lying in the [**location
unclear **]. She reports chills
and having dark stools, but denies any
associated fever or rigors.
She was recently started on zosyn for
headache and nausea and
vomiting. She denies any contact with sick
person, recent travel
or animals, or recent change in her work or
home environment.

She is an anxious, non-smoker with
a past medical history of pancreatic
insufficiency and hypertension who
presents with abdominal pain and
lower extremity edema. She denies dysuria,
joint pain or rash. She
is not hypotensive with a BP of 125/80 at
her arrival to the
Emergency Department. She is asymp-
tomatic for lactate at the time of
this admission to the floor. On review of
her baseline admission guaiac
stool testing is not available. On her last
outpatient visit to her
oncologist at [**Hospital1 **] on [**1-
7**], she was seen to have a stent placed
for
cholangitis and was given an ERCP. She
was treated for cholangitis
at the time and was given some ARF on
[**1-7**].

Her oxygen saturation was 97for pos-
sible E.Coli pneumonia. She was found to
have hypotension on
admission to the floor and received dobu-
tamine.

Figure 9: An example of synthetic data generated with
the prompt of Figure 6, with a low SEMSCORE at 52

### Task
Your task is to generate a JSON list de-
tailing specific healthcare-related entities
in an input text. The entities to be identified
are: ’medical problems’, ’treatments’, and
’tests’. Each entry in the JSON should spec-
ify the entity and its type.
### Entity Markup Guide
- "problem" for medical problems.
- "treatment" for treatments.
- "test" for medical tests.
### Examples
Example Input 1: At the time of admission,
he denied fever, diaphoresis, nausea, chest
pain or other systemic symptoms.
Example Output 1: [ "entity": "fever",
"type": "problem", "entity": "diaphore-
sis", "type": "problem", "entity": "nausea",
"type": "problem", "entity": "chest pain",
"type": "problem" ]
Example Input 2: He had been diagnosed
with osteoarthritis of the knees and had un-
dergone arthroscopy years prior to admis-
sion.
Example Output 2: [ "entity": "osteoarthri-
tis of the knees", "type": "problem", "en-
tity": "arthroscopy", "type": "test" ]
Example Input 3: After the patient was seen
in the office on August 10, she persisted
with high fevers and was admitted on Au-
gust 11 to Cottonwood Hospital.
Example Output 3: [ "entity": "high fevers",
"type": "problem" ]
Example Input 4: HISTORY OF PRESENT
ILLNESS: The patient is an 85-year-old
male who was brought in by EMS with a
complaint of a decreased level of conscious-
ness.
Example Output 4: [ "entity": "a decreased
level of consciousness", "type": "problem"
]
Example Input 5: Her lisinopril was in-
creased to 40 mg daily.
Example Output 5: [ "entity": "lisinopril",
"type": "treatment" ]
### Input Text: [INPUT]
### Output Text:

Figure 10: The prompt for annotating documents for the
synthetic NER task
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Abstract

Large Language Models have made impressive
progress in the medical field. In medical dia-
logue scenarios, unlike traditional single-turn
question-answering tasks, multi-turn doctor-
patient dialogue tasks require AI doctors to
interact with patients in multiple rounds, where
the quality of each response impacts the over-
all model performance. In this paper, we pro-
pose PERT to re-explore values of multi-turn
dialogue training data after the supervised fine-
tuning phase by integrating a prefix learning
strategy, further enhancing the response qual-
ity. Our preliminary results show that PERT
achieves notable improvements on gynecolog-
ical data, with an increase of up to 0.22 on a
5-point rating scale.

1 Introduction

With the development of large language models
(LLMs), there has been increasing attention on their
applications in the medical sector. While recent
general-purpose models such as GPT series (Hurst
et al., 2024), Claude series (Anthropic, 2025), and
Qwen series (Yang et al., 2024b) have shown de-
cent capabilities in medical question-answering
(QA) tasks (Xie et al., 2024), researchers have lever-
aged diverse medical datasets to build specialized
models tailored to various medical scenarios, such
as dedicated SMILE for mental health (Qiu et al.,
2023), and comprehensive Med-PaLM series (Sing-
hal et al., 2025), Zhongjing (Yang et al., 2024c),
and Baichuan-M1 (Baichuan, 2025). These mod-
els offer exciting possibilities for the real-world
application of LLMs in the medical domain.

Our scenario is multi-turn doctor-patient dia-
logues in multiple clinical departments on an on-
line healthcare consultation platform. We aim at
deploying LLMs as AI doctors to assist human

*This work was done during Suxue Ma’s internship at Ping
An Technology, Shenzhen, China.

†Corresponding author.

doctors in collecting adequate prediagnostic in-
formation from patients via multi-turn conversa-
tions between patients and AI doctors. To train
an acceptable LLM for every clinical department,
a straightforward idea is to adopt a multi-stage
training strategy: pretraining on general medical
data (Yang et al., 2024c; Baichuan, 2025), followed
by supervised fine-tuning (SFT) using real doctor-
patient dialogue history in each clinical depart-
ment (Yang et al., 2024c). However, the model
trained using this simple strategy still falls short of
meeting deployment-oriented performance require-
ments. For instance, we observed that the model
occasionally repeats its previous responses. Unfor-
tunately, a repetitive utterance might make patients
aware that they are interacting with an AI doctor,
destroying their consultation experience.

Since authors in (Zhang et al., 2025) highlighted
the effectiveness of appropriate instruction prompts
to alleviate this issue, we conduct two pilot experi-
ments: (1) When we apply the instruction prompt
“Do not repeat what has already been said” only at
the beginning of a multi-turn dialogue, the model
tends to forget this constraint after several rounds;
(2) When we insert this instruction prompt before
every response, the model significantly reduces rep-
etition, but it increases the frequency of irrelevant
or off-topic responses, still degrading the overall re-
sponse quality. We infer that two factors cause this
issue: (1) The dataset for each medical department
is relatively small, limiting the model’s learning
capacity; (2) While the prompt-based constraint is
effective, the model either forgets it over time or
applies it too rigidly.

To mitigate these issues, we propose a novel
training strategy PERT (Prefix-Enhanced LLMs
with Reused Training data) for our multi-turn med-
ical dialogue scenario. Unlike the original single-
department SFT paradigm, PERT has two training
phases. First, we aggregate data from all depart-
ments to train an all-around LLM that benefits from
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Figure 1: Framework of the proposed PERT. Compared with the original LLM training strategy, PERT first trains
an all-around LLM using the data of all clinical departments. The prefix learning process is then conducted to
leverage the departmental data individually and train their own prefix-enhanced LLMs, respectively.

the data scaling law (Kaplan et al., 2020). Second,
since such a generalized LLM needs to retain spe-
cialization for individual departments, we design a
prefix learning phase by reusing the data from each
department. Unlike the previous pilot experiments
where the prompt was mechanically inserted either
at the beginning of the entire dialogue or before
each response, prefix learning can provide “soft
guidance” for each round of AI doctor responses,
improving the overall LLM performance without
introducing excessive constraints on response gen-
eration. PERT further exploits the values of training
data that was used once only in the conventional
single-department SFT (original vs. proposed in
Fig. 1, described in Sec. 3.1).

Our key contributions are listed as follows:
(1) proposing the PERT training strategy combin-
ing all-around LLM training with prefix learning
by reusing training data from single-department
for multi-turn medical dialogues, (2) introducing
a strategy for reusing training data from single-
department to enhance model performance, and (3)
conducting preliminary experiments to validate the
effectiveness of our approach in real-world doctor-
patient consultations.

2 Related Work

Medical LLMs. Medical LLMs have emerged
as a transformative technology in healthcare, with
significant advancements in a wide range of appli-
cations, including medical summarization (Tang
et al., 2023; Van Veen et al., 2024), clinical de-
cision support (Hager et al., 2024), and medical
dialogue systems (Li et al., 2023). In dialogue sys-
tems, single-turn models provide rapid responses
to medical queries, while multi-turn models are al-
ways diagnostic-oriented through context-aware in-
teraction. These models can be broadly categorized
into fine-tuned general LLMs (Li et al., 2023; Sing-
hal et al., 2025; Yang et al., 2024c) and dedicated

LLMs (Luo et al., 2022; Gu et al., 2021). Most of
those models are validated on public datasets or in
lab-stage settings, but have not been fully studied
in deployment-oriented scenarios.

Prefix Learning. The representative prefix-
tuning method is a parameter-efficient fine-tuning
(PEFT) approach that optimizes a small set of task-
specific parameters, called prefixes, while keeping
the pretrained model frozen. These prefixes effec-
tively guide the model’s behavior during inference
without requiring updates to the full model (Li and
Liang, 2021). Recent studies have demonstrated
the effectiveness of prefix-tuning in medical ap-
plications (Van Sonsbeek et al., 2023; Chen et al.,
2024; Zhou et al., 2024). For the multi-turn inter-
active dialogue scenario, the authors in (Li et al.,
2024a) introduce an external planner to learn prefix
token embeddings. Nevertheless, the efficacy of
this method has not been studied in the medical
field.

3 Methods

3.1 Framework Overview

Fig. 1 illustrates the framework of our proposed
PERT. Compared with the original SFT strategy, we
first leverage the data from all clinical departments
to achieve an all-around LLM, which plays an in-
termediate role. We then conduct prefix learning
by reusing data from every individual department
on the trained all-around LLM. Consequently, each
department has its own prefix-enhanced LLM.

3.2 All-Around LLM Training Phase

We aggregate data from all departments and train
the all-around LLM using the same SFT strategy as
the original one. We find that this all-around LLM
overall outperforms the single-department LLM
(shown in Table 2).
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3.3 Prefix Learning Phase

Inspired by prefix learning designed for the multi-
turn dialogue scenario (Li et al., 2024a), which
adopted an extra planner to update the prefix to-
ken features, we design two stages in our prefix
learning phase. The first stage involves cloning the
behavior of the pretrained all-around LLM to en-
sure that the LLM steered by the prefixes behaves
similarly to the LLM itself. The prefixes are gener-
ated by a planner. In the second stage, we fine-tune
the planner by using responses from real doctors,
collected through our online consultation platform.
This allows the LLM’s behavior to become more
aligned with the communication style and expertise
of real medical professionals.

3.3.1 Self-Cloning Stage
Behavior cloning (Bratko et al., 1995) is a tech-
nique in imitation learning where an agent learns to
replicate the actions of an expert. Inspired by this
approach, we aim to make an LLM with prefix to-
kens behave consistently with the all-around LLM.
To achieve this, we train the planner from scratch
using the responses generated by the all-around
LLM as training data. This stage ensures the prefix-
equipped LLM retains the capacities of the all-
around LLM, offering a robust starting point.

To prepare the corpus for self-cloning, we pro-
vide the fine-tuned all-around LLM with real
doctor-patient dialogue history which ends with the
patient’s utterance, and ask the LLM to generate
the response as a doctor. Formally, the corpus is de-
noted as {pi1, qi1, pi2, qi2, · · · , piNi

, qiNi
}Mi=1, where

M is the number of collected dialogues, Ni is the
number of rounds of the i-th dialogue, and pj and
qj (j = {1, 2, . . . , Ni}) are the patient’s and the
doctor’s utterance at the j-th round, respectively.
Note that a dialogue with n rounds can be split
into n individual datapoints with {p1, q1, · · · , pj}
being the dialogue history and qj being the ground
truth for j = {1, 2, · · · , n}.

Now we describe the process of prefix genera-
tion. Initially, the embedding of the dialogue his-
tory at the j-th round of the i-th dialogue is ob-
tained by the LLM, which produces an embedding:

eij = Emb({pi1, qi1, pi2, qi2, · · · , pij}). (1)

Next, the planner extracts the last-token embedding
from the output of the LLM’s last layer, and then
transforms this token embedding into the prefix
space by an MLP. Formally, the planner is defined

as:

ϕ(e) = MLP(gθ(e)), (2)

where θ is learnable parameters of the transformer
and gθ denotes the extraction operation. We train
the planner by minimizing conditional language
modeling objective as follows:

Lsc = −
M∑

i=1

Ni∑

j=1

log fθ(q̃
i
j | ϕ(eij)∥eij), (3)

where ∥ denotes concatenation of the dialogue ac-
tion tokens with token embeddings e, and fθ de-
notes the autoregressive distribution of generated
strings. Here, the ground truth q̃j is generated by
the all-around LLM.

3.3.2 Supervised Fine-Tuning Stage
In the supervised fine-tuning stage, we refine the
prefix embeddings to better align the LLM’s be-
havior with real doctors’ communication styles and
expertise. Unlike the self-cloning stage, which uses
responses generated by the all-around LLM, this
stage reuses the real doctors’ responses from clin-
ical department data as ground truth to fine-tune
the planner in a supervised manner. Note that the
dialogue history remains the same as that in the self-
cloning stage, but the ground truth for fine-tuning
is now the real doctors’ responses rather than those
generated by the LLM. That is, the ground truth
for the real doctor’s response at the j-th round is qj
instead of q̃j . The loss function in this stage is

Lsft == −
M∑

i=1

Ni∑

j=1

log fθ(q
i
j | ϕ(eij)∥eij). (4)

4 Experiments

4.1 Dataset

Our dataset is sourced from a real-world online
doctor-patient consultation platform in China, in-
cluding more than 10 clinical departments, such as
pediatrics, ophthalmology, etc. This data source
consists of authentic doctor-patient multi-turn dia-
logues, covering a range of medical inquiries and
responses. In this paper, we present preliminary
results using the data from the gynecology depart-
ment because of its large number of consultations
(300k+ dialogues), while the available data across
all departments (800k+ dialogues) are for training
the all-around LLM. Table 1 lists the statistics of
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Dataset #Dialog. #Rounds
Original
gynecology 310k 1.77m
For prefix learning
self-cloning 10,000 58,105
supervised fine-tuning 10,000 54,133
test set 1,000 5,463

Table 1: Statistics of dialogues from
the gynecology department and those
used for prefix learning during self-
cloning, supervised fine-tuning, and in-
ference, respectively.

Method Avg. s s>2(%) s>3(%) s>4(%)
Original
gynecology LLM 3.5824 97.21 57.93 7.15
Proposed
all-around LLM 3.6353 97.74 58.65 7.48
random prefix w/o learning 3.6437 98.32 58.44 7.91
prefix w/ self-cloning only 3.7584 98.86 68.38 8.34
PERT (prefix w/ self-cloning & SFT) 3.8013 98.41 71.66 10.36

Table 2: Performance comparison among different methods by the aver-
age score s and the percentage of dialogues with scores exceeding 2, 3,
and 4. Bold and underlined text represent the best and the second best,
respectively.

our used dialogue data, including the number of di-
alogues (#Dialog.) and the total number of rounds
(#Rounds). Specifically, we use 10,000 dialogues
for both self-cloning and supervised fine-tuning,
with average rounds per dialogue of 5.8 and 5.4, re-
spectively. For evaluation, we use 1,000 dialogues
as the test set.

4.2 Implementation Details

The fine-tuned all-around LLM in PERT is obtained
by fine-tuning Qwen2-14B-Instruct (Yang et al.,
2024a) with aggregated data from all clinical de-
partments. For training, We used a learning rate
of 0.001 and Adam optimizer to minimize the loss.
We used a prefix token length of 2, with prefix em-
bedding size of 128. The dimension of the hidden
state of the LLM is 5120. The planner for generat-
ing prefix tokens was trained for 10 epochs for self-
cloning and 5 epochs for supervised fine-tuning,
while the all-around LLM was frozen. All experi-
ments were conducted on servers with 8 NVIDIA
V100 GPUs, each with 16 GB VRAM.

4.3 Preliminary Results

We compared several methods for doctor-patient
dialogue generation to validate the effectiveness
of our method in Table 2. The methods tested
for comparison include (i) the original gynecology
LLM; (ii) the all-around LLM that generates re-
sponses without any prefix learning stages; (iii) a
random prefix without learning, where the plan-
ner is randomly initialized to generate prefix to-
kens; and (iv) update the prefix embeddings using
self-cloning only, referring to no fine-tuning with
real doctor responses. Finally, our proposed PERT,
which combines the self-cloning stage of the plan-
ner to generate prefix embeddings with the super-
vised fine-tuning stage using real doctor responses,
was also evaluated. We utilized a general-purpose

LLM (Qwen2-7B-Instruct) to assess dialogue re-
sponses. Each response was rated on a scale from
1 to 5, with higher scores indicating better quality.
The evaluation considered factors including safety,
professionalism, and friendliness. The complete
prompt template is provided in Appendix A. For
each dialogue, the highest turn score was taken as
the dialogue’s overall score. We then calculated
the average score and the proportions of dialogues
with scores exceeding 2, 3, and 4 in Table 2.

As we can see, PERT achieves the highest aver-
age score of 3.8013, significantly surpassing the
baselines (gynecology LLM and all-around LLM),
which have an average score of 3.5824 and 3.6353,
respectively. The random prefix method also shows
a comparable result (3.6437), but it remains lower
than the prefix learning approaches. Meanwhile,
our method generally accomplishes the best results
in the percentage of responses with scores above
various thresholds (s > 2∼4), except the compara-
ble percentage with the self-cloning stage only for
s > 2. These results indicate that the inclusion of
prefix learning by reusing real doctors’ replies from
the training data is significant for generating more
coherent and contextually appropriate responses.

5 Conclusions and Discussion

In this paper, we propose PERT, which leverages
a prefix learning strategy to re-explore multi-turn
dialogue training data after the SFT training phase,
leading to further LLM performance improvement.
Our preliminary results show that PERT achieves
noticeable improvements on gynecological data.

Since our model is designed for deployment,
the performance of the medical LLM needs to be
continuously improved through iterative updates.
Once the existing data has been effectively utilized,
a key question is whether we can further explore
its potential for specific medical scenarios. This
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paper presents a novel model-based approach to
achieving this objective. In fact, prefix learning is
often compared side by side with low-rank adap-
tation (LoRA) SFT (Van Sonsbeek et al., 2023) in
terms of model performance. However, we cascade
these two stages and adapt them to our multi-turn
interactive dialogue scenario to achieve further im-
provements.

In medical scenarios, the tolerance for hallu-
cinations is much stricter than in general con-
texts. During interactions with patients, responses
from a medical LLM must not contain blatantly
commonsense-violating errors. For example, if a
male patient is asked about menstruation, such an
error represents a critical red line that cannot be
crossed. A response like that could lead the patient
to entirely abandon the use of the online medical
consultation platform. However, such issues are
difficult to directly measure through standard per-
formance evaluation metrics (e.g. the rating scale
used in this paper). Since these issues are crucial
considerations in determining whether a medical
LLM is suitable for real-world deployment, we
plan to leverage reinforcement learning to address
these red-line issues.

There has recently been considerable research
on retrieval-augmented generation (RAG) to miti-
gate hallucination issues, such as GraphRAG (Edge
et al., 2024). However, building a precise and pro-
fessional knowledge graph in the medical field re-
quires a significant investment of time and effort
from medical professionals. This research direction
is currently also underway in our project.

Limitations

A limitation of our work is that we did not involve
medical specialists in rating the responses at this
point, since the scope of this preliminary study is
within our internal research team. We will con-
tinue to test PERT in other departments. Once its
effectiveness is demonstrated thoroughly, medical
professionals from the online consultation platform
will perform further evaluation.

Many medical LLMs used ChatGPT/GPT-4 se-
ries for scoring or included them for performance
comparison (Moor et al., 2023; Yang et al., 2024c;
Chen et al., 2023; Singhal et al., 2023). Unfor-
tunately, in compliance with our platform’s safe-
guarding medical data privacy policies, we are re-
stricted from accessing external API interfaces, in-
cluding ChatGPT/GPT-4 series.

In this work, we focus only on the pure tex-
tual content rather than multi-modal dialogue data,
even though the appearance of images sent by pa-
tients to better illustrate their symptoms is common
in practice (Li et al., 2024b). Meanwhile, incor-
porating the paradigm of the conventional medi-
cal imaging diagnosis or screening tasks such as
our previous studies (Yang et al., 2021; Cao et al.,
2024, 2025; Tang et al., 2021; Yi et al., 2022) into
the LLM/VLM-powered multi-turn interactive dia-
logue setting still remains a challenging and ongo-
ing area of research.
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All personal data were anonymized to ensure par-
ticipant privacy. This study was reviewed and ap-
proved by the Institutional Review Board (IRB)
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A Appendix

A.1 Prompt Template
In this section, the complete prompt template for
the 5-point rating scale is provided. Since our data
source is in Chinese, the original language of this
prompt template is Chinese. We have translated it
into English.

You will act as an evaluator and rate the doctor’s next
response based on the dialogue history between the
patient and the doctor. Please provide a score from 1
to 5 according to the following scoring criteria.
你将作为评估员，根据患者和医生之间的对话
历史，对医生的下一轮回复进行打分。请根据
以下评分标准给出1到5分的评分。

Scoring Criteria
评分标准

• 1 Point - Very Dissatisfied:
1分 -非常不满意：
- The response is completely irrelevant to the pa-

tient’s question or contains obvious errors;
回复与患者的问题完全无关或明显错误；

- Lacks basic medical knowledge and common
sense, potentially misleading the patient;
缺乏基本的医疗知识和常识，可能误导患
者；

- The response could negatively impact the pa-
tient’s health.
回复可能对患者的健康造成负面影响。

• 2 Points - Dissatisfied:
2分 -不满意：

- The response is partially correct but contains
significant errors or omits key information;
回复部分正确，但包含明显的错误或遗漏关
键信息；

- Fails to adequately address the patient’s concerns
and lacks depth;
未能充分解决患者的问题，缺乏深度；

- Lacks professionalism and does not provide ef-
fective diagnosis or recommendations.
回复缺乏专业性，未能提供有效的诊断或建
议。

• 3 Points - Average:
3分 -一般：
- The response is generally correct but lacks de-

tailed explanations or supporting information;
回复基本正确，但缺少详细的解释或支持；

- The question is addressed, but the expression is
not entirely clear and could be improved;
解决了问题，但表达不够清晰，有改进的空
间；

- The response is neutral, without major errors, but
also does not exceed expectations.
回复态度中立，没有明显错误，也没有超出
期望的表现。

• 4 Points - Satisfied:
4分 -满意：
- The response is accurate and provides sufficient

information and explanations;
回复准确，提供了足够的信息和解释；

- Considers the patient’s condition and offers per-
sonalized advice;
考虑了患者的情况，提供了个性化的建议；

- Demonstrates professionalism and provides ef-
fective diagnosis or recommendations.
回复展现了专业性，能够针对患者的问题提
供有效的诊断或建议。

• 5 Points - Very Satisfied:
5分 -非常满意：
- The response is not only accurate but also ex-

ceeds patient expectations, offering in-depth
analysis and recommendations;
回复不仅准确，而且超出了患者的期望，提
供了深入的分析和建议；

- Demonstrates a high level of professional knowl-
edge and a deep understanding of the patient’s
condition;
展现了高水平的专业知识和对患者情况的深
刻理解；

- The response is encouraging and instills confi-
dence and reassurance in the patient.
回复态度积极，能够给予患者信心和安慰。

Steps
步骤

• Read the dialogue history between the patient and
the doctor;
阅读患者和医生之间的对话历史；

• Read the doctor’s next response;
阅读医生的下一轮回复；

• Evaluate the response based on the scoring criteria;
根据评分标准，对回复进行评估；

• Assign a score.
给出一个评分。

Examples
示例
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• 1-Point Example:
1分示例
- Patient: “My menstrual blood has been dark

brown for the past few months, and my period
lasts longer than usual.”
患者：“我最近几个月的月经颜色都是深褐
色的，而且经期时间也延长了。”

- Online Doctor’s Response: “It might be due to
fatigue. Just get some rest.”
在线医生回复：“这可能是疲劳引起的，多
休息就好。”

- Score: 1
评分：1

- Reasoning: The response is overly simplistic
and does not consider possible gynecological
conditions such as endometriosis or fibroids. It
also fails to ask about other symptoms or medical
history.
理由：回复过于简单，没有考虑到可能的妇
科疾病，如子宫内膜异位症或子宫肌瘤，也
没有进一步询问患者的其他症状或病史。

• 2-Point Example:
2分示例
- Patient: “I’ve been feeling dizzy lately, espe-

cially when I stand up.”
患者：“我最近总是感到头晕，尤其是在站
起来的时候。”

- Online Doctor’s Response: “It might be low
blood pressure. Drink more water and eat more
salt.”
在线医生回复：“这可能是低血压，多喝
水，多吃盐。”

- Score: 2
评分：2

- Reasoning: The response does not inquire about
additional symptoms, such as fainting or blurred
vision, and lacks a recommendation for further
medical evaluation. It also does not provide per-
sonalized advice.
理由：回复没有询问患者的其他症状，如是
否有晕厥或视力模糊，也没有建议患者进一
步检查，缺乏个性化建议。

• 3-Point Example:
3分示例
- Patient: “I’ve been experiencing chest tightness,

especially at night.”
患者：“我最近经常感到胸闷，尤其是在晚
上。”

- Online Doctor’s Response: “Chest tightness
could be a heart issue or caused by anxiety. You
should go to the hospital for further evaluation.”
在线医生回复：“胸闷可能是心脏问题，也
可能是焦虑引起的。建议你去医院做进一步
检查。”

- Score: 3
评分：3

- Reasoning: The response is correct but lacks
detailed explanations and does not ask about rel-
evant symptoms or medical history. However, it
at least suggests further medical evaluation.
理由：回复正确但缺乏详细解释，没有询问
患者是否有心脏病史或其他相关症状，但至
少建议了进一步检查。

• 4-Point Example:
4分示例
- Patient: “I’ve been feeling constantly fatigued,

even after getting enough sleep.”
患者：“我最近总是感到疲劳，即使睡眠充

足也感觉累。”
- Online Doctor’s Response: “Persistent fatigue

could be a sign of anemia or hypothyroidism.
Have you noticed pale skin or changes in heart
rate? I recommend a complete blood count and
thyroid function tests.”
在线医生回复：“持续的疲劳可能是贫血或
甲状腺功能减退的迹象。你有没有注意到皮
肤苍白或心率变化？建议你做血常规和甲状
腺功能测试。”

- Score: 4
评分：4

- Reasoning: The response is accurate, offers ad-
vice, and asks relevant follow-up questions. The
tone is proactive, though it does not provide spe-
cific over-the-counter treatment options or fur-
ther diagnostic guidance.
理由：回复准确，提供了一些建议，并询问
了相关症状，态度积极，但没有提供具体的
非处方药名称或进一步的诊断建议。

• 5-Point Example:
5分示例
- Patient: “I recently noticed blood in my stool,

and I’m really worried.”
患者：“我最近发现我的大便中带血，我很
担心。”

- Online Doctor’s Response: “Blood in stool could
be due to hemorrhoids, but it might also indicate
more serious conditions such as colon polyps
or cancer. Do you have abdominal pain, weight
loss, or changes in bowel habits? I strongly rec-
ommend scheduling a colonoscopy as soon as
possible. In the meantime, I can provide guid-
ance on how to prepare for the procedure.”
在线医生回复：“大便带血可能是痔疮，也
可能是更严重的问题，如结肠息肉或癌症。
你是否有腹痛、体重下降或大便习惯改变？
我建议你尽快预约结肠镜检查，并在等待
期间注意观察大便的任何变化。同时，我会
为你提供一些关于如何准备结肠镜检查的信
息。”

- Score: 5
评分：5

- Reasoning: The response is thorough, profes-
sional, and considers multiple potential causes.
It asks relevant follow-up questions, provides a
clear action plan, and reassures the patient with
expert guidance.
理由：回复非常详细，提供了专业的建议，
询问了相关症状，展现了高水平的专业知识
和对患者情况的深刻理解，态度积极，能够
给予患者信心和安慰。

Output Format
输出格式

Please print the evaluation score following the
format below, where x = {1, 2, 3, 4, 5}:
请按照以上要求打印评分，你的答案格式如

下，其中 x={1, 2, 3, 4, 5}：
Score: x
评分：x
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Abstract

The healthcare industry has accumulated vast
amounts of clinical data, much of which has
traditionally been unstructured, including med-
ical records, clinical data, patient communica-
tions, and visit notes. Clinician-patient conver-
sations form a crucial part of medical records,
with the resulting medical note serving as the
ground truth for future interactions and treat-
ment plans. Generating concise and accurate
clinical SOAP (Vivek Podder, 2022) notes is
critical for quality patient care and is espe-
cially challenging in specialty care, where rele-
vance, clarity, and adherence to clinician prefer-
ences are paramount. These requirements make
general-purpose LLMs unsuitable for produc-
ing high-quality specialty notes. While recent
LLMs like GPT-4 and Sonnet 3.5 have shown
promise, their high cost, size, latency, and pri-
vacy issues remain barriers for many healthcare
providers.

We introduce SpecialtyScribe, a modular
pipeline for generating specialty-specific med-
ical notes. It features three components: an
Information Extractor to capture relevant data,
a Context Retriever to verify and augment con-
tent from transcripts, and a Note Writer to pro-
duce high quality notes. Our framework and in-
house models outperform similarly sized open-
source models by over 12% on ROUGE metrics.
Additionally, these models match top closed-
source LLMs’ performance while being under
1% of their size. We specifically evaluate our
framework for oncology, with the potential for
adaptation to other specialties.

1 Introduction

The healthcare industry relies on storing, process-
ing, and referencing large amounts of clinical and
research data, such as patient records, conversa-
tions, treatment histories, and medical research.

*These authors contributed equally to this work.
†Work done while at DeepScribe.

Most of this data is unstructured and language-
based, making it challenging to extract relevant
information. Traditional NLP methods, and more
recently Large Language Models (LLMs), have
enabled efficient analysis to improve diagnoses,
personalized treatments, and health outcomes.
With increasing digitization, medical records are
now maintained electronically as electronic health
records (EHRs), with tools to add structure to notes.
A medical visit note, the doctor’s concise sum-
mary of medically relevant information, is critical
for long-term reference and guiding future interac-
tions.

Generating accurate medical notes from
clinician-patient conversations is crucial for high-
quality care. These notes reduce the administrative
burden, enhance record accuracy, and ensure in-
formation is accessible for decision-making (Berg,
2023). However, generating high-quality notes
in specialized fields like oncology is challenging
due to high requirements for relevance, brevity,
specificity, and clarity. Before LLMs, models
like T5 or BART fine-tuned for note generation
faced issues like nonfactual content (Chelli et al.,
2024). Although newer LLMs (e.g., Opus, Sonnet,
GPT-4) have potential, they are costly and pose
privacy concerns for many healthcare facilities.
Fine-tuning public LLMs (Goyal et al., 2024; Yuan
et al., 2024) has been explored to improve general
medical note generation.

A significant challenge in using generative mod-
els like LLMs is hallucination: "generated content
that is nonsensical or unfaithful to the provided
source content" (Ji et al., 2023). Inaccurate in-
formation in medical notes can severely impact
quality and reliability. Oncology requires specific
and concise note-taking focused on primary can-
cer diagnoses. Colorectal surgeons, for example,
prioritize cancer-related treatments, with general
symptoms included only if relevant to the treat-
ment plan. Thus, oncology notes must be selective,
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emphasizing critical information to support cancer
care.

We address these challenges by focusing on key
aspects of oncology note generation:

• Completeness: covering all essential informa-
tion

• Conciseness: avoiding irrelevant details

• Writing Quality: ensuring readability, clarity
and medical language flow

• Organization: categorizing information cor-
rectly in the SOAP note

Our approach simplifies note creation through
three key modules. The Information Extraction
module captures oncology-specific details. The
Context Retriever gathers additional context, ver-
ifies accuracy, and reduces hallucinations. The
Summarizer generates a medical note, ensuring
precision and reliability.

Our contributions include:

• A unique three-step approach with an Informa-
tion Extractor, Context Retriever, and Summa-
rizer to generate high-quality specialty notes.

• Fine-tuned LLM-based models to extract key
medical concepts and also write the final note.
These models outperform similar sized open-
source models by more than 100% and match
closed source models while being less than
1% the size of them

• An embedding-based verification and augmen-
tation method to minimize hallucinations and
improve recall.

• Demonstration of our framework’s effective-
ness in clinical settings, matching the perfor-
mance of top LLMs.

2 Related Work

Medical Note Generation. Generating high-
quality medical notes from doctor-patient conver-
sations is a challenging task. Prior to the advent
of large language models (LLMs), previous ap-
proaches attempted to address this problem by
breaking it into multiple stages (Krishna et al.,
2020)—first identifying key transcription snippets,
grouping them, and then summarizing—or by
chunking the transcription (Zhang et al., 2021) into

smaller pieces. However, these models failed to
achieve real-world usable quality.

With the emergence of LLMs, recent
works (Van Veen et al., 2023; Biswas and
Talukdar, 2024; Goyal et al., 2024) have focused
on leveraging or prompting powerful private
LLMs, such as GPT-4 and MedPaLM, to enhance
medical note generation. These models have a
better understanding of language and can produce
more readable text. However, reliance on private
vendors raises concerns about data privacy and
incurs high costs.

This has driven further research (Yuan et al.,
2024; Kerner, 2024) into developing specialized
medical LLMs that are better equipped to under-
stand clinical texts and generate quality notes for
general scenarios. Nonetheless, in oncology, the
focus of medical note generation differs, and none
of the existing approaches can be directly applied
to oncology data without significant adaptation.
Information Extraction. To extract information
from transcription text data, Named Entity Recog-
nition (NER) or similar sequence tagging methods
are often used to identify and extract key entities
and information. Models such as BioBERT (Lee
et al., 2020), MedBERT (Rasmy et al., 2021), and
ClinicalBERT (Huang et al., 2019) have proven
effective in this context. When combined with tech-
niques for extracting entity relationships (Lv et al.,
2016), events, or temporal information (Styler IV
et al., 2014), these models can provide a com-
prehensive understanding of medical information
from transcriptions. Recently, the use of large lan-
guage models (LLMs) like MedPaLM (Singhal
et al., 2023), PMC-LLaMA (Wu et al., 2024), or
MEDITRON (Chen et al., 2023b) has made it more
feasible to extract key information from transcrip-
tions through prompting. However, these LLMs
are still limited by their capabilities and may not
always capture information accurately and compre-
hensively.

Summarization. Existing summarization ap-
proaches often focus on general abstractive sum-
marization (Gupta and Gupta, 2019; Basyal and
Sanghvi, 2023), or domain-specific tasks like news
summarization (Zhang et al., 2024). However, gen-
erating medical notes requires more than just sum-
marization; it demands attention to medical details
and selective extraction of key information specific
to different specialties.
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Figure 1: SpecialtyScribe Framework for the HPI section of a medical note from a doctor-patient conversation
transcript

3 SpecialtyScribe

SpecialtyScribe consists of three primary modules:
Information Extractor, Context Retriever, and Note
Writer. Figure 1 illustrates the end-to-end function-
ing of the SpecialtyScribe framework using a basic
example.
Information Extractor Module: This mod-
ule takes the transcription as input and extracts
specialty-specific (oncology) medically relevant in-
formation.
Context Retriever Module: This module gener-
ates additional transcript context to augment the
extracted information and mitigates hallucinations
by verifying the extracted information against the
transcript. It takes the original transcript and the
output of the Information Extractor Module as in-
put. Transcript snippets are selected by splitting
the transcript into sentence chunks and comparing
the embeddings of the extracted information with
those of the snippets, and selecting the top-k snip-
pets to enhance the Note Writer model’s context.
We also use a hallucination detection algorithm to

further filter the extracted information
Note Writer Module: This module generates the
final medical note using the outputs of the Context
Retriever Module, the extracted information (now
filtered) and relevant transcript snippets. Since
each section of SOAP note can have multiple sub-
sections, (e.g. HPI, Chief Complaint, Medications
etc.). This model is trained to generate subsection
notes that combine to create the final note. It can
also ignore irrelevant information that is part of the
context.

3.1 Information Extractor
Our challenge involved working with a single, long
transcript. Although newer LLMs can process
longer texts (up to 32k tokens or more), they still
face issues such as significant performance degra-
dation depending on the relevant position of the in-
formation in the prompt, as discussed in (Liu et al.,
2023). Traditional segmentation methods failed, as
the model lacked full context and produced contra-
dictory results. Additionally, we required a prompt-
based extraction system capable of adapting to new
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instructions to support customization requests by
doctors. To address these issues, we reformulated
information extraction as an Orca-style instruction
task (Mukherjee et al., 2023). Here, the model’s
objective was to follow specific rules and extract
information from given snippets. This approach
was developed based on (Yuan et al., 2024), which
describes the creation of a medical LLM that un-
derstands the nuances of spoken medical language
and the structure of medical notes.
Training Data Generation: We began by breaking
oncology notes and categorizing information into
sub-sections, such as Cancer Procedures, Cancer
Tests, Cancer Symptoms, and Current Symptoms.
For each sub-section, we crafted specific instruc-
tions. See Appendix-B for more details.
Protecting Data and Controlling Costs: We ro-
bustly de-identified any PHI(Protexted Health In-
formation) and PII (Personally Identifiable Infor-
mation) as defined by HIPAA and US government
respectively in the transcripts and notes by adapting
the Microsoft Presidio library for our specific use
case. This is discussed in more detail in Section 6.
We incurred a one-time cost for preparing our train-
ing data by using GPT-4-32k. However, this cost
was minimal compared to what would be required
to serve these models in production at scale. We
used GPT-4-32k to process 7,000 doctor-patient
conversations, each ranging from 5 to 60 minutes
with an average duration of 20 minutes, to create
the OncNoteGen Dataset. This resulted in approx-
imately 68,000 samples with an average context
length of 7,000 tokens. To mitigate overfitting in
information extraction tasks, we used two stages of
tuning. First, we warmed the model with general
instructions, including around 100,000 examples
sampled from MedMCQA (Pal et al., 2022), Pub-
MedQA (Jin et al., 2019), and general instruction
datasets such as Orca (Mitra et al., 2023) and Meta-
Math (Yu et al., 2024). Second, we trained the
model with our proprietary 68,000-sample oncol-
ogy note data—OncNoteGen.

Following initial fine-tuning, we observed that
the model struggled to distinguish between past,
present, and future tenses, especially when identi-
fying medications and doctor’s orders. This issue
appeared to be inherited from the GPT-4-32k model
used to build the training dataset. To address this,
we introduced an additional 3,000-4,000 QA-based
instructions specifically designed to help the model
understand these tense distinctions. An example
prompt for this task is provided in Appendix-C.

3.2 Context Retriever

We developed an algorithm to identify the context
from the transcript for the content generated by
the information extractor. We decomposed the ex-
tracted information into pieces (e.g. by bullets gen-
erated from the extractor), and then used their em-
beddings to encode each piece of information. Sim-
ilarly, we indexed the transcript, by chunking it into
groups of varied sentence counts e.g. 1, 2, 5 and
calculating their embeddings. Then we used em-
bedding matching to find the transcript context for
each piece of extracted information. We utilized the
all-mpnet-base-v2 model (Reimers and Gurevych,
2019) for generating embeddings and employed the
similarity_search_with_relevance_scores function
from Meta’s FAISS library (Douze et al., 2024)
to conduct embedding similarity searches. As the
transcripts are divided into chunks by varying sen-
tence numbers, it’s possible to have duplicate sen-
tences in the matched snippets. To address this, we
removed duplicate sentences and arranged the sen-
tences in the snippets in their original chronological
order.

Hallucination Mitigation: In our framework,
hallucinations can originate from two major
sources. First, the Information Extractor can output
some data which has no grounding in the transcript
or the prompt and second, the example used in the
few-shot prompt can propagate into or influence the
output. To address the first kind, the Context Re-
triever first filters out the extracted content that does
not have any transcript context support retrieved as
explained in Algorithm-1 (see Appendix A for step
by step explanation)

3.3 Note Writer

Final Note Generation: We trained the Note
Writer model to generate notes based on the fil-
tered extracted content and the corresponding con-
textual transcript. This model was trained on a
diverse set of 1,000 human-expert-annotated notes.
The experts annotated the data in two stages: first,
they identified the relevant transcript snippets for
each note subcategory; then, they combined these
snippets to create a medically accurate subsection
of the note. Since, each note was divided into
its constituent subsections (e.g., Subjective: Labs,
Plan: Follow-Ups), we end up with an average of
10,000 data points in the training set. We delib-
erately train it on a diverse medical note dataset
rather than oncology specific dataset as we intend
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to use this model across multiple specialties. While
it is possible to train the information extractor to
also do the note writing to reduce inference burden
in real-world applications, we found that with the
proposed framework, training them separately pro-
vided better performance and greater flexibility for
use in other specialties.

We also developed a basic prompt that instructs
the model to produce the note for each correspond-
ing subsection. During training, the model learnt to
create subsections of a note based on the retrieved
relevant data, which were eventually combined into
a complete note. This approach significantly re-
duced our context length requirements. The model
was trained in a LoRA (Low-Rank Adaptation)
setting, which made the training process fast, cost-
effective, and scalable, with minimal impact on
performance.

Algorithm 1 Information Filter
Input:
I = {i1, i2, . . . , in}: Retrieved information set
T : Transcript
θ: Lower Bound Confidence
α: Similarity Confidence
Ep: Embeddings for examples from prompt
ET = ExtractEmbeddings(T )
Output: Iincluded

1: Initialize included information Iincluded = []
2: for all information i ∈ I do
3: if i in T then
4: Iincluded.append(i)
5: else
6: Ei = ExtractEmbeddings(i)
7: Score = EmbedMatch(Ei, ET )
8: if Score ≥ θ then
9: Iincluded.append(i)

10: end if
11: end if
12: end for
13:
14: for all iincl ∈ Iincluded do
15: Ei = ExtractEmbeddings(iincl)
16: PromptScore = EmbedMatch(Ei, Ep)
17: TranscriptScore = EmbedMatch(Ei, ET )
18: if PromptScore ≥ α ≥ TranscriptScore then
19: Iincluded.remove(iincl)
20: end if
21: end for
22: return Iincluded

4 Experiment

4.1 Setup
Information Extraction: Consistent with the
methodology described in (Yuan et al., 2024), our
training utilized the pretrained version of Mistral-
7B model. The learning rate was set at 2e-5 with
cosine decay to 1e-5, and batch sizes were main-
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Figure 2: Training perplexity on OncNoteGen Dataset

tained at 128. Positional interpolation, referenced
in (Chen et al., 2023a), addressed long-context
management. Training occurred over 11 hours on
32 NVIDIA A100 GPUs distributed across four
machines (8 GPUs per machine). Training perplex-
ity and validation Rouge F1 scores for the Onc-
NoteGen Dataset are shown in Figures 2, and 3
respectively.
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Figure 3: Validation Rouge-1 F1 and Rouge-lcs F1
scores on OncNoteGen Dataset

Note Writer: We again utilized the pretrained
version of Mistral-7B model described in (Yuan
et al., 2024), as our base model. The model un-
derwent training for two epochs with a batch size
of 8. To enhance memory and cost efficiency dur-
ing this process, we adjusted the Low-Rank Adap-
tation (Lora) rank to 32. Our computational re-
sources included 8 NVIDIA RTX A6000 GPUs,
each equipped with 48GB of memory, allowing for
substantial parallel processing and data handling
capabilities. During training sessions, the average
GPU utilization was maintained at 85%, indicating
efficient usage of hardware resources. Addition-
ally, we integrated the FlashAttention 2 mechanism
and utilized the DeepSpeed Zero 3 optimization
framework to streamline our training process. The
learning rate was set at 2e-5 with cosine decay to
1e-5.
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Model Missed Redundant Misclassified
Opus 0.37 0.11 0.10
Sonnet-3.5 0.31 0.08 0.05
GPT-4-32k 0.40 0.08 0.05
mistralai/Mistral-7B-Instruct-v0.2 0.46 0.18 0.10
meta-llama/Meta-Llama-3-8B-Instruct 0.45 0.28 0.06
BioMistral/BioMistral-7B 0.53 0.51 0.03
SpecialtyScribe (ours) 0.37 0.08 0.05

Table 1: Results on Oncology Entity Identification Task indicating average Missed, Redundant, and Misclassified
entities (lower is better)

Model Aci-bench (subTask B) OncNoteGen
ROUGE_L BLEU ROUGE_L BLEU Human(4)

Opus 0.21 0.09 0.27 0.15 2.44
Sonnet-3.5 0.21 0.10 0.26 0.14 2.78
GPT-4o 0.20 0.09 0.29 0.17 2.95
mistralai/Mistral-7B-Instruct-v0.2 0.13 0.05 0.19 0.10 2.69
meta-llama/Meta-Llama-3-8B-Instruct 0.19 0.09 0.25 0.15 2.53
SpecialtyScribe (Note Writer) 0.24 0.12 0.31 0.21 3.14

Table 2: Results on Note Writing Quality Task (higher is better)

4.2 Evaluation

We performed a comprehensive evaluation of lead-
ing open-source and proprietary models to assess
the effectiveness of our Information Extraction (IE)
model as well as the note-generation component
of the Note Writing module. We selected high-
performing models, including closed-source SoTA
ones like Opus, Sonnet-3.5 and GPT-4-32k, along-
side prominent open-source models with medical
and general applications.
Datasets: We use two datasets for our evaluation.
1. Aci-bench (subTask B) (wai Yim et al., 2023):
This is a public dataset designed for benchmarking
automatic medical visit note generation. From this
we take 39 different medical visits for our test set.
2. OncNoteGen Test: We choose a set of 21 oncol-
ogy transcripts from OncNoteGen dataset such that
it ensures coverage across criteria such as visit type
(new vs. follow-up), length (long vs. short), and
style (dictation-heavy vs. conversational). This is
our proprietary dataset and is not available on the
internet. On this particular dataset we also perform
human expert based evaluation.
Human Scoring: To facilitate a rigorous assess-
ment, human experts prepare rubrics which repre-
sent the gold-standard of the medical (oncology
specific) entities (key phrases) which should be
captured along with their respective sub-categories.
These experts also create the gold-standard final
notes designed to mirror the expectations of health-
care providers accurately.
Potential Leakage into Test Data: We recognise

that it is possible that the Aci-bench data could
have been present in the training sets of all the
models that we compare against and also our base
model - Mistral 7B. Even though we feel it is more
likely to be present in the closed source models as
compared to the smaller open-source models there
is no way for us to know. In this framework we are
guaranteed that the OncNoteGen Test Dataset is
completely blind to the model by the virtue of it
being entirely proprietary.

4.2.1 Information Extraction
Setup: We evaluated three tasks within the Oncol-
ogy Entity Identification Task on the OncNoteGen
Test dataset:

• Missing Information: We compared the gen-
erated note to the gold-standard note, assess-
ing any missed phrases or key information,
crucial for ensuring note coverage.

• Redundant Information: We identified re-
dundant details in the generated note that were
absent from the gold-standard, including "hal-
lucinations" or unsubstantiated entities from
transcripts, to maintain note conciseness and
accuracy.

• Misclassification: We examined whether cor-
rectly identified entities were properly catego-
rized, ensuring structured and well-organized
notes.
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Results and Analysis: Table-1 demonstrates that
our domain-specific fine-tuning outperformed lead-
ing models like GPT-4-32k, particularly in reduc-
ing Missing Information, and was competitive in
other tasks. Sonnet-3.5’s improved performance
highlights the value of leveraging recent datasets
and better instructional comprehension, suggest-
ing future opportunities. Our experts noted chal-
lenges like separating labs, biopsies, and imaging
categories in the note, indicating areas for further
tuning. Opus and Sonnet models experienced ex-
ample leakage, reducing robustness, while mod-
els like Mistral, Llama, and BioMistral generated
excessive redundant entities, impacting precision.
Despite BioMistral’s misleading high score in mis-
classification due to entity repetition, our model
outshone the Mistral 7B Instruct base model, un-
derscoring the benefits of specialty fine-tuning.

4.2.2 Note Writing Quality

Setup: We froze all SpecialtyScribe components,
using our Information Extractor, and replaced the
Note Writer with different LLMs, ensuring con-
sistent input. Evaluations were conducted on both
datasets described earlier.
Metrics: We used reference-based metrics like
BLEU and ROUGE, which are common for sum-
marization but have limitations in correlating with
human judgment on creative tasks. Thus, human
experts also assessed notes based on Clarity, Gram-
mar, Professionalism, and Coherence.
Human Evaluation Methodology: Experts rated
each note across the four parameters mentioned
and used a 0–5 Likert Scale with scores normalized
between 0 and 1. The final results were the sum of
score across the 4 categories and reported for the
OncNoteGen dataset.
Model Choice: Due to cost, we used GPT-4o in-
stead of GPT-4-32k. Its claimed superiority makes
it a strong benchmark. BioMistral was excluded
for failing to follow output format instructions.
Results and Analysis: Table-2 indicates closer
scores on Aci-bench compared to OncNoteGen.
Our model surpassed both open and closed models,
partly due to its understanding of the input style,
showcasing the benefit of a custom-trained model.
The higher performance gap on OncNoteGen high-
lights the limitations of generic models for special-
ized writing tasks. Notably, OncNoteGen’s average
scores were higher, attributed to prompts designed
for a data distribution similar to that dataset.

4.2.3 Medical Note Generation
Setup To assess the overall impact of using
SpecialtyScribe to generate medical notes, we
compared the notes generated by various LLM’s
taking in the entire transcript with our framework
as outlined in Section-3. We use the same metrics
as defined in the previous task, except for human
experts which now evaluate the note on multiple
aspects.

Human Evaluation Methodology: The experts
were asked to score the notes based on the follow-
ing 4 verticals - Writing Quality (as explained in
above task). Clinical Accuracy to determine how
accurately the note reflects the original informa-
tion from the medical encounter, including correct
documentation of terms, findings, diagnoses, and
treatment plans. Completeness to evaluate whether
the note contains all necessary and relevant med-
ical information without leaving any gaps in the
patient’s story or care and Organization to check
the structure of the note, including accurate classi-
fication into medical sections. We follow a similar
process as for Note Writer, where the experts are
asked to give a score on the Likert scale between
0 to 5, which is then divided by 5 to get a number
between 0 to 1 for each vertical. The final reported
score is the sum of the scores for the 4 catergories
averaged across the test set. We do this only for the
OncNoteGen dataset.
Results and Analysis As indicated in Table-3, sim-
ilar to values for the note quality evaluation task we
see the model scores on Aci-bench dataset are not
very different between the state of the art LLMs
and our model. The scores on these metrics are
also generally low as n-gram matching may simply
require "heart murmur", but our prompts are struc-
tured to prompt the model to deliver full sentences
like "Patient presents today for a consultation on
heart murmurs". On OncNoteGen dataset, we can
clearly see the superiority of our approach over the
latest open source models. We perform on par with
the latest models from Anthropic, falling slightly
short of OpenAI’s GPT-4o. Our human experts re-
ported that our framework performed best in Writ-
ing Quality and Organization of the note. Even
though Opus and GPT-4o models had the best cov-
erage, they really struggled with note organization.

4.2.4 Ablation
To further substantiate the importance of every
component in our framework, we conducted the

40



Model Aci-bench (subTask B) OncNoteGen
ROUGE_L BLEU ROUGE_L BLEU Human(4)

Opus 0.21 0.09 0.24 0.12 2.97
Sonnet-3.5 0.21 0.10 0.24 0.13 2.94
GPT-4o 0.18 0.07 0.21 0.10 3.28
mistralai/Mistral-7B-Instruct-v0.2 0.12 0.04 0.16 0.07 2.77
meta-llama/Meta-Llama-3-8B-Instruct 0.16 0.07 0.18 0.08 2.65
SpecialtyScribe (ours) 0.24 0.12 0.31 0.21 3.17
(w/o Context Retriever) 0.23 0.09 0.30 0.19 3.07
(w/o IE and Context Retriever) 0.24 0.11 0.29 0.18 2.51

Table 3: Results on Medical Note Generation Task (higher is better)

medical note generation experiment using two vari-
ations of the system. The first version removed
the Context Retriever module, leaving the Note
Writer model to rely solely on the Information Ex-
tractor model’s output. In the second version, we
eliminated both the Information Extraction and the
Context Retriever modules, resulting in the Note
Writer directly generating the end notes from the
original input transcript. Table-3 clearly illustrates
how each module of SpecialtyScribe framework is
crucial for achieving optimal performance.

5 Conclusion
In this paper, we detail our efforts in creating a
framework to generate medical specialty notes that
can be adapted across multiple specialties. We
train an Information Extraction (IE) model to ex-
tract medically relevant content from oncology-
based doctor-patient conversations, develop a hal-
lucination detection mechanism, and train a Note-
Writer module to produce clinician-approved med-
ical notes. Through rigorous evaluation, our find-
ings reveal that our models and pipeline not only
outperform the leading medical and general open-
source models in this domain but also parallel the
performance of the foremost proprietary models
available. The results further demonstrate that de-
composing the note generation task into smaller,
manageable parts enhances both the accuracy and
comprehensiveness of the medical notes produced.
This approach ensures a more precise and reliable
documentation system, which could significantly
improve diagnostic and treatment practices in spe-
cialized medical care. Furthermore, our approach is
cost-effective, achieving comparable performance
to the most expensive models, such as Opus and
GPT-4-32K, with a significantly smaller model.

Our work presents a framework that can serve as
a foundation for further research to improve the au-
tomated medical note creation process, especially

for complex medical specialties, potentially reduc-
ing clinician workloads.

6 Ethical Considerations

In compliance with HIPAA regulations, we have es-
tablished Business Associate Agreements (BAAs)
with OpenAI and Anthropic, the parent company of
the Opus and Sonnet-3.5 models, to ensure the pro-
tection and confidentiality of sensitive data. This
agreement guarantees that the data provided is nei-
ther leaked nor used for model training purposes.
We thoroughly de-identified all personal health in-
formation (PHI) from our datasets before any pro-
cessing or analysis. This was achieved by sub-
stituting PHI with non-identifiable entities using
Named Entity Recognition (NER) techniques. Fur-
thermore, the use of the SpecialtyScribe tool is
strictly confined to internal operations for gener-
ating medical notes. To uphold ethical standards,
we conduct regular audits of all input prompts to
prevent any potential unethical usage.

7 Limitations

Future work should aim to construct and train a
specialized embedding model to improve the detec-
tion and elimination of data hallucinations, thereby
enhancing system accuracy and dependability. This
paper primarily examines the framework in one spe-
cialty, yet there is ample opportunity to extend this
research to include additional specialties, which
would enhance the utility of the findings and the
model’s robustness across various fields. There is
also potential for further advancements in both IE
and summarizer models. Moreover, it’s important
to acknowledge that open-source datasets may not
always mirror real-world complexities, underlining
the need for publicly available datasets that can
drive progress in this field.
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8 Business Considerations

The scope of this work has been limited to protect
the company’s intellectual property (IP) and repre-
sents research-specific efforts. It does not directly
reflect the exact models, architecture, or methods
used in the company’s production systems.
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A Detailed Implementation of
Information Filtering algorithm

The Information Filter algorithm refines the out-
put of the Information Extractor step (denoted as
I) by returning a filtered subset that contains only
information strongly aligned with the transcript.
This process is crucial for mitigating hallucinations
and ensuring the extracted information remains re-
liable.
We start with indexing the transcript by chunk-
ing it into variable-length sentence groups (e.g.,
1, 2, 5 sentences) and computing their embeddings
(ET ). Then, the extracted information (I) is de-
composed into discrete items (i1, i2, . . .) based on
bullet points or new lines.
Step 1: Initial Matching Against Transcript For
each decomposed item i, if it appears verbatim in
the transcript, it is automatically included in the
filtered set, denoted as Iincluded. However, if no
exact match is found, the embeddings of the decom-
posed item are extracted, and a similarity score is
computed against the transcript chunks. The most
relevant transcript context is identified based on
this score. To ensure reliability, any decomposed
item with a similarity score below a predefined con-
fidence threshold (θ) is filtered out. The threshold
θ is domain-specific. In the medical field, it is kept
low to ensure that any relevant information is not
mistakenly discarded, even if it is phrased differ-
ently. This adjustment accounts for cases where
the Information Extractor paraphrases content us-
ing medical terminology, such as converting "high
blood pressure" to "hypertension."
Step 2: Secondary Filtering to Mitigate Halluci-
nations While a low threshold (θ) prevents the
omission of important information, it may also
allow irrelevant or hallucinated content to pass
through. To further refine the selection, a second
filtering step is applied. A similarity confidence
score, denoted as α, is chosen empirically. Two em-
bedding similarity scores are then computed. The
PromptScore measures the similarity between the
extracted information and the examples used in the
prompt of the Information Extractor. The Tran-
scriptScore measures the similarity between the ex-
tracted information and the input transcript. If the
PromptScore exceeds α, while the TranscriptScore
remains below α, the information is classified as
a hallucination originating from the prompt and is
removed. This step ensures that the extracted infor-
mation is not overly influenced by the prompt ex-
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amples and remains true to the original transcript.
By systematically applying these steps, the Infor-
mation Filter algorithm enhances the accuracy and
reliability of extracted information, ensuring that
medical notes are trustworthy, well-grounded in the
original transcript, and free from hallucinations.

B Oncology Information Extraction Task
Prompt

System
You are a highly trained and skilled AI
medical doctor who specializes in writing
a part of the Subjective section of a clinical
SOAP (Subjective, Objective, Assessment,
Plan) note. You only speak MARKDOWN.

User
<template>
{rules}
</template>

NOTE: If you are unsure or don’t have
enough information to provide a confident
answer, do not create or imagine a response.
Simply return "no information found". If
a certain note template section lacks the
necessary information within the transcript
to be written, then leave that section blank.
<example>
Examples only for formatting reference.
For example: Let’s say you want to write
the sections CANCER PROCEDURES
and CANCER SYMPTOMS from a given
template. If no information is found
related to CANCER PROCEDURES, the
output should look like:

#CANCER PROCEDURES
##no information found
#CANCER SYMPTOMS
##<information here>
</example>

Using above template, example and
guidelines, given the real transcript below,
can you fill out the outline accurately and
thoroughly? Return your answer as a string
following the template. DO NOT return
ANYTHING outside of the template.

Transcript:
{transcript}
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C Additional Task Prompt

We utilized the GPT-4 model to generate question-
answer pairs specific to certain sub-sections
including ’Medications’ and ’Plan-Orders’,
wherein the model initially encountered challenges.
Beyond the generation tasks for general and
respective sub-sections, we incorporated additional
QA tasks that require short responses, with the aim
to enhance the comprehension capabilities of the
model

System
You are a medical assistant that can answer
questions form a given context. In this task,
you will be asked to answer a question from
a given doctor patient transcript.
User
Transcript: {transcript}
Question: {question}
Return your response as a JSON in the fol-
lowing format:
{
"Answer": "....",
"Explanation": "...."
}
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Abstract

In fields like healthcare and pharmacovigilance,
explainability has been raised as one way of ap-
proaching regulatory compliance with machine
learning and automation. This paper explores
two feature attribution methods to explain pre-
dictions of four different classifiers trained to
assess the seriousness of adverse event reports.
On a global level, differences between models
and how well important features for serious pre-
dictions align with regulatory criteria for what
constitutes serious adverse reactions are anal-
ysed. In addition, explanations of reports with
incorrect predictions are manually explored to
find systematic features explaining the misclas-
sification. We find that while all models seem-
ingly learn the importance of relevant concepts
for adverse event report triage, the priority of
these concepts varies from model to model and
between explanation methods, and the analysis
of misclassified reports indicates that reporting
style may affect prediction outcomes.

1 Introduction

Pharmacovigilance (PV) deals with the detection,
assessment, understanding and prevention of ad-
verse effects related to medical products (World
Health Organization, 2002) and traditionally relies
on experts processing adverse event reports (AER),
assessing the strength of new adverse event signals
and acting upon newfound insights through publi-
cations and new risk assessments. In recent years, a
need for at least partial automation has been identi-
fied to deal with the ever increasing amount of new
AERs (Bate and Hobbinger, 2021) and at times
updated processing requirements, most notable dur-
ing the recent COVID-19 pandemic.

With the introduction of automated methods into
the PV pipeline, experts have encouraged employ-
ing interpretable or at least explainable systems to

*Equal contribution to this work as senior authors.

address safety concerns such as black swan events
(Kjoersvik and Bate, 2022) and including explain-
ability as a factor to assess the readiness of arti-
ficial intelligence (AI) for tasks in the context of
PV (Ball and Dal Pan, 2022). At the same time,
concerns have been raised about the effectiveness
of existing explainability methods and the discon-
nect between expectations towards explanations of
black-box models from an AI safety perspective
and what common explainability approaches actu-
ally are able to achieve (Ghassemi et al., 2021).

In this study, we apply two feature attribution
methods to several pre-trained language models,
fine-tuned to triage AERs, to understand what char-
acterises their prediction of specific classes and to
address the following research questions:

1. How do explanations for different models fine-
tuned for the same task differ?

2. Can we align important features with regulatory
criteria for serious cases?

3. Are there systematic feature patterns that ex-
plain incorrect class predictions?

Our analysis suggests that relevant features re-
lating to regulatory criteria and expert annotation
practice are learned as indicators of serious events
by all models. However, the relative importance be-
tween these features in the explanations vary from
model to model. Beyond features directly asso-
ciated with serious reports, we find evidence of
model bias reflecting the reporting style by differ-
ent reporter groups.

2 Background

Explanations for machine learning models and their
predictions come in many different forms. In light
of model development and the paradigm shift to
large generative models, several works have ex-
plored using large language models (LLMs) to ex-
plain their own output (Kunz et al., 2022; Kunz and
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Kuhlmann, 2024; Turpin et al., 2023). However,
these works also warn that while such explanations
may seem plausible to humans, it is unclear how
well they represent the real reason for a specific
model prediction, and Turpin et al. (2023) find evi-
dence that they may in fact systematically misrep-
resent the deciding factors in the decision process.

Traditionally, deep learning models are often ex-
plained with so called post-hoc methods that are
applied after the model is trained for a particular
task. Methods such as diagnostic classifiers (Hup-
kes et al., 2018) are popular to answer specific
questions about the encoded knowledge in a spe-
cific layer of the model by using representations of
the chosen layer as input to a simpler model to per-
form a relevant task. More recently, Bricken et al.
(2023) proposed the use of sparse auto-encoders to
extract interpretable monosemantic features from
single layer transformers. Templeton et al. (2024)
applied this technique to the intermediate layer of
smaller LLMs.

Feature attribution methods, such as LIME
(Ribeiro et al., 2016) and SHAP (Lundberg and Lee,
2017), instead attempt to explain model predictions
by assigning some form of contribution to features
in the input. These methods work by approximat-
ing the model to be explained on a given input
using a more interpretable model, for example by
perturbing the input in some way, observing the be-
haviour of the model to be explained, and explain-
ing it with an explanation model trained to mimic
that behaviour. Feature attribution methods can
furthermore be model-agnostic, such as LIME and
some versions of SHAP, or model-specific, such as
gradient-based methods like DeepLift (Shrikumar
et al., 2017) and Integrated Gradients (Sundarara-
jan et al., 2017).

The feature attribution methods mentioned so
far are typically applied to individual examples
and thus primarily provide local explanations, but
global explanations can be derived from local expla-
nations by aggregating them over many inputs, e.g.
using algorithms such as Submodular Pick LIME
(Ribeiro et al., 2016) and Global Attribution Map-
ping (Ibrahim et al., 2019), or by simply averag-
ing the observed attribution scores for each feature
(Van Der Linden et al., 2019; Saynova et al., 2023).

Common goals for using explainability are
model development, gaining trust, scientific insight
and regulatory compliance (Hauben, 2022), but ex-
isting methods are criticised for suffering from in-
terpretability gaps, failing to meet the expectations

of stakeholders such as regulators and practition-
ers, and being prone to confirmation bias (Ghas-
semi et al., 2021). Moreover, Vilone and Longo
(2021) note the absence of a common definition of
explanations and lack of consensus on how to eval-
uate them with respect to reliability and validity.
Further, while user-oriented explainability may be
built with the intention of being simplified enough
to be understandable, such explanations can be too
far removed from the original model to faithfully
represent it (Rudin, 2019).

Despite the concerns and criticisms toward post-
hoc methods and feature attribution in particular,
this type of explainability method is popular in nat-
ural language processing (NLP) research, where it
has been used to achieve a variety of goals, such
as providing insights into performance differences
between different model architectures (Wang et al.,
2022; Amponsah-Kaakyire et al., 2022), investigat-
ing potential weaknesses of explainability meth-
ods (Tang et al., 2022), interpreting aspects of the
behaviour of pre-trained language models in spe-
cific NLP tasks (Nayak and Timmapathini, 2021;
Stevens and Su, 2021), serving as reference expla-
nations for investigating attention as an explana-
tion method (Jain and Wallace, 2019), exploring
descriptive features for distinct classes in domain-
specific texts (Saynova et al., 2023), and user stud-
ies on computer-assisted coding tools (Dolk et al.,
2022).

3 Method

Our experiments concern four binary classifiers
fine-tuned on the same data for which we analyse
post-hoc explanations derived with two types of
feature attribution methods – Integrated Gradients
(IG) (Sundararajan et al., 2017) and Expected Gra-
dients (EG) (Erion et al., 2021). We restrict the
study to these two gradient-based methods.

3.1 AER Triage

The classification task is that defined by Bergman
et al. (2023): for AERs from both consumers and
healthcare professionals, predict whether a report
discusses a serious adverse reaction or not, based
solely on free-text fields such as the adverse event
terms listed in the form (e.g. headache, nausea,
rash) and the description of adverse events in the
report. An adverse reaction is considered serious
if it results in death, is life-threatening, leads to
hospitalisation or prolongs existing hospitalisation,

47



Dataset Time period Number of AERs µ length
S NS Total

Training 2017 – 2020 4,450 7,538 11,988 73.10±70

Development 2017 – 2020 1,107 1,890 2,997 70.30±62

Test 2021 – 2021 1,170 2,273 3,443 60.79±68

Table 1: Overview of the three data sets used, with time
periods, number of serious/non-serious (S/NS) reports
and mean report length in whitespace-tokenised tokens.

Model Abbreviation Domain

KB-BERT KBB General
SweDeClin-BERT SDCB Clinical Text
AER-BERT AERB AER
GPT-SW3 GPT General

Table 2: Selected models and their domains.

results in persistent or significant disability or inca-
pacity or birth defects (ICH, 1994). When submit-
ting an AER, reporters are asked to indicate these
specific outcomes if they apply in a multiple-choice
question. Replies to the question are among other
things used to prioritise which reports get processed
first by the case workers at the Swedish Medical
Products Agency (MPA). However, the question is
not always answered correctly given other context
provided in the report, resulting in serious reports
getting processed later than is desirable.

3.2 Data

The Swedish AERs that we base our training and
explanation analysis on have been collected by the
MPA and were annotated for seriousness by expert
assessors as part of the agency’s routine PV moni-
toring. We train the classifiers with the same train-
ing and development split as Bergman et al. (2023)
and conduct a final evaluation of all four classifiers
on the same prospective test set; see Table 1. Since
we were able to obtain an improved version of the
data used by Bergman et al. (2023), we conduct
new hyperparameter experiments for all models de-
scribed in the next section. Details on differences
from the data used in (Bergman et al., 2023) and
hyperparameter settings are in Appendix A. To re-
move numerical information related to identity, all
reports were anonymised by replacing digits in the
free-text description.

3.3 Models

We train four classifiers based on a selection of
pre-trained transformer models for Swedish with
various degrees of specialisation to the medical and

Model Accuracy Precision Recall Specificity F1

KBB 0.819 0.833 0.583 0.940 0.686
SDCB 0.813 0.891 0.512 0.967 0.650
AERB 0.830 0.845 0.612 0.943 0.710
GPT 0.822 0.788 0.653 0.909 0.714

Table 3: Classification results on the test set.

AER domain. The first three are BERT models:
the cased versions of KB-BERT (KBB) (Malmsten
et al., 2020); SweDeClin-BERT (SDCB), a con-
tinuation of KB-BERT with additional pretraining
on a corpus of de-identified clinical text (Vakili
et al., 2022);1and AER-BERT (AERB), a masked-
language model based on a large BERT model2

with continued pretraining on old AERs. AER-
BERT was previously found to give the best perfor-
mance on the triage task by Bergman et al. (2023),
compared to LSTMs and XGBoost models. In ad-
dition, we consider a small transformer decoder in
the 1.3B parameter model of the GPT-SW3 model
suite (GPT) (Ekgren et al., 2022). See Table 2 for
an overview of the models.

We fine-tune all four models for the triage task
by adding a classification layer to the pooled out-
put of the transformer models using the applicable
ForSequenceClassification classes implemented in
the HuggingFace transformers library. Table 3
shows the classification performance of the four
models on the test set. Among typical metrics for
classification problems such as precision, recall and
F1, we also consider specificity, the true negative
rate, to assess how well the models discriminate
non-serious reports. We observe GPT to outper-
form all other models in F1-score followed closely
by AERB, and SDCB to perform best in specificity.

3.4 Feature Attribution Methods

This study considers two model-specific feature at-
tribution methods, IG and EG. Both methods base
their attribution on the notion of a baseline or refer-
ence, typically defined as a neutral or uninformative
input for the task the model was trained for.

Integrated Gradients (IG): IG attributes the
model prediction by calculating the path integral
over gradients on a straight-line path from an artifi-
cial baseline input representation to that of the real

1Further research involving SweDeClin-BERT, like the
training and analysis in this study, has been approved by the
Swedish Ethical Review Authority under permission number
2022-02389-02.

2AI-Nordics/bert-large-swedish-cased
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input. IG satisfies a number of desirable axioms
for explainability methods as defined by Sundarara-
jan et al. (2017), in particular sensitivity, imple-
mentation invariance, completeness, linearity and
symmetry preservation, described in Appendix B.

Expected Gradients (EG): EG is a method in-
spired by IG that samples multiple real examples
for reference and computes feature importance as
the average expected values of the gradients scaled
to satisfy the completeness axiom (Erion et al.,
2021). Being gradient-based and symmetric, EG
also fulfills the axioms defined for IG.

3.5 Explanation Methodology
To obtain explanations, we use the IntegratedGra-
dient and GradientShap classes as implemented by
the captum library (Kokhlikyan et al., 2020) for IG
and EG, encoding all reports and baselines prior
to applying the feature attribution methods. We
compute feature attributions over the full encoder
(or decoder) block and the classfication layer. For
IG we create a report specific baseline consisting of
a sequence of all [MASK] tokens for BERT models
and <unk> for GPT, of the same length as the real
report and pass along the attention mask for the
real report to predict whether report and baseline
are serious.3 Each report is explained with 100 ap-
proximation steps. For EG we pass the entire set of
reports in the development data as references. This
way, each report is explained with respect to the
ensemble of all other reports.4 Here, we pass an
extra argument containing report-specific attention
masks.

With our binary classification task, explanations
for serious and non-serious outcomes are symmet-
ric in that large positive values explaining a serious
prediction correspond to large negative attributions
when explaining the opposite prediction for the
same report. For consistency, all attribution val-
ues discussed in the following are computed with
respect to predicting the serious class.

In the following experiments, explanations are
obtained for 2,997 reports in the development set.
When computing explanations for the four models,
the explanation methods return results on token-

3A common baseline for IG in NLP is that of a zero vector
(Sundararajan et al., 2017) or empty string (corresponding to
all [PAD] tokens for transformer models), but we argue that
the mask and unknown tokens are a better choice, because the
chosen models were not trained to attend to padding tokens
during neither fine-tuning nor pre-training.

4Due to the number of reports we consider the effect of
explaining the report by itself to be negligible.

level, i.e. referring to subwords as defined by the
respective tokenizer. These representations are too
fine-grained and hard to interpret and do not allow
for easy comparison between models. To achieve
a more global insight and allow for a more direct
comparison between models, we calculate attribu-
tions at word-level as the sum of the corresponding
token-level attributions per word. This is motivated
by the axiom of completeness (Sundararajan et al.,
2017), according to which the sum of attributions
for an input sequence should reflect the difference
in model prediction for the real input sequence and
the baseline.

When reconstructing the vocabulary, the differ-
ent tokenizers used by the models result in some
slight variations in the complete sets of recon-
structed word types, with 17,594 words according
to KBB and SDCB, 17,585 for AERB and 17,612
with GPT.

To address the first two research questions, we
compute global explanations on the development
set reports for each model and feature attribution
method using the normalisation method in Van
Der Linden et al. (2019) and Saynova et al. (2023),
effectively calculating global explanations as the
relative attribution score for each full word in the
dataset.

3.6 Analysing Explanations

Using global explanations for each classifier and
explanation method, we want to analyse the attri-
butions for interesting groups of related terms. To
that end, we define the overall importance of each
group as the average attribution value per model,
and adjust for variation within the groups by scal-
ing with the unbiased sample standard deviation:5

importanceg =
µg

1 + σg
(1)

In this way, we can focus on groups that consis-
tently show large positive attribution values. To
obtain groupings of terms, we consider an unsuper-
vised approach in the form of clustering as well as
the following explicit resources:

• MeSH: Medical Subject Headings (Lipscomb,
2000) is an ontology for indexing biomedi-
cal information by the National Library of
Medicine.

• Filter terms: Terms and word segments cre-

5In the following, this equation is referenced when used to
avoid confusion with importance as a general concept.
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ated and used by assessors at the MPA, in the
absence of the triage model (see Appendix
C.1).

• Criteria grouping: Based on the criteria for a
serious adverse reaction (cf. Section 3.1), we
select a set of terms using MeSH and Swedish
MeSH,6 grouping them into general terms and
terms relating to specific concepts within the
five criteria (see Appendix C.2).

4 Results

4.1 Model Differences on a Global Scale

To compare explanations for different models,
we calculate Kendall’s τ correlation between the
global attributions for the shared vocabulary by all
models as well as for the set of terms matching
the filter terms. As a frame of reference for the
fine-tuned models, we also compare each classifier
with its newly initialised, but not yet fine-tuned
counterpart, and label that the control.

Correlations of attributions on all shared terms
at the top of Figure 1 are weakly positive among
all fine-tuned models, with slightly stronger corre-
lations between the encoder models as opposed to
encoders and GPT for IG. Interestingly, IG attribu-
tions for the two models with domain-specific pre-
training have a lower correlation with each other
than with the general domain KBB, and SDCB’s
correlation with KBB is slightly lower than that
of KBB and AERB. By comparison, correlations
among EG explanations are much weaker, with the
strongest signals between KBB and the domain-
specific models. For both IG and EG, correlations
with the corresponding control models are close
to zero, as would be expected for explanations of
models unfamiliar with the triage task.

This correlation approach includes many terms
with attributions close to zero for which compar-
ison or correlation is uninformative. To focus on
more relevant terms, we select terms matching the
filter terms and calculate the correlations on this
subset. The results at the bottom of Figure 1 show
stronger correlations for both IG and EG. For IG,
the trends between models are similar to those for
the shared vocabulary, with an increased similar-
ity between GPT and AERB. The correlations for
EG are weaker between GPT and the other fine-
tuned models and slightly stronger between KBB
and the domain-specific models. Comparing both

6https://mesh.kib.ki.se/

methods, correlations between control models and
fine-tuned models are relatively stable for EG in
both the larger and the more specific sets of terms,
while they are stronger for IG in the latter setting.

Based on the filter terms, we measure how highly
the explainability methods score terms matching
the filter, and the variance across models. Table
4 shows average attribution scores for three sets
of terms: (1) words matching the filter, (2) words
that do not match the filter, (3) all words in the
dataset. Figure 6 in Appendix D visualises the
distribution of scores in the first two sets for each
model. All models trained for triage on average
assign matched terms higher attribution scores than
the ensemble of other terms. For the control mod-
els, all three sets have a similar average attribution
score close to 0 for most models, suggesting no
strong contribution to either the serious or the non-
serious class for those terms. This indicates that all
fine-tuned models learn to associate the filter terms
with the positive class and that both explanation
methods pick up on their importance.

Exploring more freely which concepts are im-
portant for a serious outcome with each model ac-
cording to the explanations, we cluster terms with
the largest attribution scores and hand-annotate the
clusters. This resulted in 164 clusters for IG and
193 for EG, of which 134 had identical labels. We
next consider how much of the clusters is covered
by the 8,000 highest ranked terms and how impor-
tant clusters are for each model as per Equation 1.
Figures 2 and 7 show the twenty most important
clusters to the average of all four models for IG and
EG respectively. A two-dimensional visualisation
of the full clustering reflecting cluster importance
as explained by IG and EG can be found in Figures
13 and 14 in Appendix E, which also contains more
details on the clustering procedure and coverage
metric.

Considering explanations by IG, all classifiers
note clusters relating to extreme situations (suicide,
ambulance, abortion, organ transplants), organ-
related issues, specific symptoms and health con-
ditions (depression, syncope, vision and breathing
disorder, hypo-,7 epilepsy, dementia) as important.
Importance by model varies somewhat, with hallu-
cination, breathing disorders and suicide emerging
as the most important clusters for KBB, while am-
bulance is less prominent. SDCB, in addition to sui-
cide and hallucination, places more importance on

7Deficiencies denoted by terms with the prefix hypo-.
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KBB SDCB AERB GPT CONTROL

KBB
SDCB
AERB

GPT

1.0*** 0.33*** 0.34*** 0.25*** -0.01
0.33*** 1.0*** 0.28*** 0.25*** 0.04***
0.34*** 0.28*** 1.0*** 0.22*** 0.0
0.25*** 0.25*** 0.22*** 1.0*** -0.1*** 0.0

0.5

1.0

(a) IG shared vocabulary

KBB SDCB AERB GPT CONTROL

KBB
SDCB
AERB

GPT

1.0*** 0.1*** 0.1*** 0.08*** 0.0
0.1*** 1.0*** 0.07*** 0.07*** -0.0
0.1*** 0.07*** 1.0*** 0.07*** -0.0
0.08*** 0.07*** 0.07*** 1.0*** -0.01* 0.0

0.5

1.0

(b) EG shared vocabulary

KBB SDCB AERB GPT CONTROL

KBB
SDCB
AERB

GPT

1.0*** 0.47*** 0.48*** 0.36*** -0.24***
0.47*** 1.0*** 0.49*** 0.35*** -0.09
0.48*** 0.49*** 1.0*** 0.39*** 0.18***
0.36*** 0.35*** 0.39*** 1.0*** 0.13** 0.0

0.5

1.0

(c) IG filter only

KBB SDCB AERB GPT CONTROL

KBB
SDCB
AERB

GPT

1.0*** 0.22*** 0.19*** 0.03 0.03
0.22*** 1.0*** 0.13** 0.0 -0.03
0.19*** 0.13** 1.0*** 0.08 -0.03

0.03 0.0 0.08 1.0*** 0.06 0.0

0.5

1.0

(d) EG filter only

Figure 1: Kendall’s τ correlations and their significance between models for shared vocabulary (a), (b), and filter
terms (c), (d). The control row reports correlations, between each classifier and a corresponding untrained classifier.

(a) Fine-tuned models

Model In filter Outside All terms

IG

KBB 0.0348∗∗∗ 0.0008 0.0013
SDCB 0.0634∗∗∗ 0.0095 0.0101
AERB 0.0402∗∗∗ 0.0015 0.0020
GPT 0.0699∗∗∗ 0.0103 0.0110

EG

KBB 0.0724∗∗∗ 0.0037 0.0046
SDCB 0.0421∗∗∗ 0.0069 0.0073
AERB 0.1000∗∗∗ 0.0062 0.0073
GPT 0.0599∗∗∗ 0.0063 0.0069

(b) Control models

Model In filter Outside All terms

IG

KBB -0.0044 -0.0032 -0.0032
SDCB 0.0007 0.0001 0.0001
AERB 0.0056∗∗∗ 0.0022 0.0023
GPT -0.0017 -0.0052 -0.0051

EG

KBB -0.0009 -0.0004 -0.0004
SDCB -0.0032 0.0004 0.0003
AERB -0.0008 -0.0007 -0.0007
GPT 0.0029 -0.0030 -0.0029

Table 4: Average attribution scores by explanation method for each of the four models. The scores are averaged for
three sets of terms, those matching the filter terms, those not matching the filter terms and the report vocabulary as a
whole. (a) shows results for the fine-tuned models and (b) shows results for the models prior to fine-tuning as a
control. Significantly higher attribution scores of the filter terms compared those outside the filter are marked with *
to *** to reflect the significance level of the Wilcoxon rank-sum test.

KBB SDCB AERB GPT

suicide
ambulance

hallucination
syncope

heart rate
liver

breathing disorder
hypo-

vision disorders
fracture
epilepsy

dementia
intra-

depression
organ transplant

abortion
neurological

brain
trauma
kidney

1 1 1 0.93
1 1 1 1

0.86 1 1 1
1 1 1 0.83
1 1 1 1
1 0.92 1 0.92
1 1 1 1
1 1 1 1

0.87 0.87 1 0.93
1 1 1 1
1 1 1 1
1 1 1 1

0.6 1 1 1
1 0.8 1 1
1 1 1 1

0.86 1 1 1
1 1 1 1

0.94 0.94 1 1
1 1 1 1
1 1 1 0.55

cluster coverage

KBB SDCB AERB GPT mean

0.092 0.14 0.12 0.19 0.14
0.057 0.12 0.12 0.17 0.12
0.11 0.14 0.073 0.13 0.11

0.055 0.2 0.043 0.1 0.1
0.035 0.074 0.082 0.18 0.093
0.061 0.11 0.056 0.099 0.082
0.098 0.04 0.099 0.068 0.076
0.03 0.13 0.062 0.08 0.075

0.047 0.11 0.058 0.081 0.073
0.016 0.14 0.073 0.047 0.068
0.036 0.09 0.038 0.087 0.063
0.026 0.1 0.044 0.071 0.061
0.01 0.077 0.04 0.11 0.06

0.047 0.05 0.03 0.093 0.055
0.033 0.071 0.057 0.052 0.053
0.021 0.084 0.057 0.046 0.052
0.042 0.042 0.025 0.086 0.049
0.028 0.044 0.048 0.071 0.048
0.025 0.063 0.035 0.065 0.047
0.033 0.06 0.037 0.034 0.041
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Figure 2: 20 highest ranked clusters by group importance (IG) and their coverage among the top 8,000 terms per
model.
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Figure 3: Group importance of different criteria for
different classifiers and explanation methods.

the syncope, fractures and hypo- clusters. AERB is
the only model with full coverage of all 20 clusters,
but hallucination is less important, whereas suicide,
ambulance, breathing disorders and heart rate are
more important. Similarly, to GPT the most impor-
tant clusters are suicide, heart rate and ambulance,
but hallucination still ranks high.

An analysis of the EG explanations again reveals
less overlap than IG among the most important
clusters. However, we observe strong overlaps re-
garding cluster coverage among the top 3 clusters,
those relating to symptoms as well as certain organ
related issues. KBB is sensitive to specific events
such as suicide, childbirth, epilepsy, but remains
neutral on the liver and abortion clusters. SDCB
only fully covers one cluster in the top 8,000 terms
and along with suicide and epilepsy gives more
importance to liver, abortion, hallucination and
hypo-. For AERB, besides suicide and liver, ambu-
lance emerges as most important and the intra- and
fainting clusters receive more weight. Interestingly,
among the domain-specific models, AERB assigns
much more importance to ambulance than SDCB.
To GPT, hallucination is most important, followed
by syncope, hypo- and blood.

4.2 Regulatory Criteria

Figure 3 shows the importance of different criteria
groups (see Appendix C.2) according to Equation 1.
Overall, all criteria have a positive importance, indi-
cating that the models learn their relevance without
explicit exposure to the criteria. According to IG,
death is one of the two most important ones for all
models and disability is quite important in all four

models. The life-threatening criterion appears most
important with GPT, while it is much less impor-
tant for the other models. In EG, death is the most
important criterion for all models and disability is
most important after that except for GPT, where
hospitalisation is more important. With both meth-
ods, birth defect emerges as the least important
criterion, but this may be because it is the smallest
criteria group and infrequent in the data.

4.3 Analysis of Misclassified Examples
Preliminary analysis of misclassified examples re-
vealed very few terms with deviant explanation
patterns, which we took as an indication of issues
with the gold labels of the AER data. As reported
by Bergman et al. (2023), the annotation procedure
of AERs at the MPA is suboptimal from a machine
learning perspective, because of a regulatory guide-
line that assessors should not downgrade a report
labelled serious by the reporter, even if they con-
sider the report to contain no information meeting
the criteria for serious events (EMA, 2017, p. 16).
For this reason, we asked one of the assessors to
reannotate all reports that were misclassified by
both GPT and SDCB – the best models in terms of
specificity and F1, respectively – 345 reports in to-
tal. Appendix F gives statistics on the reannotated
reports and shows that, for both false negatives
and false positives, more than half of the labels
changed, confirming our suspicions.

Given the new annotations, we identify the terms
with the largest differences in attribution score
between true and false predictions for both seri-
ous and non-serious reports, focusing on terms ex-
plained as more serious in either true positives (TP)
vs. false negatives (FN) or true negatives (TN) vs.
false positives (FP). Table 9 in the Appendix shows
the terms matching the inclusion criteria, and Ap-
pendix G contains additional information on the
selection of these terms. For both models we then
separately consider local IG explanations of the
reannotated reports containing these terms – about
130 reports per model – to see if there are system-
atic differences for TP/FN and TN/FP report pairs.

While the manual analysis guided by the terms
did not reveal most of the terms themselves to have
obvious systematic effects, we noted some trends
observed over most of the reports with specific
patterns often explained as more serious or non-
serious than the average term. Investigating the us-
age of these patterns on the training set, we found
evidence of them reflecting reporter groups and
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specifically stylistic differences in how consumers
and healthcare workers report AERs. We found cer-
tain snippets of texts that occurred in many reports
and that traced back to the original reporting form,
which had several free-text fields that were then
automatically concatenated and saved as one field
with titles or generated text corresponding to spe-
cific answers. Such elements, referred to as form
patterns in the following, were often explained as
non-serious as a whole or in part. Another notable
pattern was that of temporal references including
mentions of periods of time (e.g. minutes or days),
but also temporal adverbs like soon and directly,
which were explained as non-serious by both mod-
els. Appendix H contains information about the
specific patterns and their statistics on the training
set. What these statistics illustrate is that most of
the form patterns, with the exception of other infor-
mation:, are almost exclusively used in consumer
AERs. Although the reporting rates are less ex-
treme for temporal patterns, terms like sometimes,
month and period are more indicative of consumers,
while soon, minute and second are slightly more
used by healthcare workers.

We argue that some of the identified patterns
align with how groups of reporters tend to express
themselves in AERs, with healthcare personnel us-
ing medical jargon and writing concise reports,8

while consumer reports can be longer and contain
more detailed descriptions of how the reaction af-
fected their everyday life and complaints about sus-
pected products. From the form patterns we also
observe that consumers appear to more diligently
fill in the multiple free-text fields than healthcare
workers who appear to rather give brief and to the
point descriptions in one or a few of the fields.

In Figures 4a and 4b, we show how both types of
patterns are explained by IG, plotting the distribu-
tion of their local explanations over the whole de-
velopment set. Attribution scores were obtained by
matching the exact sequence for form patterns, and
summing the attribution scores of the individual
words. Temporal patterns were matched with regu-
lar expressions covering morphologic variations.9

In general, the explanations for SDCB appear more
concentrated than those of GPT. Some form pat-
terns like first reaction after medication and reac-
tion not treated are clearly mostly negative in terms
of attribution, i.e. explained as contributing to non-

8Although there is a variation with the type of profession,
see the statistics in Table 12 in the Appendix.

9The expressions are listed in Table 11.
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Figure 4: Local attribution score distribution of form
patterns and time references over all matched reports in
the development set, ordered by frequency.

serious predictions, while other information, addi-
tional information and other causes of adverse re-
action are more symmetrically concentrated around
0, suggesting an overall more neutral, less system-
atic contribution of these patterns to the prediction
of reports in the development set. With respect to
temporal references, there is a more global signal of
after, day, minute and sometimes being explained
as more non-serious with both models, while di-
rectly, then and soon appear slightly more neutral,
and year and suddenly being explained as more
serious.

The trends observed in attribution polarity and
dominant reporting groups led us to take a closer
look at model performance in these two groups in
the development set. We found that recall for all
four models was more than 20% lower for con-
sumers than for healthcare workers and precision
10–20% lower. Correcting the gold labels where
we have reannotations increases the scores for all
models and subgroups, yet the differences in re-
call precision and F1 persist for the subgroups of
consumers and healthcare workers.10

10More detail on this evaluation in Appendix J.
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5 Discussion

The analyses in the previous section aimed at inves-
tigating feature attribution explanations for differ-
ent triage models to answer the research questions
defined in the beginning of the paper.

How do explanations for different models fine-
tuned for the same task differ? To answer the
first research question, we investigated the correla-
tion between global attributions with two explain-
ability methods. We found considerable variation
between models, but also weak to moderate cor-
relations among model attributions, most notably
among encoder models and with the IG method.
Moreover, models are more consistent with each
other when task-relevant concepts are in focus as
explored through filter terms and criteria groupings.

From the analysis of important clusters, we find
that suicide, ambulance and hallucination appear
in all models with both explanation methods. With
IG, we can glean SDCB explanations to deem med-
ical terminology such as syncope, fracture and de-
ficiencies/dysregulations (hypo-) most important,
while KBB, AERB and GPT focus more on the con-
cepts common to all models, although AERB and
GPT also give high importance to heart rate. With
EG, we find some similarity in the most important
clusters, with SDCB still having high importance
scores for deficiencies, but also featuring other con-
cepts like epilepsy, abortion and liver, while GPT
retains hallucination as an important cluster, in
addition to syncope, deficiencies and blood.

Can we align important features with regula-
tory criteria for what constitutes a serious case?
All models seem to learn the importance of the fil-
ter terms and the groupings of criteria, albeit with
different priorities as suggested by both the correla-
tions over filter terms and the importance assigned
to different criteria.

Are there systematic feature patterns that ex-
plain incorrect class predictions? Through the
manual analysis of reports we learned that serious
and non-serious explanations do not always focus
on parts of the report that could be considered rele-
vant for the assessment of the report at hand, and
that the level of detail may be a factor contribut-
ing to misclassification. This raises the question
whether the selected methods are adequate given
the classification problem at hand and how one can
conceptualise the two classes to distinguish. Is a
non-serious report a distinct category in itself with

salient features identifying it or just defined by the
lack of serious features? And should we define an
abstract neutral baseline or model explanations in
contrast to the non-serious class?

6 Conclusion

In conclusion, our analysis shows that all models
learn to identify relevant features indicative of a
potentially serious case, but with varying focus
on symptoms, conditions and medical procedures.
Most of the criteria for identifying serious events
are important for serious predictions with all mod-
els and explanation methods, but their relative im-
portance varies across models. Finally, manual
analysis of reports reveals features reflecting the
reporting style of specific reporter groups, specifi-
cally reflecting which and how many free-text fields
were filled in and to some degree the narration style
and level of detail as represented through temporal
references. This part of the analysis raises ques-
tions about model training and the adequacy of the
selected explanation methods for the task at hand.
Future work on training and explaining triage sys-
tems may need to rethink how information in this
binary setup is defined and contrasted, to promote
the importance of medically relevant features over
confounding features related to form and writing
style.

Limitations

In the preparation of this study, we made several
design decisions that can be scrutinised further. In
particular, the chosen explainability methods come
with their own set of limitations, one of which is
that, while feature attribution may highlight impor-
tant terms, such a representation ultimately does
not explain why the model that is being explained
relies on those features to begin with. In addition,
feature attribution for the most part constrains us to
individual explanations of the input features with-
out representing how features may interact with or
affect each other. At the same time, the goal of
the study in question was not to identify the best
explanation technique for our use case, but instead
to investigate triage models with available feature
attribution methods.

We chose to focus on real-world data and mod-
els that may be employed as part of the MPA’s
pharmacovigilance monitoring. As such, the main
focus of this paper was not to make claims on exact
classification performance differences of the triage
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models we analyse and we therefore did not pur-
sue evaluation over several training seeds as this
would also further complicate the analysis of ex-
planations taking into account several versions of
each fine-tuned model. For an analysis of the ro-
bustness of fine-tuning the AER-BERT model for
triage we refer to our previous results in Bergman
et al. (2023).

We did not study the effect of different fine-
tuning runs on the final explanations given the
same hyperparameters and base model and there-
fore cannot make any claims on how much of the
differences we see between triage models is due to
initialisation of the classification head, shuffling of
the training data, or the difference in pre-trained
base model. However, a limited control experiment
showed that global explanations of ten fine-tuned
versions of KB-BERT with different random seeds
correlated much more strongly with each other than
with any of the other models, which suggests that
the differences between different pre-trained mod-
els are relatively robust. See Appendix K for more
information.

The decision to use generative models with fine-
tuning methods geared towards encoders instead
of reframing the task into a generative setup may
not have been the optimal choice for the GPT-
SW3 model, but was chosen to follow a common
methodology in deriving explanations and, most
notably, always having a binary classification out-
come space to refer to.

A large part of the analysis rests on aggregated
attribution values. Corpus-level normalisation is
only one way of achieving this aggregation. Fur-
thermore, aggregation of explanations over multi-
ple reports comes at the cost of losing nuances in
specific contextualised cases.

Throughout the analysis, we consider raw ag-
gregated values for each model. Using such un-
normalised average attribution values means that
global explanations between models are not di-
rectly comparable, since some models have much
more extreme attribution values – this is why we
took more of a ranking approach and focused on
relative importance among, e.g., criteria groups.

The grouping of criteria is debatable for certain
terms that may fit multiple categories or can be
hard to disentangle in relation to another category
(e.g. miscarriage as death rather than birth defect,
cardiac arrest as death vs. life-threatening). Fur-
ther, the groups are likely not an exhaustive list
of relevant criteria terms in the given data, and as

raised in the analysis, some groups cover only very
few and overall infrequent terms and may provide
a limited representation of the criterion in question.

Likewise, while the clustering analysis under-
went several iterations to find a good separation
of clusters without generating too many outliers
there may be parameters resulting in an even better
clustering result. In addition, to save resources, the
clusters used in the analysis were manually labelled
by a single annotator, based on the MeSH ontol-
ogy and no further quality checks were conducted
on this annotation. Involving more and more ex-
pert annotators in the process may have resulted in
higher quality labels and slightly different group-
ing decisions for similar clusters and consequently
different results. This could for example lead to
combining more semantically similar clusters that
are only distinguished by their level of specialisa-
tion such as the fainting and syncope clusters.

As for the investigation of reporter groups in-
spired by the manual analysis of explanations, one
obvious aspect potentially dividing reporter groups
is medical terminology and frequently used abbrevi-
ations by medical workers. While both references
to medical conditions and procedures as well as
drug names were noted as salient in some of the
manually analysed reports, the variation of terms
was larger and an exhaustive list more challenging
to put together and analyse than the patterns we
decided to study further.

Ethical Considerations

The data used in this work contains sensitive med-
ical information and has been collected and pro-
cessed by the Swedish Medical Products Agency
as part of their pharmacovigilance monitoring duty.
For the scope of this study, processing the data
by training and evaluating models and their ex-
planations falls under the agency’s operations for
business development and does not require further
ethics approval by the Swedish Ethical Review Au-
thority. To ensure information security, the texts
have been anonymised by replacing digits in the
free-text, where personal identity numbers may be
reported. Further, complete examples of individ-
ual AER descriptions cannot be included without
additional anonymisation steps. Since the study
itself focuses on the explanation and evaluation of
triage models for larger sets of reports this has not
been necessary and observations are reported as
summaries of subsets of the full AER data.
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Figure 5: Report length in whitespace-tokenised tokens
for the cleaner version of the data used in this paper
(new) and the version previously used in Bergman et al.
(2023) (old).

the report. In their work, preprocessing included
filtering out and removing those comments using
regular expressions. However, for this study we
were able to obtain access to a database storing
only the original reports as they were at the time of
reporting and therefore skip this step in preprocess-
ing the text. Upon comparing matching reports in
the two data sources, we also discovered that the
previously used data source contained truncated
reports. Figure 5 shows a comparison of report
lengths in the previous and current version of the
data.

The database we extracted our reports from only
contained those reports received by the MPA via
an electronic reporting form. We found that some
reports in the dataset used by Bergman et al. (2023)
were not present in the original database and such
cases could be explained by the original incoming
reports covering information warranting a sepa-
rate report, e.g. when the report describes adverse
events related to different medical products at dif-
ferent points in time, specifically assigns different
suspected events to different medication, mentions
multiple patients with similar adverse events, or
discusses events in mothers or soon-to-be mothers
as well as events in their young children or fetuses.
These reports were then split manually by asses-
sors and added to the working database. Our data
splits contain 90 such examples in development
and training set, 42 of which were found to start
with comments during pre-processing. To allow
for some degree of comparison with our previous
study, we opt to still keep these reports in their
previous form and apply filtering to remove initial
comments matching specific keywords followed by

dates and assessor signatures.
Preprocessing for all reports includes stripping

of initial hyphen characters and white space in the
description field as well as prepending to the de-
scription all suspected adverse events in list form.

The focus of the hyperparameter experiments
was to identify learning rate and epoch settings for
the four models. We considered learning rates in
the set {0.00002, 0.00003, 0.00004, 0.00005} and
training for up to three epochs and chose the best
settings according to the observed loss on the de-
velopment set. Table 5 shows the selected settings
informed by the experiments.

The settings for KBB and SDCB are identical.
For AERB, we add a weight decay term of 0.01 to
keep consistency with Bergman et al. (2023).

B Axioms of IG and EG

As defined by Sundararajan et al. (2017), the ax-
ioms fulfilled by both explanation methods are

• sensitivity, whereby only relevant features
contribute to the explanation and irrelevant
features have an importance of 0,

• implementation invariance, stating that for
two networks that produce the same outputs
as each other for all inputs, the attributions
should be identical,

• completeness, in the sense that the sum of
attributions for a particular input should cor-
respond to the difference in model output for
the input and the baseline,

• linearity, in that attributions for a model that
is a linear combination of two other models
are a linear combination of the attributions for
those two models,

• symmetry-preservation, whereby symmetric
variables in the network should get the same
attribution if they have the same value.

C Analysis resources

C.1 Filter Terms

The list of filter terms contains 47 terms or seg-
ments that relate to words associated with seri-
ous reports and is used to filter incoming reports
marked as not serious for candidates that can be
prioritised. A drawback of its format is that word
segments, not always representing real morphemes,
may also match less relevant terms. All filter terms
and approximate translations with annotations for
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Parameter KBB & SDCB AERB GPT

Batch Size 8 8 4
Gradient Accumulation 1 1 2
Learning Rate 2× 10−5 2× 10−5 2× 10−5

WarmupRatio 0.3 0.3 0.15
Mixed Precision – – fp16
Optimizer AdamW AdamW AdaFactor
Weight Decay 0 0.01 0
Epochs 1 1 2

Table 5: Training Settings

omitted parts are listed in Table 6. The filter terms
match a total of 220 terms of the vocabulary in the
global explanations.

C.2 Criteria Groups

The criteria groups are 5 groups of concepts derived
from the definition of serious adverse reactions –
relating to death, life-threatening reactions, hospi-
talisation, disability and birth defects. Each group
consists of single word synonyms as well as more
specific concepts, and is internally grouped to re-
flect more general notions as well as very specific
terminologies and contexts.

For example, the group for death comprises a
group of general words such as death, pass away,
passing as well as individual groups for more
specific forms of death such as suicide, suffoca-
tion/asphyxia, cardiac arrest and miscarriage. This
grouping was created for the set of terms covered
in the development set and is not exhaustive with
respect to all possible subcategories that may ex-
ist outside this restricted vocabulary. Terms cover
different wordforms of the same lexeme.

Table 7 shows how many terms and subgroups
are associated with each criterion. The biggest
criterion is that of hospitalisation with 179 terms.
These include different inflected versions of the
same lemma as well as common abbreviations and
in some cases spelling variations found in the cor-
pus of AERs that constitute the development set.
The groups were created using MeSH and referring
to terms present in the AER reports. Hence some
groups such as birth defect are fairly small even
though there are more conceivable birth defects,
but they do not feature in the analysed set of AERs.

Filter Term Translation

ARDS respiratory distress syndrome
BNP brain natriuretic peptide
Haemoly haemoly(sis)
Johnson Johnson
andningsavbrott respiratory arrest
andningspåverkad respiratory challenged
andningssvikt respiratory failure
andningsuppehåll respiratory arrest
anfall attack, acute onset
avled died
barre Barre (Guillain-Barré syndrome)
blind blind
cerebro cerebro-
dog died
dyspne dyspnea
död death
epidermal epidermal
epilep epilep(sy)
fladder flutter
hallucin hallucin(ation)
handik disab(ility)
hemolyti hemolyti(c)
hörsel hearing
interstit interstit(ial)
kardiell myopati cardiomyopathy
koagulat coagulat(tion related)
kolangit cholangitis
konstaterad confirmed / diagnosed
lungsvikt lung failure
lymphohist lymphohist-
mikroangio microangio-
missbild malforma(tion) / birth defect
missfall miscarriage
multisystemisk multisystemic
mungip corner of the mouth
optikusneu optic neu(ritis)
propp clot
puls pulse
purpura purpura
resp insuff resp(iratory) insuff(iciency)
scars scars
syn vision
synbortf (loss) of vision
toxisk toxic
vaerd vaccine-associated enhanced respiratory disease
ventrike ventric(le)
ventrombos venous thrombosis

Table 6: 47 Swedish filter terms and their English trans-
lations and completions.
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Group Terms Subgroups

Death 33 5
Life-threatening 10 1
Hospitalisation 179 3
Birth defect 4 2
Disability 20 5

Table 7: Total number of terms and subgroups in each
of the criteria groups.

D Feature Attribution for Filter Terms
and Non-Filter Terms

Figure 6 shows the distributions of global attribu-
tion scores for terms matching the filter and those
not matching the filter with both IG and EG.
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Figure 6: Distribution of global attribution scores for
terms matching the filter and terms not matching the
filter.

E Clusters of Top 8000 Serious Terms

To find more general concepts important for a se-
rious outcome with each of the models according
to either explanation method, we took the union of
the 8,000 most important terms per model and clus-
tered them for each attribution method. Terms were
first embedded using a Swedish Sentence-BERT
model11 and then decomposed to 50 dimensions
using principal component analysis with whitening

11KBLab/sentence-bert-swedish-cased

and clustered with HDBSCAN (Campello et al.,
2013). We experimented with lemmatization at
an earlier stage, but found it harder to obtain an
interpretable clustering that way. We set the HDB-
SCAN clusterer to a maximum cluster size of 80,
a minimum cluster size of 5 and used default set-
tings for the remaining parameters. The clusters
were annotated by hand by a single annotator with
a background in linguistics and good command of
Swedish. To make sense of medical terminology
and how medical concepts relate to each other, the
annotator relied heavily on MeSH and its Swedish
version to derive sensible cluster names in English.
Table 8 shows statistics on the amount of selected
terms per feature attribution method, the number
of resulting clusters, average cluster sizes and the
amount of outliers.

Figure 7 shows the importance of clusters in
EG and to what extent they were covered by each
model’s top 8,000 terms. Coverage in the latter vi-
sualisation refers to the number of terms belonging
to the cluster, that also rank among the top 8,000
terms for a particular model, divided by the total
size of the cluster in unique terms.

Figures 13 and 14 show the entire clustering of
IG and EG reduced with t-SNE. For both IG and
EG, some clusters are completely missing in the
global explanations of certain models, due to dif-
ferent tokenization. Specifically, AERB and GPT
pick up certain units (µg, µmol) that are missing for
KBB and SDCB, and all models but GPT pick up
numbers and dimensions describing affected areas
listed as part of the adverse event terms, because
GPT’s tokenizer splits them into digits belonging
to a separate cluster instead.

F Reannotation

Figure 8 shows how the FN and FP reports were an-
notated by the assessor given only the concatenated
term list and description text field. We anticipated
that annotating these without the usual context may
complicate decision making for the assessor and
therefore allowed both an unclear annotation and
a field to comment on the annotation. For the en-
tire 345 reports, only 7 cases were unclear without
additional information.

Looking at the label proportions, out of the se-
rious reports in the original gold annotation, pre-
dicted non-serious by both models (FN), only a
third was actually serious after the reannotation.
Of the reports originally annotated non-serious, but
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Method Terms in Union Clusters Terms per Cluster Outliers

IG 13,909 164 8.3 12,547
EG 15,347 193 8.4 13,726

Table 8: Statistics on the clustering.

KBB SDCB AERB GPT
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0.6 0.6 0.6 0.4

cluster coverage
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Figure 7: 20 highest ranked clusters with EG by cluster importance (right) and their coverage among the top 8,000
terms per model.
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Figure 8: Reannotation of False Negatives (FN) and False Positives (FP). The numbers in parentheses are the
amount of reports in each category.

predicted serious, about half remained non-serious
after reannotation. One possible reason for the la-
bel change of so many of the originally FP reports
is that some context is omitted with respect to the
original report, since AERs consist of more than
just the term list and free-text and the information

indicating a serious event could conceivably be
other parts of the form or its attachments without it
being mentioned in the text as seen by the model.
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G Selecting Reports for Manual Analysis

To identify interesting reports in the set of reanno-
tated reports, we compute the terms with the largest
differences in attribution score between true and
false predictions for both serious and non-serious
reports and restrict this to the 5 most extreme terms
that occur at least twice in each considered set
of reports with differences in the 2.5- and 97.5-
percentiles respectively.

To limit the scope of the manual analysis, we
only do this calculation and the report-wise anal-
ysis with IG. Table 9 details the terms, and their
translation for the contrasted sets and each model.

The terms comprise some reoccurring themes for
both models with terms relating to specific events
such as vaccination or product exchange,12 refer-
ences to respiration (breathing, coughing and short-
ness of breath), the emergency room, and the abbre-
viation EVF for a blood test measuring the volume
of packed red blood cells in a sample. They match
a total of 126 and 129 reports for SDCB and GPT
respectively. For each report we summarise the
text and take note of the terms explained as serious
and non-serious using IG as well as whether they
relate to the specific event, fall under additional in-
formation such as patient history or information on
other people mentioned in the report, or are stylistic
elements of the report.

Analysing the reports associated with most of
the terms in Table 9 revealed a variety in cases and
narratives, however, there was overlap between the
matched reports for vaccination, vertigo, nausea
and swelling frequently co-occurring.

H Patterns

Table 10 details the six form patterns identified dur-
ing the manual analysis. They correspond to auto-
matically inserted titles or text snippets expressing
information like whether or not the suspected ad-
verse reaction was treated or how long after the
affected person took the medicine suspected of
causing the AE they started experiencing symp-
toms.

Table 11 details the Swedish temporal references
as regular expressions to cover morphologic varia-
tion such as singular and plural, and indefinite and
definite forms for nouns, and synonyms or contrac-

12Referring to cases when the intended prescribed product
is replaced by an equivalent product by another pharmaceutical
company, which can happen when the intended product is out
of stock at a pharmacy.

tions of some of the adverbs, with English transla-
tions and statistics on the occurrence of these terms
in the training set and how much of those are in
consumer reports.

Figure 9 shows the attribution distributions of
form and temporal patterns according to EG, which
generally appear to be explained as more neutral
than those by IG.
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Figure 9: EG attribution scores of form patterns and temporal references in the full development set. The patterns
are ordered by frequency in the development set with the most frequent patterns to the left.

Contrasted SDCB GPT
sets FN more serious TP more serious FN more serious TP more serious
TP & FN produktutbyte, an-

das, hosta, vaccina-
tion, rygg

blod akuten, andfåddhet,
smärtor, blod, an-
das

hosta, produktut-
byte, biverkan,
yrsel, reaktionen

English product exchange,
to breathe, cough /
to cough, vaccina-
tion, back

blood (the) ER, shortness
of breath, pains,
blood, to breathe

cough / to cough,
product exchange,
(the) adverse reac-
tion, vertigo, (the)
reaction

FP more serious TN more serious FP more serious TN more serious
TN & FP akut, stroke, syn,

svullna, evf
klåda, akuten,
biverkningsom-
bud, rodnad, dagar

evf, yr, migrän,
yrsel, torra

stroke, syn, akuten,
akut, EVF

English acute / ER, stroke,
vision, swollen,
packed red-cell
volume

itching, ER, AER-
delegate,13 redness,
days

packed red-cell vol-
ume, nauseous, mi-
graine, vertigo, dry

stroke, vision, (the)
ER, acute / ER,
packed red-cell vol-
ume

Table 9: Terms with more extreme differences in attribution score in correct and incorrect predictions per report
class.
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Pattern Translation Occurrence Reported by Consumers

första reaktionen efter medicineringen: first reaction after medication: 5,173 99.65%
reaktionen ej behandlad reaction not treated 3,853 99.77%
andra biverkningsorsaker: other causes of adverse reaction: 3,433 99.65%
ytterligare info additional information 2,123 99.06%
övrig information: other information: 1,903 0.08%
reaktionen behandlad reaction treated 1,591 99.43%

Table 10: Swedish form patterns, their English translation, occurrence in the training set and the proportion reported
by consumers.

Pattern Translation Occurrence Reported by Consumers

(där)?efter after 8,481 63.12%
dag(en|ar(na)?)? (the) day, (the) days 3,990 63.73%
se(da)?n then 2,654 66.11%
veck(an?|or(na)?) (the) week, (the) weeks 2,020 61.49%
år(et|en)? (the) year, (the) years 1,373 69.56%
månad(en|er(na)?)? (the) month, (the) months 1,382 74.75%
direkt directly 658 66.11%
minut(en|er(na)?)? (the) minute, (the) minutes 449 46.55%
period(en|er(na)?)? (the) period (of time), (the) periods 260 74.62%
ibland sometimes 319 88.71%
plötsligt suddenly 198 69.19%
strax soon 147 46.26%
sekund(en|er(na)?)? (the) second, (the) seconds 73 49.32%

Table 11: Regular expressions for temporal patterns in Swedish, their English translation, occurrence in the training
set and proportion reported by consumers.
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I Reporter Statistics

Table 12 contains statistics on reports by specific
reporter groups in the training data.

Reporter Number of reports Average report length
(in characters)

Consumer 5,607 614.04

Doctor 3,687 408.15
Nurse 1,573 364.00
Pharmacist 955 281.31
Dentist 131 301.58
Other Healthcare personnel 35 869.31

All Healthcare 6,381 378.63

Table 12: Statistics by reporter group on the training set

J Subgroup Performance

Figures 11 and 12 show the performance of each
model in different metrics for the original develop-
ment set and partially corrected gold labels.

13A delegated nurse / pharmacist reporting adverse events
from the medical record system on behalf of a hospital.

K Explanation Correlation with Different
Fine-Tuning Runs of the Same Model

This section shows results of a control experiment
comparing global correlations for different fine-
tuned versions of the same base model with the
results in Section 4.1.

Shared vocab. Filter terms
Base model IG EG IG EG

KBB 0.65±0.06 0.17±0.01 0.64±0.07 0.20±0.04

Different 0.28±0.05 0.08±0.01 0.42±0.06 0.11±0.09

Table 13: Average Kendall’s τ correlation between ex-
planations of 10 different fine-tuning runs of KBB and
the different base models as reported in Figure 1 (ex-
cluding controls and the diagonal).

We fine-tuned 10 versions of KBB with the same
hyperparameter settings as the model reported in
the main text, but different random seeds to ob-
serve how similar global explanations are with the
same pre-trained model. Table 13 shows average
Kendall’s τ correlations and their standard devi-
ations for explanations of these new fine-tuned
models sharing the same base model and the corre-
sponding values for the experiments with different
fine-tuned base models from Figure 1.

Figure 10 gives a better view of the distribution
of these correlations

IG EG
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Figure 10: Distribution of Kendall’s τ correlation be-
tween global explanations of 10 different fine-tuned
KBB models.
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Figure 11: Model results on development data for reporter subgroups on original gold labels.
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Figure 12: Model results on development data for reporter subgroups on partially corrected gold labels.
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Figure 13: t-SNE projection of serious terms in Swedish ADRs according to IG attributions for four triage models.
All terms are encoded with the same SentenceBERT model and each term is plotted individually as a point for each
model. Manually assigned English cluster labels are added for the centroid of each cluster. The size of the points
represents the spread of the cluster it belongs to specific to the explanations of a particular model. Terms occurring
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67



100 75 50 25 0 25 50 75 100
x

100

75

50

25

0

25

50

75

100

y

calcium

organ transplant

influenza vaccine

psoriasis

contraceptive

hallucination

fracture

dementia

accident

ambulance

IUD

lithium

lactose

crochet/knit

thyroid hormone

blood pressuredermatology

antihistamine

trauma

infusion

dietary supplement

immune system

antibiotics

asthma

smell

suicide

neurological

floor
hair

hormones

migraine

abortion

vaccination

blood sugar

radiology

eye clinic muscle

dream

pelvic pain

breast feeding

quality of life

muscle cramp / pain

allergy

extraction

mood swings

hereditary

desloratadine

back pain

freeze

sweat

epilepsy

thyroid

dentition

statins

pediatrics

inhalation

bed

chemotherapy

hand

ovarypigmentation

cortisone

flushing

syncope

inflammation

vaginal

injection

memory

diarrheaabdominal pain

heart rate

weight loss

pill

brain

skin conditions

wash

common cold

kidney

hypo-

nausea ankle / foot
knee

leg

liver

size (of an affected area)

smoking

nose

baby

stress

walk / stroll

dangerous

eye

snoring

psychiatric

red

cancer

methotrexate

ear

warm

yellow / redblue

explode

wet

arm / shoulder
arm

mak-

constipation

depression
heart

exercise

childbirth

gynecology

fainting

vision disorders

treatment period
normalise

front / back

rheumatic

cry

intra-

my-

falling

days of the week

sleep

home

bleeding

infected

minute / second

weight

lungs
breath

breathing disorder

bladder

open

stabilise

burn

urine

apply
play

swollenswelling

abnormal

months of the year

wake

blood

strange

replace

hospital

write

motherdiagnose

intestines

numbers

anonymised numbers

pause

medication*

pain

symptom

doctor

loss

newly emerged

removed

combination

read

immediately

hard

numbers

answer

moderate / mild

confirm

improve

restored

order / send

likely

hear / sound

return

rule out

aggravate

change

increased dose

assess
search / find

terrible

begin

prescribe

treat

decrease

units

examine

increasestate / mention

should / seemput

model
KBB
SDCB
AERB
GPT

importance
0.12
0.06

0.00
0.06
0.12

Figure 14: t-SNE projection of serious terms in Swedish ADRs according to EG attributions for four triage models.
All terms are encoded with the same SentenceBERT model and each term is plotted individually as a point for each
model. Manually assigned English cluster labels are added for the centroid of each cluster. The size of the points
represents the spread of the cluster it belongs to specific to the explanations of a particular model. Terms occurring
in the top lists of multiple models are represented as gradually more transparent points. Outliers are smallest and the
most transparent.
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Abstract

This paper explores the performance of mul-
tilingual models in the general domain on the
clinical Question Answering (QA) task to ob-
serve their potential medical support for lan-
guages that do not benefit from the existence
of clinically trained models. In order to im-
prove the model’s performance, we exploit mul-
tilingual data augmentation by translating an
English clinical QA dataset into six other lan-
guages. We propose a translation pipeline in-
cluding projection of the evidences (answers)
into the target languages and thoroughly evalu-
ate several multilingual models fine-tuned on
the augmented data, both in mono- and multilin-
gual settings. We find that the translation itself
and the subsequent QA experiments present
a differently challenging problem for each of
the languages. Finally, we compare the perfor-
mance of multilingual models with pretrained
medical domain-specific English models on the
original clinical English test set. Contrary to
expectations, we find that monolingual domain-
specific pretraining is not always superior to
general-domain multilingual pretraining. The
source code is available at https://github.
com/lanzv/Multilingual-emrQA.

1 Introduction

Medical professionals spend considerable time go-
ing through (long) clinical documents to find an-
swers to specific questions about particular patients
(Demner-Fushman et al., 2009). This process can
be simplified using natural language processing
models designed for Question Answering (QA),
either by searching for relevant evidence to an-
swer the question or directly providing a precise
answer that does not even need to be present in the
context texts (Tsatsaronis et al., 2015). Patients
would directly benefit from this more efficient pro-
cess through better quality care. In addition, such
QA systems can be designed specifically for pa-
tients, allowing them to ask direct questions about

...
Lungs : R lower 01-20 with coarse BS and rales ; L side clear ; no
wheezing Abd : thin, nd, nt, soft, no masses palpable Ext : thin, no
edema, multiple old well-healed scars on R leg Skin : warm and dry,
no rash or breakdown noted though could not examine sacrum Neuro :
reactive to pain, otherwise

Pertinent Results : 2014-01-20 05:30 AM BLOOD WBC -
10.9 RBC - 4.63 Hgb - 13.6 * Hct - 40.3 # MCV - 87 MCH - 29.3 MCHC
- 33.7 RDW - 14.0 Plt Ct - 393 # 2014-01-20 05:30 AM BLOOD Neuts -
82.6 * Lymphs - 14.5 * Monos - 2.2 Eos - 0.2 Baso - 0.4 2014-01-20
02:08 PM BLOOD PT - 13.2 PTT - 27.4 INR ( PT )- 1.2 2014-01-20
05:30 AM BLOOD Plt Ct - 393 # 2014-01-20 05:30 AM BLOOD
Glucose - 334 *
...

Figure 1: Clinical text sample from emrQA dataset
(Pampari et al., 2018), after filtration by Yue et al.
(2020).

their discharge summaries or about other aspects of
their medical records (Soni and Demner-Fushman,
2025).

Finding specific evidence supporting an answer
in discharge summaries is a crucial step for two
reasons: First, given the sensitive nature of the
data and the current inability to guarantee that mod-
els will not hallucinate, the model must point to
the specific part of the text that it used to gener-
ate its response. This allows a physician to verify
the answer directly. Second, discharge summaries
are typically lengthy documents, which pose chal-
lenges for large language models (LLMs) (Pre-
masiri et al., 2023; Luo et al., 2024). Extracting
relevant evidence from the text and incorporating it
into prompts within a Retrieval-Augmented Gener-
ation setup offers a potential solution to this prob-
lem (Abdelghafour et al., 2024).

Currently, most medical research data and re-
lated QA models are conducted predominantly in
English (Jin et al., 2019; Henry et al., 2019; John-
son et al., 2023) although most medical institutions
use their local language to produce clinical texts,
and models trained on English data are not applica-
ble to documents in other languages.

In contrast, general-domain multilingual models
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Figure 2: Multilingual data augmentation pipeline for the emrQA dataset.

(Devlin et al., 2018; Sanh et al., 2019; Conneau
et al., 2019) are available for QA tasks in various
languages. This raises two questions: How do such
models, which have never been exposed to clinical
data, perform clinical QA tasks? How important is
the pretraining of the clinical domain?

To enhance the performance of multilingual
models and expose them to more clinical data dur-
ing fine-tuning, this study explores the impact of
multilingual data augmentation. Several previous
works have shown that multilingual data augmen-
tation generally improves the performance of mul-
tilingual models (Liu et al., 2021; Bornea et al.,
2021). However, it remains unclear whether the
same holds in the clinical domain, which often dif-
fers from the standard language (Henriksson et al.,
2014) (see Figure 1 for an illustration).

In this paper, we explore this idea by translat-
ing an English QA dataset derived from the emrQA
dataset (Pampari et al., 2018) into six European lan-
guages: Bulgarian (BG), Czech (CS), Greek (EL),
Spanish (ES), Polish (PL), and Romanian (RO) (as
shown in Figure 2). We present a systematic ap-
proach to machine translation of a QA dataset that
produces multilingual data for the task of finding
evidence in clinical text that answers a given ques-
tion. We exploit these translations for fine-tuning
and evaluation of various models in monolingual
and multilingual settings to investigate the impact
of such multilingual data augmentation. Following
Yue et al. (2020) and Lanz and Pecina (2024), we
use two subsets from the emrQA dataset – Medica-
tion and Relations

We first describe the Machine Translation (MT)
pipeline, which involves translating clinical reports,
translating questions, and projecting the answer ev-

idence substring into the translated text. Next, we
discuss some poor-quality translated samples and
propose how to deal with them. We then use these
translations to fine-tune several Transformer-based
models on the QA task. Based on that, we investi-
gate how multilingual data augmentation improves
the models’ performance. Finally, we compare
the performance of multilingual models with the
clinically pretrained domain-specific models and
discuss whether the clinical pretraining is necessary
for this task.

This paper presents the following contributions:
• We propose a pipeline for augmentation of the

clinical QA dataset into other languages.
• We introduce a novel unsupervised forward-

backward substring alignment evaluation
method that allows a more accurate assess-
ment of substring alignment quality between
languages without the need for labeled data.

• We demonstrate the performance of multilin-
gual models on clinical QA tasks, highlighting
the benefits of multilingual data augmenta-
tion and showing that clinical pretraining does
not have to be more beneficial than general-
domain multilingual pretraining.

2 Related Work

The task of QA involving the retrieval of the an-
swer evidence substrings for a given question in
a provided context has been extensively explored
through various datasets. Among the most promi-
nent are general purpose QA datasets such as
SQuAD (Rajpurkar et al., 2016), which has also
been already translated into several European lan-
guages via MT methods (Macková and Straka,
2020; Carrino et al., 2020; Cattan et al., 2021; Staš
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et al., 2023; Nuutinen et al., 2023). In addition to
these, the clinical QA domain has gained attention
with the emrQA dataset (Pampari et al., 2018), de-
rived from the n2c2 challenge dataset (Henry et al.,
2019).

Considerable work was done on the emrQA
dataset with notable contributions by Yue et al.
(2020), who adapted two emrQA subsets into a
SQuAD-like format for more general use. Lanz
and Pecina (2024) proposed segmentation of re-
ports into paragraphs for better QA performance.

Various medical datasets exist in multiple lan-
guages, and the Khresmoi data set (Dušek et al.,
2017) stands out as a parallel corpus of medical
sentences in several European languages. Further-
more, there is a growing trend towards the develop-
ment of datasets focused on extracting information
from clinical documents in languages other than
English (López-García et al., 2023; Zaghir et al.,
2024; Richter-Pechanski et al., 2024). Furthermore,
Gaschi et al. (2023) extended the n2c2 dataset by
translating it into French and German (and we
build on this work). This process involved aligning
named entities using methods such as FastAlign
(Dyer et al., 2013) and Awesome (Dou and Neu-
big, 2021). They also used machine translation
systems such as Opus-MT (Tiedemann and Thot-
tingal, 2020) and FAIR (Ng et al., 2019). However,
the most recent MT systems are currently NLLB
(Costa-jussà et al., 2022) and MadLad (Kudugunta
et al., 2023).

In their multilingual experiments, Gaschi et al.
(2023) tested a range of multilingual models, in-
cluding mBERT (Devlin et al., 2018), distilmBERT
(Sanh et al., 2019), and XLM-R (Conneau et al.,
2019). However, these models are not pretrained on
medical/clinical data, unlike BioBERT (Lee et al.,
2019) or ClinicalBERT (Alsentzer et al., 2019),
which were already used for emrQA experiments
on English data (Yue et al., 2020; Lanz and Pecina,
2024). Despite the existence of LLMs trained on
predominantly English medical data, such as Med-
iTron (Chen et al., 2023) and BioMistral (Labrak
et al., 2024), Lanz and Pecina (2024) demonstrated
that the application of LLMs to answer substring-
based evidence QA tasks is not straightforward,
often computationally expensive without providing
proportional benefits.

Medication Relations
Number of reports 262 426
Number of paragraphs 5 081 9 482
Number of questions 232 347 987 965

Table 1: Statistics of the Medication and Relations sub-
sets segmented into paragraphs (each question has at
least one answer in a paragraph).

3 Machine Translation of QA Dataset

This section outlines the MT methodology for the
Medication and Relations subsets of the emrQA
dataset, filtered and normalized by Yue et al. (2020).
The process includes two phases: First, clinical
reports and questions are translated using multilin-
gual LLMs. Second, for each answer evidence, we
find the corresponding substring in the translated
text.

Clinical reports often pose a challenge for MT
due to the size and complexity of their text. In addi-
tion, aligning answer evidences in such large texts
would be challenging and error-prone. Therefore,
we begin with segmenting the reports into para-
graphs proposed by Lanz and Pecina (2024) which
reduce the size of the context while preserving all
necessary information (see statistics in Table 1).

3.1 Translation Process

Several recent works have presented highly robust
MT models for general domains (Popel et al., 2020;
Costa-jussà et al., 2022; Kudugunta et al., 2023).
However, it is unclear how these models perform
on clinical data. Following Gaschi et al. (2023), the
performance of several MT models was evaluated
in the Khresmoi medical domain data set (Dušek
et al., 2017) (the results are reported in the Ap-
pendix B). For subsequent experiments, we chose
MadLad-3B, which performs best or is very similar
to the best results, but is significantly smaller and
thus more time and memory efficient.

Translations of the questions in our dataset were
done sentence by sentence. Translating (sometimes
much) longer paragraphs turned out to be more
challenging. Therefore, long paragraphs were di-
vided into shorter parts. The paragraphs that exceed
750 characters were split into two parts of about the
same length – preferably at the end of the sentence
identified by the regular expression1 closest to the
middle of the entire paragraph. If such a split were
not feasible, we split the segment at the whitespace

1[a-z]{2}\.\s+[A-Z][a-z]
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closest to the middle of a paragraph. After transla-
tion, all segments within the paragraph are joined
in their original order.

MadLad-3B sometimes tends to hallucinate
when translating clinical reports, especially when
they contain abundant medical abbreviations,
acronyms, and figures. To address this, we pro-
pose the following solution: We append the phrase
"Based on medical reports." after the end of each
segment to be translated, providing the model with
explicit context that the text is related to a clinical
text (which is not always obvious from the seg-
ment content itself). If a correct translation of this
phrase appears in a newly translated segment, it is
removed along with any surrounding whitespaces.
Otherwise, the text is translated again, with addi-
tional spaces inserted between the segment and the
prompted medical phrase to make the difference
even more explicit. In case of an increase in the
limit of translation attempts, the standard transla-
tion using the MT model without any additional
phrases was chosen. We refer to this method as
the Prompted Medical Phrase (PMP) approach and
compare it with the standard MT. The list of al-
ternative translations of the phrase added to the
prompt in all languages is provided in Appendix C.
An example of the PMP approach is provided in
Appendix D.

3.2 Answer Evidence Alignment
After translating the paragraphs, the answer ev-
idence for each question must be found in the
translated text. Due to the synthetic nature of ev-
idence substrings in emrQA, these evidence seg-
ments often lack structure, sometimes appearing as
incomplete sentences. Additionally, clinical texts
frequently contain repetitive patterns (e.g., "mg,"
"q.p.m."), making the alignment crucial to correctly
identify key clinical terms. However, these con-
cepts are often very specific and the model may
not have encountered them in alignment-based ap-
proaches during training. See Figure 3 for exam-
ples of evidence substrings from emrQA.

To align the answer evidence substring in the
translated text, we could translate the original sub-
string and locate it in the translated paragraph, as
done for SQuAD (Macková and Straka, 2020; Cat-
tan et al., 2021; Staš et al., 2023). However, due to
the complexity of clinical data, identical translation
cannot be guaranteed. Since SQuAD evidence is
usually short (such as a person’s name or location),
the problem is not so complex. Therefore, this

Question: Has the patient ever tried heparin?
Context:
...
HOSPITAL COURSE: The patient was admitted on 0/25/95 with concern for her
being at high risk of skin breakdown and infection. Plans were made for panniculec-
tomy, however, prior to this procedure, she was admitted for IV Ancef t.i.d.; Hi-
biclenz showers and sub-q Heparin. Preoperatively, her pulmonary function was as-
sessed and found to have an FEV-1 of 53% of predicted; FVC of 57% of predicted and
an FEV-1/FVC of 93% of predicted. Chest x-ray showed no active cardiopulmonary
disease ...

Question: Has the patient had allopurinol in the past?
Context:
...
MEDICATIONS: At the time of admission were as follows: 1. Lantus 100 mg q.p.m.
2. Humalog 20 units q.p.m. 3. Humalog sliding scale. 4. Neurontin 300 mg t.i.d. 5.
Lisinopril 40 mg q.d. 6. Allopurinol 300 mg q.d . 7. Hydrochlorothiazide 25 mg q.d.
8. Zocor 20 mg q.d. 9. TriCor 50 mg b.i.d. 10. Atenolol 25 mg q.d. 11. Eyedrops
prednisolone and atropine. 12. The patient was on iron supplementation.
...

Figure 3: Examples of emrQA evidence substrings,
highlighted as colored spans showing alignment chal-
lenges.

paper opts for word alignment methods, similarly
to Gaschi et al. (2023) and Zaghir et al. (2024).
Specifically, this work considers two alignment
models: the statistical model FastAlign (Dyer et al.,
2013) and the Transformer-based model Awesome
(Dou and Neubig, 2021) to project evidence from
the source to the target language.

Awesome is a pretrained aligner, while FastAlign
requires additional training. For this purpose, we
use the parallel corpus NLLB (Costa-jussà et al.,
2022), selecting the first 44.6 million sentences
paired with English for each of the languages in-
volved in our work. Since we have the same
amount of data for each language, we can directly
compare alignments across languages. Alignment
is performed on the same segments as described
in Section 3.1. Based on the predicted alignment,
the counterparts of the source answer evidence are
found in the translated paragraph. The alignment of
the first and last words determines the boundaries
of the target answer evidence substring.

As observed by Gaschi et al. (2023), the choice
of an aligner is not straightforward. They noted that
performance in the general domain is not always in-
dicative of behavior on clinical data sets, leading to
an initial suboptimal choice in their study. To objec-
tively compare the performance of Awesome and
FastAlign, this work introduces the unsupervised
forward-backward substring alignment evaluation
method. This method involves a double answer ev-
idence substring alignment, once from the source
language to the target language and then back to
the source. As a result, there are two substrings in
the source language: the original answer evidence
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BG CS EL ES PL RO
EM F1 PM EM F1 PM EM F1 PM EM F1 PM EM F1 PM EM F1 PM

FastAlign 32.1 83.2 82.4 50.0 86.6 86.0 28.6 81.6 80.9 54.6 90.9 90.5 48.3 89.0 88.4 34.2 86.7 85.3
Awesome 46.0 82.9 82.4 64.0 89.8 89.4 24.8 70.3 69.8 71.2 93.7 93.5 57.1 89.3 89.1 64.7 90.9 90.4
FastAlign PMP 41.0 88.9 88.2 53.1 91.4 91.0 41.9 87.9 87.2 56.3 93.8 93.4 50.1 90.8 90.2 35.7 89.6 88.1
Awesome PMP 59.3 89.2 88.8 66.8 93.0 92.8 36.5 76.2 75.7 72.9 96.3 96.1 58.8 90.6 90.5 68.0 93.8 93.5

Table 2: Comparison of FastAlign and Awesome and impact of the PMP translation approach on Medication subset.

BG CS EL ES PL RO
EM F1 PM EM F1 PM EM F1 PM EM F1 PM EM F1 PM EM F1 PM

FastAlign 54.9 89.9 89.1 61.2 91.5 90.9 55.8 91.1 90.6 66.7 93.6 93.4 62.7 92.2 91.5 53.3 90.0 89.2
Awesome 60.7 86.3 86.0 66.0 91.0 90.8 40.2 77.3 77.0 77.0 95.1 95.2 59.5 88.3 87.9 72.3 91.8 91.5
FastAlign PMP 61.1 92.9 92.1 67.0 94.0 93.5 60.6 92.1 91.7 71.0 95.3 95.1 66.7 93.9 93.2 57.0 91.9 91.2
Awesome PMP 66.8 89.4 89.0 70.2 93.2 93.0 44.9 79.7 79.5 79.3 97.0 97.2 62.6 90.1 89.8 76.2 94.3 94.1

Table 3: Comparison of FastAlign and Awesome and impact of the PMP translation approach on Relations subset.

substring and a two-step alignment projection of
the answer evidence substring, both included in the
same source paragraph. Ideally, the two substrings
should be identical.

If the substring changes (expands, shrinks, shifts,
etc.) during the two-step alignment projection, the
alignment is considered inaccurate. An incorrect
answer evidence substring alignment in the for-
ward step is likely to carry over to the backward
projection, leading to further errors. In contrast,
successful alignment in both directions serves as a
reliable indicator of accurate projection from the
source language to the translation language. Of
course, the projection of the substring alignment
from the source language to the target language
could be correct, but the second projection back to
the source language was problematic. So, this eval-
uation method is stricter than directly measuring
the quality of the newly generated answer evidence
substrings. Furthermore, it also indirectly evalu-
ates the quality of the MT from the previous stage
described in Section 3.1. Poor translation would
hinder accurate alignment, allowing this method
to compare the performance of the straightforward
MT and the PMP approach.

In the unsupervised forward-backward substring
alignment evaluation, we compare two English sub-
strings and aim for identity. To measure string sim-
ilarity, we use SQuAD metrics — Exact Match
(EM) and F1 score. However, evaluating the cor-
rectness of the projected substring position, not just
the word similarity, may be valuable. Thus, in ad-
dition to Exact Match (EM) and F1, we introduce
Position Match (PM) computed as:

PM =
2×OP ×OT

OP +OT
(1)

where OP = Overlap Length
Predicted Length is the predicted overlap

ratio, and OT = Overlap Length
True Length is the true overlap

ratio. The overlap is the common span between the
predicted and original substring positions.

The final scores, averaged over all aligned an-
swer evidence substrings, are shown in Tables 2
and 3. The PMP approach improves the perfor-
mance of the standard MT model. The Relations
subset is easier to process for the MT and align-
ment stages compared to the Medication subset,
achieving F1 scores higher than 90% for most lan-
guages. The EM metric shows that approximately
two-thirds of the answer evidence substrings in
almost every language were perfectly projected
without change. The Medication subset is more
challenging but still exhibits good results. For both
subsets, the Transformer-based aligner Awesome
excels in Romance languages, while FastAlign out-
performs in Greek. For Slavic languages, Awe-
some performs better in the Medication subset, but
the results in the Relations subset are less clear.
Only for Polish, FastAlign outperforms Awesome
in all metrics. The differences between FastAl-
ign and Awesome may be due to the fact that we
trained FastAlign on all our languages, whereas
Awesome was fine-tuned for word alignment only
on the Romanian-English language pair relevant
to our study. This could explain the performance
disparities between Romance languages and oth-
ers. However, since Awesome is based on mBERT,
which has seen all these languages during pretrain-
ing, and Dou and Neubig (2021) showed that Awe-
some performs well even without fine-tuning, the
impact of fine-tuning should not be pronounced.

3.3 Evaluation on Full Clinical Reports
Building on the results from the previous section,
we base our next experiments on the PMP transla-
tion approach. For the Medication subset, we will
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BG CS PL
EM F1 EM F1 EM F1

Awesome 54.1 77.4 61.7 81.4 53.0 76.8
FastAlign 50.4 79.4 57.5 82.0 55.2 80.4

Table 4: Comparison of mBERT performance on Re-
lations translated to Slavic languages aligned by Awe-
some/FastAlign (paragraphs joined into full reports).

utilize FastAlign for Greek while adopting Awe-
some for all remaining languages. For the Relations
subset, FastAlign will be employed for Greek, and
Awesome for the Romance languages. To make a
final decision on the most appropriate alignment
method for Slavic languages in the Relations sub-
set, this section evaluates the QA performance of
the mBERT model using full clinical reports as
context (rather than paragraphs, where we could
not consider translated contexts that do not contain
any question-answer pairs), considering both align-
ment models. Then, we compare alignment quality
based on QA performance.

We follow the experiments of Yue et al. (2020).
For this purpose, we focus on the Slavic languages
within the Relations subset, Bulgarian, Czech, and
Polish, and compare the QA results obtained us-
ing FastAlign and Awesome alignments, measured
using the official SQuAD evaluation script. The
results are presented in Table 4.

For Polish, we confirmed that FastAlign is the
superior method. For Bulgarian and Czech, the
choice is less clear, as the EM and F1 scores di-
verge. Although FastAlign shows a marginal F1
advantage, Awesome substantially outperforms in
EM, so we proceeded with Awesome-based align-
ment for both languages in the following experi-
ments on the Relations subset.

3.4 Filtering-out Low-Quality Alignments

Despite the alignment being mostly good, it is not
always perfect. One reason might be flawed transla-
tions from the first stage. We also lack information
about paragraphs that do not contain answers that
need to be aligned to a new language. Therefore,
paragraphs and answers with low alignment scores
need to be filtered out, ignoring paragraphs with-
out answers. This simplifies the task to Paragraph
QA (similar to Oracle QA from Lanz and Pecina
(2024)), resembling the SQuAD-like format (con-
text is a paragraph rather than a document). There-
fore, we examine which substring alignments we
should discard and which ones we should keep

(similarly as was done by Macková and Straka
(2020)).

Low-quality answer evidence substring align-
ments negatively impact both the quality of the
training and subsequent evaluation. Thanks to the
forward-backward substring alignment evaluation,
the quality of answer evidence projection can be
estimated. This allows for filtering out those with
low scores from the dataset, along with their cor-
responding paragraph context and question. Addi-
tionally, paragraphs can be removed if no question-
answer pair is available, as there is no information
about the quality of such paragraphs. As a result, in
the remainder of this work, we focus on Paragraph
QA instead of full report QA.

To determine how many answer evidences
should be discarded, we conduct the following
experiment. We sort the answer evidences from
the training data based on their PM scores and
sequentially remove 0, 5, 10, 15, 20, 30, 40, ...% of
the low-quality instances and for each resulting
subset, we fine-tune the mBERT model (for each
language separately) and compare the performance
on the (silver) full test sets using Exact Match (EM)
and F1 measures as in Yue et al. (2020). The re-
sults are averaged over three measurements with
different random seeds and visualized in Figure 5
in Appendix E. Removing about 15% of lowest-
quality instances improves the scores. Beyond this
point, further removal risks losing complex data
samples that may not have been perfectly aligned
but remain essential for our task.

The pipeline described above is applied to the
generated non-English training data and also to test
data. Traditionally, such data is referred to as silver
data, a term used to describe data that is automati-
cally generated through processing of the original
high-quality gold standard data. We experiment
with two test sets: the full test set (which may con-
tain alignment errors) and the intersection test set,
formed by intersecting the translated and filtered
test sets in each language, assuming higher relia-
bility. The intersection test set contains identical
instances across languages.

4 Multilingual Paragraph Question
Answering Experiments

In this section, the performance of multilingual
models is evaluated using the original English test
set by assessing EM/F1 on the Paragraph QA task.
The quality of the emrQA translations is also dis-
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EM Score Full Test Set Intersection Test Set
Models EN BG CS EL ES PL RO EN BG CS EL ES PL RO
distilmBERT (mono) 30.5 19.7 23.1 16.6 26.4 23.2 24.9 32.6 24.7 27.8 20.6 30.0 28.0 29.2
mBERT (mono) 32.7 21.4 25.0 17.8 28.7 24.3 27.8 34.6 26.5 29.7 22.0 32.4 29.0 32.5
XLM-R (mono) 33.4 22.1 26.0 18.3 29.1 25.5 28.0 35.4 27.3 30.9 22.3 32.8 30.5 32.6
XLM-R Large (mono) 33.7 23.0 26.5 19.1 30.4 26.0 28.5 35.4 28.2 31.5 23.3 34.3 30.6 33.1
distilmBERT (multi) 31.3 21.2 24.8 18.2 28.1 25.0 26.7 33.2 26.2 29.4 22.4 31.3 29.8 31.2
mBERT (multi) 33.0 22.6 26.6 19.4 29.9 26.6 28.5 35.1 27.6 31.3 23.9 33.5 31.7 33.2
XLM-R (multi) 33.5 22.8 26.8 19.5 30.0 27.1 28.6 35.4 27.7 31.5 24.2 33.3 31.9 33.1
XLM-R Large (multi) 33.6 23.7 27.4 20.6 30.3 27.1 29.0 35.5 29.1 32.0 25.3 33.6 32.1 33.8

Table 5: QA results on the Medication subset (EM scores) for monolingual (mono) and multilingual (multi) models.

F1 Score Full Test Set Intersection Test Set
Models EN BG CS EL ES PL RO EN BG CS EL ES PL RO
distilmBERT (mono) 71.6 62.6 65.8 56.8 67.8 65.4 67.2 72.6 66.2 68.4 60.3 69.7 68.3 69.1
mBERT (mono) 75.3 66.0 69.7 60.1 71.0 67.9 70.7 76.0 69.8 72.1 63.6 72.5 71.0 72.8
XLM-R (mono) 75.9 67.4 71.1 61.8 72.3 69.9 72.2 76.6 71.0 73.8 65.5 74.0 72.8 74.5
XLM-R Large (mono) 77.4 69.3 72.7 63.7 74.1 70.9 73.6 78.0 72.8 75.2 67.5 75.7 73.6 75.8
distilmBERT (multi) 74.5 66.9 70.4 61.1 71.7 69.4 71.4 75.2 70.5 72.4 65.1 73.3 72.5 73.4
mBERT (multi) 76.7 68.6 72.3 63.5 74.0 71.5 73.3 77.3 72.2 74.2 67.3 75.4 74.4 75.2
XLM-R (multi) 77.0 69.6 72.8 64.5 74.1 72.0 73.5 77.6 73.0 75.0 68.4 75.5 74.6 75.7
XLM-R Large (multi) 77.3 70.3 73.7 65.5 74.9 72.7 74.2 77.8 73.7 75.6 69.3 76.4 75.5 76.3

Table 6: QA results on the Medication subset (F1 scores) for monolingual (mono) and multilingual (multi) models.

cussed by analyzing the performance of multilin-
gual models on the translated data. In addition,
the impact of including multilingual data during
fine-tuning on model performance is investigated.

For these experiments, we selected four multilin-
gual models mBERT, distilmBERT, XLM-R, and
XLM-R Large (as Gaschi et al. (2023) did). In
all experiments, we use filtered training data (dis-
carding the 15% weakest alignments of the answer
evidence substrings). Based on the analysis of Yue
et al. (2020), we randomly sample the QA pairs to
have the same number of training samples as 20%
and 5% of the original unfiltered training data in
the Medication and Relations subsets, respectively.

For the test set, we analyze two approaches. The
first uses the entire unfiltered test sets. The second
filters each translation by discarding the weakest
15% of alignments of the answer evidence sub-
strings and then takes the intersection of filtered test
sets across languages, allowing direct comparison.
This filtering roughly retains 63% of the question-
answer-paragraph triplets from the full unfiltered
test sets. We split both Medication and Relations
reports into train/dev/test according to a 7:1:2 ratio
and perform experiments with three different ran-
dom seeds for the splits. Finally, we examine mul-
tilingual training, where a single model is trained
on the combined training data of all languages and
evaluated separately on each. The results are shown

in Tables 5, 6, 16 and 17.

4.1 QA Evaluation Across Languages

When the results of the full test set of other lan-
guages are compared with English, the results for
Romance languages show a slight decrease, Slavic
languages drop a bit more, and Greek displays a
substantial difference. The results clearly reflect
the quality already measured by the unsupervised
forward-backward substring alignment evaluation
method, which assesses the overall quality of the
MT process, including substring alignment. This
trend is seen not only across languages, but also
in EM and F1 scores. Although F1 scores remain
high under the alignment evaluation method, and
therefore the Paragraph QA F1 score differences of
new languages and English are not that large, EM
scores in Paragraph QA show a much larger drop.

When trying to balance the quality of the test
sets by filtering out poor-quality answer alignments
and taking the intersection of languages, the scores
across languages become more similar (except for
Greek, which remains considerably lower).

Interestingly, we also observe that in the case
of Medication, the English results improve on the
intersection test set. This suggests that by remov-
ing poorly aligned answers during translations, we
also excluded more complex answers regarding the
QA prediction process. The remaining question
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Medication Relations
EM F1 EM F1

BERTbase 31.0 72.9 91.1 96.2
BioBERT 31.1 74.4 91.7 96.9
ClinicalBERT 31.4 73.9 92.0 96.9
mBERT (w/o tgt) 31.0 75.9 90.0 96.0
mBERT (mono) 32.7 75.3 92.8 97.3
mBERT (multi) 33.0 76.7 92.6 97.3

Table 7: Performance comparison of clinical-domain
monolingual and general-domain multilingual models.

is whether these are genuinely complex question-
answer-paragraph triplets or if they represent anno-
tation errors in the original emrQA dataset, which,
due to its synthetic origin, contains numerous inac-
curacies (Yue et al., 2020).

4.2 Impact of Multilingual Training
As we can see in Tables 5, 6, 16 and 17, multilin-
gual training almost always slightly improves both
EM and F1 scores, except in rare cases. As was
already described, this training involves using all
training sets from all languages to train a single
model. In some cases, the improvement from mul-
tilingual training is even a few percentage points,
particularly for smaller and faster models or for
more problematic dataset translations.

When comparing multilingual training on the
gold data in English, we arrive at a similar con-
clusion: augmenting the data with additional lan-
guages helps, particularly for the Medication sub-
set, where Paragraph QA performance improves
in all cases except with the XLM-R Large model.
For the Relations subset, however, the differences
are almost negligible, which may be due to the fact
that the Relations task is approaching its oracle and
has little room for further improvement (Yue et al.,
2020).

5 Domain-Specific Models: Not Always
Superior

In the previous section, we learned that multilin-
gual models demonstrate strong performance, par-
ticularly on the Relations subset, despite never be-
ing specifically pretrained on clinical or medical
data. To assess how much multilingual models are
impacted by this, we measured the performance
of BERTbase, ClinicalBERT, and BioBERT mod-
els fine-tuned only on the original English emrQA
dataset on the same Paragraph QA task. In contrast,
these models are not multilingual.

Table 7 compares these three models with their
multilingual counterpart, mBERT. The evaluation
includes three settings: monolingual fine-tuning
(mono), fine-tuning with multilingual data augmen-
tation (multi), as described earlier, and mBERT
fine-tuned on train sets of all emrQA translations
except the original English data (w/o tgt).

The results show that multilingual models per-
form as well as domain-specific models in our clin-
ical QA task. Moreover, for the Medication sub-
set, multilingual models outperform their domain-
specific counterparts by a few percentage points.
Additionally, while omitting the original English
data during fine-tuning results in a performance
drop, the decrease is not substantial, indicating a
reasonable degree of cross-lingual transfer.

6 Conclusions

Our study focuses on the clinical QA task of find-
ing answer evidence substrings within a given con-
text for a specific question by multilingual models
rather than domain-specific ones assessing their
potential of medical support for various languages
(since current clinical models are predominantly
focused on English). This work investigated the
effect of multilingual data augmentation in the
clinical domain. Therefore, we described the MT
pipeline including the process of answer evidence
substring projection to translated paragraphs. Then,
we compared different alignment and translation
approaches. For our experiments, we used two
subsets - Medication and Relations - from the em-
rQA dataset, translating them into six European
languages: Bulgarian, Czech, Greek, Spanish, Pol-
ish, and Romanian.

During the data augmentation process, we ob-
served that different languages pose distinct chal-
lenges for translation and subsequent QA eval-
uation. However, multilingual augmentation it-
self can be effective even in the clinical domain,
as demonstrated by experiments on the Medica-
tion subset. However, it has a more limited ef-
fect on the Relations subset. However, we find
that domain-specific models in our clinical QA
task do not outperform multilingual models. In
fact, general-domain multilingual models notice-
ably outperformed clinical domain-specific models
on the Medication subset.
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Limitations

This work is limited by the quality of the emrQA
dataset, and our conclusions that clinical mono-
lingual domain-specific models do not outperform
multilingual general-domain models are based on
a single specific clinical task evaluated in one spe-
cific language, rather than a broader range of tasks.

Acknowledgments

This research was partially supported by the SVV
project number 260 698 and the Charles Univer-
sity GAUK grant No. 284125. It has also re-
ceived support and funding from the European
Union’s Horizon Europe research and innovation
programme project RES-Q plus (Grant Agreement
No. 101057603). Views and opinions expressed
are however those of the authors only and do not
necessarily reflect those of the European Union or
the Health and Digital Executive Agency. Neither
the European Union nor the granting authority can
be held responsible for them.

References

Mohamed Abdelghafour, Mohammed Mabrouk, and
Zaki Taha. 2024. Hallucination mitigation techniques
in large language models. International Journal
of Intelligent Computing and Information Sciences,
24(4):73–81.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clin-
ical BERT embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78, Minneapolis, Minnesota, USA. Associ-
ation for Computational Linguistics.

Mihaela Bornea, Lin Pan, Sara Rosenthal, Radu Florian,
and Avirup Sil. 2021. Multilingual transfer learn-
ing for qa using translation as data augmentation.
Proceedings of the AAAI Conference on Artificial
Intelligence, 35(14):12583–12591.

C. Carrino, Marta R. Costa-jussà, and José A. R. Fonol-
losa. 2020. Automatic Spanish translation of SQuAD
dataset for multi-lingual question answering, page
5515–5523. European Language Resources Associa-
tion (ELRA).

Oralie Cattan, Christophe Servan, and Sophie Rosset.
2021. On the usability of transformers-based mod-
els for a French question-answering task. In Pro-
ceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP
2021), pages 244–255, Held Online. INCOMA Ltd.

Zeming Chen, Alejandro Hernández Cano, Angelika
Romanou, Antoine Bonnet, Kyle Matoba, Francesco
Salvi, Matteo Pagliardini, Simin Fan, Andreas
Köpf, Amirkeivan Mohtashami, Alexandre Sallinen,
Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk,
Deniz Bayazit, Axel Marmet, Syrielle Montariol,
Mary-Anne Hartley, Martin Jaggi, and Antoine
Bosselut. 2023. Meditron-70b: Scaling medical
pretraining for large language models. Preprint,
arXiv:2311.16079.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Marta R. Costa-jussà, James Cross, Onur Çelebi,
Maha Elbayad, Kenneth Heafield, Kevin Heffer-
nan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Rop-
ers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No language left behind: Scal-
ing human-centered machine translation. Preprint,
arXiv:2207.04672.

Dina Demner-Fushman, Wendy W. Chapman, and
Clement J. McDonald. 2009. What can natural lan-
guage processing do for clinical decision support?
Journal of Biomedical Informatics, 42(5):760–772.
Biomedical Natural Language Processing.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Zi-Yi Dou and Graham Neubig. 2021. Word alignment
by fine-tuning embeddings on parallel corpora. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2112–2128, Online.
Association for Computational Linguistics.
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A Technical Details

This section provides additional details on fine-
tuning, resource usage, and hyperparameters used
in our experiments.

For alignment and translation models, default hy-
perparameters were used. QA models were trained
with a learning rate of 3× 10−5, 3 epochs, weight
decay of 0.01, batch size of 16, and a tokenizer pro-
cessing 384-token blocks with a 128-token stride.

The experiments were carried out on nodes
equipped with NVIDIA L40 GPUs (48GB per
GPU).

The MT process took approximately 10 hours
per language for the Medication subset and around
28 hours for the Relations subset. Alignment via
Awesome required about 5 hours for the Medica-
tion subset and 8 hours for Relations. FastAlign
training spanned several days, although the align-
ment step itself was completed in minutes.

For QA experiments, monolingual fine-tuning on
the Medication subset took 1-4 hours (depending
on model), while the Relations subset required 2-
8 hours. Multilingual training ranged from 4–22
hours for the Medication subset and 8–40 hours for
Relations.
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B Clinical Performance of MT Models

Model BLEU METEOR WER CER
NLLB 600M 28.87 0.544 55.41 41.1
NLLB 1.3B dis 34.65 0.5911 50.35 37.7
NLLB 1.3B 33.02 0.5837 51.62 38.81
MadLad 3B 38.85 0.6367 45.91 34.71
NLLB 3.3B 35.04 0.6018 49.97 37.32
LINDAT 39.04 0.6337 45.56 34.55
MadLad 7B 38.77 0.6341 46.15 35.01
MadLad 10B 39.28 0.6394 45.61 34.38
NLLB 54B 38.23 0.623 47.28 35.36

Table 8: Translation from English into Czech.

Model BLEU METEOR WER CER
NLLB 600M 30.08 0.5732 52.18 38.48
NLLB 1.3B dis 31.3 0.585 51.14 37.6
NLLB 1.3B 31.4 0.5839 51.33 37.88
MadLad 3B 34.43 0.611 49.03 35.94
NLLB 3.3B 32.59 0.5949 50.95 37.44
LINDAT 30.77 0.5785 52.69 38.24
MadLad 7B 34.47 0.613 49.16 36.07
MadLad 10B 34.7 0.6101 49.03 35.78
NLLB 54B 33.46 0.5992 50.36 37.19

Table 9: Translation from English into German.

Model BLEU METEOR WER CER
NLLB 600M 46.67 0.713 41.43 27.82
NLLB 1.3B dis 47.65 0.7188 40.67 27.01
NLLB 1.3B 48.17 0.7224 39.93 26.94
MadLad 3B 49.21 0.7307 40.33 26.72
NLLB 3.3B 47.99 0.7218 40.68 27.17
LINDAT 47.28 0.7144 39.65 27.9
MadLad 7B 48.93 0.7305 41.03 26.87
MadLad 10B 49.88 0.7364 39.46 26.4
NLLB 54B 48.3 0.723 40.65 26.84

Table 10: Translation from English into French.

Model BLEU METEOR WER CER
NLLB 600M 13.04 0.3577 72.66 56.87
NLLB 1.3B dis 15.8 0.3948 69.78 55.27
NLLB 1.3B 15.29 0.3899 69.62 54.9
MadLad 3B 19.41 0.4403 65.37 52.33
NLLB 3.3B 16.96 0.4114 68.37 53.62
LINDAT - - - -
MadLad 7B 20.48 0.4517 64.89 51.33
MadLad 10B 19.94 0.448 64.43 51.29
NLLB 54B 18.91 0.4317 65.93 51.73

Table 11: Translation from English into Hungarian.

Model BLEU METEOR WER CER
NLLB 600M 14.97 0.3786 70.64 55.53
NLLB 1.3B dis 17.37 0.41 66.7 52.33
NLLB 1.3B 16.94 0.407 68.07 53.83
MadLad 3B 20.46 0.4545 62.33 48.11
NLLB 3.3B 18.41 0.4264 65.36 50.73
LINDAT 17.87 0.4163 65.1 50.24
MadLad 7B 20.95 0.4598 61.8 47.67
MadLad 10B 20.5 0.4546 62.1 47.9
NLLB 54B 19.24 0.4368 63.98 49.55

Table 12: Translation from English into Polish.

Model BLEU METEOR WER CER
NLLB 600M 46.09 0.7364 37.85 26.41
NLLB 1.3B dis 47.62 0.7462 37.12 26.3
NLLB 1.3B 47.19 0.7476 37.44 26.47
MadLad 3B 49.05 0.7596 35.7 25.19
NLLB 3.3B 48.05 0.7534 36.84 26.05
LINDAT - - - -
MadLad 7B 48.55 0.7555 36.27 25.72
MadLad 10B 48.27 0.7545 36.48 25.69
NLLB 54B 47.98 0.7505 36.7 26.12

Table 13: Translation from English into Spanish.

Model BLEU METEOR WER CER
NLLB 600M 41.93 0.6658 40.1 28.93
NLLB 1.3B dis 44.95 0.692 38.63 27.54
NLLB 1.3B 45.31 0.692 37.32 26.77
MadLad 3B 52.34 0.748 31.4 23.07
NLLB 3.3B 46.97 0.7059 36.55 26.17
LINDAT - - - -
MadLad 7B 51.42 0.7402 32.76 24.21
MadLad 10B 51.82 0.7437 31.78 23.14
NLLB 54B 47.26 0.7071 36.34 26.2

Table 14: Translation from English into Swedish.

80



C PMP Phrase Alternatives

Language Translations
EN Based on medical reports.
BG Въз основа на медицинските доклади.

Въз основа на медицински доклади.
На базата на медицински доклади.
Въз основа на медицински съобщения.

CS Na základě lékařských zpráv.
EL Βασισμένο σε ιατρικές εκθέσεις.

Με βάση ιατρικές εκθέσεις.
Βάσει ιατρικών εκθέσεων.
Με βάση τις ιατρικές εκθέσεις.
Βάσει των ιατρικών εκθέσεων.
Σύμφωνα με τις ιατρικές εκθέσεις.

ES Basado en informes médicos.
Según los informes médicos.
De acuerdo con los informes médicos.
Con base en los informes médicos.
Fundado en informes médicos.

RO Pe baza rapoartelor medicale.
PL Na podstawie raportów medycznych.

Na podstawie sprawozdań lekarskich.

Table 15: Translations of the phrase "Based on medical
reports." used as alternative phrases to look for in the
translated paragraphs in the PMP MT approach.

D PMP Example

Figure 4: Example of the MT process based on the PMP
approach using the MadLad model.

E Filtration Experiments

Figure 5: Filtration experiment for Medication and Rela-
tions subsets with mBERT. X-axis describes the percent-
age of the weakest answer evidence substrings that are
removed from the training sets. Y-axis shows the F1 and
EM scores of the Paragraph QA task for all translations.
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F Multilingual Question Answering Results - Relations Subset

EM Score Full Test Set Intersection Test Set
Models EN BG CS EL ES PL RO EN BG CS EL ES PL RO
distilmBERT (mono) 91.0 60.7 67.6 49.5 72.0 59.2 69.4 89.5 68.8 73.9 55.8 74.1 65.8 76.2
mBERT (mono) 92.8 63.2 70.0 51.5 74.3 61.8 70.8 90.7 71.3 76.6 57.6 76.3 68.5 77.2
XLM-R (mono) 93.2 63.3 71.1 52.3 75.3 62.9 72.2 91.1 70.9 77.4 58.7 77.1 69.6 79.0
XLM-R Large (mono) 93.6 64.7 72.4 54.6 76.2 65.1 73.1 91.5 72.8 78.9 60.9 78.1 72.3 80.0
distilmBERT (multi) 91.5 62.1 70.0 50.8 73.9 60.9 71.0 89.9 70.0 76.5 57.3 76.1 67.6 77.4
mBERT (multi) 92.6 63.3 70.6 52.3 75.1 62.8 72.1 90.3 71.2 77.3 58.6 76.5 70.0 78.5
XLM-R (multi) 93.0 64.1 72.4 53.1 75.8 63.8 72.7 91.0 72.2 78.9 59.3 77.8 70.7 79.6
XLM-R Large (multi) 93.2 65.5 72.8 54.1 76.5 64.8 74.0 91.0 73.5 78.9 60.8 78.7 71.6 80.9

Table 16: QA results on the Relations subset (EM scores) for monolingual (mono) and multilingual (multi) models.

F1 Score Full Test Set Intersection Test Set
Models EN BG CS EL ES PL RO EN BG CS EL ES PL RO
distilmBERT (mono) 96.3 82.6 85.7 79.7 89.4 83.8 87.2 95.3 86.4 88.4 83.2 90.0 86.4 89.4
mBERT (mono) 97.3 84.5 87.7 81.9 91.0 86.2 88.6 96.1 90.4 88.2 85.2 91.5 88.8 90.8
XLM-R (mono) 97.4 85.2 88.6 82.5 91.7 87.2 89.5 96.2 88.7 91.0 85.7 92.1 89.6 91.7
XLM-R Large (mono) 97.6 86.1 89.5 84.3 92.2 88.7 90.3 96.4 89.8 92.0 87.3 92.7 91.0 92.5
distilmBERT (multi) 96.7 83.9 87.8 81.4 90.8 85.7 88.6 95.8 87.6 90.3 84.9 91.3 88.3 90.5
mBERT (multi) 97.3 85.2 88.7 83.0 91.8 87.3 89.6 96.1 88.9 91.2 86.2 92.1 89.8 91.6
XLM-R (multi) 97.4 85.9 89.3 83.7 92.5 88.4 90.3 96.3 89.6 91.7 86.7 93.0 90.6 92.4
XLM-R Large (multi) 97.5 86.7 89.9 84.5 92.7 89.2 90.9 96.4 90.4 92.2 87.6 93.2 91.1 93.2

Table 17: QA results on the Relations subset (F1 scores) for monolingual (mono) and multilingual (multi) models.
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Abstract

Opioid abuse and addiction remain a major pub-
lic health challenge in the US. At a broad level,
barriers to recovery often take the form of indi-
vidual, social, and structural issues. However, it
is crucial to know the specific barriers patients
face to help design better treatment interven-
tions and healthcare policies. Researchers typ-
ically discover barriers through focus groups
and surveys. While scientists can exercise bet-
ter control over these strategies, such methods
are both expensive and time consuming, need-
ing repeated studies across time as new barriers
emerge. We believe, this traditional approach
can be complemented by automatically mining
social media to determine high-level trends in
both well-known and emerging barriers. In this
paper, we report on such an effort by mining
messages from the r/OpiatesRecovery sub-
reddit to extract, classify, and examine barriers
to opioid recovery, with special attention to
the COVID-19 pandemic’s impact. Our meth-
ods involve multi-stage prompting to arrive at
barriers from each post and map them to exist-
ing barriers or identify new ones. The new
barriers are refined into coherent categories
using embedding-based similarity measures
and hierarchical clustering. Temporal anal-
ysis shows that some stigma-related barriers
declined (relative to pre-pandemic), whereas
systemic obstacles—such as treatment discon-
tinuity and exclusionary practices—rose signif-
icantly during the pandemic. Our method is
general enough to be applied to barrier extrac-
tion for other substance abuse scenarios (e.g.,
alcohol or stimulants).

1 Introduction

The opioid epidemic in the United States has per-
sisted for over two decades, with opioid-related
fatalities surging despite concerted public health
interventions (National Institute on Drug Abuse,
2024). Individuals struggling to recover from opi-
oid abuse or addiction often encounter powerful

personal, social, and structural barriers such as
traumatic life events, shame, or limited access to
treatments that severely hinder the recovery pro-
cess (Smith et al., 2021). As substance abuse is a
multifaceted disease involving physiological, be-
havioral, and psychosocial factors, barriers to re-
covery are not always simple or obvious and may
vary across different groups of people. However,
it is critical to discover and document these barri-
ers to tailor treatments and targeted interventions.
This has been typically explored through qualitative
methods like focus groups, surveys, and in-depth
interviews. While these approaches yield valuable
insights, they are also labor-intensive, rely on self-
reported experiences in controlled settings, and
cannot easily capture the evolution of new recovery
challenges (without repeating studies).

Meanwhile, online communities have emerged
as vital platforms where individuals can share their
challenges, successes, and strategies for overcom-
ing addiction. Due to the perceived anonymity,
users also tend to express more freely compared
to disclosing to a provider during face-to-face in-
teractions. One such community is the subreddit
r/OpiatesRecovery with over 50,000 members
who share their struggles, successes, and motiva-
tions (Reddit, 2024). This user-generated content
provides a dynamic lens into the nuances of opioid
recovery, offering spontaneous, evolving narratives
that traditional methods may miss. Yet, given the
sheer volume of data generated daily, identifying
specific barriers can be daunting without automated
support. Our effort addresses this gap by extract-
ing and temporally analyzing barriers to recovery
as expressed by members of r/OpiatesRecovery.
By focusing on posts from 2018 to 2021, we
aim to capture how these barriers changed during
the COVID-19 pandemic relative to pre-pandemic
times. Here changes include how well-known bar-
riers became more or less prominent across time
and the emergence of any new barriers.
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Before we proceed, for the purposes of this study,
we define a “barrier” as any personal (e.g., stress
from a recent breakup), social (e.g. shame), or
structural (e.g., limited access to treatment) circum-
stance of a patient’s life that impedes their recovery
from opioid addiction. A barrier is often expressed
as a phrase, a sentence, or a short blurb that suc-
cinctly expresses the specific circumstance. Differ-
ent users can express the same barrier in different
ways. Unlike for entities such as diseases, med-
ications, or side effects, there are no established
terminologies or canonical definitions of barriers to
recovery from substance abuse. This complicates
(a). aggregation of barrier expressions that essen-
tially mean the same thing and (b). characterization
of what constitutes a new barrier. As such, bar-
rier analysis poses interesting challenges to NLP
methods (which typically handle categories with
clear semantic distinctions using ample supervision
signal from training data.) We believe these kinds
of tasks are not uncommon in healthcare, where
so called coding “instruments” are typically used
to conduct qualitative research that can be subse-
quently interpreted through a quantitative lens.

Large language models (LLMs), based on the
transformer decoder component, offer a new affor-
dance with regard to the challenge posed in the pre-
vious paragraph. We use the GPT-4 LLM (specifi-
cally, GPT-4-1106-preview) in a semi-automatic
setup to extract barriers, map them to predefined
barriers from prior literature, identify new barriers,
and quantify temporal barrier prevalence variations.
Our contributions are as follows:

• We conduct a literature review to curate barri-
ers to opioid recovery focusing on papers that
report on conventional approaches such as a
focus-groups and surveys. We extract a set of
21 barriers from this purely manual process.

• We use a multi-stage prompting approach with
GPT-4 to extract barrier expressions from
r/OpiatesRecovery messages from 2018 to
2021. Using Open AI embeddings (specifi-
cally, text-embedding-3-large) of these ex-
pressions we map them to the 21 literature-
derived barriers identified in the previous step,
if there is sufficient semantic similarity.

• The remaining barrier expressions (unmapped
from previous step) are consolidated into a
new coherent set of emerging barriers through
agglomerative hierarchical clustering of their
Open AI embeddings.

• We examine normalized shifts in prevalence of
both literature-derived and emerging barriers
in the periods before and after the pandemic
declaration (March 11, 2020) from the 2018–
2021 r/OpiatesRecovery messages.

Our approach is general enough to be ap-
plied for other substances and we provide con-
crete findings on emerging barriers and tempo-
ral trends. The code corresponding to our full
barrier extraction and clustering pipeline is avail-
able here: https://github.com/bionlproc/
opioid_recovery_barriers

2 Related Work

1. Prior work on barriers: Identifying barriers to
recovery from opioid abuse has been extensively
studied through conventional approaches, reveal-
ing a range of challenges including social stigma,
lack of support networks, limited access to treat-
ment, and economic hardships. Comorbid mental
health disorders (e.g., depression and anxiety) fur-
ther complicate recovery, highlighting the need for
integrated treatment approaches (Cernasev et al.,
2021; Dickson-Gomez et al., 2024).
2. Social media, Reddit, and substance abuse ef-
forts: Social media platforms, particularly Red-
dit, have become valuable resources for research-
ing substance (ab)use and addiction (Pandrekar
et al., 2018; Kavuluru et al., 2019; Tran and
Kavuluru, 2020). Our team has recently partic-
ipated in the shared task on identifying clinical
and social impacts of non-medical drug use in
Reddit posts (Obeidat et al., 2024). Subreddit
r/OpiatesRecovery, with its active community,
offers insights into personal struggles and coping
strategies that traditional methods may miss (Lu
et al., 2019; Boettcher, 2021). NLP techniques are
used to identify themes in recovery narratives, ana-
lyze sentiment trends, and classify behavioral shifts
in substance use discussions (Sarker et al., 2022;
Yang et al., 2023; Lu et al., 2019).

Recent studies have explored NLP-driven ap-
proaches to analyzing opioid-related discussions
on social media. Bremer et al. (2023) applied NLP
techniques to detect Reddit posts discussing barri-
ers to opioid use disorder (OUD) treatment. Their
effort is the closest to ours in terms of the main
themes explored; however, their focus is more on
barriers to seeking medical treatment for OUD and
relies on manual analysis following an initial NLP-
driven post identification. Our study broader in
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scope (general barriers to recovery process) and
introduces a semi-automated approach that uses
LLMs to extract, categorize, and track the evolution
of opioid recovery barriers over time. Unlike previ-
ous studies that primarily used NLP techniques for
retrieving relevant discussions, our methodology
automates key components of the analysis. This en-
ables large-scale analysis of recovery barriers with
minimal manual intervention. Yang et al. (2024)
focused on self-disclosures of opioid use on Reddit,
developing a classification system to distinguish
different phases of substance use, such as medical
use, misuse, addiction, and recovery. Additionally,
Nasralah et al. (2020) introduced a social media
text mining framework for opioid-related discus-
sions, leveraging ontology-based keyword searches
and topic modeling to detect broader trends in drug
abuse discourse on Twitter.
3. Opioid epidemic during the pandemic: The
COVID-19 pandemic intensified challenges for in-
dividuals struggling with opioid recovery by dis-
rupting healthcare services and support systems.
Studies show increased isolation, reduced access
to treatment, and higher stress levels during the
pandemic, leading to higher relapse rates (Mellis
et al., 2021; Melamed et al., 2022). The shift to
telehealth introduced technological barriers and re-
duced personal interactions, further complicating
effective treatment (Oesterle et al., 2020).

Our effort is at the intersection of the above
three themes. Traditional studies offer foundational
knowledge, while mining social media with NLP
methods helps capture fine-grained challenges. Ad-
ditionally, examining the impact of COVID-19
adds a temporal dimension, illustrating how ex-
ternal crises can alter the recovery landscape.

3 Methodology

3.1 Data collection

Reddit data: Posts were collected from
r/OpiatesRecovery using Academic Tor-
rents, a platform for sharing large datasets
(Watchful1, 2023). The extraction covered posts
made between January 1, 2018, and December
31, 2021, a timeframe selected to capture opioid
recovery barriers both before and during the
COVID-19 pandemic. Initially, 25,552 posts from
8,594 unique users were extracted. However, due
to their minimal content, posts with fewer than 50
words were excluded, resulting in a final dataset of
14,735 posts from 7,202 unique users.

Literature derived barriers: To identify well-
known barriers to opioid recovery, a literature
search was conducted using Google Scholar with
the keywords “opioid use,” “barriers,” and “re-
covery.” The primary sources include multiple
systematic reviews (between 2013–2024 (Notley
et al., 2013; Grella et al., 2020; Barnett et al.,
2021; Cernasev et al., 2021; Choi et al., 2022;
Farhoudian et al., 2022; Hutchison et al., 2023;
Dickson-Gomez et al., 2024)), which provided
comprehensive insights into individual, social, and
structural impediments to sustained opioid use dis-
order treatment. A few additional studies were
incorporated to ensure a broad representation of
barriers. Identified barriers were reviewed, catego-
rized, and consolidated to eliminate redundancy, re-
sulting in a final list of 21 distinct literature-derived
barriers (LDBs) by merging conceptually similar
factors and coming up with corresponding brief
blurbs capturing their essence; since this was done
manually, these blurbs were used as canonical ways
of describing the LDBs.

3.2 Barrier expression extraction

A first task in mining Reddit posts for barriers is to
ensure first person disclosures that are not vague.
Thus, the following guidelines were established:

• The user is discussing their own experiences
and not those of others.

• The barrier is explicitly mentioned by the user
or strongly indicated as causing or contribut-
ing to the risk of relapse.

To evaluate multiple LLM prompting strategies,
we selected a set of 100 posts with careful consider-
ation to capture a diverse sample. This selection in-
cluded posts that adhered to the guidelines — con-
taining explicit mentions of self-reported barriers —
as well as posts that did not meet the guidelines. In
addition, the sample was curated to include posts
of varying lengths, ranging from short entries to
longer, more detailed narratives, thereby ensuring
that the prompts were tested against a broad spec-
trum of user inputs. These posts were manually
annotated with gold standard barriers or a “no bar-
riers found” label, as appropriate. The evaluation
was conducted on a per-post basis, with precision
and recall metrics calculated individually for each
post. Subsequently, average precision and recall
across all 100 posts were computed to assess over-
all performance. Here it is important to note that
by “gold standard” we mean annotator crafted sen-
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tences in English that capture the barrier without
any reference terminology.

Multiple prompt-engineering strategies were
compared to identify which would most reliably
capture personal struggles and relapse triggers men-
tioned in r/OpiatesRecovery. Specifically, we
tested zero-shot, in-context learning (ICL), and
chain-of-thought (CoT) prompting using OpenAI’s
GPT-4-1106-preview model. Although both CoT
and ICL outperformed zero-shot prompting, they
still missed some barriers and occasionally ex-
tracted irrelevant information or failed to consis-
tently adhere to the established guidelines. Addi-
tionally, ICL required carefully selected examples
and proved unsuitable for longer Reddit posts due
to high token usage and associated costs. To ad-
dress these limitations, we developed a multi-step
pipeline that incorporates a verification mechanism
to ensure adherence to guidelines and refine the
output. This process consists of three consecutive
prompts (details in Table 6 of Appendix):

1. Initial extraction: A straightforward CoT
prompt was used to direct GPT-4 to extract
barriers based on the same guidelines that
were used for manual extraction from the ran-
dom sample —namely that the user must be
describing their own experiences, and any
mentioned barrier must be explicitly linked
to causing or contributing to relapse.

2. Verification: The second prompt combined
the first prompt, the model’s initial response,
and an additional verification query. This step
double checks that each extracted barrier in-
deed matches the criteria of being a personal
challenge mentioned by the user.

3. Finalization: A final prompt was used to filter
out irrelevant explanations and generate a con-
cise list of barriers. This step is expected to
maintain sufficient descriptive detail for each
barrier while removing duplicates.

3.3 Mapping extractions to LDBs

To measure the relative prevalence of literature-
derived barriers (LDBs) in social media, it is im-
portant to map the extracted Reddit barriers to them.
For this, we compared Reddit barriers against the
21 LDBs (Table 4 in Appendix A).

First, both the Reddit-extracted barriers
and the 21 LDBs were transformed into high-
dimensional embeddings using OpenAI’s

text-embedding-3-large model. Next, pairwise
cosine similarity scores were calculated to assess
how closely each Reddit-derived barrier aligned
semantically with a known LDB. Barriers exceed-
ing a predetermined cosine similarity threshold
were mapped to the most similar LDB, while
those with lower similarity scores (across all
LDBs) were labeled as “new”. This threshold
value was set following manual evaluations of
mapping outcomes, ensuring that barriers were
only associated with an LDB when their semantic
similarity and contextual relevance were high.

3.4 Clustering of new barriers

Barriers that don’t map to any LDB are considered
“new”, though they may have some overlap with
them. The challenge is to make sense of what these
new barriers are conveying, given they are simply
a bunch of sentences and there is no semantic an-
choring to them. Our high level strategy here is to
employ a clustering approach that groups similar
barriers and surfaces semantically coherent “emerg-
ing” barriers represented by each cluster. Before
clustering, all barriers are vectorized using Open
AI’s text-embedding-3-large model, which pro-
duces 3072-dimensional vectors (OpenAI, 2024).

3.4.1 Initial clustering of new barriers

Multiple clustering strategies were explored to
group newly identified barriers, including k-
means and agglomerative clustering with both Eu-
clidean and cosine distances. k-means proved
inadequate for effectively capturing the nu-
anced, overlapping nature of opioid-related bar-
riers, while agglomerative clustering with Eu-
clidean distance similarly struggled to partition
the data cohesively. Consequently, we employed
the AgglomerativeClustering algorithm from
scikit-learn (Müllner, 2011) using cosine simi-
larity, which treats each barrier as its own cluster
and iteratively merges the most similar clusters un-
til a predefined threshold is met. Because barriers
are multifaceted and difficult to compartmentalize,
hierarchical clustering offered the advantage of a
dendrogram structure of clusters, accommodating
an adaptive stopping criterion driven by the data.
This approach consolidated repetitive or semanti-
cally related barriers into more coherent groups
while providing flexibility in determining the opti-
mal number of clusters.
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3.4.2 Secondary clustering of new barriers

Due to the nuanced nature of barrier expressions,
the initial clustering resulted in a large number of
small closely related clusters, creating challenges
for direct interpretation. To refine these results
into more semantically distinct categories, a sec-
ond round of clustering was conducted using key
phrases as anchors that guide the clustering, in-
spired by Viswanathan et al. (2024). To this end,
for each initial cluster, GPT-4 was prompted to gen-
erate two to three concise key phrases capturing the
group’s core semantic themes. These key phrases
were then leveraged to guide the secondary cluster-
ing, ensuring that similar clusters—those sharing
conceptual or topical grounding—could be merged
more effectively. The key phrase generation prompt
also incorporated a classification step, separating
genuine barrier clusters from non-barrier phrases
(e.g., “Finalized list of barriers to recovery:” or
“Identified barriers:”). Clusters identified as “not a
barrier” were excluded from further analysis, ensur-
ing the final dataset focused solely on substantial
opioid-related challenges.

To enhance clustering accuracy in this refine-
ment stage, two embeddings were combined:
the barrier text embedding (weighted by α)
and the key phrase embedding (weighted by
1 − α). Applying the linkage function from
the scipy.cluster.hierarchy library (Müllner,
2011), a full hierarchical structure was then con-
structed, enabling dynamic exploration of relation-
ships among clusters. Adjusting α allowed for
a balanced influence between the original barrier
content and the generated key phrases.

Getting to high quality clusters is still not enough
because these clusters could still have dozens of
barrier expressions with no overarching descrip-
tion what this cluster is expected to represent. At
this stage, we used GPT-4 to produce descriptive
labels for each refined cluster, resulting in a con-
cise thematic summary. These descriptors aided in
interpreting the diverse range of new opioid recov-
ery challenges that had not previously been docu-
mented in the literature. We term these as “emerg-
ing” since they appear more specialized and do not
have the higher prevalence of well known LDBs.

3.5 Temporal trends in barriers

The final part of this study examined how extracted
barriers evolved over time, with the onset of the
COVID-19 pandemic as the index date. Reddit data

was divided into two segments: (1). Pre-pandemic
(January 1, 2018–March 11, 2020): before the
WHO’s official declaration of COVID-19 as a pan-
demic. (2). Pandemic portion (March 12, 2020–
December 31, 2021): After the global crisis was
formally recognized. To examine shifts in opi-
oid recovery challenges between the pre-pandemic
and pandemic periods, we tracked the normalized
frequency of each barrier in both segments. The
idea was to examine which barriers remained stable
and which either intensified or diminished during
the pandemic. We applied this to both LDBs and
emerging barriers.

4 Results

4.1 Literature-derived barrier curation

As discussed in Section 3.1, we did a review of
scientific literature to identify barriers that were
already identified using traditional means. Ta-
ble 4 (in the Appendix) presents details of the 21
LBDs where the first column indicate the barrier ID.
These barriers encompass a variety of psychologi-
cal, social, and systemic challenges that individuals
face during opioid recovery. Several well-known
barriers are discussed in the literature including
fear of dealing with anxiety and stigma, co-morbid
physical health issues, housing instability, negative
attitudes about treatment, fear of incarceration, and
ineffective services and exclusionary attitudes. Our
goal in curating this list was to see if we can demon-
strate the emergence of new barriers that may not
have already been well known.

4.2 Reddit barrier extraction

As discussed in Section 3.2, we evaluated multiple
prompting strategies for barrier extraction using
the curated set of 100 posts with results shown in
Table 1. Notably, the chain-of-thought with verifi-
cation (CoT + Verification) strategy demonstrated
superior performance, achieving the highest preci-
sion (95.14%) and recall (94.24%) scores among
all methods. This enhanced performance under-
scores the benefit of incorporating verification into
the CoT framework.

Following the evaluation, CoT with verification
prompting strategy was run on all posts. Out of
the 14,735 posts analyzed, 9,618 posts (≈ 65.3%)
contained barriers that aligned with the extraction
guidelines. That is, they explicitly discussed au-
thors’ own recovery experiences and identified
challenges contributing to relapse or hindering re-
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Prompt strategy Precision (%) Recall (%)
Zero Shot 88.91 88.41
CoT 92.32 90.52
ICL 89.01 88.21
CoT + Verification 95.14 94.24

Table 1: Precision and recall for different prompting
strategies averaged over 100 posts.

covery. From all qualifying posts, a total of 29,641
potential barriers were identified.

4.3 Classification of barriers — LDB or new

The classification process mapped 17,603 extracted
Reddit barriers (59.3% of the total) to LDBs, con-
firming a strong alignment between user-generated
content and established research. In contrast,
12,038 barriers (40.7%) were deemed novel, po-
tentially highlighting emerging challenges, particu-
larly during the COVID-19 pandemic. The classifi-
cation threshold was set to 0.55, based on manual
evaluation to ensure that mapped barriers exhibited
sufficient semantic similarity to LDBs, while allow-
ing room for identifying distinct, novel expressions
of recovery challenges.

4.4 Clustering of new barriers

The clustering quality was assessed using the sil-
houette score, a metric that quantifies how similar
an object is to its own cluster relative to other clus-
ters (Pavlopoulos et al., 2024). In simple terms, it
measures the cohesion within clusters and the sep-
aration between clusters, with values ranges from
-1 to 1 (higher values indicating better-defined and
more coherent clusters).

Clustering method Sil. score # clusters
k-means 0.028 1,310
Agglomerative (Euclidean) 0.037 962
Agglomerative (cosine) 0.071 1,369

+ Secondary clustering 0.181 354

Table 2: Performance of clustering methods for new
barriers (Sil. score is the silhouette score achieved)

Among the clustering methods evaluated, ag-
glomerative clustering with cosine similarity
achieved the highest silhouette score of 0.071, com-
pared to scores of 0.028 for k-means and 0.037 for
agglomerative clustering using Euclidean distance.
Although the score may initially seem low, it is
not necessarily a definitive indicator of poor clus-

tering quality. Given the high dimensionality of
the embeddings, achieving high scores is challeng-
ing due to the “curse of dimensionality,” where
cosine distances between points become less dis-
tinguishable. Recent research on text clustering
with LLM embeddings further shows that silhou-
ette scores can be misleading when working with
high-dimensional text representations (Petukhova
et al., 2024). Moreover, the inherent complexity
and semantic nuances of barrier texts further con-
tribute to lower absolute silhouette values. Based
on the results summarized in Table 2, agglomera-
tive clustering with cosine similarity was picked
for clustering the new barriers.

The secondary clustering process (from Sec-
tion 3.4.2) substantially reduced the number of
barrier clusters from 1,369 to 354 by incorporat-
ing key phrases generated via GPT-4. By optimiz-
ing the balance between barrier descriptions and
key phrase themes (with a barrier text embedding
weight of α = 0.3 and a key phrase embedding
weight of (1 − α)), it consolidated similar clus-
ters while maintaining semantic coherence; this
resulted in a much better silhouette score (last row
of Table 2). Additionally, clusters containing fewer
than 10 elements were merged into a single clus-
ter, as these small clusters likely represent barriers
experienced by few individuals and would unneces-
sarily muddle the analysis. This refinement resulted
in 185 final clusters, whose descriptors were gen-
erated with GPT-4 to provide a concise summary
of the barriers they represent. Some illustrative
examples are presented in Table 5 of the Appendix.
This process enhanced both the manageability and
interpretability of the thematic structure underlying
new barriers.

Notable emerging barriers include (1). Kratom,
a popular plant derived substance that is gener-
ally used to handle opioid cravings, was reported
as also causing stomach issues and hence this al-
ternative’s side effects disrupted the recovery for
those who relied on it. (2). Isolation due to work-
from-home requirements during the pandemic lead
to lack of social engagement depriving individu-
als of essential support networks. (3). Disruption
of group support sessions where peers motivate
and help each other cope with opioid dependence
emerged as a pandemic era barrier that highlights
how public health crises indirectly affect substance
use recovery.
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4.5 Temporal shifts in barrier prevalence

Table 3: Temporal shifts in LDB prevalence in Reddit
data with counts of posts containing a barrier in the
pre-covid data and covid data along with absolute count
difference and percentage change normalized by total
posts in each period

ID # Pre-covid # Covid # Diff % Change

0 609 527 -82 -11.06%
1 1,820 1,708 -112 -3.55%
2 189 152 -37 -17.34%
3 187 199 12 9.37%
4 12 20 8 71.29%
5 212 221 9 7.14%
6 568 509 -59 -7.90%
7 47 36 -11 -21.28%
8 380 321 -59 -13.18%
9 168 116 -52 -29.04%

10 520 462 -58 -8.69%
11 347 329 -18 -2.56%
12 491 479 -12 -0.26%
13 139 143 4 5.73%
14 197 121 -76 -36.87%
15 10 18 8 84.997%
16 9 20 11 128.39%
17 162 129 -33 -18.16%
18 186 170 -16 -6.06%
19 200 190 -10 -2.36%
20 2,469 2,811 342 17.01%

4.5.1 Temporal shifts of LDBs
Table 3 summarizes the temporal changes in the
matched barriers with the first column correspond-
ing to the ID field of Table 4. We emphasize all
shifts discussed in this section are relative to the
pre-pandemic period (before March 11, 2020). The
analysis revealed nontrivial decreases in prevalence
of certain LDBs. Notably, identity difficulties (ID
14) experienced the biggest decline of 36.87%. Se-
crecy or fear about the past in new interpersonal
relationships (ID 9) declined by 29.04%. Over-
reliance on other patients or treatment staff (ID
7) decreased by 21.28%. Fear of stigma (ID 2)
dropped by 17.34%, suggesting a potential reduc-
tion in internalized shame and an increased willing-
ness to seek treatment. Conversely, certain barriers
exhibited notable increases. The biggest increase
was seen in the lack of connection between emer-
gency care and professional medical treatment (ID

16), which soared by 128.39%, pointing to gaps in
care continuity. Similarly, the poor staff attitudes
and training deficiencies (ID 15) rose by 84.997%,
pointing to potentially overwhelmed healthcare per-
sonnel and hurried onboarding of new staff without
sufficient training, during the pandemic. Addition-
ally, unsuitable or ineffective services, along with
exclusionary attitudes, policies, and programs (ID
4), surged by 71.29%, indicating difficulties in ac-
cessing apt supportive treatment services. (Since
the total absolute counts for IDs 4, 15, and 16 are
each around thirty, the percent increases ought to
be treated with a grain of salt.)

4.5.2 Temporal shifts of emerging barriers
After the WHO pandemic declaration, our results
show that the prevalence of several emerging bar-
riers rose substantially. Particularly, those related
to pandemic-induced isolation and reduced pro-
fessional support, soared over 500% and were
closely tied to heightened anxiety, depression, and
increased relapse vulnerability. Others, increasing
by more than 300% dealt with the loss of critical
recovery resources, including the closure of sup-
port groups and cancellations of outpatient treat-
ments, which destabilized individuals’ established
sobriety-supportive routines. A modest uptick of
30% was seen in serious sleep-related struggles,
such as insomnia and reliance on potentially ad-
dictive sleep aids, each contributing to a greater
risk of relapse. These shifts highlight how the pan-
demic environment magnified existing vulnerabili-
ties across multiple facets of recovery.

In contrast, some categories of novel challenges
saw notable declines. One set of barriers, previ-
ously rooted in resistance toward traditional 12-
step or group-based treatment models, dropped by
over 60%, suggesting a diminished emphasis on
philosophical or logistical objections to these sup-
port systems. Another emerging barrier involved a
complex interplay of psychological, environmental,
and social triggers complicating recovery. Expo-
sure to drug-related content in media, music, and
social interactions, as well as environmental cues
such as specific locations or objects linked to past
use can evoke powerful emotional responses and
conditioned urges to relapse. Individuals face both
subtle cues, like nostalgic music and overt trig-
gers, such as drug paraphernalia or messages from
dealers, create a constant battle against cravings
and the risk of relapse. Discussions around this
decreased by 45.28%, suggesting that while the
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challenge remains, it became less prominent in re-
covery narratives during the pandemic. Although
these declines do not necessarily indicate that the
issues were resolved, they do suggest a shift in
the relative prominence of longstanding emotional,
behavioral, and logistical hurdles to recovery. In
other words, certain difficulties, while still present,
became less frequently discussed.

5 Discussion

By harnessing opioid consumer posts on
r/OpiatesRecovery, our findings show how
emerging challenges such as disrupted treatment
pathways and heightened isolation may aggravate
well-known barriers like stigma, financial hardship,
and limited healthcare access. In doing so, our
approach addresses a gap in the literature, where
the complexity and rapid evolution of barriers
may often go underreported. Case in point,
the high proportion of newly identified barrier
expressions emphasizes the importance of mining
social media data to complement and extend
established knowledge. While this study confirms
many classic themes in opioid recovery such as
stigma and mental health comorbidities, it also
highlights how online forums can shed light on
previously unrecognized or insufficiently explored
obstacles. The classification (LDB vs new) and
clustering of new barriers, even if challenged by
the inherent nuance and overlap in user narratives,
offers a more agile perspective on how recovery
challenges change over time. In the wake of the
pandemic, the intensification of systemic barriers
from strained healthcare systems to diminished
access to essential services emerged as a powerful
illustration of why adaptive solutions are critical.

Temporal comparisons before and after the
WHO pandemic declaration underscore COVID-
19’s impact on recovery trajectories. Per-
sonal/social barriers, such as stigma and identity
conflicts, appeared to ease—possibly reflecting the
supportive role of online communities—while sys-
temic obstacles like limited access to treatment,
financial pressures, and housing insecurities inten-
sified, reflecting the strain on healthcare resources
during the pandemic. Additionally, emerging chal-
lenges such as increased isolation, disrupted treat-
ment pathways, and sleep disturbances illustrate
the multifaceted struggles faced by individuals in
recovery. The persistence of entrenched relapse
cycles and insufficient social support underscores

the necessity for flexible, integrative strategies that
address both immediate and structural issues.

Some of the new barriers indicated by Reddi-
tors have a grounding in COVID-19 literature. For
instance, among the emergent challenges, altered
sleep patterns have been noted as a barrier. Re-
cent research by Donzella et al. (2022) found that
COVID-19 infection significantly disrupted sleep
patterns, with infected individuals experiencing
longer sleep durations and increased trouble sleep-
ing compared to non-infected individuals. This
finding suggests that the sleep disturbances ob-
served in our analysis may reflect both a general
pandemic-related phenomenon and a specific con-
sequence of COVID-19 infection.

To conclude, our effort is a proof of concept to
conduct qualitative research aided by LLMs, with
human steering. With appropriate recalibration
to account for domain-specific language and con-
texts, the same method can be applied to other sub-
stance use disorders, such as alcohol or stimulant
abuse, to uncover relevant barriers within other par-
allel online communities. Future work will address
better streamlining of all the steps in the pipeline
(LDB curation, barrier extraction, matching, and
clustering) with recent advances. For example the
“Deep Research” versions of Google Gemini and
Open AI o3 models could reduce most of the man-
ual work done in LDB curation. Dynamic topic
models (Zhang and Lauw, 2022) applied to GPT-
4 barrier extractions can also help with clustering
by considering topic distribution as an additional
feature during the clustering process.

6 Limitations

Despite promising insights, our work also exposes
limitations of applying recent advances in NLP to
consumer text analysis. Although a multi-step veri-
fication process improved classification precision
and recall, subtle linguistic nuances and context-
dependent barriers may still be misclassified or
overlooked. Our approach needs careful human
intervention at multiple steps in the pipeline and is
not fully automated. For example, there was a need
to at least generate a few human annotations of bar-
riers from messages to assess different prompting
strategies. Next, prompt engineering also needs
major human inputs to instruct LLMs to generate
barrier expressions that are not too short but also
not too long and meandering. Checking different
prompt outputs against human annotations (needed

90



to create Table 1) is also manual because unlike tra-
ditional classification methods where ground truth
class labels can be simply matched against model
predictions, here one needs to check if GPT-4 ex-
tracted barriers “capture” the essence of what hu-
man annotators generated. Next, the appropriate
cosine similarity threshold to match GPT-4 extrac-
tions to LDBs is also manually determined based
on observations on a few samples. During clus-
tering of new barriers, which in our opinion was
the hardest part of this project, choosing a strategy
along with any hyper-parameters (e.g., α in Sec-
tion 3.4.2) also needs to be done by manually exam-
ining the quality of the clusters — to make sure they
are thematically coherent but are not overly specific
resulting in singleton clusters. While LLMs proved
to be powerful in generative aspects of this project,
they still need nontrivial steering effort by humans.

Self-reported data from Reddit carry intrinsic
caveats, including possible exaggeration, underre-
porting, or skewed user demographics. The rel-
atively low silhouette score in clustering, for in-
stance, partly reflects the difficulty of discretely seg-
menting highly interrelated challenges (e.g., mental
health issues intertwined with social isolation and
financial strain). Nonetheless, the hybrid process of
validation, merging quantitative metrics with care-
ful prompt engineering, provides reassurance that
the majority of extracted barriers are meaningful,
although not without room for further refinement.
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A Appendix

Table 4: List of manually curated literature-derived barriers

lit_barrier
id Barrier Description

0 Low self-confidence and
negative self-perception

A deeply ingrained negative self-image can significantly
increase the risk of relapse by fostering feelings of worth-
lessness, making it difficult to build healthy relationships,
and deterring individuals from seeking help. This neg-
ative self-perception also contributes to poor self-care
and reinforces internalized stigma, making the recovery
process more challenging.

1 Fear of dealing with emo-
tions and anxiety

Opioids often mask underlying emotional issues and
boost self-esteem, creating a fear of confronting raw
emotions without the crutch of drugs. This fear makes it
difficult for individuals to manage overwhelming feel-
ings of anxiety, worry, and stress, which can hinder the
recovery process and increase vulnerability to relapse.

2 Fear of stigma Stigma related to aging, past drug use, mental health
issues, poverty, and methadone treatment profoundly
affects self-identity and recovery. The internalization
of these stigmas can lead to shame, social withdrawal,
and a reluctance to seek or continue treatment, further
complicating the recovery journey.

3 Negative attitudes or be-
liefs about treatment

Stigmatizing beliefs about medication-assisted treatment
(MAT) and the uncertainties surrounding treatment op-
tions can prevent individuals from seeking help. Misin-
formation, fear of judgment, and negative perceptions of
treatment can lead to resistance or disengagement from
the recovery process.

4 Unsuitable/ineffective ser-
vices and exclusionary at-
titudes, policies, and pro-
grams

Inadequate or rigid treatment services, particularly for
those with co-occurring mental health conditions, fail
to meet the specific needs of individuals. Exclusion-
ary policies, such as restrictive program hours, lack of
language services, and daily attendance requirements,
further alienate those seeking help, limiting their access
to effective treatment.

5 Housing instability and
homelessness

A lack of stable housing creates an unpredictable and
stressful environment that disrupts recovery efforts.
Without a secure place to live, access to treatment is
often compromised, and the constant exposure to trig-
gers increases the risk of relapse.

6 Difficulties with establish-
ing a non-drug-using net-
work of friends and lack of
social capital or support

Building new, supportive social networks that do not
involve drug use is a significant challenge. The absence
of compassionate and understanding relationships, par-
ticularly with family members, can lead to isolation and
a lack of the social support necessary for successful
recovery.

Continued on next page
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lit_barrier
id Barrier Description

7 Over-reliance on other pa-
tients or treatment staff in
treatment facilities

In treatment centers, individuals may become overly de-
pendent on other patients and staff, creating a sense of
being caught between two worlds. This reliance can hin-
der the development of personal autonomy and coping
skills essential for long-term recovery.

8 Influence of habits of
spouse/partner/family
members/peers to drugs

The drug use habits of close family members, partners,
or friends can increase the availability and temptation
of drugs, making it harder for individuals to maintain
sobriety. This close proximity to drug use can be a
significant trigger for relapse.

9 Secrecy or fear about the
past in new interpersonal
relations

The inability to share past experiences with new acquain-
tances can lead to feelings of isolation and exile from
mainstream society. This secrecy can create barriers
to forming genuine, supportive relationships, which are
crucial for recovery.

10 Fear of incarceration For some individuals, particularly women who fear los-
ing custody of their children, the threat of incarceration
is a significant barrier. The criminalization of drug use,
fear of police harassment, and the risk of arrest discour-
age seeking help, leading to untreated addiction and
increased relapse risk.

11 Co-morbid mental and
physical health issues

The presence of additional addictions or physical and
mental health conditions, such as anxiety, depression,
self-loathing, childhood trauma, or physical illnesses,
complicates the recovery process. These co-occurring
issues require specialized treatment, and when unad-
dressed, they can significantly hinder recovery.

12 Expensive costs and finan-
cial problems

The high costs of treatment, particularly for those with-
out insurance, can prevent individuals from accessing
necessary care. Financial barriers, including the inabil-
ity to afford medication and out-of-pocket costs, are
significant obstacles to sustained recovery.

13 Issues in accessing treat-
ment

Accessing treatment is particularly challenging for indi-
viduals from culturally and linguistically diverse commu-
nities or those in rural areas. Geographical barriers, lack
of transportation, and limited availability of medication-
assisted treatment (MAT) create significant obstacles to
regular and consistent treatment.

14 Identity difficulties Some individuals struggle with the identity transforma-
tion required by treatment programs, resisting the label
of “patient” and finding it difficult to construct a new
identity free from drug use. This identity conflict can cre-
ate resistance to treatment and complicate the recovery
process.

Continued on next page
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lit_barrier
id Barrier Description

15 Staff attitudes and training
deficiencies

Judgmental attitudes from treatment providers and staff
who lack empathy and understanding can create an un-
welcoming environment for patients. When staff view
clients as psychologically impaired or needing long-term
maintenance without offering hope for recovery, it can
discourage individuals from engaging fully in treatment.

16 Lack of connection be-
tween emergency care and
professional medical treat-
ment

A disconnect between emergency care services and on-
going professional medical treatment can lead to gaps in
care. This lack of continuity can result in missed oppor-
tunities for intervention and support, increasing the risk
of relapse.

17 Lack of adherence to treat-
ment protocol

Managing multiple appointments and responsibilities,
especially for mothers, can be overwhelming and lead
to non-adherence to treatment protocols. The stress of
balancing treatment with daily life can make it difficult
to stay committed to recovery.

18 Misuse of prescribed med-
ications

Some individuals misuse their prescribed medications
by taking higher doses than recommended or combining
them with illicit substances. This misuse can undermine
the effectiveness of treatment and increase the risk of
relapse.

19 Belief that treatment was
unnecessary

Some individuals prefer to withdraw from opioids alone,
without assistance, believing that treatment is unneces-
sary. This belief can lead to unsuccessful attempts at
recovery and a higher likelihood of relapse.

20 Fear of withdrawal symp-
toms

The physical and psychological symptoms of with-
drawal, such as nausea, vomiting, diarrhea, muscle aches,
sweating, chills, fever, anxiety, depression, and intense
cravings, can be overwhelming. The fear of experienc-
ing these symptoms often discourages individuals from
seeking help or continuing with treatment, increasing
the risk of relapse.
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Table 5: Examples of descriptors for emerging barrier extractions with GPT-4

GPT-4 generated cluster descriptor Some example barriers in the cluster
The primary themes and challenges in opioid use
disorder recovery, as highlighted by the list of
barriers, revolve around the adverse reactions to
and ineffectiveness of various alternative treat-
ments and medications, including Kratom, benzo-
diazepines, clonidine, and suboxone. Users face
significant obstacles such as physical side effects
(nausea, vomiting, stomach issues, and severe
sweating), psychological effects (increased anx-
iety, depression, and suicidal ideation), and spe-
cific health concerns (restless leg syndrome, sex-
ual dysfunction, and dental health issues). These
are compounded by the medications’ unpleasant
taste and physical discomfort upon ingestion, lead-
ing to non-adherence and relapse. The fear of los-
ing access to necessary medications due to hon-
esty about relapse, as well as the potential for
medications to mask or exacerbate other health
issues, creates a complex environment where in-
dividuals struggle to find tolerable and effective
treatment options to manage withdrawal symp-
toms and support their recovery journey.

- Adverse physical reactions to Kratom: The user
experiences stomach issues when using Kratom,
which could discourage its use and negatively
impact their detoxification and recovery process.
- Intense cravings triggered by Benadryl: The user
has experienced strong cravings for substances
following the administration of Benadryl through
an IV.
- Concerns about the side effects of current anxi-
ety medication (hydroxyzine), such as sleepiness,
which may interfere with daily activities and thus
pose a barrier to the recovery process.

Individuals in recovery from opioid use disor-
der are encountering significant barriers due to
the ineffectiveness of both prescription and over-
the-counter sleep aids, including melatonin, Zopi-
clone, and Ambien, as well as alternative methods
like homeopathic remedies, kava root, and relax-
ation techniques. This pervasive lack of effective
sleep solutions exacerbates insomnia, which not
only impedes their recovery process but also poses
a risk of relapse as they struggle to manage sleep
disturbances without resorting to opioids. The
reluctance of healthcare providers to prescribe
certain hypnotics, coupled with the side effects
and diminishing returns of available medications,
underscores the urgent need for a comprehensive
and effective treatment plan to address the critical
role of sleep in the recovery journey.

- The person is restricted to using only over-the-
counter sleeping aids, as they are unable to utilize
prescription sleep medications or benzodiazepines
to address their sleep disturbances.
- Ineffectiveness of homeopathic remedies: The
individual has attempted numerous homeopathic
remedies to address their sleep issues, but none
have been successful. The lack of an effective so-
lution for their sleep disturbances is an additional
barrier to their recovery from opioid use disorder.
- Limited access to hypnotics, due to the general
practitioner’s reluctance to prescribe them, is a
source of frustration for the user and is seen as a
barrier to overcoming insomnia and aiding their
recovery.

Continued on next page

96



GPT-4 generated cluster descriptor Some example barriers in the cluster
The overarching challenge in opioid use disor-
der recovery, as reflected by the experiences de-
scribed, is a pervasive lack of adequate and empa-
thetic medical support across various healthcare
settings. Patients frequently encounter barriers
such as healthcare professionals prioritizing fi-
nancial interests over patient care, insufficient un-
derstanding and coordination between pain and
addiction clinics, and a general sense of isolation
due to the healthcare system’s failure to provide
comprehensive and compassionate support. This
lack of support extends to GPs who often dis-
miss patient concerns, inadequately address men-
tal health needs, and fail to establish trust or offer
practical assistance in creating and following ef-
fective recovery plans. The resulting environment
is one where patients feel unheard, misunderstood,
and inadequately treated, which severely under-
mines their confidence in the healthcare system
and impedes their journey towards recovery. Ad-
ditionally, systemic issues like misinformation,
inadequate facilities, and cultural barriers further
exacerbate the struggle for individuals seeking
help for opioid use disorder, especially in regions
with less developed psychiatric support systems.

- A lack of proper support and understanding
within the healthcare system presented a barrier,
as evidenced by the user being passed between the
pain clinic and addiction clinic without receiving
appropriate care.
- Lack of medical support: The user feels that
doctors do not take their concerns seriously, indi-
cating a lack of accessible supportive medical care
that is essential for managing recovery symptoms.
- A history of inadequate support and assistance
from hospitals and specialists, resulting in a di-
minished trust in the healthcare system, as the user
has not received answers or help despite multiple
consultations.

The primary themes and challenges in opioid
use disorder recovery, as reflected by the barriers
listed, revolve around the inadequacy of pain man-
agement solutions and the limited access to both
pharmacological and non-pharmacological alter-
natives. Individuals struggling with chronic pain
find non-opioid medications such as NSAIDs,
over-the-counter pain relievers, and alternative
therapies like CBD oil or marijuana to be inef-
fective, leading to a heightened risk of relapse
into opioid use for pain relief. Compounding
this issue is the reluctance or inability of medical
professionals to explore new pain management
methods, often leaving patients with unmanaged
pain and a sense of desperation. This situation
is exacerbated by the lack of access to special-
ized pain management services, particularly in
the context of COVID-19, which has disrupted
healthcare delivery and limited options for those
seeking to manage pain without opioids. The col-
lective impact of these barriers underscores the
need for comprehensive, effective, and accessible
pain management strategies as a critical compo-
nent of opioid use disorder recovery.

- The inability to use NSAIDs due to medical
contraindications, which restricts the user’s alter-
natives for non-opioid pain relief and presents a
challenge in reducing opioid use.
- The closure of the Pain Management clinic due
to Covid-19 has resulted in the inability to find
a new doctor, disrupting the user’s medication
regimen.
- Difficulty in finding a new doctor who can pro-
vide non-narcotic pain management solutions, fol-
lowing the dismissal of the previous pain manage-
ment doctor.

Continued on next page
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GPT-4 generated cluster descriptor Some example barriers in the cluster
The primary themes and challenges in opioid use
disorder recovery, as highlighted by the list pro-
vided, revolve around the profound impact of so-
cial isolation, disruptions to daily routines, and the
exacerbating effects of the COVID-19 pandemic.
Individuals face a multifaceted struggle where iso-
lation—whether due to weather, unconventional
wake-up times, work-from-home structures, or
quarantine measures—significantly hampers their
ability to connect with support networks and en-
gage in recovery activities. The pandemic has
intensified feelings of loneliness, anxiety, and de-
pression, triggering memories of past substance
use and increasing the risk of relapse. The lack of
professional support and reduced engagement in
positive activities further contribute to a sense of
hopelessness and loss of purpose. Environmental
factors, such as the dark times of lockdowns, and
personal factors, such as bipolar disorder and the
desire for self-isolation, compound the psycholog-
ical distress. This complex interplay of isolation,
mental health challenges, and pandemic-related
constraints creates a formidable barrier to recov-
ery, underscoring the need for robust, adaptive
support systems that can reach individuals even
in the most isolating circumstances.

- Quarantine situation: Users are experiencing
isolation and a lack of support due to being stuck
in quarantine, which poses a significant challenge
to recovery.
- Increased isolation and lack of productive activi-
ties because of COVID-19 restrictions, leading to
intensified cravings, as described by the user who
was laid off and forced to stay at home without
engaging in meaningful activities.
- Work-from-home isolation: The user’s job does
not involve much interaction with others, exacer-
bating their feelings of isolation and potentially
depriving them of much-needed social support
during recovery.

The COVID-19 pandemic has significantly dis-
rupted the recovery process for individuals with
opioid use disorder by imposing barriers that un-
dermine their support systems and daily routines.
Emotional distress has been exacerbated by the
inability to attend support group meetings and
therapy sessions, including AA and NA meetings,
which are crucial for mutual support and main-
taining sobriety. Lockdown measures have further
restricted access to coping activities such as going
to the gym, engaging in hobbies, and attending
outpatient treatment, all of which are essential
components of a structured recovery plan. The
loss of these routines and support mechanisms
has led to increased isolation, mental hardship,
and a heightened risk of relapse, highlighting the
profound impact that external factors and disrup-
tions to daily structure can have on the journey to
recovery.

- The closure of the center where group sessions
are held due to the coronavirus pandemic is a
barrier because it disrupts the structured recovery
support necessary for maintaining sobriety.
- The temporary shutdown of support meetings
and therapy appointments, including physiother-
apy, acupuncture, and cupping, poses a barrier as
these services help manage painful side effects
from methadone and are integral to the user’s re-
covery support system.
- Loss of access to the gym due to lockdown: The
gym served as a critical support system for the
user during their withdrawal period, and the in-
ability to attend the gym because of lockdown
measures is directly associated with their relapse.
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Table 6: The three stage barrier extraction prompts

Prompt type Prompt
Initial prompt “You are given a Reddit post. Your task is to extract barriers to recovery from

opioid use disorder as explicitly mentioned by the user. Strictly adhere to the
following guidelines when extracting the barriers:

• The user is talking about their own experience and not someone else’s.
• The barrier is explicitly mentioned by the user or has strong indications

as causing them to relapse or contributing to the risk of relapse. Discard
barriers that do not adhere to the above guidelines.

• If no barriers are found, mention “No barriers found”. Only use the
details provided by the user in the post, without relying on previous
knowledge on the subject or making assumptions.

• Provide reasons for the selection of the items.
• Finally, provide the items as a numbered list as follows:

Identified barriers:
<barrier 1> <barrier 2> ...
Post: {post}"

Verification prompt “Verify that the user explicitly mentions or has strong indications of the identi-
fied items as causing or contributing to relapse or shows strong indications of
presenting challenges in maintaining recovery. The user must be talking about
their own recovery."

Finalization prompt “You are given information about potential barriers to recovery as mentioned
by Reddit users in their posts, along with a verified list of barriers. Your
task is to extract the finalized list of barriers from the provided text. Ensure
each barrier is represented as a numbered list using clear and meaningful
sentences that accurately capture the context and details without shortening
them excessively. The barriers should be concise yet detailed enough for
someone reviewing them later to fully understand what each barrier entails. If
no barriers are found, return “No barriers found.”
Info on barriers to recovery: {verified_list_of_barriers}
List of barriers to recovery:"
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Abstract

Sepsis is a leading cause of death in Intensive
Care Units (ICU). Early detection of sepsis
is crucial to patient survival. Existing works
in the clinical domain focus mainly on di-
rectly predicting a ground truth label that is
the outcome of a medical syndrome or condi-
tion such as sepsis. In this work, we primarily
focus on clinical time series forecasting as a
means to solve downstream predictive tasks in-
termediately. We base our work on a strong
monomodal baseline and propose multimodal
transformers using set functions via fusing both
physiological features and texts in electronic
health record (EHR) data. Furthermore, we
propose hierarchical transformers to effectively
represent clinical document time series via at-
tention mechanism and continuous time encod-
ing. Our multimodal models significantly out-
perform baseline on MIMIC-III data by no-
table gaps. Our ablation analysis show that
our atomic approaches to multimodal fusion
and hierarchical transformers for document se-
ries embedding are effective in forecasting. We
further fine-tune the forecasting models with
labelled data and found some of the multimodal
models consistently outperforming baseline on
downstream sepsis prediction task.

1 Introduction

Sepsis is a serious complication of an infection,
accounting for approximately 19.7% of all global
deaths (Rudd et al., 2020). In 2017, World Health
Organization declared that improving the preven-
tion, recognition, and treatment of sepsis as a global
health priority (WHO, 2020). Seymour et al. (2017)
and Liu et al. (2017) suggest an increase in the
adjusted mortality of septic patients with delayed
antibiotic administration. With patients suffering
from septic shock, Kumar et al. (2006) found an
3.6–9.9% hourly increase in mortality when treat-
ment is delayed. Early Detection of Sepsis is criti-
cal to improve patient outcome.

With the emerging abundance of clinical elec-
tronic health record (EHR) data, multimodal pa-
tient data present both challenges and opportuni-
ties to forecasting and predictive tasks in the clin-
ical domain. On the one hand, multimodal repre-
sentation learning is a complex problem that re-
quires proper handling of information from multi-
ple sources (Tsai et al., 2018). On the other hand,
data from various sources enrich information avail-
able to models, which enables more robust pre-
diction (Baltrušaitis et al., 2018). Fusing multiple
modalities such as laboratory measurements, clini-
cal texts, medications, and procedures have shown
improved performance on predicting inpatient mor-
tality, length of stay, and 30-day readmission (Ra-
jkomar et al., 2018).

A further challenge in learning from clinical
EHR datasets lies with data missingness and ir-
regularity. The available observations for each pa-
tient may vary based on patient’s condition, i.e.
the set of observed clinical variables for each pa-
tient can differ from one another. Additionally,
clinical measurements are often not taken at reg-
ular time intervals - the measurements may occur
sporadically in time depending on the underlying
conditions of the patient. Previous works such
as Wang et al. (2022) simply aggregate data into
hourly bins to circumvent data missingness, irreg-
ularity and sporadicity. However, this introduces
noises and suppresses information to indicate pa-
tient condition through the actual availability of
clinical measurements. To tackle the issue, Tipir-
neni and Reddy (2022) implements “Triplet Em-
bedding" based on Set Functions proposed in Horn
et al. (2020) to represent each clinical observation
for each patient at each time discretely to avoid
data imputation/aggregation of any form. While
Tipirneni and Reddy (2022) achieves excellent per-
formance on prediction tasks against several strong
baselines, it disregards information potentially con-
tained in clinical notes associated with each patient
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Paper Multi-modal Set Function Time Encoding Forecasting
Horn et al. (2020) ✗ ✓ Sinusoidal Encoding ✗
Wang et al. (2022) ✓ ✗ ✗ ✗
Lyu et al. (2022) ✓ ✗ Sinusoidal Encoding ✗
Tipirneni and Reddy (2022) ✗ ✓ Learnable Embedding ✓
Lee et al. (2023) ✓ ✓ Linear Projection ✗
Proposed Models ✓ ✓ Leanrable Embedding ✓

Table 1: Tabular comparison of proposed models and related works closely referred to.

record in EHR data.
With majority existing works in the clinical do-

main approach predictive tasks directly by predict-
ing a ground truth label as the outcome of observed
patient conditions (Lee et al., 2023; Tipirneni and
Reddy, 2022; Wang et al., 2022; Lyu et al., 2022),
Xu et al. (2023) proposed to focus on forecasting,
and implemented a rule-based sepsis check for Sep-
sis prediction that depends on model forecasts. We
follow this practice and primarily seek to build
models for time series forecasting (cause predic-
tion), as an intermediate means to eventually pre-
dict sepsis and potentially other medical syndrome
instead of predicting an outcome directly.

To address various limitations with existing
works, we build upon a strong monomodal base-
line model (Tipirneni and Reddy, 2022) and pro-
pose multimodal transformers primarily for clinical
time series forecasting that 1) incorporates infor-
mation from both physiological time series data
and clinical notes via effective multimodal fusion
2) utilizes set functions to avoid data aggregation
and imputation. The forecasting models produce
predictions of the clinical variable values in a two-
hour forecasting window following corresponding
observation windows of varying lengths, to sup-
port ruled-based implementations (e.g. Xu et al.,
2023) that rely on predicted values of specific clin-
ical variables. Meanwhile, the forecasting models
are fine-tunable with labelled data for downstream
prediction tasks such as sepsis prediction. We addi-
tionally propose a hierarchical transformer to effec-
tively represent clinical notes that naturally form
document time series within observation windows
by integrating time embeddings of note records,
and accounting for the interactions between notes
in time order via attention mechanism. We con-
duct comprehensive experiments and ablation anal-
ysis to showcase that our proposed models and
the atomic modules are effectively robust, improv-
ing forecasting performance from baseline signifi-
cantly.

We summarise the main contributions of our

work as follows:

• We propose a multimodal learning frame-
work for patient data in EHR datasets that ef-
fectively incorporates information from both
physiological features and associated clinical
notes.

• We propose a specialized hierarchical trans-
former to effectively represent clinical docu-
ment time series that accounts for the inter-
actions between individual clinical notes via
attention and brings cross-modal time aware-
ness to the entire model through consistent
time encoding.

• Our clinical time series forecasting models
approach predictive tasks in the clinical do-
main from a cause-prediction perspective. It
provides flexibility in two dimensions: 1) the
forecast values can be used for prediction of
multiple medical syndromes and conditions
with rule-based implementations (e.g. sepsis
check based on Sepsis-3 definition (Reyna
et al., 2020; Seymour et al., 2016; Singer
et al., 2016)) 2) the forecasting models can
be fine-tuned for arbitrary downstream predic-
tion tasks with correspondingly labelled data
in a fully data-driven setup. Additionally, the
intermediate results produced by forecasting
models are also directly interpretable by clin-
ical practitioners as pointed out in previous
work.

We release our code at github.com/JINHXu/
clinical-multimodal-transformers.

2 Related Work

Clinical time series data are inherently sequen-
tial, making common sequence modelling meth-
ods (RNNs, transformers, etc.) suitable. Early
works use classic models such as Gaussian Process
(GP) (Liu et al., 2013, 2017; Lu et al., 2008; Li
and Marlin, 2016) and linear dynamical systems
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Data Non-septic patients Septic patients Non-septic ICU stays Septic ICU stays
Train 26452 2124 33191 3360
Valid 6594 551 8358 904
Test 8296 635 10445 1024

Table 2: Number of septic/non-septic patients/ICU stays in train/validation/test data.

(LDS) (Liu and Hauskrecht, 2015) to model irreg-
ular clinical time series. Later works then employ
RNN-based models given the sequential nature of
time series data. Baytas et al. (2017), for instance,
modified LSTM to fit hidden cell states to irregu-
lar time slots (T-LSTM). Che et al. (2018), on the
other hand, modified the GRU cell which decays
inputs to global means and hidden states through
unobserved time intervals (GRU-D). The problem
with classic models such as Gaussian Process are
their sensitivity to choice of covariance and mean
functions, while RNNs process long sequences (re-
sulted by irregularity) sequentially with inability to
parallel computation thus leading to long runtime.

More recent works employ transformer-based
methods for clinical time series modeling. Wang
et al. (2022), for instance, passes multivariate time
series embeddings first through a block of trans-
former encoders to capture contextual information
of the sequences, then followed by a dense inter-
polation layer to obtain a concise representation of
transformer outputs. Tipirneni and Reddy (2022)
also uses multi-head attention to obtain contextual
embeddings through transformer, it then passes
these embeddings to a self-attention layer to cap-
ture the context within each observation. Horn et al.
(2020) uses attention-based aggregation to compute
embeddings of set elements independently from
other elements in order to reduce runtime complex-
ity to linear from the original transformer (Vaswani
et al., 2017), which accounts for dependency be-
tween such elements leading runtime and space
complexity of O(N2). It is worth noting that, in
this case, Horn et al. (2020) compromises on ac-
curacy by disregarding such dependency for lower
space and runtime demand, while Tipirneni and
Reddy (2022) uses a transformer block similar to
Vaswani et al. (2017) to guarantee model perfor-
mance with the expense of computing power and
time.

Most works in clinical machine learning focus
on predictive tasks. Tipirneni and Reddy (2022)
proposes an encoder-only transformer model for
direct mortality prediction as the target task, while

its intermedial proxy model could be used for time
series forecasting. Staniek et al. (2024) proposes
encoder-decoder long-term clinical time series fore-
casting models to predict outcome via predicting
the cause of syndromes intermediately. These fore-
casting models, however, are monomodal models
that learn from data of single modality, disregard-
ing potential information delivered through associ-
ated clinical notes in EHR datasets.

Multimodal learning is a common practice to
address various tasks in the clinical doamin due
to the various modalities of data in EHR datasets.
Wang et al. (2022) uses concatenation to integrate
multimodal patient data on physiological features
and clinical texts. Later works in the clinical do-
main such as (Lyu et al., 2022) additionally ap-
plies a multimodal fusion encoder after concatena-
tion of two modalities, in order to map them into
a universal space before feeding the embeddings
into a transformer. More recent works in the clini-
cal domain employ attention-based fusion methods
to represent multimodal patient data. (Lee et al.,
2023), for instance, modified attention bottlenecks
(Nagrani et al., 2021) from an audio-vision task
to learn multi-modal EHR data (EHR time-series,
EHR texts, EHR images) for mortality, vasopressor
need, and intubation need prediction tasks.

Table 1 presents a tabular review of related works
we closely refer to in this work. We seek to tackle
the limitations in previous works, and define our
primary task as time series forecasting on multi-
modal patient data. In the following sections, we
further lay out the implementation specifics of our
models and methods to overcome limitations in
existing works.

3 Data

3.1 MIMIC-III

MIMIC-III (Medical Information Mart for Inten-
sive Care 3) is a large database consisting of ICU
(Critical Care Unit) patient records at the Beth Is-
rael Deaconess Medical Center between 2001 and
2012 (Johnson et al., 2016). The entire MIMIC-
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Figure 1: Multimodal STraTS-Q-M - ClinicalBERT

III database stores 61,532 ICU stays among 58,
976 hospital admissions from 46,520 patients. The
database is composed of 26 tables including clinical
notes, chartevents, admissions and microbiology
events and etc.

3.2 Our Data

We use annotated data with septic patients labelled
based on 23 ICD-9 codes and the Sepsis-3 defi-
nitions (Reyna et al., 2020; Seymour et al., 2016;
Singer et al., 2016). Patients admitted with sep-
sis were excluded from experiment data as they
may mislead model in fine-tuning stage for sepsis
prediction. From MIMIC-III dataset, we built our
data from 5288 septic patients (9.2%) and 51994
non-septic patients. We split data into train, val-
idation, test by 64: 16: 20 at patient level. We
extract 133 physiological features (record time, fea-
ture value) and two demographic features (age and
gender) for each admission from MIMIC-III, and
include 1,407,430 clinical notes associated with
patient records.

3.3 Clinical Note Preprocessing

Prior practices (Wang et al., 2022) conduct stop
word and special character removal, case normali-
sation on clinical notes as text cleaning steps before
feeding to a language model such as ClinicalBERT
(Alsentzer et al., 2019). We argue that for a con-

textual language model pretrained on clinical notes
without the above mentioned text preprocessing
steps, the above cleaning procedures are unneces-
sary and potentially harmful. As pointed out in
Khattak et al. (2019), case normalisation can intro-
duce noise to clinical texts. For instance, by lower-
casing the medical condition term ADD (attention
deficit disorder), it converts to a verb “add" that
leads to ambiguity. Thus we reserve the original
clinical notes for ClinicalBERT-based text embed-
ding modules in our models to generate document-
level embeddings. With the GloVe-based models,
we remove special characters and stop words to
reduce noise and improve training efficiency, as
necessary text cleaning steps.

4 Methods

4.1 Baseline STraTS

We base our work on a strong baseline model
STraTS (Tipirneni and Reddy, 2022), which takes
multivariate clinical variables as its monomodal
input, encoded by a learnable continuous value em-
bedding module and feature map. STraTS uses set
functions to represent clinical time series as triplets
to avoid data imputation and aggregation. The en-
coded triplets are then fed into transformer blocks
and a self-attention module to account for the in-
teractions across data instances and triplets within
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Model Parameters Best Epoch Test Validation
STraTS (baseline) 71,070 71 5.2631 5.2089
STraTS - ClinicalBERTCLS_emb - base 10,230,720 104 5.1771 5.0803
STraTS - ClinicalBERTCLS_emb - large 33,920,820 126 5.2014 5.1226
STraTS-Q - ClinicalBERTCLS_emb 61,140,480 124 5.1742 5.1198
STraTS-Q-M - ClinicalBERTCLS_emb 33,920,820 105 5.1650 5.1152
STraTS-Q-M - ClinicalBERT avg_emb 33,920,820 101 5.2789 5.1950
STraTS - GloV e - base 92,820 86 5.2781 5.1875
STraTS - GloV e - large 112,920 109 5.3695 5.1707
STraTS-Q-M - Hierarchical Transformer - base 11,605,610 110 5.3312 5.2295
STraTS-Q-M - Hierarchical Transformer - large 48,216,860 103 5.2584 5.1836
STraTS-Q-M - Hierarchical Transformer - large1 48,216,860 147 5.1535 5.0038
1 Learning rate reduced to 0.0001 after 80 epochs

Table 3: Masked MSE (mean squared error) on test and validation data for each model. (patience = 15, parameters
refers to trainable parameters)

Model p-value
STraTS - ClinicalBERTCLS_emb - base 0.0
STraTS - ClinicalBERTCLS_emb - large 0.0
STraTS-Q - ClinicalBERTCLS_emb 0.0
STraTS-Q-M - ClinicalBERTCLS_emb 0.0
STraTS-Q-M - Hierarchical Transformer - large 0.69
STraTS-Q-M - Hierarchical Transformer - large1 0.0

Table 4: Randomization test results for proposed models against baseline on forecasting task.

Figure 2: Hierarchical Transformer for Clinical Docu-
ment Time Series

each observation window.

4.2 Multimodal STraTS-Q-M - ClinicalBERT

On the basis of STraTS, we further include associ-
ated clinical notes represented by document-level
embeddings obtained through ClinicalBERT. We
first obtain initial quadruplet embedding instead of

triplets in STraTS as follows:

ei = efi + evi + eti + eTi (1)

where efi , evi , eti are feature, value, time embed-
dings originally to form the triplets, along with the
associated text embedding eTi aligned by observa-
tion windows.

The initial quadruplet embeddings are then
passed to the following transformer blocks and
self-attention module. Eventually, we obtain a
fused multimodal representation via concatenating
with demographic feature embeddings and Clini-
calBERT text embeddings as shown in figure 1.

4.3 Hierarchical Transformer for Clinical
Document Time Series

Instead of simply concatenating document embed-
dings within the same observation window to repre-
sent document time series, we additionally propose
a hierarchical transformer to 1) account for the
interactions between individual clinical notes via
attention 2) achieve cross-modal time awareness by
aligning clinical text embedding with correspond-

104



Figure 3: Sepsis prediction performance on MIMIC-III dataset for different percentages of labeled data averaged
over 10 runs.

ing time embedding. As shown in figure 2, we
encode time consistently with the learnable contin-
uous value embedding module, and add it to cor-
responding document-level ClinicalBERT embed-
ding for each clinical note in the observation win-
dows, where the time encoding functions similarly
to positional encoding in Vaswani et al. (2017);
Dai et al. (2022). The time-aware text embeddings
are then passed through transformer blocks and
attention-based fusion module to claim interactions
across individual clinical notes. By this practice,
it brings cross-modal time-awareness to the entire
multimodal learning framework via consistent time
encoding.

5 Results

5.1 Clinical Time Series Forecasting

We train forecasting models with 2-hour forecast-
ing window following each observation window on
unsupervised data. We define observation windows
with varied lengths: {min(0, x − 24), x)|20 ≤
x ≤ 124, x%4 = 0}. We evaluate the models
with masked MSE (mean squared error), where the
binary mask indicates the availability of ground
truth in data. In addition to evaluating Multimodal
STraTS-Q-M - ClinicalBERT against the baseline
model, we conduct ablation studies to individually
remove the quadruplet embedding module (revert
back to monomodal triplet) and the text embedding
module in late fusion concatenation. Furthermore,
for experimental purposes, we also replace Clini-
calBERT with generic GloVe model for text repre-
sentation. Lastly, we replace the ClinicalBERT text
embedding modules with our hierarchical trans-
former to represent clinical document time-series.
We train base and large variations of the model, also
further lower learning rate at pretraining to 0.0001
after 80 epochs from default learning rate (0.0005)
due to the complexity of the model compared to

others.
Table 3 shows the MMSE of the proposed mod-

els against baseline on test and validation data. It
can be seen from the table that both the quadruplet
embedding module and late fusion concatenation
are able to individually improve model forecast-
ing performance from baseline. With both com-
bined, Multimodal STraTS-Q-M - ClinicalBERT
reduces MMSE by 0.0981 from baseline on test
data, achieving MMSE at as low as 5.1650. It is
worth noting that when replacing CLS token em-
bedding with average of all token embeddings as
document-level representation, the same model un-
derperforms baseline on test data and shows no
noteworthy performance improvement at valida-
tion. In the meanwhile, the GloVe-based mod-
els (replacing ClinicalBERT with GloVe for text
embedding in concatenation-based fusion model)
are able to slightly outperform baseline at valida-
tion stage, whereas showing poor generalization
to unseen test data and underperforms baseline
by notable gap. Furthermore, by replacing the
concatenation-based text embedding module with
our hierarchical transformers, the large model with
reduced learning rate is able to achieve the low-
est MMSE on both test (MMSE = 5.1535) and
validation data (MMSE = 5.0038), decreasing
MMSE from baseline by 0.1096. This illustrates
that our hierarchical transformer for clinical docu-
ment time series is an effective approach compared
to the simple concatenation of document-level em-
beddings.

We further run randomization tests on the out-
performing models against baseline. As shown in
table 4, we observe most of the p-values are below
α − level (p < α, α = 0.05) with the exception
to STraTS-Q-M - Hierarchical Transformer - large
(p = 0.69), which is consistent with the marginal
gap in MMSE of the model against baseline. The
significance test results demonstrate that the major-
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ity of the outperforming models are significantly
better than baseline in forecasting stage on test
data.

5.2 24-h Sepsis Prediction with Labelled Data

As discussed in previous sections, our forecasting
models can be used for early sepsis prediction in
two ways: 1) directly fine-tuned on supervised data
to predict sepsis 2) produce forecast on clinical
variables to support rule-based implementations.
In this work, we fine-tune the forecasting models
with labelled sepsis patient data to illustrate the
case of 24-hour sepsis prediction.

Figure 3 shows the ROC-AUC, PR-AUC and
min(Re, Pr) (maximum of minimum of recall
and precision across all thresholds). Multimodal
STraTS-Q-M - ClinicalBERT is able to stably out-
perform baseline across different percentages of
labelled data also on the downstream prediction
task in a fully data-driven setup. While the hierar-
chical transformer model showed best performance
on forecasting, it performs poorly after fine-tuning
with labelled data on sepsis prediction. This obser-
vation is consistent with the arguements in Kaddour
et al. (2022); Liu et al. (2023); Kaddour et al. (2023)
that pretraining loss does not always correlate well
with downstream performance.

6 Conclusion

In this work, we propose a multimodal transformer
to incorporate both physiological time series and
associated clinical notes from EHR data for clin-
ical time series forecasting. We approach predic-
tive tasks in the clinical domain primarily from
a cause-prediction perspective, which allows our
forecasting models to flexibly assist different clini-
cal prediction tasks with rule-based checks in inter-
pretable ways to practitioners in the field. We base
our models on a strong monomodal baseline, and
improved the model via meaningful multimodal fu-
sion through integrating clinical text embedding
modules. We additionally propose hierarchical
transformers to represent clinical document time se-
ries using attention and time encoding. We conduct
comprehensive experiments on MIMIC-III data pri-
marily on forecasting, and observed that our multi-
modal models are able to significantly outperform
baseline by notable gaps in MMSE. Our ablation
studies illustrate that the atomic approaches in our
multimodal fusion method (quadruplet embedding
and late fusion via concatenation) are both able to

individually improve model performance on fore-
casting, and achieve even more superior perfor-
mance with both combined. Via integrating the
hierarchical transformers, the forecasting model is
able to further reduce MMSE with proper training
setup, illustrating the effectiveness of our proposed
hirarchical transformers for clinical document time
series representation. Additionally, we fine-tune
the forecasting models with supervised data for
sepsis prediction, observing that most of the multi-
modal models are able to consistently outperform
baseline on the downstream prediction task in a
fully data-driven setup. While our models are based
on encoder-only architectures, for future work we
intend to explore multimodal encoder-decoder and
decoder-only architectures with longer forecasting
window. Meanwhile, we seek to reduce model pa-
rameters and enhance preprocessing steps in clini-
cal note encoding procedures in future work.

7 Limitations

Despite the significant performance improvements
over the baseline, our models generally have a
higher number of parameters, resulting in increased
computational costs. Additionally, our evaluation
was conducted on a single dataset, assessing perfor-
mance across multiple datasets would provide more
robust and generalizable insights. Furthermore, our
best-performing forecasting model did not consis-
tently outperform the baseline during fine-tuning,
indicating potential aspects for refinement.
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Abstract

In this paper, we address the challenge of
patient-note identification, which involves ac-
curately matching an anonymized clinical note
to its corresponding patient, represented by a
set of related notes. This task has broad applica-
tions, including duplicate records detection and
patient similarity analysis, which require robust
patient-level representations. We explore vari-
ous embedding methods, including Hierarchi-
cal Attention Networks (HAN), three-level Hi-
erarchical Transformer Networks (HTN), Long-
Former, and advanced BERT-based models,
focusing on their ability to process medium-
to-long clinical texts effectively. Additionally,
we evaluate different pooling strategies (mean,
max, and mean_max) for aggregating word-
level embeddings into patient-level representa-
tions and we examine the impact of sliding win-
dows on model performance. Our results indi-
cate that BERT-based embeddings outperform
traditional and hierarchical models, particularly
in processing lengthy clinical notes and captur-
ing nuanced patient representations. Among
the pooling strategies, mean_max pooling con-
sistently yields the best results, highlighting
its ability to capture critical features from clin-
ical notes. Furthermore, the reproduction of
our results on both MIMIC dataset and Necker
hospital data warehouse illustrates the general-
izability of these approaches to real-world ap-
plications, emphasizing the importance of both
embedding methods and aggregation strategies
in optimizing patient-note identification and
enhancing patient-level modeling.

1 Introduction

Representation learning focuses on learning com-
pact, meaningful representations from raw data to
make it easier for models to perform tasks such as
classification, prediction, and clustering. In general,
representation learning consists in learning dense
representations, where complex, high-dimensional
data are mapped to lower-dimensional spaces (Liu
et al., 2020). These representations capture under-
lying structure and essential features, preserving
relevant information from the data. In the con-
text of Natural Language Processing (NLP), rep-
resentation learning has been widely applied and
demonstrated impressive performance across vari-
ous tasks, including downstream applications such
as text classification, sentiment analysis, and ma-
chine translation (Pennington et al., 2014; Liu et al.,
2020; Alsentzer et al., 2019).

Studies in healthcare have focused on learn-
ing patient representations from electronic health
records (EHRs) to develop predictive models for
patient outcomes, such as hospital readmissions,
disease progression, or patient mortality rates (Deo
and Borgwardt, 2015; Zhu et al., 2015; Auslander
et al., 2020; Mahbub et al., 2022). In recent years,
EHRs have been widely adopted by many medical
institutions, capturing comprehensive patient data
throughout the care process (Landi et al., 2020; Es-
cudié et al., 2018; Steinberg et al., 2021; Le and
Mikolov, 2014). Nonetheless, learning effective
patient representations poses several challenges,
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one of which is determining what defines a “good”
patient representation. The optimal representation
can vary depending on the specific application, as
well as factors such as data noise, missing values,
and the type of data incorporated. For instance,
representations designed for structured data (Rajko-
mar et al., 2018) may differ significantly from those
that incorporate both structured data and unstruc-
tured text (Deznabi et al., 2021). These challenges
highlight the importance of investigating different
representation learning methods to generate repre-
sentations that are adapted not only to a specific
task but also to the nature of the dataset.

In this paper, we address the task of patient-note
identification, which consists in determining to
which patient a particular note belongs. We fo-
cus exclusively on clinical texts, representing each
patient as a set of chronologically ordered notes.
While higher risks of patient-note mismatches have
been reported with paper records, there is limited
literature on this issue within modern EHR systems
(Wilcox et al., 2011), which further motivates our
work. To this end, we investigate which text-based
patient representation is best suited for the task of
patient-note identification.

Accurately identifying patient information is cru-
cial in the medical field to ensure that a patient’s
medical history is up-to-date. Furthermore, this
task has applications in biomedical informatics,
including data cleaning and privacy-related tasks
(e.g., assessing re-identification risk of patient data
(Lee and Lee, 2017)). More broadly, we believe
that patient-note identification can serve as a foun-
dational task for more advanced similarity-based
tasks, such as clustering, diagnosing conditions by
matching complex symptoms and medical histo-
ries, or finding "patients like mine" (Gombar et al.,
2019; Garcelon et al., 2017).

In this study, we conduct experiments on two
datasets: MIMIC-III (Goldberger et al., 2000) and
an anonymized EHR dataset from our local hospi-
tal, the Necker hospital data warehouse (Dr. Ware-
house) (Garcelon et al., 2018). We focus on the
MIMIC-III dataset to develop and refine our ap-
proach to identify the best representation for the
patient-note identification task, and only evaluate
reproducibility of our findings using our local hos-
pital dataset. We consider different embedding
models to learn representations of potentially large
sets of clinical notes associated with each patient,
and evaluate and compare these representations
by performing classification with traditional algo-

rithms.
Our contributions are 3-fold:

• we clearly define the patient-note identifi-
cation task and highlight its importance for
studying patient representations;

• we conduct an empirical comparison of pa-
tient representation methods for this task;

• we attest that BERT-based model, using a slid-
ing window mechanism and a combination of
mean and max pooling, achieves the highest
accuracy.

2 Related Work

2.1 Patient-Information Identification

Despite the growing interest in patient-information
identification, relatively few studies have explored
this task using text, and to our knowledge, none
have specifically addressed patient-note identifica-
tion. This research gap further motivates our work.

Most efforts in patient matching or record link-
age have focused on structured data (Riplinger
et al., 2020). Some prior studies have leveraged un-
structured clinical text for patient-matching tasks.
For example, Wornow et al. (2025) tackled the
challenge of matching patients to clinical trials
using a zero-shot LLM-based system. By eval-
uating unstructured clinical text against free-text
trial criteria, their approach achieved state-of-the-
art performance on the n2c2 2018 cohort selection
benchmark. Clinician reviews indicated that the
system provided coherent explanations for 97% of
correct decisions and 75% of incorrect ones.

In contrast, other studies have explored deep
learning approaches for patient identification using
imaging data, particularly chest X-rays (Ueda and
Morishita, 2023; Packhäuser et al., 2021). For in-
stance, Packhäuser et al. (2021) trained a Siamese
neural network to determine whether two frontal
chest X-ray images belonged to the same patient,
achieving an AUC of 0.9940 and a classification
accuracy of 95.55% on the ChestX-ray14 dataset.
Similarly, Ueda and Morishita (2023) proposed a
deep metric learning approach using a deep convo-
lutional neural network (DCNN) feature extractor
and a classifier based on the cosine similarity index
to verify patient identities from chest X-ray images.
Their method achieved AUC values of 0.9999 and
0.9943 on the Morishita Laboratory and CheXpert
datasets.
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While these studies highlight the potential of
deep learning for patient identification, our work
fills a critical gap by focusing on text-based patient-
note identification, an area that remains largely
unexplored.

2.2 Representation Learning
Typically, EHRs comprise both structured (e.g.,
age, demographics, ICD codes, laboratory results)
and unstructured data (e.g., free-text clinical notes
such as radiology reports, discharge summaries,
and medical images). The inherent complexity
of EHRs has inspired numerous studies aimed at
developing patient representations by learning op-
timized, dense numerical vectors (Li et al., 2020;
Sushil et al., 2018; Hashir and Sawhney, 2020; Si
and Roberts, 2020).

Previous research has explored various ap-
proaches, including paragraph vectors (Le and
Mikolov, 2014), topic models (Blei et al., 2001),
word2vec embeddings (Mikolov et al., 2013), and
Hierarchical Attention Networks (HAN) (Si and
Roberts, 2020, 2021). For instance, Auslander et al.
(2020) used word2vec and bag-of-words as feature
extraction methods to learn patient representation
from clinical notes for mortality prediction. Sushil
et al. (2018) learned generalized patient representa-
tions using a stacked denoising autoencoder and a
paragraph vector model to predict patient mortality,
primary diagnostic, procedural category, and pa-
tient gender. Si and Roberts (2020) learned patient
representations notes using a hierarchical attention-
based recurrent neural network (HAN-RNN) with
greedy segmentation and evaluated the model for
mortality prediction and as a transfer learning pre-
training model to downstream evaluation such as
phenotype prediction.

Representation learning from clinical texts, par-
ticularly using Bidirectional Encoder Representa-
tions from Transformers (BERT) (Devlin et al.,
2019), has shown significant improvements in text-
processing tasks like clinical named entity recogni-
tion (NER) and document classification (Alsentzer
et al., 2019; Peng et al., 2019; Lee et al., 2020).
BERT-based models have also been used for pre-
diction in medicine. For example, Mahbub et al.
(2022) used PubMedBERT to generate dynamic
embeddings from clinical notes, enabling predic-
tions of short-, mid-, and long-term mortality in
adult ICU patients. However, due to BERT’s 512-
token limitation, longer clinical notes in these ex-
periments had to be either truncated or split, which

may have resulted in the loss of valuable context
necessary for accurate predictions.

To address BERT’s 512-token input limitation,
models like BigBird (Zaheer et al., 2020) and Long-
Former (Beltagy et al., 2020) have been employed
to learn patient representations from longer clinical
texts. These models support input sequences of up
to 4,096 tokens (8 times the BERT limit), yield-
ing substantial performance improvements in tasks
such as long-text question answering and summa-
rization. Additionally, (Li et al., 2023) introduced
Clinical-Longformer and ClinicalBigBird, two pre-
trained language models specifically designed for
lengthy clinical text processing. These models
demonstrated superior performance in NER, ques-
tion answering, and document classification tasks
when handling lengthy documents.

These studies highlight the challenges involved
in identifying the most suitable representation
learning method for a specific task. In the case of
patient-note identification, there is no one-size-fits-
all solution, and the effectiveness of existing meth-
ods remains unclear, motivating empirical evalua-
tion. In this work, we present an empirical com-
parison of four methods (HAN BERTLSTM, HTN,
Longformer, and BERT) to assess their effective-
ness in addressing the patient-note identification
task. For BERT model, we introduce four different
settings that explore different embedding strategies,
using token embeddings (TE) or the [CLS] token,
as well as applying a sliding window mechanism
or restricting inputs to 512 tokens. This results in a
total of seven experimental configurations.

3 Datasets

In this work, we use two distinct datasets of EHRs
containing clinical notes: (1) the publicly available
MIMIC-III dataset, which consists of ICU patient
records in English, and (2) the Necker hospital
data warehouse, containing French-language notes
from nephrology patients. Below, we provide an
overview of each dataset along with the preprocess-
ing steps and selection criteria used to define our
final cohorts.

3.1 MIMIC-III

MIMIC-III (Johnson et al., 2016) is a publicly avail-
able medical database that includes anonymized
health records from 46,520 ICU patients treated at
Beth Israel Deaconess Medical Center in Boston,
Massachusetts, between 2001 and 2012. The
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MIMIC-III dataset provides a wide range of patient
data, including demographics, vital signs, labora-
tory test results, clinical notes, and ICD-9 diag-
nosis codes. It contains 2,083,180 clinical notes
across multiple categories, such as physician notes,
nursing notes, discharge summaries, and radiology
reports. The distribution of notes across different
categories is shown in Table 4 in Appendix A.1.

Firstly, we begin by performing several data
cleaning operations: we exclude notes flagged as
erroneous in MIMIC-III, those without a hospital
admission identifier, notes lacking chart time infor-
mation (i.e., the date and time the note was docu-
mented), and duplicated notes. For partially dupli-
cated notes with identical chart times, we retain the
longer note, ensuring that its text encompasses the
content of the shorter note.

Secondly, we select only notes categorized as
‘Physician.’ As presented in Table 4, this category
ranks fourth in terms of notes count and contains
the longest notes, with an average length of 1,874
tokens and a median of 1,823 tokens. We hypothe-
size that these notes would provide the most com-
prehensive information about a patient’s medical
condition, enhancing the ability to accurately asso-
ciate a clinical note with its corresponding patient.

Thirdly, we remove outliers, using interquartile
range (IQR) filtering and a threshold multiplier of
1.5, which results in excluding patients with more
than 40 notes. As our work focuses on matching
notes to the patient they belong to, we include only
patients with at least two clinical notes: one serving
as the target note for identification (X2), and the
other used to learn the patient’s representation (Xi

1).
Ultimately, MIMIC-III dataset consists of 33,007
notes associated with 6,174 patients. The cohort
design is illustrated in Figure 1 in Appendix A.1.
This dataset serves as a foundation for optimizing
note representations for the task of patient-note
identification.

3.2 Necker Hospital Data Warehouse
To assess the generalizability of our approach
across different languages and medical specialties,
we extended our analysis to EHRs from our local
Necker hospital data warehouse (Dr. Warehouse),
under IRB number 2016–06-01. This dataset en-
compasses a broad spectrum of clinical note types,
such as consultations, hospitalization reports, dis-
charge summaries, and laboratory results, spanning
multiple departments.

For our study, we focus on notes of nephrol-

ogy patients hospitalized between 2018 and 2023.
These selected notes have an average length of
1,237 tokens and a median of 897 tokens. We apply
a similar preprocessing pipeline to the one used
for MIMIC-III, filtering out note categories with
limited text content, removing patients with ex-
ceptionally high note counts using IQR filtering
and patients with less than two notes. All notes
have been already pseudonymized. Ultimately, our
dataset comprises 32,731 clinical notes associated
with 5,145 patients.

Unlike MIMIC-III, which consists of English-
language ICU patient notes, this dataset contains
French-language notes from nephrology patients.
This distinction allows us to evaluate the robust-
ness of our approach across different languages
and clinical settings.

4 Methodology

4.1 Patient-note identification task

We define the patient-note identification task as
a binary classification problem, where the input
pair (Xi

1, X2) maps to an output label Ŷ i. Here,
Xi

1 represents a unified representation of all notes
belonging to patient i, excluding one randomly
selected note (X2), which is represented separately.
X2 denotes the representation of a single note, and
Ŷ i is a binary label that equals 1 if X2 belongs to
patient i, and 0 otherwise.

From an initial set X = {Xi
0} with i ∈ [1, n], n

the number of patients and Xi
0 is the set of notes

associated with the patient i, we define our train
and test sets as pairs ((Xi

1, X2), Y
i). For each pa-

tient i, we designate randomly one clinical note
X2 as the target note, while the remaining notes
Xi

1 = Xi
0 \ X2 serve as the patient’s historical

context (source notes). To maintain a balanced
representation between positive and negative exam-
ples, each randomly selected clinical note is associ-
ated once in our dataset to the correct patient, and
once to a randomly chosen patient. Accordingly,
the pair (Xi

1, X2) is either associated with Y i = 1
or 0. This leads to a dataset with twice as many
instances as patients. To guarantee consistency,
patients are split in train and test sets before exclud-
ing X2, and building (Xi

1, X2) pairs. This ensures
that both source and target notes of one patient are
either in the train, or in the test set, avoiding data
leakage.
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4.2 Learning Patient-Note Representations

Successfully performing this task requires learning
effective document-level representations. Conse-
quently, our study evaluates the performance of
various representation learning approaches. Draw-
ing from previous work on document-level rep-
resentation learning (Si and Roberts, 2020; Liu
et al., 2019; Li et al., 2022; Matondora et al., 2024;
Li et al., 2020; Bazoge et al., 2024), we experi-
ment with several models to evaluate their ability
to generate effective representations for patient-
note identification. Each model was selected to
highlight distinct strategies for processing and ag-
gregating clinical notes, including hierarchical ap-
proaches, transformer-based architectures, and hy-
brid designs that integrate both sequential and con-
textual information. Specifically, we experiment
with a hierarchical attention network with BiL-
STM and BERT at the word level (HAN BERTL-
STM), a three-level hierarchical transformer net-
work (HTN), Longformer, and BERT. Using these
four models, we define seven different settings. For
the BERT model, we consider two variants: one
using token embeddings (TE) and the other using
the [CLS] token (CLS). Token embeddings repre-
sent each individual token in the sequence, while
the [CLS] token variant uses a special token at the
beginning of the sequence to aggregate informa-
tion for classification tasks. Additionally, we ex-
plore configurations both with and without a sliding
window mechanism to address BERT’s 512-token
limitation. The sliding window approach allows
the model to process longer texts by splitting them
into overlapping segments, whereas the alternative
approach restricts inputs to a single 512-token se-
quence. Detailed descriptions of each model can be
found in Appendix A.2. The acronyms introduced
in this section will be used consistently throughout
the paper.

For clinical document representation, we eval-
uate and adapt several aggregation techniques tra-
ditionally used to transition from word-level to
sentence-level and, subsequently, to document-
level representations. These techniques include
attention mechanisms, average pooling, max pool-
ing, and mean_max pooling (Deznabi et al., 2021;
Li et al., 2023; Si and Roberts, 2021; Mahbub et al.,
2022). To derive a single patient representation,
we aggregate all note representations for a given
patient into a unified representation using one of
these four methods.

Attention-based Aggregation (att) employs a
learnt attention mechanism to dynamically assign
varying importance to each clinical note. Aver-
age Pooling or Mean Pooling (avg) computes the
mean representation of all clinical notes, capturing
the overall feature distribution, while Max Pooling
(max) selects the highest value across note represen-
tations, emphasizing the most prominent features.
Recent studies (Si and Roberts, 2021; Li et al.,
2023) suggest that Mean-max Pooling (mean_max),
which concatenates the average pooled and max
pooled embeddings, often yields superior perfor-
mance across predictive tasks by combining the
strengths of both pooling strategies: the average
highlights overall feature distribution, while the
max emphasizes key dominant features.

To formalize this pooling strategy, let rj be the
vector representation of the j-th note of a given
patient with m notes. The aggregated patient rep-
resentation R using mean_max pooling is defined
as:

R = [mean(r1, r2, . . . , rm)⊕max(r1, r2, . . . , rm)],

where mean(·) computes the element-wise average,
max(·) computes the element-wise maximum, and
⊕ denotes the concatenation operation.

Finally, these note representations serve as in-
puts to classifiers for the patient-note identification
task. We evaluate five machine learning models:
logistic regression (LR), random forest (RF), de-
cision trees (DT), support vector machine (SVM),
and XGBoost. Performance of both the embedding
methods and classifiers are measured with five key
metrics: accuracy, precision, recall, F1-score, and
area under the curve (AUC).

5 Experiments and Results

To ensure robustness, experiments were repeated
three times on each dataset (MIMIC-III and Necker
hospital dataset) with distinct random train and test
splits, maintaining an 80/20 ratio. Table 1 pro-
vides details on the train and test sets, including
the length of source (Xi

1) and target (X2) notes, as
well as the size of the associated dictionaries.

Table 2 presents the results of our experiments
on MIMIC-III, keeping only results obtained for
the best-performing classifier, which name is pro-
vided in the third column. The AUC score reflects
the model’s ability to effectively distinguish be-
tween two classes: whether a note representation
belongs to a given patient.
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Dataset Notes Set Token Count Sentence Count Vocabulary Size

MIMIC-III

Source Notes (Xi
1) Train 8006.11± 7416.22 149.30± 140.23 15, 510

Test 8080.67± 7503.55 149.98± 150.89 14, 050
Target Note (X2) Train 1768.63± 687.90 33.88± 26.31 13, 106

Test 1782.04± 706.93 33.98± 27.13 11, 609

Necker Hospital Data Warehouse

Source Notes (Xi
1) Train 8493.19± 9935.22 424.02± 560.27 17, 335

Test 8578.87± 9733.31 427.30± 545.52 15, 744
Target Note (X2) Train 1436.10± 1013.69 69.50± 77.19 14, 907

Test 1436.36± 1033.57 69.40± 79.26 12, 962

Table 1: Mean number of tokens and sentences for the set of notes belonging to a single patient (source notes, Xi
1)

and the target note (X2) across train and test sets in both MIMIC-III and our local Necker hospital dataset, along
with vocabulary sizes. Token count and vocabulary size are computed using the BERT WordPiece tokenizer. These
values are computed over the three different train and test splits.

We observe that BERT_TE_sliding consistently
outperforms all other models. Furthermore,
mean_max pooling consistently yields the best per-
formance across all models and nearly all metrics
as the aggregation method for patient representa-
tions. XGBoost also emerges as the top-performing
machine learning algorithm across all models.

We evaluate the impact of pooling strategies (av-
erage, max, and mean_max) on the performance
of different models using paired t-tests to assess
statistical significance. Mean_max pooling out-
performs mean and max pooling in most com-
parisons, with significant differences observed in
most of the cases (p < 0.05). For hierarchical
models, significant differences are observed be-
tween mean pooling and mean_max pooling for
both HAN BERTLSTM and HTN (p < 0.05).
Additionally, max pooling shows a significant
difference compared to mean_max pooling for
HTN (p < 0.05), but not for HAN BERTLSTM.
Turning to the LongFormer model, mean pool-
ing shows a significant difference compared to
mean_max pooling (p < 0.05), whereas no sig-
nificant difference is found between max pool-
ing and mean_max pooling. Among BERT-based
models, both BERT_[CLS] and BERT_TE ex-
hibit significant differences between mean pool-
ing and mean_max pooling (p < 0.05). How-
ever, while max pooling differs significantly from
mean_max pooling for BERT_TE (p < 0.05),
no such difference is observed for BERT_[CLS].
In sliding window approaches, significant dif-
ferences emerge between mean pooling and
mean_max pooling for both BERT_[CLS]_sliding
and BERT_TE_sliding (p < 0.05). Meanwhile, max
pooling differs significantly from mean_max pool-
ing for BERT_[CLS]_sliding (p < 0.05), but not for
BERT_TE_sliding.

To evaluate the generalizability of our re-
sults, we extend our analysis to EHRs from the
Necker hospital data warehouse. For this exper-
iment, we use only our best-performing model,
BERT_TE_sliding, and test the three different ag-
gregation methods to obtain patient-level represen-
tations. Since the dataset contains French clini-
cal notes, we replace BERT with CamemBERT
to accommodate the language difference. Results
are obtained by conducting three independent runs
and are reported in Table 3. The results on the
Necker hospital dataset show similar results to
those of MIMIC-III, with the mean_max aggrega-
tion method outperforming other pooling strategies.
Statistical analysis using paired t-tests reveals a sig-
nificant difference between mean_max pooling and
average pooling (p < 0.05), while the difference
between mean_max pooling and max pooling is
not statistically significant.

6 Discussion

As mentioned previously, each experiment was con-
ducted 3 times using a random sampling of train
and test set. Although the reported standard devi-
ation is small, this can be explained by the nature
of our datatsets, i.e., our cohort selection. Given
that our datasets consist of notes from specific cate-
gories (i.e., physician-only notes in the MIMIC-III
dataset and nephrology-only notes in the Necker
hospital dataset), which each tend to have simi-
lar language and structure within their respective
categories, the model’s predictions are highly con-
sistent. We believe this homogeneity within each
category likely contributes to the low standard de-
viation observed. Despite this, our overall results
(accuracy, AUC, and F1 score) indicate that our
models effectively differentiate between notes and
accurately matches them to their corresponding
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Model Aggreg. Classifier Accuracy Precision Recall F1 AUC
(mean ± std.) (mean ± std.) (mean ± std.) (mean ± std.) (mean ± std.)

HAN BERTLSTM

att RF 0.64 ± 0.00 0.62 ± 0.00 0.69 ± 0.01 0.66 ± 0.01 0.70 ± 0.01
avg SVM 0.76 ± 0.00 0.82 ± 0.01 0.67 ± 0.01 0.73 ± 0.00 0.79 ± 0.00
max XGBOOST 0.75 ± 0.00 0.76 ± 0.00 0.74 ± 0.01 0.75 ± 0.01 0.82 ± 0.01

mean_max XGBOOST 0.76 ± 0.00 0.76 ± 0.01 0.75 ± 0.01 0.75 ± 0.00 0.83 ± 0.01

3-level HTN
avg XGBOOST 0.74 ± 0.01 0.72 ± 0.01 0.80 ± 0.01 0.75 ± 0.01 0.82 ± 0.01
max XGBOOST 0.71 ± 0.01 0.68 ± 0.00 0.79 ± 0.01 0.73 ± 0.01 0.79 ± 0.01

mean_max XGBOOST 0.76 ± 0.01 0.74 ± 0.01 0.82 ± 0.01 0.77 ± 0.01 0.84 ± 0.00

BERT_TE
avg XGBOOST 0.85 ± 0.00 0.84 ± 0.00 0.86 ± 0.01 0.85 ± 0.00 0.93 ± 0.00
max XGBOOST 0.85 ± 0.01 0.86 ± 0.01 0.83 ± 0.01 0.85 ± 0.01 0.92 ± 0.01

mean_max XGBOOST 0.87 ± 0.00 0.88 ± 0.00 0.85 ± 0.01 0.87 ± 0.00 0.94 ± 0.00

BERT_[CLS]
avg XGBOOST 0.82 ± 0.00 0.81 ± 0.00 0.82 ± 0.01 0.82 ± 0.00 0.90 ± 0.00
max XGBOOST 0.84 ± 0.00 0.83 ± 0.00 0.85 ± 0.01 0.84 ± 0.00 0.92 ± 0.00

mean_max XGBOOST 0.85± 0.00 0.84 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.93 ± 0.01

Longformer
avg XGBOOST 0.74 ± 0.01 0.74 ± 0.01 0.76 ± 0.02 0.75 ± 0.01 0.83 ± 0.00
max XGBOOST 0.75 ± 0.01 0.75 ± 0.02 0.76 ± 0.02 0.75 ± 0.01 0.83 ± 0.00

mean_max XGBOOST 0.78 ± 0.01 0.78 ± 0.02 0.79 ± 0.02 0.78 ± 0.00 0.85 ± 0.00

BERT_TE_sliding
avg XGBOOST 0.85 ± 0.00 0.84 ± 0.01 0.87 ± 0.01 0.86 ± 0.00 0.94 ± 0.00
max XGBOOST 0.88 ± 0.00 0.89 ± 0.00 0.86 ± 0.01 0.88 ± 0.00 0.95 ± 0.00

mean_max XGBOOST 0.90 ± 0.00 0.91 ± 0.00 0.88 ± 0.00 0.89 ± 0.00 0.96 ± 0.00

BERT_[CLS]_sliding
avg XGBOOST 0.86 ± 0.00 0.85 ± 0.00 0.88 ± 0.00 0.87 ± 0.00 0.94 ± 0.00
max XGBOOST 0.85 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.93 ± 0.01

mean_max XGBOOST 0.88 ± 0.00 0.88 ± 0.00 0.88 ± 0.00 0.88 ± 0.00 0.95 ± 0.00

Table 2: Best results reported based on AUC metrics across 4 models (7 different settings) among 5 different
classification algorithms (LR, RF, SVM, DT, and XGBOOST), using MIMIC-III dataset. We report mean ± std.
over 3 runs.

Model Aggreg. Classifier Accuracy Precision Recall F1 AUC
(mean ± std.) (mean ± std.) (mean ± std.) (mean ± std.) (mean ± std.)

BERT_TE_sliding
(FR: CamemBERT)

avg XGBOOST 0.78 ± 0.01 0.79 ± 0.01 0.78 ± 0.02 0.78 ± 0.01 0.86 ± 0.01
max XGBOOST 0.82 ± 0.00 0.83 ± 0.01 0.82 ± 0.02 0.83 ± 0.01 0.90 ± 0.01

mean_max XGBOOST 0.83 ± 0.01 0.84 ± 0.02 0.83 ± 0.00 0.83 ± 0.01 0.91 ± 0.01

Table 3: Best results reported based on AUC metrics among 5 different classification algorithms (LR, RF, SVM, DT,
and XGBOOST), using our local Necker hospital data warehouse. We report mean ± std. over 3 runs.

patient.
In this version of the datasets, we conducted a

single random drawing for each patient from their
available set of clinical notes. However, to further
expand the dataset, multiple random draws could
be performed per patient, which would yield differ-
ent patient representations.

The results obtained from our experiments em-
phasize the significance of model architecture, em-
bedding strategies, and aggregation methods in op-
timizing performance for patient-note identification
as shown in Table 2. Below, we discuss key obser-
vations and insights drawn from the performance
metrics.

1. Effect of Model Architecture: The hier-
archical models (HAN and HTN) demon-
strated moderate performance. Among these,
HAN BERTLSTM with mean_max pooling
achieved an F1 score of 0.75 and an AUC of
0.83. Similarly, the 3-level HTN model with
mean_max pooling achieved slightly better

performance, with an F1 score of 0.77 and
an AUC of 0.84, demonstrating the utility of
hierarchical modeling. However, the overall
performance of hierarchical models was sur-
passed by purely transformer-based models,
including Longformer, which better captured
contextual representations.

To elaborate, HAN and HTN rely on a fixed
structure to aggregate information, which
could limit their ability to detect nuanced
relationships between sentences and words,
particularly in long clinical notes. On the
other hand, transformer-based models, such
as Longformer and BERT, dynamically ad-
just word representations based on surround-
ing context. Given that we are working with
clinical notes, we know that the meaning of
terms could vary based on what follows and
what precedes. Thus it is crucial to correctly
identify or recognize the intended meaning
of a particular term in a clinical note. While
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hierarchical models capture some structural
patterns, they may miss more granular contex-
tual cues, which are essential for accurately
matching clinical notes to the correct patient.

2. BERT Token Embedding (TE) vs. [CLS]
Representations: BERT models using TE
achieved higher performance compared to
those using [CLS] token representations.
While [CLS] embeddings are designed to en-
capsulate the overall sentence representation,
their reliance on a single token representation
might limit their ability to capture nuanced
information spread across longer notes. In
contrast, the token embeddings (TE) in BERT
allows us to focus on the contextual repre-
sentations of each token in a sequence. As
demonstrated in the results, the mean_max
pooling strategy with BERT_TE consistently
yielded the best results, highlighting the effec-
tiveness of combining token embeddings with
contextual attention mechanisms in capturing
fine-grained details from clinical notes.

3. Longformer vs. BERT Sliding Window:
The Longformer model addresses BERT’s
token-length limitation by processing up to
4096 tokens, outperforming hierarchical mod-
els but falling short of BERT’s sliding window
configurations. Longformer achieved an F1
score of 0.83 and an AUC of 0.92, demon-
strating its capability to handle lengthy clini-
cal notes. In contrast, BERT_TE_sliding with
mean_max pooling achieved the highest per-
formance, with an F1 score of 0.89 and an
AUC of 0.96. This success highlights the
sliding window approach’s ability to capture
contextual information distributed across long
notes. By employing overlapping windows,
the model attended to diverse parts of the
notes while maintaining contextual integrity.
This method proved to be superior to Long-
former’s fixed sliding window attention mech-
anism, as it enabled chunk-specific embed-
dings to be aggregated effectively.

4. Pooling strategies: mean_max pooling con-
sistently yielded the best results, likely due to
its ability to capture both global and localized
features across embeddings. By focusing on
the maximum values, max pooling reduces the
influence of less relevant or noisy features and,
at the same time, ensures that the most im-

portant features are prominently represented
in the final patient-level representation. In
contrast, average pooling calculates the mean
across all clinical note representations to de-
rive the final patient representation, which can
result in the loss of critical information, partic-
ularly when vital details are scattered across
notes.

In addition to the findings on the MIMIC-III
dataset, the results on the Necker hospital dataset
highlight two key points. First, our model demon-
strates strong adaptability to a different dataset,
effectively addressing the task of patient-note
identification. Second, the results on our local
dataset align with our previous experiments on the
MIMIC-III dataset, where the mean_max aggre-
gation method generally outperforms other pool-
ing strategies or performs similarly in a few cases,
where no significant difference was observed com-
pared to max pooling. These results highlight the
versatility of our approach, demonstrating its effec-
tiveness across diverse datasets and languages.

7 Conclusion

Patient-note identification is a fundamental prob-
lem in the domain of medical informatics. While
not extensively explored, the risks associated with
patient-note mismatches can have serious conse-
quences, particularly in ICU settings. In this work,
we developed a framework to address this chal-
lenge using unstructured clinical notes from the
MIMIC-III database. We evaluated various em-
bedding models (HAN BERTLSTM, HTN, Long-
former, and BERT) and aggregation methods (av-
erage, max, and mean_max pooling) to generate
patient-level representations. Our findings high-
light that transformer-based models with advanced
aggregation strategies, such as mean_max pool-
ing combined with a sliding window approach, are
highly effective for capturing fine-grained contex-
tual information and ensuring accurate patient-note
identification. Additionally, experiments on an ex-
ternal dataset validated the generalizability of our
approach. By adapting to French clinical notes
with CamemBERT, the model maintained strong
performance, demonstrating its robustness across
diverse datasets and settings.

8 Limitations

Through this work, we emphasize the importance
of patient-note identification and the potential of
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leveraging raw clinical notes for predictive mod-
eling. While our approach shows strong perfor-
mance, it is not without limitations. Our first
limit lies in the use of generic language mod-
els to learn patient representations rather than us-
ing domain-specific architectures. Future research
could explore more specialized models, such as
ClinicalMamba (Yang et al., 2024) and Modern-
BERT (Warner et al., 2024), and investigate alter-
native aggregation strategies. These approaches
may enhance representation quality and help miti-
gate potential information loss inherent in process-
ing complex clinical text. However, it is important
to consider the potential biases embedded in the
pretraining data of these models, as such biases
can impact both the generalizability and fairness of
their application in clinical settings.

Another limit lies in the exclusive focus on un-
structured clinical notes within our current frame-
work. Integrating structured data, such as labora-
tory results or vital signs, alongside unstructured
text could yield more comprehensive patient repre-
sentations and allow for more nuanced comparative
analyses.

Additionally, while we validated our approach
using an external dataset, we did not assess its
effectiveness on downstream clinical tasks, such
as predictive modeling or forecasting, where clini-
cal notes serve as primary or supplementary input.
Such evaluations could offer further insights into
the practical utility of the learned patient represen-
tations.

Finally, benchmarking our method against large
language models (LLMs), including ChatGPT or
GPT-4o, could provide valuable perspectives for as-
sessing the scalability, accuracy, and overall effec-
tiveness of our approach in the context of patient-
note identification.
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A Appendix

A.1 Notes Statistics

CATEGORY NUMBER OF NOTES
Nursing/other 822,497
Radiology 522,279
Nursing 223,556
ECG 209,051
Physician 141,624
Discharge summary 59,652
Echo 45,794
Respiratory 31,739
Nutrition 9,418
General 8,301
Rehab Services 5,431
Social Work 2,670
Case Management 967
Pharmacy 103
Consult 98

Table 4: Number of notes per category in the MIMIC-III
dataset.

Figure 1: Cohort design, MIMIC-III dataset.

A.2 Models Details
A.2.1 HAN BERTLSTM
Following the architecture proposed by (Si and
Roberts, 2021), we adapted their HAN BiLSTM
model3 to our task. The model integrates a BERT

3Model code is available at https://github.com/
Yuqi92/3-level-HTN-MIMIC.git

component as a fully trainable word-level encoder,
followed by BiLSTMs and a pooling strategy to
hierarchically learn sentence-level and document-
level embeddings. The BiLSTMs and a global
context-based attention mechanism capture sequen-
tial information at both the sentence and document
levels, while a pooling strategy aggregates embed-
dings from one level to the next, extracting salient
features at each stage.

In our implementation, we employed the BERT-
Base model at the word level. BERTBase com-
prises 12 layers, 768 hidden units, and 12 atten-
tion heads. It is pretrained on general-domain text
datasets, including English Wikipedia (2.5 billion
words) and the BookCorpus dataset (Zhu et al.,
2015) (800 million words). The model uses the
WordPiece tokenizer (Wu et al., 2016) and has an
input token limit of 512.

To generate word-level embeddings, we applied
either the attention mechanism resulting from the
original HAN BERTLSTM pre-training or one of
several pooling strategies, namely average pooling,
max pooling, or mean_max pooling, to the BERT
output. These word-level embeddings were then
passed through the BiLSTM encoder to capture
sentence-level features, where the same attention
or pooling strategies were applied to produce final
sentence embeddings. Similarly, document-level
embeddings for individual clinical notes were ob-
tained by applying the same strategies at the next
hierarchical level. For patient-level representation,
we aggregated the embeddings of all notes asso-
ciated with a single patient. This was achieved
using either an attention mechanism or a pooling
strategy. Experimenting with these various pooling
strategies allowed us to assess their impact on the
patient-note identification task. The architecture of
the model is shown in Figure 2.

A.2.2 HTN
As our second model, we evaluated the three-level
Hierarchical Transformer Network (HTN) 4, pro-
posed by (Si and Roberts, 2021) and illustrated
in Figure 3. The model architecture progressively
constructs representations from the word level to
the document level. At the word level, the model
integrates a BERT encoder, experimenting with dif-
ferent BERT variants to balance model size and
sequence length. At the sentence and document
levels, it employs a Transformer-based encoder ar-

4Model code is available at https://github.com/
Yuqi92/3-level-HTN-MIMIC.git
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Figure 2: Overview of the HAN architecture incorpo-
rating BERT and BiLSTM with attention or pooling
strategies for hierarchical aggregation. Adapted from
(Si and Roberts, 2021).

chitecture inspired by (Vaswani et al., 2017), using
multiheaded self-attention to identify key features
and pooling to condense representations for the
next level. Inputs are cropped or padded to fixed
sizes at all levels (word, sentence, document). Fur-
ther details about the model can be found in (Si and
Roberts, 2021).

For our experiments, we used the BERTBase
model at the word level. To construct higher-level
representations from word to document level, we
experimented with three pooling strategies: aver-
age, max, and mean_max pooling. Patient-level
representations were then derived by aggregating
note-level representations for each patient using the
same pooling strategies.

A.2.3 Bert-based Models
As our third model, we aimed to evaluate the stan-
dalone performance of BERT (Devlin et al., 2019),
a widely used transformer model, to establish a
robust baseline. This experiment was designed to
understand the capability of BERT in capturing
semantic and contextual information from clini-
cal notes without leveraging additional hierarchical
mechanisms or pretrained domain-specific adapta-
tions. BERT has proven to be highly effective in
various NLP tasks, making it a strong candidate for

Figure 3: Overview of the HTN architecture incorporat-
ing BERT and Multi-head Transformer Encoder with
pooling strategies for hierarchical aggregation. Adapted
from (Si and Roberts, 2021).

text representation in this context. Although spe-
cialized models like ClinicalBERT (Huang et al.,
2020) have shown strong results in clinical applica-
tions, we opted not to use them to avoid potential
bias. ClinicalBERT is pretrained on the MIMIC-III
dataset, which overlaps with our experimental data,
potentially confounding the evaluation. By em-
ploying the generic BERTBase model, we ensure a
fairer evaluation of our approach.

Token Embeddings Representations In the first
approach, the final representations are derived from
token embeddings in the text. Clinical notes are
first split into sentences, and each sentence is tok-
enized. The tokenized input is passed into BERT-
Base, which generates embeddings for each token
in the sentences. To obtain a single vector represen-
tation of a sentence, we pool the token embeddings
using one of three strategies: average, max, or
mean_max pooling, represented as:

Srepr = avg/max/mean_max(TE(w1), TE(w2), . . . , TE(wn))

(1)
, where Srepr refers to the sentence representation
and TE(wn) is the token embedding representa-
tion of each token in the sentence. To construct
document-level embeddings, the sentence embed-
dings are appended and aggregated using the same
pooling strategies (average, max, or mean_max)
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along the dimension of sentence:

Nrepr = avg/max/mean_max(S1repr, S2repr, . . . , Snrepr)

(2)
Finally, for patient-level representation, where each
patient has a set of clinical notes, the document-
level embeddings are aggregated using average,
max, or mean_max pooling. This results in a single
vector representation that captures the information
from all notes associated with the patient.

[CLS] Token-Based Representation In the sec-
ond approach, instead of learning token embed-
dings and aggregating them to obtain sentence rep-
resentations, we directly extract the [CLS] token
representation for each sentence. For each sentence,
the sum of all token embeddings is passed through
the Transformer layers (TL) to compute the final
representation of the [CLS] token:

[[CLS]]repr = TL(TE(w1) + TE(w2) + . . .+ TE(wn)

(3)
The [CLS] representations for all sentences are
concatenated to form the input for document-level
embedding. To obtain the document-level embed-
dings, we apply the same aggregation strategies
(average, max, or mean_max) across the [CLS]
token representations of sentences:

Nrepr = avg/max/mean_max([[CLS]]1repr, [[CLS]]2repr, . . . , [[CLS]]nrepr)

For patient-level representation, document-level
embeddings from all notes associated with a pa-
tient are further aggregated using the same pooling
strategies (average, max, or mean_max), producing
a single vector representation for the patient.

By experimenting with these two methods, we
aim to comprehensively evaluate BERT’s effec-
tiveness at capturing representations at sentence,
document, and patient levels, while establishing a
strong comparative baseline for this task.

A.3 LongFormer

Upon reviewing the MIMIC-III Physician notes,
we observed that 28,266 out of 33,660 notes exceed
512 tokens, indicating that approximately 84% of
the notes exceed the token limit imposed by BERT.
This suggests that the 512-token constraint may
restrict the amount of information BERT can ef-
fectively capture. Figure 4 illustrates the token
distribution across the Physician clinical notes in
the MIMIC-III dataset. Given this limitation, we
sought to explore a model that could handle longer

sequences more effectively, motivating our deci-
sion to experiment with Longformer as our fourth
model. Unlike BERT, Longformer can process
sequences up to 4096 tokens, addressing BERT’s
token constraint. It does this through a sliding win-
dow attention mechanism by allowing each token
to attend only to a fixed window of neighboring
tokens. Additionally, Longformer incorporates a
global attention mechanism for selected tokens,
such as the [CLS] token, enabling the model to
capture broader context in longer documents.

Longformer is pretrained on a mix of general-
purpose datasets, including scientific and news arti-
cles, designed to handle long-form text.

Figure 4: Number of tokens across MIMIC-III Physi-
cian notes.

A.4 Bert-based [CLS] Token or Token
Embedding (TE) With Sliding Window
Model

Motivated by the Longformer model, we conducted
a new set of experiments with BERT, implement-
ing the sliding window mechanism for both token
embedding (TE) and [CLS] token-based represen-
tations. We believe this approach (our fifth model)
will not only overcome the token limitation im-
posed by BERT but also enable the model to focus
on different parts of a clinical note, often spread
across various sections, thus minimizing informa-
tion loss typically associated with pooling.

To implement this, we begin by splitting each
note into individual sentences. If a sentence ex-
ceeds 512 tokens, a sliding window is applied. The
window starts at an initial position and processes
a chunk of the sentence up to 512 tokens. It then
moves by a specified stride and processes the next
chunk. For our experiments, we set the stride value
to 256 tokens, meaning that each window overlaps
with the next one. We believe this overlapping strat-
egy helps preserve contextual information when
learning embeddings, as shown in Figure 5.

This process continues until the entire sen-
tence is covered. For each chunk, we obtain
sentence-level embeddings using either the
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token embedding (TE) or [CLS] representation,
depending on the approach being tested. To
illustrate, consider a note consisting of two
sentences: one long sentence containing more
than 512 tokens and a shorter sentence with
exactly 512 tokens. The long sentence (S1) can
be represented as S1 = Srepr1.1, Srepr1.2, Srepr1.3,
and the short sentence (S2) as S2 = Srepr2. The
final document-level embedding for the entire note
is then computed as the average of all sentence
embeddings:

Nrepr = avg/max/mean_max(Srepr1.1, Srepr1.2, Srepr1.3, Srepr2)

It is important to note that our sliding window
approach differs from the one used in Longformer.
While Longformer processes the entire input using
a global attention mechanism and a sliding window
to select specific tokens to attend to, our approach
divides the text into chunks, ensuring that each
part of the sentence is processed separately before
combining them into a final representation. This
chunk-based approach allows us to handle very
long sentences in a more structured manner.

Figure 5: Sliding window approach.
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Abstract

While increasing patients’ access to medical
documents improves medical care, this bene-
fit is limited by varying health literacy levels
and complex medical terminology. Large lan-
guage models (LLMs) offer solutions by sim-
plifying medical information. However, eval-
uating LLMs for safe and patient-friendly text
generation is difficult due to the lack of stan-
dardized evaluation resources. To fill this gap,
we developed MeDiSumQA. MeDiSumQA
is a dataset created from MIMIC-IV discharge
summaries through an automated pipeline com-
bining LLM-based question-answer genera-
tion with manual quality checks. We use this
dataset to evaluate various LLMs on patient-
oriented question-answering. Our findings re-
veal that general-purpose LLMs frequently sur-
pass biomedical-adapted models, while auto-
mated metrics correlate with human judgment.
By releasing MeDiSumQA on PhysioNet, we
aim to advance the development of LLMs to
enhance patient understanding and ultimately
improve care outcomes.

1 Introduction

Access to health documents empowers patients and
improves medical care (Greene and Hibbard, 2012;
Lye et al., 2018; Ross and Lin, 2003). These doc-
uments, however, often use language too complex
for patients to understand (Paasche-Orlow et al.,
2005), and physicians have no time to simplify doc-
uments in a patient-friendly manner (Ammenwerth
and Spötl, 2009).

This gap between healthcare providers and pa-
tients can be bridged by large language models
(LLMs) (Ali et al., 2023; Jeblick et al., 2024; Zaret-
sky et al., 2024; Eisinger et al., 2025). Through
their ability to simplify medical information, LLMs
can enhance the access to health documents and ul-
timately improve patient care. However, assessing
and comparing LLMs in their ability to generate
safe and patient-friendly text remains challenging

due to the lack of benchmarks and publicly avail-
able resources. Strict privacy regulations surround-
ing clinical data limit dataset accessibility, thereby
impeding the development of open benchmarks for
evaluating LLMs in medical contexts.

To address this issue, we developed MeDiS-
umQA. MeDiSumQA is a novel, patient-oriented
question-answering (QA) dataset, a format espe-
cially suitable to improve patient understanding of
clinical documents (Cai et al., 2023).

In this paper, we describe how we created, cu-
rated, and evaluated MeDiSumQA, crafting a stan-
dardized resource for future benchmarking. By
making this task openly available to researchers, we
support broader development and testing of LLMs
for healthcare applications, helping address chal-
lenges of time constraints and health literacy.

2 Related Work

While several clinical QA datasets exist (Pampari
et al., 2018; Lehman et al., 2022; Soni et al., 2022;
Bardhan et al., 2022; Dada et al., 2024b; Kweon
et al., 2024), none, to the best of our knowledge,
are explicitly designed for patient-oriented use.

Prior research has explored medical text simplifi-
cation, but did not focus on helping patients under-
stand clinical documents in a QA format. Aali et al.
(2024) developed a public dataset that converts
MIMIC hospital course summaries into concise
discharge letters. Campillos-Llanos et al. (2022)
created a Spanish dataset for simplifying clinical
trial texts, demonstrating the importance of multi-
lingual resources. Trienes et al. (2022) focused on
making pathology reports more understandable for
patients, though their dataset remains private and
does not address everyday clinical questions. Sim-
ilarly, while Ben Abacha and Demner-Fushman
(2019)’s MeQSum dataset transforms consumer
health questions into brief medical queries, but is
not based on clinical documents.
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Name: ______ Unit No: _____
Date of Birth: _______ Sex: M

Allergies:

History of Present Illness:

Discharge Instructions:
You were admitted

Discharge Letter

?

?

?

?

?

Sentence Splitting
Prompt

Question Generation
Prompt

?

?

?

?

?

Answer

Manual Quality Control

You have bad arthritis in your
neck, which is causing
tightening of your spinal canal.

What's causing my neck pain?

Question

(3)

(4)

(2)(1)

Discharge Summary

Figure 1: Generation process of MeDiSumQA. After identifying the discharge letter, we separate it from the main
document and use an LLM to split it into sentences (1). Based on these sentences, we let an LLM generate matching
questions (2). The resulting question-answer pairs were reviewed and curated by a physician, resulting in the the
final MeDiSumQA dataset of 416 question-answer pairs (3). For inference, we provide LLMs with the discharge
summary (without the bottom discharge letter) and pose the generated question. The model answer is then compared
to the extracted ground truth answer (4).

Our work addresses these limitations by intro-
ducing a public, patient-centered QA dataset based
on clinical MIMIC-IV discharge summaries, creat-
ing a benchmark to evaluate LLMs.

3 Methods

3.1 Dataset Generation

In the MIMIC-IV dataset (Johnson et al., 2023),
some discharge summaries conclude with a dis-
charge letter that summarizes key information and
follow-up instructions in patient-friendly language.
We used these discharge letters as the foundation
for generating QA pairs in the following manner
(Figure 1):

First, we identified discharge summaries con-
taining discharge letters by searching for the string1

that indicates the start of a discharge letter. We split
each discharge letter into sentences using Meta’s
Llama-3-70B-Instruct (Dubey et al., 2024), which
proved more accurate than traditional sentence
splitters like NLTK, especially when handling ir-
regular formatting and placeholders introduced by
anonymization. To ensure accuracy, we prompted
the LLM to preserve the original sentence struc-
ture and wording, which we subsequently verified
by confirming that each processed sentence could
be matched exactly with its source in the original
discharge letter via exact string matching.

1“You were admitted to the hospital”

Afterwards, we fed these sentences into an
Meta’s Llama-3-70B-Instruct to generate matching
questions from a patient’s perspective. The LLM
was allowed to reformulate the answer to match
the question, but was instructed to reference the
source sentence. We then manually checked these
references to confirm that no information from the
source document was altered. Since the answers
are directly derived from the discharge letters writ-
ten by medical professionals, this method main-
tains both medical accuracy and patient-friendly
language. All mentioned prompts are listed in Ap-
pendix A.

The resulting QA candidates were then manually
reviewed by a physician who selected high-quality
examples based on the following criteria:

Factual correctness Question-answer pairs
had to be logically connected. Answers that
did not match their questions (e.g., "What
medication should I avoid taking due to a pos-
sible allergy?" - "You were prescribed ibupro-
fen") were excluded.

Completeness Answers had to be complete.
Partial answers (e.g., "What medications were
started for me?" - "You were started on Van-
comycin 1gm IV every 24 hours" when addi-
tional antibiotics were prescribed) were dis-
carded.

Safety Answers needed to be safe. Potentially
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Diagnosis

17.1%

Medications 17.8%

Post-Discharge Care & Follow-Up
4.8%

Procedures & Tests

20.9%

Symptoms & Complications
17.1%

Treatment & Hospital Course

22.4%

Figure 2: Frequency of question-answer categories in MeDiSumQA.

harmful instructions (e.g., "Take Coumadin 3
mg daily" without mentioning INR monitor-
ing) were excluded.

Consistency Questions had to be answerable
from both the discharge letter and discharge
summary. Questions whose answers relied
solely on information from the discharge letter
were excluded.

Complexity Question-answer pairs had to be
sufficiently complex. Obvious answers or
overly specific questions that gave the answer
away (e.g. "Did I receive Ciprofloxacin?"
- "You received Ciprofloxacin.") were ex-
cluded.

As a final step, we removed the discharge let-
ters from their summaries and combined the re-
maining summaries with their matching QA pairs.
This resulted in three components, forming MeDiS-
umQA:

1. A question that serves as input for LLMs.

2. An abbreviated discharge summary without
the discharge letter that LLMs use to answer
the input question

3. A ground truth answer for comparison with
generated responses

3.2 QA Categories

In MeDiSumQA, we identified six QA categories:

• Symptoms & Complications

• Procedures & Tests

• Diagnosis

• Treatment & Hospital Course

• Medications

• Post-Discharge Care & Follow-Up

To assign each QA pair to one of these categories,
we used Meta’s Llama-3.3-70B-Instruct (Dubey
et al., 2024).

3.3 Evaluation
We evaluated the following models on MeDiS-
umQA: Mistral-7B-Instruct-v0.1 (Jiang et al.,
2023), Meta-Llama-3-8B-Instruct, Meta-Llama-
3.1-8B-Instruct (Dubey et al., 2024), and four
biomedical models derived from previously
mentioned general-purpose language models:
BioMistral-7B (Labrak et al., 2024), Llama3-
Med42-8B (Christophe et al., 2024), Llama3-Aloe-
8B-Alpha (Gururajan et al., 2024), and Meditron3-
8B (OpenMeditron, 2024). We evaluated model
performance on the MeDiSumQA dataset through
automatic and manual assessments to ensure a com-
prehensive analysis.

3.3.1 Automatic Evaluation
We evaluated the models using established similar-
ity metrics that capture both n-gram overlap and
semantic similarity. The temperature was set to 1.0
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What complication developed during my hospital stay that required
intensive care?

Question

Your heart was beating too fast and your oxygen levels dropped, and you
were unable to breathe on your own due to an infection and fluid in your
lungs.

Answer

How should I care for my incision site?

Question

Please shower daily, wash the affected area with mild soap and water,
rinse thoroughly, pat dry, and avoid applying lotions or creams to help
with your recovery.

Answer

What changes were made to my medication regimen during my hospital
stay?

Question

We started you on Octreotide and Zantac, stopped your Magnesium
oxide and Potassium chloride, and decreased your Colesevelem dose.

Answer

Figure 3: Example of QA pairs in MeDiSumQA dataset.

for all models. Due to the long input length, the
models were prompted with a one-shot example.
Additional details about the prompts are described
in Appendix A.

Specifically, we used ROUGE-1, ROUGE-2, and
ROUGE-L (Lin, 2004) to measure lexical over-
lap at varying levels of granularity, as well as
BERT Score (Zhang* et al., 2020) to evaluate
semantic similarity using contextual embeddings.
For the BERT Score we tuned the rescaling base-
lines for MIMIC-IV discharge summaries using
Bio_ClinicalBERT (Alsentzer et al., 2019). We
also used the Unified Medical Language System
(UMLS) parser scispaCy (Neumann et al., 2019) to
assess the alignment of biomedical entities between
predictions and ground truth answers, computing a
UMLS F1 score.

As baselines for these metrics, we calculated
both lower and upper bounds. To provide a lower
bound for meaningful model predictions, we com-
pute the similarity between the question and ground

truth. For the upper bound, we paraphrased ground
truth answers using Llama-3.3-70B-Instruct and
measured their similarity to the original ground
truth.

3.3.2 Manual Evaluation
To complement the automatic evaluation, we man-
ually assessed 100 generated answers from two
models: Mistral-7B-Instruct-v0.1, a lower-scoring
model, and Meta-Llama-3.1-8B-Instruct, a higher-
scoring model. For each model, we sorted the
answers by the average similarity score across all
automatic metrics. We then divided them into five
equal-sized bins, with the lowest 20% placed in bin
1, the next 20% in bin 2, up to bin 5 containing
the highest 20%. We then sampled ten predictions
from each bin.

The answers were rated by a physician on five
critical aspects:

• Factuality: Accuracy of medical information,
rated on a scale from 1 to 5.
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Model Biomedical Avg R-L R-1 R-2 BERT F1 UMLS F1

Lower Bound - 20.93 13.11 15.76 2.82 60.22 12.74
Upper Bound - 44.72 41.55 45.13 16.82 81.35 38.75

BioMistral-7B Yes 23.69 15.1 19.67 5.29 64.24 14.13
Llama3-Med42-8B Yes 29.27 21.2 26.84 8.65 68.45 21.21
Llama3-Aloe-8B-Alpha Yes 19.47 8.94 12.11 3.81 61.83 10.66
Meditron3-8B Yes 29.00 21.1 26.63 8.63 68.01 20.62

Mistral-7B-Instruct-v0.1 No 23.24 14.55 19.00 5.08 64.15 13.42
Meta-Llama-3-8B-Instruct No 28.75 20.78 26.51 8.72 67.69 20.06
Meta-Llama-3.1-8B-Instruct No 31.43 24.1 29.93 10.24 69.35 23.55

Table 1: Automatic evaluation of seven models on MeDiSumQA.

• Brevity: Conciseness of the response, rated
on a scale from 1 to 5.

• Patient-Friendliness: Clarity and accessibil-
ity of the response for laypersons, rated on a
scale from 1 to 5.

• Relevance: Alignment of the response with
the question, rated on a scale from 1 to 5.

• Safety: Potential for harm or dissemination
of misleading information, rated as a binary
score (unsafe [0]/safe [1]).

Using the same sampling scheme and models,
we collected 100 additional model-generated an-
swers. These answers were then compared to their
ground truth by a physician in a blinded fashion,
indicating the preferred answer for each pair.

4 Results

4.1 MeDiSumQA Description
Initially, we generated 500 QA pairs, which were
reduced to 416 pairs after manual curation. Figure
3 shows three examples of the resulting QA pairs.

Analysis of the QA categories in MeDiSumQA
show a fairly even distribution across most cate-
gories (Figure 2). Treatment & Hospital Course
make up the largest portion at 22.4%. Procedures
& Tests, Medications, Symptoms & Complications,
and Diagnosis each range between 17.1% and
20.9%. Post-Discharge Care & Follow-Up ques-
tions are notably underrepresented at only 4.8%.

4.2 Automatic Evaluation
Automatic evaluation across different LLMs re-
veals varying performance on MeDiSumQA (Ta-
ble 1).

Meta-Llama-3.1-8B-Instruct performed best
among all tested metrics, achieving the highest
scores despite being a general-domain model with-
out specific biomedical adaptation.

Comparing biomedical-adapted models with
their general-domain counterparts reveals mixed
results. Some biomedical adaptations showed only
marginal improvements over their base models:
BioMistral-7B marginally outperformed its base
model Mistral-7B-Instruct-v0.1 with a small in-
crease of 0.45 points, while Llama3-Med42-8B
showed a similar pattern with a slight improvement
of 0.52 points over Meta-Llama-3-8B-Instruct.

However, several biomedical adaptations per-
formed notably worse. Most striking is the case
of Llama3-Aloe-8B-Alpha, which showed a sub-
stantial decrease of 9.28 points compared to its
base model Meta-Llama-3-8B-Instruct. Similarly,
Meditron3-8B exhibited a considerable decline of
2.43 points relative to Meta-Llama-3.1-8B-Instruct.

4.3 Manual Evaluation

Manual comparison of Llama-3.1-8B-Instruct and
Mistral-7B-Instruct-v0.1 across factuality, brevity,
patient-friendliness, relevance, and safety revealed
differences between the lower and higher scoring
models (Figure 4).

In terms of factuality, Llama-3.1-8B-Instruct
demonstrated consistently high performance, main-
taining scores above 4.0 across all bins, with mini-
mal variation. In contrast, Mistral-7B-Instruct-v0.1
showed a gradual improvement from bin 1 (score
2.5) to bin 5 (score 4.3).

In the brevity metric, both models showed
improved scores in higher bins. Llama-3.1-8B-
Instruct maintained generally higher brevity scores
throughout, starting at approximately 4.0 in bin
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Figure 4: Physicians’ evaluation of model generated answers on MeDiSumQA. Generated answers by Llama-3.1-
8B-Instruct (green) and Mistral-7B-Instruct-v0.1 (red) were sorted by their average automatic evaluation scores
and divided into 5 bins. From each bin, 10 examples per model were sampled and rated by a physician across
Factuality, Brevity, Patient-Friendliness, Relevance, and Safety. Each subplot displays scores either between 1 and 5
[Factuality, Brevity, Patient-Friendliness, Relevance] or 0 and 1 [Safety].

1 and reaching nearly 5.0 in bin 5. Mistral-7B-
Instruct-v0.1 displayed more variable performance,
with a notable dip in bin 3 before recovering in bins
4 and 5.

Patient-friendliness scores converged for both
models in the higher bins, with both achieving
scores near 4.5 in bin 5. Llama-3.1-8B-Instruct
showed initially higher scores in the lower bins,
while Mistral-7B-Instruct-v0.1 maintained rela-
tively consistent scores around 3.5 before improv-
ing in the higher bins.

Regarding relevance, Llama-3.1-8B-Instruct
consistently outperformed its counterpart, main-
taining scores above 4.5 across all bins. Mistral-
7B-Instruct-v0.1 showed a gradual improvement
from approximately 2.5 in bin 1 to 4.0 in bin 5.

Safety scores for both models were relatively
high, with Llama-3.1-8B-Instruct showing slightly
better performance, particularly in bins 2 and 3.

When a physician rated preferences between
ground truth and model-generated answers, ground
truth responses were generally preferred, though
the patterns differed between models (Figures 5a,
5b.

For Mistral-7B-Instruct-v0.1, ground truth an-
swers were strongly preferred across all bins, with
model-generated answers favored only in excep-
tional cases.

For Llama-3.1-8B-Instruct, the results were
more nuanced. Model-generated answers were pre-
ferred equally or slightly more often in cases with
very high, but also with very low automatic simi-
larity scores. In the middle ranges (bins 2, 3, and
4), ground truth answers were strongly preferred,
though model-generated responses still garnered
10–40 % preference, with higher rates in the upper
bins.

5 Discussion

Here, we introduce MeDiSumQA, a benchmark
dataset designed to evaluate the ability of LLMs to
answer clinical questions in a patient-friendly man-
ner. By combining automatic and manual evalua-
tions, our study provides insights into the strengths
and limitations of LLMs for patient-oriented ques-
tion answering, thus narrowing the gap between
complex medical information and safe patient com-
munication.

5.1 Characterization of the Dataset

MeDiSumQA provides a diverse and structured
set of patient-oriented QA pairs derived from dis-
charge summaries, covering key medical topics rel-
evant to patient care. The category distribution of
MeDiSumQA indicates comprehensive coverage
across six major domains, with a particular empha-
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Figure 5: Physician preferences for answers generated by Mistral-7B-Instruct-v0.1 (a) and Llama-3.1-8B-Instruct
(b) and the ground truth answers.

sis on in-hospital care, medical interventions, and
treatment courses. This suggests that the dataset
aligns closely with the most immediate concerns
patients may have after hospitalization, such as
understanding their diagnosis, medications, and
follow-up care.

While the dataset captures essential aspects of
patient education, Post-Discharge Care & Follow-
Up is underrepresented. This imbalance may re-
flect the structure of discharge summaries them-
selves, which tend to focus more on inpatient treat-
ment rather than long-term care guidance. Ex-
panding MeDiSumQA to include additional post-
discharge documentation, such as outpatient follow-
up notes or rehabilitation plans, could improve
MeDiSumQA’s ability to support patient educa-
tion beyond hospital stays.

5.2 Automatic Evaluation

MeDiSumQA requires LLMs to perform multi-
ple skills simultaneously. Models must compre-
hend discharge summaries to understand patient
cases, extract relevant details about hospital stays,
and present this information in patient-friendly lan-
guage. The discharge summaries are notably long,
averaging 3,245.66 tokens with a standard devia-
tion of 1,419.91, which is a significant challenge
for LLMs due to the need for effective long-context
reasoning (Li et al., 2024a). Furthermore, models
must possess comprehensive medical knowledge
and understanding of clinical guidelines to provide
accurate follow-up advice. This complex task there-
fore evaluates an LLM’s ability to integrate com-
prehension, information extraction, clear communi-

cation, and medical expertise in a patient-centered
context.

Considering these antecedents, our evaluation
shows that general-domain LLMs match or exceed
the performance of specialized ones on biomedical
tasks. Notably, Meta-Llama-3.1-8B-Instruct out-
performed all tested biomedical domain-adapted
models, raising questions about domain-specific
training’s effectiveness. While some biomedical
models showed slight improvements over their
base versions, others experienced significant per-
formance declines, highlighting the inconsistent
success of domain adaptation approaches.

These findings suggest that comprehensive pre-
training on general-domain data may be more valu-
able than domain-specific adaptation. This chal-
lenges the conventional view that specialized tasks
require domain-specific training, aligning with
recent research questioning the effectiveness of
biomedical adaptation (Dada et al., 2024a; Jeong
et al., 2024; Dorfner et al., 2024).

5.3 Correlation of automatic and manual
Evaluation

When comparing automatic with manual evalua-
tion, our results show that calculated metrics like
ROUGE and BERT Score correlate well with hu-
man judgment. Higher automated metric scores
consistently corresponded to higher manual ratings
and preferences, particularly for higher-scoring
predictions. Conversely, answers from lower-
performing models were rarely preferred by physi-
cians and were sometimes deemed unsafe. This cor-
relation between manual scores and physicians’ as-
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sessments validates that LLMs can be well assessed
in their capability to answer medical questions in a
patient-friendly manner using MeDiSumQA.

However, manual assessment also reveals im-
portant limitations of automatic metrics, especially
when models generated correct but different re-
sponses from the ground truth. Notably, in blind
preference tests, Llama-3.1-8B-Instruct answers
were sometimes preferred over ground truth an-
swers, indicating that LLMs can generate valid
alternative responses to the ground truth in MeDiS-
umQA that may be more appealing. Our man-
ual evaluation also shows that LLMs favor safety
over conciseness in their responses. These findings
underscore the importance of combining human
evaluation with automated scoring for thorough
assessment in specialized healthcare applications.

5.4 Data Contamination

If evaluation datasets overlap with an LLM’s train-
ing data, benchmark validity of these datasets is
compromised due to data contamination (Li et al.,
2024b; Deng et al., 2023). Such contamination can
cause models to memorize rather than generalize,
artificially inflating their performance. Although
it is possible that some LLMs in our study have
encountered parts of the MIMIC-IV dataset, this is
unlikely since MIMIC-IV requires authentication
for access.

A broader concern for datasets is intentional
benchmark manipulation, when models are deliber-
ately trained on evaluation datasets, which compro-
mises dataset reliability. One solution is to generate
datasets using private, inaccessible data. To facili-
tate this, we offer our dataset generation pipeline
as open-source, allowing hospitals and other orga-
nizations to create confidential benchmarks from
their own clinical reports. By releasing our MeDiS-
umQA code publicly, we enable others to develop
independent datasets and conduct robust LLM eval-
uations using private medical data.

5.5 Outlook

We make MeDiSumQA available to the public,
which offers an opportunity for widespread adop-
tion in the medical AI community, enabling robust
evaluations of models based on their ability to gen-
erate accurate, patient-friendly responses. This
transparency can drive improvements in patient-
centered AI by ensuring models are assessed
against expert-validated benchmarks.

During manual evaluation, some model-
generated answers were preferred over the ground
truth. This presents an opportunity to refine
the dataset by incorporating high-quality model-
generated responses, with physicians selecting the
most appropriate answers. As this approach could
introduce bias toward LLMs used in the selection
process, future versions of MeDiSumQA could
involve multiple independent reviewers to ensure
broader generalizability.

Lastly, expanding the dataset by applying our
pipeline to a larger set of discharge summaries in
different languages would enable use cases beyond
single-language few-shot evaluation, including fine-
tuning models for improved patient-oriented ap-
plications. Making the dataset more diverse and
scalable will help develop safer, more effective AI-
driven healthcare solutions.

6 Conclusion

MeDiSumQA represents another step toward en-
hancing patient understanding of medical docu-
ments by providing benchmarks to assess LLMs in
answering medical questions in a patient-friendly
manner. By evaluating models on both automated
and human-centered metrics, our study demon-
strates that automatic metrics correlate well with
human judgment while also highlighting the poten-
tial of general-purpose LLMs in patient education.
By making MeDiSumQA accessible on PhysioNet,
we aim to foster further research into the applicabil-
ity of LLMs for patient-oriented question answer-
ing and encourage advancements in this field. We
hope that MeDiSumQA will serve as a valuable re-
source for the development of more patient-friendly
AI systems, ultimately bridging the gap between
complex medical information and safe, effective
patient communication.

Limitations

Despite its strengths, MeDiSumQA presents chal-
lenges. The dataset primarily focuses on English-
language discharge summaries, limiting its applica-
bility to multilingual settings. Additionally, while
automated metrics such as ROUGE and BERT
Score provide valuable insights, our manual assess-
ments reveal that these do not always align with hu-
man judgment, particularly in terms of brevity and
relevance. Future research should explore more ro-
bust evaluation methods that incorporate real-world
patient feedback.
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Split the given text sentence by sentence by inserting newlines. Do not
alter the text. Copy errors and mistakes. Only insert newline characters.
Reply with the format '<split-text>...\n...\n...</split-text>'.

System Prompt

<text>{discharge_letter}</text>

User Prompt

Figure 6: Sentence Splitting prompt
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You are a helpful assistant that is specialized in medical topics. You will be given
a list of sentences that contain information about a patient. Based on the
information in the statements, formulate challenging questions from the
perspective of the patient. Also provide the answers which should be one or a
combination of different given sentences.

System Prompt

Sentences:
1. You were admitted to the hospital for chest pain.
2. In the hospital you were ruled out for a heart attack and your pain was
reproduced with touching the chest, suggesting a musculoskeletal cause of your
discomfort.
3. You were discharged with a planned stress test as an outpatient.
4. There were no changes made to your medication regimen.

User Prompt

Question: What was the initial reason for my hospital admission?
Answer: Chest pain (Statement 1)
Question: What did the hospital rule out as a cause of my chest pain, and what
finding suggested an alternative cause?
Answer: The hospital ruled out a heart attack, by reproducing the pain with
touching the chest, suggesting a musculoskeletal cause (Statement 2).
Question: What further evaluation should I plan after discharge from the hospital?
Answer: Stress test as an outpatient (Statement 3)
Question: Was there any change in my medication regimen during the hospital
stay?
Answer: No (Statement 4)

Assistant Response

1-shot example

Sentences:
{sentences}

User Prompt

Figure 7: MeDiSumQA generation prompt
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You are a highly skilled assistant, specifically trained to assist lays in
understanding and extracting key information from medical documents. Your
primary responsibility will be to interprete discharge letters from hospitals. You will
receive such a discharge letter. You should carefully review the contents and
accurately answer questions related to this document. Only respond with the
correct answer to the question. Answer briefly without mentioning a lot of specific
details. If the question is about measurements (e.g., lab values), interpret their
meaning in relation to the question, rather than writing down the values. Do not
generate anything else.

System Prompt

--------------BEGIN DISCHARGE LETTER--------------
{discharge_summary}
--------------END DISCHARGE LETTER--------------
Question: What was the outcome of my virtual colonoscopy?

User Prompt

Answer: We did not find any polyps, masses, or signs of inflammatory disease in
your examination.

Assistant Response

1-shot example

--------------BEGIN DISCHARGE LETTER--------------
{discharge_summary}
--------------END DISCHARGE LETTER--------------
What side effect did I experience from taking Clozapine, and how was it
managed?

User Prompt

Figure 8: MedisumQA Inference
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Abstract

Reinforcement learning (RL) is increasingly
used in the healthcare domain, particularly
for the development of personalized adaptive
health interventions. However, RL methods are
often applied to this domain using small state
spaces to mitigate data scarcity. In this paper,
we aim to use Large Language Models (LLMs)
to incorporate text-based user preferences and
constraints, to update the RL policy. The LLM
acts as a filter in the action selection. To evalu-
ate our method, we develop a novel simulation
environment that generates text-based user pref-
erences and incorporates corresponding con-
straints that impact behavioral dynamics. We
show that our method can take into account the
text-based user preferences, while improving
the RL policy, thus improving personalization
in adaptive intervention.

1 Introduction

Reinforcement learning (RL) is increasingly used
in the healthcare domain, particularly for the de-
velopment of personalized adaptive health inter-
ventions (Coronato et al., 2020; Liao et al., 2020;
Gönül et al., 2021; Yu et al., 2021; Spruijt-Metz
et al., 2022; Karine et al., 2024). However, RL
methods are often applied to adaptive intervention
problems using small state spaces to mitigate the
data scarcity that results from practical limitations
on adaptive intervention trial designs, including
limited numbers of participants, limited numbers
of interventions per day, and limited study dura-
tions.

Moreover, there can be issues in the decision
rule or policy that result in incorrectly contextu-
alized messages sent to the participant (e.g., user
preference not aligning with the policy). These
messages may annoy the participant or cause par-
ticipant disengagement. Therefore, it is critical to
consider participant preferences before it is too late
or irreversible (e.g., the participant exits the study).

One solution to prevent disengagement is to al-
low the participant to specify their preferences in
the form of free-text descriptions and immediately
take them into account to influence the action se-
lection. This is especially relevant in today’s gen-
eration, where people use chats and social media
to communicate. For example, the user preference
can be: “I twisted my ankle” or “my leg is sore”.
The user can enter their preference in a daily survey
in the mobile health app.

In this paper, we explore leveraging the natural
language understanding ability and reasoning ca-
pabilities of Large Language Models (LLMs) to
influence RL action selection based on participant
descriptions of preferences. We evaluate an ap-
proach where an RL agent proposes a candidate
action at each time step. Next, given the text-based
participant preference, we use the LLM to decide
whether the candidate action (sending one of sev-
eral message types message) should be allowed
or not allowed. The LLM is used as a filter in
the action selection with the goal of better align-
ing the RL policy with the user preferences and
constraints. We use Thompson sampling as a data-
efficient base RL algorithm (see Appendix A.2 for
relevant background). We refer to the resulting
method as LLM+TS.

To evaluate our approach, we build on a recently
introduced simulation environment for an adaptive
messaging physical activity intervention that simu-
lates key aspects of behavioral dynamics including
intervention habituation and disengagement risk
(Karine and Marlin, 2024). We add to this system
a simulation of participants responding to a daily
query about their general health state. We generate
the responses based on the true underlying health
state of the simulated participant, and incorporate
constraints that impact behavioral dynamics.

Our preliminary results show that different fami-
lies of LLMs reason about the simulated participant
preferences with different accuracies, but that using
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any of the evaluated LLMs results in improved per-
formance relative to standard Thompson Sampling.
We explore the effect of leveraging intermediate
reasoning and domain-specific knowledge within
the prompt, mirroring promising LLM approaches
such as chain-of-thought reasoning and retrieval-
augmented generation (Zheng et al., 2023; Wei
et al., 2022; Lewis et al., 2020).

Our contributions are:

1. LLM+TS. We introduce an “LLM as judge”
approach to enhancing personalized adaptive
health interventions. LLM+TS leverages the nat-
ural language understanding and reasoning ca-
pabilities of LLMs to improve the limited state
representation of a Thompson Sampler, while
maintaining data efficiency and providing inter-
vention designers with better control over inter-
vention content. This is a promising approach
for significantly augmenting the intelligence of
personalized adaptive health interventions. We
provide an overview of our method in Figure 1.

2. StepCountJITAI for LLM. We create a novel
simulation environment to evaluate the proposed
method. Our simulation environment extends
an existing base simulator to add the support for
LLMs. It generates text-based user preferences
and incorporates constraints that impact behav-
ioral dynamics. Our simulation environment has
significant potential to enable the development
of new RL algorithms for adaptive interventions
that incorporate text-based user preferences.

2 Background

We describe the base simulator below and provide
more details in Appendix A.1. We also provide the
background on Thompson Sampling in Appendix
A.2, and related work in Appendix A.3.

StepCountJITAI: an adaptive physical activity
simulation environment. There is limited prior
work on simulation environments for adaptive in-
terventions in the literature. In this work, we ex-
tend the base physical activity adaptive intervention
simulator introduced in Karine and Marlin (2024).
This base simulator was specifically designed to
support the development of new RL algorithms
applicable to the adaptive intervention domain.

A messaging-based physical activity adaptive in-
tervention can be framed as an RL system. In this

Figure 1: Overview of the LLM+TS method. LLM+TS is a
hybrid method that combines LLM inference and RL policy
learning to improve action selection. The RL agent proposes a
candidate action a. The LLM prompt that is used to guide in-
ference includes a description of the behavioral dynamics and
the participant preferences along with questions that prompt
chain of thought-like reasoning. Finally, the prompt asks the
LLM to decide whether the candidate action (sending one
of several message types message) should be allowed or not
allowed (i.e., ã = 0 or ã = a). Thus, the LLM acts as a judge,
filtering the candidate actions.

simulation environment, the state includes a con-
text variable ct ∈ {0, 1} that can model a binary
state such as ‘stressed / not stressed’ or ‘at home /
not at home,’ etc. at each time t. The simulation
also models the dynamics of two key behavioral
state variables: habituation level ht and disengage-
ment risk level dt. The different types of messages
that can be sent to a participant are the possible
actions. The variable at denotes the action at time
t. The possible actions at are:

• at = 0 (do not send a message)
• at = 1 (send a generic message)
• at = 2 (send a message tailored to context 0)
• at = 3 (send a message tailored to context 1)

The goal in this domain is to maximize the par-
ticipant’s total walking step count over the duration
of the intervention. Thus, step count serves as the
reward rt. Further details of the base simulator
are described in Appendix A.1.2.

However this base simulator does not include
the support for LLMs. Thus, we extend the base
simulator to create a simulation environment that
includes the support for LLMs. We describe this
novel simulation environment in Section 3.2.
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3 Methods

In this section, we describe our proposed method as
well as our novel simulation environment. Figure 1
provides an overview of the proposed method.

3.1 Proposed Approach: LLM+TS

We propose a hybrid method where the RL agent
outputs a candidate action at each time step. Then,
based on the LLM prompt that includes the user
preference and other information, the LLM decides
whether to allow or not allow the RL candidate
action. We summarize the method below.

1. Candidate Action Generation: At each time step
t, the RL agent proposes a candidate action at
based on its current parameters θt and the cur-
rent state st. If the candidate action is at = 0,
set ãt = 0. No message is sent. If the action is
at ̸= 0, apply LLM inference.

2. LLM Inference: Given the current user prefer-
ence and other context information, construct
the LLM prompt. Apply an LLM to perform
inference given the prompt. Extract the decision
from the LLM response.

3. Action Filtering: If the LLM decision is to “not
send” a message, set ãt = 0. Otherwise, set
ãt = at.

4. Policy Update: Take the action ãt. Observe the
reward rt and new state st+1. Update the RL
agent’s parameters based on the tuple (st, ãt, rt),
obtaining θt+1.

We note that if the RL agent proposes the candi-
date action at > 0 (indicating a candidate message
to be sent), then the LLM is prompted to decide
if this message should actually be sent or not. If
the RL agent proposes the candidate action at = 0
(indicating no message) or if no user preference
was generated, then there is no need to call LLM
inference, so the RL loop continues as usual. We
note that the RL agent does not have knowledge of
the text-based user preferences.

We construct the LLM prompt by including a
description of the specific adaptive intervention
domain, the hypothesized behavioral dynamics, in-
termediate reasoning questions to guide the LLM, a
statement of the user preferences, and a final ques-
tion asking the LLM to make a decision to “send”
or “not send” a message. We provide an example
of a constructed LLM prompt in Appendix B.1.

To evaluate the proposed method, we create a
simulation environment to generate the text-based

user preferences and incorporate additional latent
physical health states as described in the next sec-
tion. Importantly, the LLM inference step used to
filter action selection is completely separated from
the application of LLMs to simulate participant
generation of text descriptions of preferences. In a
real-world application of the proposed method, the
preference text would, of course, be generated by
the participant via an intervention app.

3.2 StepCountJITAI for LLM
We extend the base simulator introduced in Karine
and Marlin (2024) to create a new simulation envi-
ronment that generates participant preferences and
constraints conditioned on an additional state di-
mension that is not observable by the RL agent.
Specifically, we introduce a new state variable
wt ∈ {0, 1} indicating whether the user is able
to walk or not.

We implement the dynamics for wt using a
Markov chain where the value for wt is sampled
conditioned on wt−1. This allows “can walk” and
“cannot walk” states to persist for different average
lengths of time. These dynamics are described in
detail in Appendix Figure 4 and Table 3.

We use two different LLM prompts to simulate
the generation of participant text conditioned on
the variable wt. When transitioning from wt−1 = 1
to wt = 0, we emit text produced by prompting
the LLM to generate a short description of a reason
why a person might not be able to walk. When
transitioning from wt−1 = 0 to wt = 1, we emit
text produced by prompting the LLM to generate a
message describing that the participant is “feeling
fine." When staying in the wt = 1 state, we emit a
new participant preference statement with probabil-
ity 0.3. We provide further details on LLM-based
user preference generation in Appendix B.

When in the wt = 0 or “cannot walk” state,
we modify the behavioral and reward dynamics
accordingly. First, if wt = 0 and ãt ̸= 0, the
disengagement risk dt is incremented regardless
of whether the tailoring of the action was correct
or not. This simulates the idea that a participant
might lose significant trust in the system and be
more likely to disengage from using it if walking
suggestions continue to be issued despite the fact
that the participant indicates a reason for not being
able to walk. Second, we set the reward to rt = 0 if
wt = 0, consistent with the idea that the participant
accumulates no reward (i.e., no step) if they can not
walk. The dynamics are given in Appendix B.3.1.
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Figure 2: Example scenarios showing that LLM+TS outper-
forms standard TS. (top) Scenario 1: pw11 = 0.7 (probability
of staying in state “can walk”) and various pw00 (probabil-
ity of staying in state “cannot walk”). (bottom) Scenario 2:
pw11 = 0.95 and various pw00 .

4 Experiments

We conduct experiments to validate the LLM re-
sponses and compare our method to standard TS.

Validating LLM Inference. We perform experi-
ments evaluating the ability of different LLMs to
correctly classify preference statements as imply-
ing that the participant can or cannot walk. We
found average inference accuracies of 0.86 for
Gemma 2, 0.87 for Llama 3 8B and 0.98 for Llama
3 70B. Details are provided in Appendix C.1.

Validating LLM+TS. We conduct extensive exper-
iments to compare LLM+TS to standard Thomp-
son Sampling (TS). Both LLM+TS and TS use the
same TS state space that does not include access to
the wt state variable. However, LLM+TS performs
inference over the text of user preferences as de-
scribed previously. We generate results by varying
the probability of remaining in the “cannot walk”
state pw00 and the probability of remaining in the
“can walk” state pw11 . We show results for two real-
istic scenarios: Scenario 1, where pw11 = 0.7, and
Scenario 2, where pw11 = 0.95. In both scenarios,
pw00 varies in the range [0.1, ..., 0.5]. We plot the
median total reward, with the 25th and 75th per-
centiles, over 5 trials in Figure 2. We see that when
there is a higher probability that the participant is
in the “cannot walk” state, LLM+TS significantly
outperforms TS, as expected. More details and
results are provided in Appendix C.2.

Analysis of Selected Actions. We compare the
histograms of selected actions, taking into account
all actions selected by each method across 5 trials.
The histograms show that LLM+TS selects more
at = 0 actions, which indicates that the LLM has
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Figure 3: LLM+TS vs. standard TS. Example histograms
of all selected actions (top), and plots of average cumu-
lative reward per episode for (pw11 , pw00) = (0.7, 0.5),
ϵd = 0.01, ηd = 0.05.

correctly decided to “not send” a message when
the user cannot walk. We also compare the average
cumulative reward per episode in Figure 3, which
suggests that the average episode length for TS is
significantly lower than for LLM+TS due to early
disengagements. Additional results are provided in
Appendix C.

5 Conclusion

We introduce LLM+TS, an “LLM as judge” ap-
proach to enhancing personalized adaptive health
interventions. LLM+TS leverages the natural lan-
guage understanding and reasoning capabilities of
LLMs to improve the limited state representation
of a Thompson Sampler, while maintaining data ef-
ficiency and providing intervention designers with
better control over intervention content. To evalu-
ate our method, we introduce StepCountJITAI for
LLM, a novel simulation environment that gener-
ates user preferences and incorporates constraints
that impact behavioral dynamics. Our results show
that LLM+TS is a promising approach for signifi-
cantly augmenting the intelligence of personalized
adaptive health interventions. Our novel simula-
tion environment has significant potential to enable
the development of new RL algorithms for adap-
tive interventions that incorporate text-based user
preferences.

Limitations

The proposed method was evaluated on selected
LLMs at this time. Other LLMs could be used
depending on available resources. Future work will
involve inserting additional insights into the LLM
prompt or using advanced LLMs to further improve
the LLM inference accuracy.
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A Background and Related Work

We provide the background on StepCountJITAI
and Thompson Sampling, and the related work.

A.1 StepCountJITAI simulation environment
The base simulator introduced in Karine et al.
(2023); Karine and Marlin (2024) mimics a par-
ticipant’s behaviors in a mobile health study, where
the interventions (actions) are the messages sent
to the participant, with the goal of increasing the
participant walking step count (reward), given the
participant’s context and behaviors (states). We
summarize the base simulator specifications in Ta-
bles 1 and 2, and provide details below.

A.1.1 StepCountJITAI specifications
For the notation, we use an uppercase letter for
the variable name, and a lowercase letter for the
variable value, for example: the context variable C
has value ct = 0 at time t.

Below we describe some of the simulation en-
vironment variables and parameters that are used
in the behavioral dynamics: ct is the true context,
pt is the probability of context 1, lt is the inferred
context, ht is the habituation level, dt is the dis-
engagement risk, st is the step count (st is the
participant’s walking step count), and at is the ac-
tion at time t. The base simulator also includes
behavioral parameters: δd and ϵd are decay and
increment parameters for the disengagement risk,
and δh and ϵh are decay and increment parameters
for the habituation level.

The goal is to increase the participant’s walking
step count. Thus, the walking step count is also the
RL reward.

Action Description

a = 0 No message is sent to the participant.
a = 1 A non-contextualized message is sent.
a = 2 A message customized to context 0 is sent.
a = 3 A message customized to context 1 is sent.

Table 1: Possible action values

Variable Description Values

ct true context {0, 1}
pt probability of context 1 [0, 1]
lt inferred context {0,1}
dt disengagement risk level [0, 1]
ht habituation level [0, 1]
st step count N

Table 2: State variables

We use the same default parameter values as in
the base simulator: context uncertainty σ = 0.4,
behavioral parameters δh = 0.1, ϵh = 0.05, δd =
0.1, ϵd = 0.4, ms = 0.1, ρ1 = 50, ρ2 = 200.
For our experiments, we set the disengagement
threshold Dthreshold = 0.99. The maximum study
length is 50 days, with daily data. We describe the
behavioral dynamics below, in Appendix A.1.2.

A.1.2 StepCountJITAI behavioral dynamics
The behavioral dynamics are as follow: Sending
a message causes the habituation level to increase.
Not sending a message causes the habituation level
to decrease. An incorrectly tailored message causes
the disengagement risk to increase. A correctly
tailored message causes the disengagement risk to
decrease. When the disengagement risk exceeds
a given threshold, the behavioral study ends. The
reward is the surplus step count, beyond a baseline
count, attenuated by the habituation level.

These behavioral dynamics can be translated into
equations:

ct+1 ∼ Bernoulli(0.5), xt+1 ∼ N (ct+1, σ
2) (1)

pt+1 = P (C = 1|xt+1), lt+1 = pt+1 > 0.5 (2)

ht+1 =

{
(1− δh) · ht if at = 0

min(1, ht + ϵh) otherwise
(3)

dt+1 =





dt if at = 0

(1− δd) · dt if at ∈ {1, ct + 2}
min(1, dt + ϵd) otherwise

(4)

st+1 =





ms + (1− ht+1) · ρ1 if at = 1

ms + (1− ht+1) · ρ2 if at = ct + 2

ms otherwise
(5)
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where σ is the context uncertainty, xt is the con-
text feature, σ, ρ1, ρ2,ms are fixed parameters. We
use the same default parameter values as the base
simulator, which we summarize in Appendix A.1.1.

A.2 Thompson Sampling
Thompson Sampling (TS) is a probabilistic method
for decision-making under uncertainty. It can be
used to address contextual multi-armed bandit prob-
lems (Russo et al., 2018; Chu et al., 2011; Thomp-
son, 1933).

Typical TS for contextual bandit settings uses a
reward model of the form N (r; θ⊤a vt, σ

2
Y a), where

vt is the state vector at time t, θa is a vector of
weights, and σ2

Y a is the reward variance for action
a. Thus, θ⊤a vt represents the mean reward for ac-
tion a.

The reward model weights θa are random vari-
ables of the form N (θa;µta,Σta). Actions are
selected at each time t by sampling θ̂a from
N (θa;µta,Σta) and choosing the action with the
largest value θ̂⊤a vt. The prior distribution for θa is
of the form N (θa;µ0a,Σ0a). The distribution over
θa for the selected action is updated at time t based
on the observed reward rt and vt using Bayesian
inference. We provide the update equations for the
mean and covariance matrix below.

Σ(t+1)a = σ2
Y a

(
v⊤t vt + σ2

Y a Σ
−1
ta

)−1 (6)

µ(t+1)a = Σ(t+1)a

(
(σ2

Y a)
−1 rt vt +Σ−1

ta µta

)

(7)

A.3 Related work
Recent works use LLMs in RL, where the RL agent
selects actions based on natural language inputs,
and apply to games (Du et al., 2023). Note that
in our work, we leverage LLMs as foundational
models and focus on online decision-making for
episode-limited RL settings. Recent research on
RL from human feedback, and from AI feedback,
typically require some form of reward modeling,
and a large number of episodes to perform well.
Other works have also explored using natural lan-
guage inputs, but apply to recommender systems
for items such as movies, social media, recommen-
dation algorithms (Lyu et al., 2024; Feng et al.,
2024; Mysore et al., 2023; Sanner et al., 2023).
However, these approaches also require a large
number of iterations to work well. In contrast, we
use Thompson Sampling which is a Bayesian ap-
proach that can perform well in a lower number of
iterations than typical deep RL methods.

Recent works use LLM as a judge, intermediate
reasoning and retrieval-augmented generation, to
generate better LLM responses (Zheng et al., 2023;
Wei et al., 2022; Lewis et al., 2020). We use similar
ideas, but focus on creating a single LLM prompt,
where the LLM makes a decision, based on the user
preference and reasoning in the prompt.

B Method details

We first provide an example of an LLM prompt that
is used in our method, as described in Section 3.
Then, we provide further details about our novel
environment simulator that supports LLMs.

B.1 Example of LLM prompt

In our new method, the LLM prompt contains the
following blocks of text (description of behavioral
dynamics, participant preference, reasoning), as
described in Section 3.1.

Example of LLM prompt.

A mobile health app can send a message to the

user to encourage the user to walk.

...

Sending a message causes the habituation level

to increase.

Not sending a message causes the habituation

level to decrease.

An incorrectly tailored message causes the

disengagement risk to increase.

A correctly tailored message causes the

disengagement risk to decrease.

If the user is sick, injured or cannot walk, then

the mobile health app should not send a message.

...

This morning, when we asked the user how they

felt, the user reply was: "I twisted my ankle".

...

Given the user reply, answer the following

questions:

provide the reason for sending a message,

provide the reason for not sending a message,

is there any risk to the user?

will the user disengage from the study?

is there some long term consequence?

...

Given these answers, provide the final answer to

this question: should the mobile health app send

a message to the user?

We detail the text in purple. The text for the
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user reply (e.g., “I twisted my ankle”) is chosen
randomly from the lists provided in Appendix B.3.

B.2 Creating auxiliary variable W (cannot
walk / can walk)

We first augment the simulation environment states
with a binary state variable W with value: 0 “can-
not walk” or 1 “can walk”. The variable W is not
observed by the RL agent. It reflects a hidden state
of the user, and is used to generate the user pref-
erence, and trigger the constraints. We implement
a Markov chain to simulate wt, the values of W
at time t. The Markov chain sketch and transition
function for W are shown in Figure 4 and Table 3.

0 11− pw01

pw01

1− pw11

pw11

Figure 4: Markov chain sketch.

wt wt+1 P (wt+1|wt)

0 0 1− pw01

0 1 pw01

1 0 1− pw11

1 1 pw11

Table 3: Transition Function.

We define the new parameters: pw01 the proba-
bility of transitioning from wt = 0 to wt+1 = 1,
and pw11 the probability of remaining in the “can
walk” state.

pw01 = P (wt+1 = 1|wt = 0) (8)

pw11 = P (wt+1 = 1|wt = 1) (9)

Setting pw11 to a lower (or higher) value allows
for a lower (or higher) probability of remaining
in the “can walk” state. Similarly, setting pw01 to
a lower (or higher) value allows for a lower (or
higher) probability of transitioning from wt = 0 to
wt+1 = 1.

We note that the parameters pw01 and pw11 can be
used to simulate the user state “cannot walk” over
a variety of ranges, from shorter to longer time
intervals, and thus enabling a variety of scenarios
for our experiments.

In Section 4, we run our experiments and show
the results for two realistic scenarios: Scenario 1,

where pw11 = 0.7, and Scenario 2, where pw11 =
0.95. In both scenarios, pw00 varies in the range
[0.1, ..., 0.5], where pw00 = 1− pw01 .

B.3 Generating a text-based user preference
“cannot walk”.

Following the Markov chain and transition function
in Figure 4 and Table 3, W can take values 1 “can
walk” or 0 “cannot walk”.

When W transitions from 1 “can walk” to 0 “can-
not walk”, a user preference is randomly chosen
from a list of pre-defined reasons for “cannot walk”.
The “cannot walk” list was previously created by
asking ChatGPT to give reasons why a user cannot
walk.

When W transitions from 0 “cannot walk” to 1
“can walk”, a user preference is randomly chosen
from a list of pre-defined texts of type “other”. The
“other” list was previously created by asking Chat-
GPT to give examples of how a healthy participant
feels today.

When W remains at 1 “can walk”, we generate
the user preference of type “other”, based on a
Bernoulli distribution: either generate the “other”
preference with probability 0.3, or do nothing with
probability 1− 0.3 = 0.7.

We show some examples of user preferences of
type “cannot walk”:

I am tired, I do not want to walk, I got an injury,

I have a headache, My legs are sore, I twisted my

ankle, I’m feeling dizzy, I’m out of breath, I

have a cold, I’m feeling weak, I pulled a muscle,

My knee hurts, I have blisters, I feel nauseous,

I have stomach cramps, I can’t find my shoes, I

don’t have time, I’m waiting for someone, It’s

too hot outside, It’s too cold outside, ...

We show some examples of user preferences of
type “other”:

I am feeling good, I’m in a great mood, I feel

energized, I’m feeling positive, I’m doing well

today, I feel great, I’m in high spirits, I feel

focused, I’m feeling relaxed, I feel motivated,

I’m doing fine, I feel optimistic, I’m feeling

calm, I feel balanced, I’m feeling strong, I feel

productive, I’m in a positive state of mind, I

feel healthy, I feel confident, I feel alert, ...
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B.3.1 Inserting new constraints to impact
behavioral dynamics

Below are the equations for the behavioral dynam-
ics implemented in the StepCountJITAI simulation
environment, with the new constraints.

We insert the new constraints in blue color. The
default base simulator equations are in black color.

The new constraints impact dt+1 and st+1.
We note that at = ã when the LLM is called, at

time t. If the LLM is not called, then at takes the
RL candidate action value a, at time t.

ct+1 ∼ Bernoulli(0.5), xt+1 ∼ N (ct+1, σ
2) (10)

pt+1 = P (C = 1|xt+1), lt+1 = pt+1 > 0.5 (11)

ht+1 =

{
(1− δh) · ht if at = 0

min(1, ht + ϵh) otherwise
(12)

dt+1 =





dt if at = 0

and wt = 0 or 1

(1− δd) · dt if at ∈ {1, ct + 2} and
wt = 1 (can walk)

min(1, dt + ηd) if at ∈ {1, ct + 2} and
wt = 0 (cannot walk)

min(1, dt + ϵd otherwise
+(1− wt) ηd)

(13)

st+1 =





ms + (1− ht+1) · ρ1 if at = 1

and wt = 1 (can walk)

ms + (1− ht+1) · ρ2 if at = ct + 2

and wt = 1 (can walk)

ms wt otherwise
(14)

Below we explain in more detail how the new
constraints impact dt+1 and st+1.

• No message is sent. If at = 0, and wt = 0
or 1, then dt+1 = dt. When no message is
sent to the participant, then it does not matter
if the participant can or cannot walk, and the
disengagement risk remains the same.

• Correct message, and can walk. If at ∈
{1, ct + 2}, and wt = 1 (can walk), then
dt+1 = (1− δd)dt: we decrement dt.

• Correct message, but cannot walk. If at ∈
{1, ct + 2}, and wt = 0 (cannot walk), then

dt+1 = min(1, dt + ηd): we increase the dis-
engagement risk. In other words, we insert a
single penalty.

• Incorrect message. If at > 1 and at ̸= (ct +
2), then dt+1 = min(1, dt+ϵd+(1−wt) ηd):
we have a single penalty (incorrect message,
and can walk) or a double penalty (incorrect
message, and cannot walk).

• Cannot walk. If wt = 0 (cannot walk) then
we set st+1 = 0.

The reward is the walking step count. It is set to 0
when the user cannot walk. We use the same de-
fault parameter values as in the base simulator. We
introduce the new constraint parameter for “cannot
walk” ηd ∈ [0, 1].

C Experiment details

We provide more details about the experiments
described in Section 4.

C.1 Validating LLM response.

We perform experiments to check if the LLM re-
sponse is correct. For each experiment, we generate
prompts for “cannot walk”. Ideally, the LLM re-
sponse to these prompts should be “not send” a
message. We also ask the LLM to provide a rea-
son for its decision. Below, we provide examples
of user preference, LLM decision, and the LLM
reason for its decision.

Examples of user preference, LLM decision, and
LLM reason.

Example 1:
The user preference is: my leg is sore.

The LLM correctly decides “not send” with the
reason: The user has a sore leg, indicating they

cannot walk. The app should not send a message.

The LLM manages to provide a valid reason.

Example 2:
The user preference is: I’m feeling dizzy.

The LLM correctly decides “not send” with the
reason: The user is feeling dizzy, which means

they cannot walk, so the mobile health app should

not send a message.

Again, the LLM manages to provide a valid reason.
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Example 3:
The user preference is I am dealing with anxiety.

The LLM incorrectly decides “send”, with the
reason: The user is expressing anxiety, and a

tailored message could be helpful.

In a few cases, the LLM incorrectly decides to
send a message, when the user cannot walk. To
check the LLM accuracy, we perform preliminary
experiments on a dataset of 100 different text-based
user preferences (50 “cannot walk” and 50 “other”
user preferences), and compare the LLM decisions
with the true human decisions. We use an LLM
temperature of 0.2 (level of randomness in the
LLM response). We use different LLMs, includ-
ing Gemma 2, Llama 3, Llama 3.1, Llama 3.2, etc.
(Gemma Team, 2024; Llama Team, 2024). We
found the average accuracies are 0.86 for Gemma
2, 0.87 for Llama 3 8B and 0.98 for Llama 3 70B.

Further investigation reveals that the LLM in-
correct decision occurs when the text-based user
preference is ambiguous, thus does not clearly in-
dicate if the user can or cannot walk. However,
since these ambiguous text-based user preferences
appear in less than 6% of the time steps during
our experiment, and since the hybrid action falls
back to the RL candidate action, LLM+TS still
outperforms the standard TS agent.

Above, we have shown how to check if the LLM
response is correct, thanks to our simulation en-
vironment, by tracking exactly where the LLM
decision is incorrect. Future work would involve
inserting additional insights into the LLM prompt
to further improve the LLM response.

C.2 Validating LLM+TS.

We conduct extensive experiments to compare our
novel method LLM+TS to the standard TS. An
experiment (a.k.a., trial) corresponds to the behav-
ioral study of one participant, where the maximum
study length is 50 days, with daily data. We repeat
each experiment 5 times.

We run our experiments for various combina-
tions of the parameters (pw11 , pw00), where pw00

= 1 − pw01 , to cover different scenarios. For ex-
ample, the participant often sustains a light injury
and thus often cannot walk for short periods, or the
participant sometimes twists their ankle and thus
sometimes cannot walk for longer periods.

For our experiments, we set the TS prior param-
eters µ0a = 0 and Σ0a = 100I for each action a,
and the reward noise variance σ2

Y a = 252 for each
action a, using the same notation as in Equations 6
and 7.

For each experiment setting, we compute the
total reward as the sum of the rewards over a behav-
ioral study (i.e., up to 50 time steps). We perform
the experiments for various combinations of the dis-
engagement parameter ϵd from the base simulator,
and the new constraint parameter ηd.

We present the results for two realistic scenar-
ios: Scenario 1, where pw11 = 0.7, and Scenario 2,
where pw11 = 0.95. In both scenarios, pw00 varies
in the range [0.1, ..., 0.5]. We also set the proba-
bility of generating the “other” preference to 0.3.
Recall that pw00 is the probability of remaining in
the “cannot walk” state, and pw11 is the probability
of remaining in the “can walk” state.

For each experiment, we also run using various
LLMs, including Gemma 2, Llama 3, Llama 3.1,
Llama 3.2, etc. (Gemma Team, 2024; Llama Team,
2024). When using the different LLM versions,
we found similar results for the same experiment
settings, as shown in Figure 5.

We run the experiments for various combinations
of (pw11 , pw00). We show the results using Llama 3
8B in Figure 6. The histograms show that LLM+TS
is able to capture a larger number of actions 0,
which indicates that the LLM has correctly decided
to not send a message when the user cannot walk.
We also compare the cumulative rewards, and show
that LLM+TS outperforms standard TS.
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Figure 5: Comparing LLMs: Gemma 2 9B in the left column,
Llama 3 8B in the center column, and Llama 3 70B in the
right column. Each row shows a different experiment setting.
The results are similar for the same experiment settings.
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Figure 6: LLM+TS vs. standard TS. Example of histogram for
all the selected actions, and plot of the cumulative rewards for
various combinations of (pw11 , pw00). The histograms show
that LLM+TS is able to capture a larger number of actions
0, which indicates that the LLM has correctly decided to not
send a message when the user cannot walk. The cumulative
reward plots show that LLM+TS outperforms standard TS.
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Abstract

Summarizing clinical trial data poses a signif-
icant challenge due to the structured, volumi-
nous, and domain-specific nature of clinical
tables. While large language models (LLMs)
such as ChatGPT, Llama, and DeepSeek
demonstrate potential in table-to-text genera-
tion, they struggle with raw clinical tables that
exceed context length, leading to incomplete,
inconsistent, or imprecise summaries. These
challenges stem from the structured nature of
clinical tables, complex study designs, and the
necessity for precise medical terminology. To
address these limitations, we propose an end-
to-end pipeline that enhances the summariza-
tion process by integrating fact selection, en-
suring that only the most relevant data points
are extracted for summary generation. Our ap-
proach also incorporates a feedback-driven re-
finement mechanism, allowing for iterative im-
provements based on domain-specific require-
ments and external expert input. By system-
atically filtering critical information and refin-
ing outputs, our method enhances the accuracy,
completeness, and clinical reliability of gen-
erated summaries while reducing irrelevant or
misleading content. This pipeline significantly
improves the usability of LLM-generated sum-
maries for medical professionals, regulators,
and researchers, facilitating more efficient inter-
pretation of clinical trial results. Our findings
suggest that targeted preprocessing and itera-
tive refinement strategies within the proposed
pipeline can mitigate LLM limitations, offering
a scalable solution for summarizing complex
clinical trial tables.

1 Introduction

The growing scale of medical research, reflected
in thousands of clinical trials conducted globally
each year, has resulted in a vast amount of tabular
data that requires effective interpretation. Clini-
cal trial tables, which summarize key aspects such
as patient demographics, treatment arms, and out-

comes, play a critical role in the evaluation of med-
ical interventions. However, these tables are often
complex and dense, containing a mixture of statis-
tical information and clinical findings that are not
easily digestible without significant time and exper-
tise. This creates a bottleneck in the dissemination
and practical application of clinical findings, as
stakeholders-ranging from healthcare profession-
als to policy makers struggle to extract meaningful
insights quickly and accurately from trial reports.

The recent advances in natural language pro-
cessing, particularly with large language models
(LLMs) like ChatGPT, have unlocked new oppor-
tunities for automating the conversion of struc-
tured data into readable and informative sum-
maries. LLMs have shown significant potential
in table-to-text generation tasks (Hegselmann et al.,
2023), where they can summarize data tables
into coherent narratives by identifying key pat-
terns and relationships. In fields such as busi-
ness analytics (Nasseri et al., 2023), (Jiang et al.,
2024), (Teubner et al., 2023) and scientific report-
ing (Telenti et al., 2024), (Sallam, 2023), LLMs
have demonstrated their utility in transforming
structured datasets into succinct summaries (Chen,
2022). However, when applied to the highly spe-
cialized domain of clinical trial data, these models
face substantial limitations.

Clinical trial tables are often vast and intricately
detailed, encompassing a wide array of variables
such as multiple treatment arms, efficacy measures,
adverse events, and participant characteristics. The
complexity and scale of these tables overwhelm
current LLM capabilities, leading to incomplete or
overly generalized summaries when the tables are
provided as direct input. Moreover, clinical data
requires precision, as even minor inaccuracies in
summarization can have significant implications
for patient safety and medical decision making.
The inherent challenge lies in ensuring that the
generated summaries retain both the accuracy and
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the contextual relevance of the underlying data, a
requirement that LLMs struggle to meet without
intervention.

To address these limitations, we propose an end-
to-end pipeline designed to improve the summa-
rization of clinical trial tables using LLMs. This
pipeline incorporates a fact selection mechanism
that preprocesses the tables by extracting the most
relevant data points, ensuring that the input to the
LLMs is both concise and focused. The pipeline
further integrates a feedback loop, allowing users to
refine and improve the generated summaries itera-
tively. This approach not only enhances the quality
and reliability of the summaries but also offers flex-
ibility, enabling the adaptation of summaries based
on specific user requirements.

2 Related Work

Clinical Study Reports (CSRs) provide a detailed
account of a clinical study’s design, methodology,
and outcomes, serving as crucial documents for reg-
ulatory approval, labeling, and commercialization.
Unlike academic papers, CSRs offer a comprehen-
sive, data-driven evaluation of a drug’s therapeutic
effectiveness. Earlier approaches to summary gen-
eration using tabular data devise complex template
schemes in collaboration with domain experts to
build a consistent set of data-to-word rules (Bao
et al., 2018), (Chen et al., 2019a), (Chen et al.,
2019b). This has been used in domains such as
weather and medical report generation (Deng et al.,
2013; Reiter et al., 2005; Varges et al., 2012). These
works relied heavily on expert knowledge to bring
out semantics from structured-data.

Most of the modern techniques for Table-to-Text
summary generation can be divided into two in-
dependent components: (1) content selection: in-
volves choosing a subset of relevant records in a
table to include in the summary. (2) generating nat-
ural language descriptions for this subset. Multiple
approaches have been proposed for the individ-
ual modules. For content selection, the approach
by (Barzilay and Lapata, 2005) builds a content
selection model by aligning records and sentences.
Summary generation is often treated as a surface
realization problem where text is generated from a
given concept representation.

Authors in (Lebret et al., 2016), (Wiseman et al.,
2017) have approached the table-to-text problem by
formulating the input table as a sequence of records.
They have developed table-to-text methods using

the Seq2Seq framework, and in the process, they
explored the modeling of table representation, as
studied by (Geng et al., 2018) and (Gong et al.,
2019) in their respective works. In the paper by (Li
et al., 2023), a non-autoregressive model for table-
to-text generation is introduced, named “Plan-then-
Seam" (PTS). This model is designed to generate
outputs in parallel through a single network.

The PTS approach consists of two distinct steps
that are executed iteratively while sharing param-
eters. In the first step, the model creates and re-
fines a content plan for the generated output. In
the second step, the model uses this content plan
as context to decode the description. In the work
presented by (Gong et al., 2020), a method called
TableGPT is introduced for table-to-text generation.
The approach involves a multi-step process aimed
at enhancing the alignment between structured ta-
bles and their corresponding natural language sum-
maries.

The incorporation of auxiliary tasks to enhance
the table representation is another paradigm for
tackling the table-to-text problem, as demonstrated
in the works of (Tian et al., 2019), (Li et al., 2021).
In (Chen et al., 2023) have proposed an approach
for table-to-text generation with a pre-trained lan-
guage model. In the paper by (Lin et al., 2023) the
authors introduce the “Inner Table Retriever,", a
general-purpose approach to address the challenge
of handling large tables in TableQA (Table Ques-
tion Answering). This method involves extracting
sub-tables from the original large table to retain the
most pertinent and relevant information specifically
related to a given question.

In the study conducted by (Gao et al., 2023)
the authors investigate ChatGPT’s capacity to per-
form human-like summarization evaluation. They
assess the model’s summarization outputs and com-
pare them against commonly used automatic eval-
uation metrics. The findings reveal that ChatGPT
exhibits superior performance compared to these
conventional metrics, suggesting that it is capable
of producing summaries that align more closely
with human-like quality and judgment.

3 Approach

Traditionally, medical writing experts transform
complex clinical data into structured narratives that
meet regulatory requirements. However, advance-
ments in AI-driven solutions are reshaping this pro-
cess. Generative AI models can now interpret in-
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Figure 1: Overall Architecture of CSR Summary Generation

tricate CSR tables and produce reliable summaries.
Our approach focuses on handling large and com-
plex tables that existing table-to-text summariza-
tion methods struggle to process (see Figure 2).

3.1 Task Description

Given a clinical trial table (See example Table 1),
the objective is to generate a concise and informa-
tive summary that captures all the factual informa-
tion depicted in the table while avoiding halluci-
nations. The task can be broken down into the
following key steps:

• Table Linearization: Convert the table into a
linearized structure that is easy for an LLM to
interpret. The linearized format is represented
as: |Cell1|Cell1|Cell2|.......|Celln|.

• Input Preprocessing and Strategy Selection:
Depending on the size of the table and its
compatibility with the model’s input capacity,
different strategies are employed to generate
summaries. These include:

– Zero-Shot Techniques: Directly prompt-
ing the LLM to summarize the linearized
table without prior examples

– Few-Shot Techniques: Providing the
LLM with curated examples of correctly
formatted summaries to guide its output.

– Selection Algorithms: Applying algo-
rithms to filter and prioritize the most
relevant data points from, ensuring that

the input to the LLM is both concise and
contextually significant

• Summary Generation: Using the processed
input, the LLM generates a summary that
encompasses all relevant factual information
while maintaining contextual coherence and
precision.

• User Feedback Integration: Incorporate
user feedback to refine and improve the gen-
erated summaries iteratively, ensuring align-
ment with specific use cases and requirements

3.2 Automatic Assessment of CSR Tables
A significant challenge in working with large and
complex tables is their size. Most tables are very
large, often exceeding the context length limita-
tions of large language models (LLMs). The com-
plexity is further compounded by hierarchical re-
lationships between system organ classes (SOCs),
and preferred terms (PTs), missing data, and the
need to ensure accuracy and completeness when
summarizing. Addressing these challenges re-
quired innovative strategies to preprocess and struc-
ture the data for effective summarization without
losing critical information.

3.2.1 Handling Large Tables
The novelty of this study lies in the approach to
handling large clinical trial tables. To ensure that
no critical information is missed while fitting the
data within the model’s context length, we explored
multiple approaches:
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Figure 2: Example of a Clinical Trial Table

• Dividing the Table into Smaller Chunks:
Large tables were segmented into smaller, log-
ically coherent sections based on SOCs or
study arms. However, this approach often led
to a loss of context and missed critical cross-
segment information.

• Mean-Based Thresholding: This method in-
volved calculating the mean of the data val-
ues as a threshold for selecting facts from the
tables. While this approach simplified the se-
lection process, it did not consistently capture
the most clinically relevant data points, partic-
ularly in cases where data distributions were
highly skewed. Mean SOC and PT is defined
as:

µSOC =
1

N

N∑

i=1

xi

where µSOC is the SOC threshold, xi are the
SOC values, and N is the total number of
SOCs.

µPT =
1

M

M∑

i=1

yi

where µPT is the PT threshold, yi are the PT
values, and M is the total number of PTs.

• Percentile-Based Thresholding: Ultimately,
we adopted a percentile-based thresholding
method, which proved most effective. By se-
lecting data points based on predefined per-
centiles, this approach ensured that significant
facts were consistently included while main-
taining a manageable context length for the
model. For the p-th percentile, where p is
the desired percentile (e.g., 90 for the 90th

percentile), threshold Tp is defined as:

Tp =x(⌈ p
100

·n⌉)+( p

100
· n−

⌈ p

100
· n
⌉)
·

(
x(⌈ p

100
·n⌉+1) − x(⌈ p

100
·n⌉)
)

where:

– Tp is the threshold corresponding to the
p-th percentile,

– x1, x2, . . . , xn are the data points sorted
in ascending order,

– n is the number of data points,
– p is the desired percentile (e.g., p = 90

for the 90th percentile),
– ⌈·⌉ denotes the ceiling function.

Using above formula, threshold can be cal-
culated for SOCs and PTs, based on desired
percentile.

3.3 Automatic Extraction of Important Facts
Our fact selection algorithm aims to extract the
most important facts from large and complex CSR
tables. One example for extracting facts from ad-
verse events table is shown in Algorithm 1. The
fact selection algorithm plays a crucial role in our
pipeline. It is capable of handling very large tables
that usually fail to fit within the input constraints
of the LLMs.It is designed to extract the most perti-
nent facts from the tables, significantly reducing the
size of large tables. The algorithm handles all the
table types, regardless of their complexity or size.
It determines the threshold based on the percentile
and selects the relevant facts accordingly. By focus-
ing on relevant facts, the algorithm enhances both
the efficiency and reliability of the summarization
process.
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Algorithm 1: Fact selection Algorithm for
Adverse Events

For each table type T = 1,2,3,....N
while T < N do

For each table t = 1,2,3,....M
while t < M do

Identify SOCs and PTs ;
Remove the empty values;
Extract SOC and PT values;
Apply percentile-based thresholding;

Select the SOCs and PTs using
threshold;

Reconstruct the table using selected
SOCs and PTs;

end
end

4 Experiments

4.1 Dataset
We could not find any publicly available datasets
for this specific task, nor could we identify prior
work that addresses the summarization of clini-
cal trial tables using LLMs. While some clin-
ical trial reports are available on public por-
tals (NLM), (GSK) the data they provide is limited.
The clinical trial tables used in this study are pro-
prietary data from a large pharmaceutical company.
Due to confidentiality agreements, the name of the
company and the dataset cannot be disclosed. Ta-
ble 1 summarizes the number and types of tables
used in the generation process. The table types are
described as follows:

• Subject Disposition: Provides a summary
of the participants included in each analysis
group and the reasons for any exclusions.

• Subject Demography: Displays demographic
and other relevant baseline characteristics of
study participants, either categorized or by
descriptive statistics.

• Medical History: Presents a summary of
participants’ medical history, ordered by fre-
quency of occurrence.

• Overall Summary: Summarizes adverse
events (AEs) across various categories.

• AEs by SOC and PT: Lists AEs by treat-
ment group, categorized by system organ class

(SOC, highest level) and preferred term (PT,
second-highest level), ordered by frequency.

• AEs by Maximum Intensity: Categorizes
AEs by treatment group, based on the maxi-
mum intensity of each event, in descending
order of frequency.

• AEs by Worst Outcome: Categorizes AEs by
treatment group, with classification based on
the worst outcome, and further categorized by
SOC and PT.

• AEs by Common % or more by SOC and PT:
Lists AEs that exceed a predefined frequency
threshold, organized by SOC and PT.

These tables present structured data on adverse
events (AEs), system organ classes (SOCs), and
preferred terms (PTs), along with numeric sum-
maries like incidence rates and percentages for each
study arm. The size of the tables varies, with some
large enough to exceed the context length of large
language models (LLMs). For example, the tables
for Medical History, AEs by SOC/PT, AEs by Max-
imum Intensity, and AEs by Worst Outcome are
especially large.

Table 1: CSR Table Types

Table Types Number of Tables
Subject Disposition 14
Subject Demography 16
Medical History 14
Overall Summary 13
AEs by SOC and PT 7
AEs by Maximum intensity 7
AEs by Worst Outcome 4
AEs by Common % or more by SOC and PT 4

4.2 Experimental Setup

We conducted experiments with the following mod-
els:

• GPT-4o-mini: A state-of-the-art model
known for its robust summarization capabil-
ities and large token limit (Achiam et al.,
2023).

• DeepSeek (Chat window): DeepSeek is a
Chinese artificial intelligence company that
develops open-source large language models
(LLMs) (Liu et al., 2024). We used the lat-
est advanced language model comprising 671
billion parameters.
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• Llama 3.1 70B Instruct: An open source
model fine-tuned for instruction following
task (HuggingFace, a).

• Nous Hermes 2 Mixtral 8x7B DPO: A
model further fine-tuned on Mixtral 8x7B
MOE with reinforcement learning via direct
preference optimization (DPO), also featuring
a 32k token limit (HuggingFace, b).

Due to cost constraints, we could not do exper-
iments with some of the latest LLMs with higher
capabilities. However, a variety of architectural
and assessment capabilities are offered by the cho-
sen models. Some clinical trial tables in our dataset
exceeded the context length of the largest models
tested such as GPT-4o-mini, due to which models
were unable to process the entire table leading to
incomplete outputs. This limitation further high-
lights the importance of fact selection algorithm
for handling large tables effectively.

4.3 Quantitative Evaluation

To evaluate the quality of generated summaries, we
used the following metrics.

4.3.1 Claim Recall and Claim Precision
• This framework, introduced by (Xie et al.,

2024) as DOCLENS: Multi-aspect Fine-
grained Evaluation for Medical Text Genera-
tion, is specifically tailored to assess medical
text generation tasks.

• Claim Recall: This metric evaluates the com-
pleteness of the generated text. The refer-
ence summary is segmented into individual
sub-claims or facts using GPT-4, with each
sub-claim representing a single fact. The gen-
erated text is then analyzed by an evaluator
model to determine whether it entails each
sub-claim from the reference summary.

• Claim Precision: This metric evaluates the
conciseness of the generated text. The gen-
erated summary is divided into sub-claims.
The reference summary is then analyzed to
determine if it entails each sub-claim from the
generated summary.

We utilized GPT-4o to create the sub-claims for
both the reference text and the generated text. Ad-
ditionally, we employed the same model as an eval-
uator.

4.4 Human Evaluation

For human evaluation, we sought assistance from
our organization’s internal medical writers. They
devised a set of rules tailored to the evaluation of
summaries generated for clinical trial tables. The
rules guaranteed a consistent and clinically suitable
evaluation of the generated outputs. for example,
for adverse events table type (under the safety eval-
uation section)some rules are:

• Threshold for SOCs and PTs: A proper cut-
off should be decided for both System Or-
gan Classes (SOCs) and Preferred Terms
(PTs). Above this threshold, all SOCs and
PTs should be selected and included in the
summary to maintain relevance and complete-
ness.

• Template Adherence: Summaries should fol-
low a consistent and predefined template, en-
suring clarity and alignment with organiza-
tional or regulatory standards. For example,
as shown in Table 3

Medical writer manually evaluated all the gener-
ated summaries to verify that the summaries adhere
to the following criteria.

• Rule Compliance: Whether the summary fol-
lows the rules and templates specific to the
table type.

• Accuracy: Ensuring there are no hallucina-
tions, incorrect interpretations, missing data,
or data mismatches.

• Conciseness: Exclusion of irrelevant or re-
dundant details.

• Fluency: Readability and coherence of the
summary.

5 Results and Discussion

The performance of various models was assessed
using the metrics outlined in the Evaluation sec-
tion, including Claim Recall, Claim Precision, and
manual evaluation. The detailed results are shown
in Table 4 and Table 5, which emphasizes the ef-
fectiveness of our fact selection algorithm and the
overall quality of the generated summaries.

Among the models tested, without the fact se-
lection algorithm, GPT-4o-mini in a 1-shot setting
achieved a claim recall of 0.67 and claim precision
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“Reference Summary”: In total 37/63 children (58.7%) were reported with at least one
TEAE. Most frequently reported primary system organ classes affected by TEAEs were:
Gastrointestinal disorders (13/63, 20.6%) , general disorders and administration site conditions (11/63,

17.5%), musculoskeletal and connective tissue disorders (8/63, 12.7%) , nervous system disorders
(9/63, 14.3%) as well as infections and infestations (7/63, 11.1%). Overall, there was a similar
distribution of TEAEs across both age cohorts, treatments and formulations, with the exception of
menorrhagia, which was more frequently reported in adolescents of the Drug A o.d. tablet group (n =
4) than in the comparator group (n = 0)."

“Claims”:

Claim 2: The most frequently reported primary system organ class affected by TEAEs was gastroin-
testinal disorders (20.6%, 13/63).

Claim 4: Musculoskeletal and connective tissue disorders were reported in 12.7% (8/63) of children.

“GPT-4o-mini(1-shot)”:{
“claim 2”: "The most frequently reported primary system organ class affected by TEAEs was gastroin-
testinal disorders (20.6%, 13/63).",
"explanation": "The clinical summary provides that gastrointestinal disorders were the most common
system organ class, and the percentage (20.6%) is also included. The specific number of subjects
affected (13/63) is also consistent.",
"entailment_prediction": 1
},
{
"claim 4": "Musculoskeletal and connective tissue disorders were reported in 12.7% (8/63) of chil-

dren.",
"explanation": "The clinical summary does not mention musculoskeletal and connective tissue disorders
as a common adverse event. Therefore, this claim cannot be fully entailed.",
"entailment_prediction": 0

}

“Our Approach”: {
"claim 2": "The most frequently reported primary system organ class affected by TEAEs was gastroin-
testinal disorders (20.6%, 13/63).",
"explanation": "The summary lists Gastrointestinal Disorders as 20.6% of patients, but it does not
explicitly confirm the number of children affected (13/63). However, the percentage matches, so the
claim can be inferred.",
"entailment_prediction": 1
},
{
"claim 4" : "Musculoskeletal and connective tissue disorders were reported in 12.7% (8/63) of chil-

dren.",
"explanation": "The clinical summary mentions Musculoskeletal and Connective Tissue Disorders as
12.7% of patients but does not give the exact number (8/63). However, the percentage supports the
claim.",
"entailment_prediction": 1

}

Table 2: Example of Claim Recall evaluation for GPT-4o-mini and Nous-Research. The summary generated by
GPT-4o-mini fails to include an important fact, "Claim 4," resulting in lower claim recall. In contrast, applying
the fact selection algorithm to Nous-Research improves claim recall by ensuring all critical facts are present in the
generated summary
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“AEs By SOC and PT” :
X (%) Number of subjects reported at least one such adverse event......,. The most common adverse
events (AEs) by System Organ Class (SOC) were SOC Fact 1 (in Drug A X% of patients, in Drug B
Y%,........so on), SOC Fact 2 (in Drug A X% of patients, in Drug B Y%,........so on), and SOC Fact 3 (
Z%)................., and SOC Fact n (n % of patients)............ The most common AEs by Preferred Term
(PT) were PT Fact 1 (a% of patients), PT Fact 2 (in Drug A X% of patients, in Drug B Y%,........so on),
PT Fact 3 (in Drug A X% of patients, in Drug B Y%,........so on),...........and PT Fact n (n% of patients).

Table 3: An Example Template for AEs by SOC and PT

Table 4: Comparison of Claim Recall and Precision Across Different Models and Approaches

Model Claim Recall Claim Precision
Nous-Hermes-2-Mixtral-8x7B DPO (with fact selection algorithm) Our Approach 0.72 0.44
GPT 4o-mini (0-shot) 0.58 0.38
GPT 4o-mini (1-shot) 0.67 0.47
DeepSeek (0-shot) 0.5 0.36
DeepSeek (1-shot) 0.55 0.44
Llama-3.1-70B-Instruct (0-shot) 0.18 0.15
Llama-3.1-70B-Instruct (1-shot) 0.22 0.18
Nous-Hermes-2-Mixtral-8x7B DPO (0-shot) 0.27 0.22
Nous-Hermes-2-Mixtral-8x7B DPO (1-shot) 0.23 0.29

of 0.47. DeepSeek performed similarly to GPT-
4o-mini, while Llama-3.1-70B-Instruct showed the
weakest performance. We tested the fact-selection
algorithm with Nous-Hermes-2-Mixtral, which at-
tained the highest claim recall of 0.72, though its
claim precision was 0.44. Additionally, Table 5
demonstrates that the summary generated using the
fact selection algorithm outperformed the propri-
etary models in terms of informativeness, consis-
tency, fluency, and conciseness. Unfortunately, we
could not apply the fact selection algorithm to pro-
prietary models due to API costs. However, the
superior performance of the open-source models
after applying the algorithm suggests that applying
it to the proprietary models would yield even better
results.

A medical expert from our internal team evalu-
ated the generated summaries. They observed that
the output from open-source models, such as Llama
3.1 Instruct 70B, is not acceptable. These models
tend to hallucinate, exhibit data mismatches, and
fail to adhere to the correct output template. In con-
trast, proprietary models like GPT-4o-mini produce
significantly better results. While hallucinations
are less frequent and the model largely presents
accurate information from the tables, it still strug-
gles with maintaining the proper output template

and occasionally overlooks key facts. As shown
in Table 2, GPT-4o-mini misses an important fact
(‘claim 4’). However, when a fact-selection algo-
rithm is applied and a well-defined output format
is provided, the performance of the LLM improves,
producing outputs that closely resemble those of a
human writer.

The reason for this improved performance lies
in the fact that without a fact selection algorithm,
the LLM is tasked with both selecting the relevant
facts from the provided table and generating the
summary. We observed that LLMs struggle with
determining an appropriate threshold based on data
trends and applying that threshold for fact selec-
tion. In contrast, when the fact selection algorithm
is used, the generation task is divided into two dis-
tinct steps: first selecting the relevant facts, then
generating the summary. With the fact selection
algorithm in place, the LLM no longer needs to
perform fact selection itself. Instead, the selected
facts are provided to the LLM along with the nec-
essary template, making it easier for the model to
generate the output by simply filling in the blanks
of the template. With this approach, both recall
and precision can be improved by adjusting the
threshold.
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Table 5: Overall Evaluation

Type Model Informative Conciseness Fluency Consistency Score
1-shot Llama-3.1-Instruct-70B 2.8 1.5 3.5 3.1 2.73
1-shot Nous-research-Mixtral 3.1 2.2 3.8 3.4 3.13
1-shot DeepSeek 4.2 3.8 4.6 4.5 4.28
1-shot GPT-4o-mini 4.4 3.8 4.6 4.5 4.33
Algo Nous-reseaarch-Mixtral 4.7 4.5 4.7 4.5 4.6

6 Conclusions and Future Work

In this work, we developed an end-to-end pipeline
that automates the generation of clinical table sum-
maries from large complex tables. Complexities
may be there because of size, density and domain-
specific knowledge, that make it difficult for LLMs
to consistently generate accurate and relevant sum-
maries. The proposed pipeline enables the LLMs
to produce more concise and accurate summaries.
Additionally, we incorporated a feedback mecha-
nism within the pipeline, allowing users to refine
the output and improve the quality of summaries
iteratively.

7 Limitations

Due to some constraints, we could not perform ex-
tensive experiments in diverse domains. Our future
work aims to address this by experimenting in other
complex domains and at a larger data scale. More-
over, we can also perform a comparison with the
latest LLMs, particularly those with larger context
windows and improved summarization capabilities.
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Abstract
Large Foundation Models such as Llama and
LLaVA have displayed incredible capabilities
in a wide range of domains and tasks. How-
ever, it is unclear whether these models match
specialist capabilities without special training
or fine-tuning. In this paper, we investigate
the innate ability of foundation models as neu-
rodegenerative disease specialists, particularly
for detecting the Alzheimer’s Disease. Pre-
cisely, we use a language model, Llama-3.1,
and a visual language model, Llama3-LLaVA-
NeXT, to detect language specificity between
Alzheimer’s Disease patients and healthy con-
trols through a well-known Picture Description
task. Results show that Llama is comparable
to supervised classifiers, while LLaVA, despite
its additional “vision”, lags behind.

1 Introduction

Large Foundation Models such as Llama have
demonstrated surprising capabilities in the field
of Natural Language Processing (NLP). Recent
work seems to indicate that these generalist models
can be used in specialized domains, such as clin-
ical medicine, with proprietary Large Language
Models (LLMs) such as GPT-4 achieving impres-
sive performance on professional benchmarks in
health domain (Bubeck et al., 2023; Cui et al., 2024;
Belyaeva et al., 2023; Jin et al., 2024). Other work,
however, suggests that GPT-4 does not outperform
traditional AI tools and cannot replace them at cur-
rent stage (Wang et al., 2023).

The healthcare sector often prefers open LLMs
that can be deployed in local environments, es-
pecially since relying on third-party commercial
LLMs is not always feasible due to concerns about
traceability, privacy, and security. Taking into ac-
count the complexity of real-world applications, in
this paper, we explore the use of small (e.g., less
than 10B), cost-effective open-source LLMs for
Alzheimer’s Disease detection.

Alzheimer’s Disease (AD) is a insidious pro-
gressive neurodegenerative disease resulting in im-
paired cognition and dementia, and eventual death
(Scharre, 2019). Since there is no effective cure for
dementia, early intervention is essential. Modern
deep learning approaches utilize data from various
modalities, such as speech (Berube et al., 2019; Il-
ias and Askounis, 2022), eye-tracking (Sriram et al.,
2023; Sheng et al., 2022), facial (Chou et al., 2025),
and neuroimaging (Sarraf et al., 2023). However,
some modalities require invasive and costly screen-
ing tools. In contrast, language data is easy to
collect—a speech recording takes no more than 10
minutes—and involves no invasive procedure, mak-
ing it an ideal resource for early disease detection.

Picture description, such as the one shown in Fig-
ure 1, has been widely used to capture deficits or ab-
normalities in language (Yorkston and Beukelman,
1980). Over the years, clinicians have assessed a va-
riety of measures, such as grammaticality (Ash and
Grossman, 2015), vocabulary (Forbes-McKay and
Venneri, 2005), frequency of noun-verb ratio (Bird
et al., 2000), and the percentage and change of in-
formation units (IUs), e.g., “mom”, “girl” (Giles
et al., 1996; Bouazizi et al., 2023). In the pre-LLM
era, NLP practitioners manually craft linguistic fea-
tures and use machine learning algorithms to train
supervised models (Fraser et al., 2016, 2019; Barral
et al., 2020; Jang et al., 2021). While these exper-
iments yield promising results, they require the
collection of training data, a time-consuming and
labor-intensive process. Additionally, the variabil-
ity in datasets and recording conditions also makes
it challenging for supervised models to generalize
well (Favaro et al., 2024).

With the advent of LLMs, NLP has shifted from
developing task-specific representations and archi-
tectures to using task-agnostic foundation models
(Radford et al., 2019; Brown, 2020), which are
pretrained on vast, cross-disciplinary data. These
models not only streamline the process but also
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Figure 1: The roadmap of our approach. Textual prompt are provided to language model Llama; image and textual
prompts are provided to vision-language model LLaVA-NeXT. We extract class, probability, and analysis from Y .

offer interpretable explanations, providing clinical
doctors with valuable insights into their reasoning
(Perlis, 2023; Nori et al., 2023a,b). Our approach
leverages the powerful open-source LLM, Llama-
3.1-8B (Dubey et al., 2024), and explores its poten-
tial for AD detection through carefully designed
zero-shot and few-shot prompting strategies. At
the time of our experiments, Llama-3.1 models
offered state-of-the-art performance in the open-
source LLM landscape.

Given that our task involves describing a pic-
ture using language, a Vision-Language Model
(VLM) should offer a clear advantage. We choose
a VLM from the LLaVA family (Liu et al., 2024b),
a pioneering work in visual instruction tuning,
while also considering its base language model and
comparable size. LLaVA is pretrained on image-
caption data and designed to provide detailed de-
scriptions (e.g., position of objects in an image)
and perform complex reasoning (e.g., “What is
unusual in an image, and explain.”). These capabil-
ities align well with our experimental setup. Based
on these considerations, we use Llama3-LLaVA-
NeXT (Liu et al., 2024a), one of the latest LLaVA
models, which is built on Llama-3-8B-Instruct and
integrates a vision encoder for image processing.

Our experimental results show that Llama-3.1-
8B model can match or even surpass traditional
supervised methods with minimal supervision. The
key factor is the effective combination of Back-
ground and Question prompts. LLaVA, on the
other hand, is not yet suited for this task, as in-
triguingly it may itself exhibit symptoms akin to
“neurodegenerative” issues.

2 The Power of Prompting

Prompt engineering is a popular and effective way
for using LLMs without altering their parameters.
Empirical studies have shown that a model’s per-
formance on specific tasks can be significantly

affected by the prompt, often in surprising ways
(Feng et al., 2024; Sivarajkumar et al., 2024; Sali-
nas and Morstatter, 2024; Sclar et al., 2024). For
instance, by adding “Let’s think step by step” can
greatly improve model performance (Kojima et al.,
2022). To date, there is not yet a consensus on
how to formulate the most effective prompts for a
specific task.

To unleash the inner specialist capabilities of
LLMs and gain a better understanding of the crucial
components in a prompt, we design our prompts
in a systematic way. For language-only model, we
divide our prompt into three parts: (1) Background
prompt, (2) Question prompt, and (3) Example
prompt. For vision-language model, we include
the image and prepend the cue phrase, “This image
is used for speech assessment in Alzheimer’s Dis-
ease.”, to the beginning of the textual prompt, as
shown in Figure 1. The textual input for VLM is
the same as the language-only model. Precisely:

(1) Background Prompt aims to place LLMs in
a specific knowledge graph where the information
is closely related to the target domain. For instance,
prompts starting with “You are an intelligent AI
assistant” or “You are an expert in clinical NLP”
use Persona pattern as guiding cues (Sivarajkumar
et al., 2024). In our experiments, we test three
cue phrases, including Role—“You are a medical
expert in Alzheimer’s Disease”, Context— a brief
introduction of the Cookie Theft picture description
task, and Linguistic—clinical observations of
linguistic features from AD and healthy controls.

(2) Question Prompt directs LLMs to produce
desirable output, whether text generation, classi-
fication, or resolution. It has been shown that by
simply adding “Let’s think step by step” before
each answer, LLMs can become decent zero-shot
reasoners (Kojima et al., 2022). Here, we compare
short answer and Chain of Thought (CoT) prompt-
ing answer in the question prompt. Short answer
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simply asks the LLM to predict a class (i.e., normal
vs. patient) without any explanation, while CoT
answer asks the model to first analyze step by step
and then give an answer. We also offer a Guided
CoT (G. CoT) version to direct the model to rea-
son from specific linguistic perspectives, such as
“vocabulary richness” and “syntactic complexity”.

Pre-trained language models are often inherently
calibrated to different extents (Jiang et al., 2021;
Liang et al., 2023), with token probabilities might
be employed off-the-shelf. Since they could ver-
balize confidence scores (Tian et al., 2023), we use
the cue phrase “Give a prediction with a probabil-
ity” to directly ask for prediction probabilities. In
preliminary experiments, we found that using this
cue phrase yielded better results than omitting it.

(3) Example Prompt is positioned between
Background Prompt and Question Prompt. It aims
to examine whether In-Context Learning (ICL)
with demonstrations further improves LLMs’ per-
formance in comparison to zero-shot prompting.
Practically, we employ fixed and dynamic few-shot
ICL. The fixed examples are selected randomly
in the held-out set to be broadly representative
and relevant to a wide distribution of text exam-
ples. The dynamic examples are instead chosen
with a kNN-based approach (k “ 2) (Nori et al.,
2023b), where we embed all texts in the held-
out set using OpenAI’s latest embedding model
text-embedding-3-small1. For each test exam-
ple, we identify its nearest neighbor in both Patient
and Control classes by computing their cosine sim-
ilarity scores. In our experiments, we use a small k
value, i.e., one positive and one negative examples.

We combine different types of Background and
Question prompts in both zero-shot and 2-shot ICL.
For instance, (Role; Short) uses Role in the back-
ground prompt and requires a short answer in the
question prompt; (Context+Role+Ling; G. CoT)
uses a combination of all background prompts and
a guided CoT answer. Detailed prompting tem-
plates are provided in Appendix 5.

3 Data and Experiment Settings

Dataset. We use the dataset from Jang et al.
(2021), which comprises 63 patients recruited from
a specialty memory clinic and 67 healthy con-
trols from the community. Patients are either diag-
nosed with Alzheimer’s Disease (AD) or exhibiting

1https://platform.openai.com/docs/guides/
embeddings.

Group # Age Gender MoCA

Patient 63 72 ˘ 9 31M / 34F 18 ˘ 7
Control 67 62 ˘ 15 22M / 45F 27 ˘ 3

Table 1: Dataset demographic and clinical statistics.
MoCA stands for Montreal Cognitive Assessment score.

initial symptoms of Mild Cognitive Impairments
(MCI), potentially progressing to AD. Participants
completed four tasks—pupil calibration, picture
description, paragraph reading, and memory re-
call—during which both language and eye move-
ment data were collected. In this study, we focus
on the picture description task. Demographic and
clinical data is provided in Table 1.

Data Processing. The original speech data is
transcribed and timestamped using WhisperX
(Bain et al., 2023). Following automatic transcrip-
tions, a human transcriber manually verified each
transcript for word spelling and speaker diariza-
tion accuracy. Task instructions from the instructor
were removed to include only participant speech.

Hyper-Parameters. We use the 8B checkpoint
of Llama-3.1 and LLaVA-NeXT from Huggingface
(Wolf et al., 2020). We use a low temperature (0.1)
and set top_k sampling to 50. The maximum new
tokens are 16 and 512 for Short answer and CoT
answer, respectively. To investigate the potential
non-determinism of LLMs (Ouyang et al., 2023;
Song et al., 2024), each prompt configuration (e.g.,
(Role; Short answer)) is executed on two differ-
ent servers with three runs per server. We report
micro-averaged scores with standard deviation over
6 runs per setup.

Supervised Classifiers and Metrics. We com-
pare with three classic supervised algorithms: Lo-
gistic Regression (LR), Random Forest (RF), and
Gaussian Naive Bayes (GNB). We follow the
feature extraction process outlined in Jang et al.
(2021) and split the dataset into ten folds for cross-
validation. Appendix 5 provides details.

In all experiments, we report three metrics: (1)
Area Under the Receiver Operating Characteris-
tic (ROC) Curve (AUC): the ability to distinguish
between Patient and Control under different thresh-
olds; (2) Sensitivity: the True Positive rate for
Patient detection, and (3) Specificity: the True Neg-
ative rate for Control detection. The main measure
is the AUC score.
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Background Question AUC Sensitivity Specificity

Role Short 60.3 ˘ 1.1 96.4 ˘ 0.8 11.5 ˘ 0.8
CoT 65.8 ˘ 0.5 91.13 ˘ 1.1 24.6 ˘ 2.5
G. CoT 70.9 ˘ 0.4 84.7 ˘ 1.1 35.4 ˘ 2.1

Context Short 69.4 ˘ 1.5 35.9 ˘ 2.0 93.5 ˘ 1.4
CoT 68.9 ˘ 0.6 50.8 ˘ 1.1 73.9 ˘ 2.1
G. CoT 74.3 ˘ 1.1 69.4 ˘ 2.2 69.3 ˘ 0.0

Context Short 71.6 ˘ 0.5 72.6 ˘ 0.0 69.6 ˘ 1.4
+Role CoT 72.9 ˘ 3.8 70.2 ˘ 3.4 70.8 ˘ 4.3
+Ling G. CoT 76.1 ˘ 2.0 71.8 ˘ 3.4 73.9 ˘ 2.1

Supervised Classifiers
GNB - 72.8 ˘ 2.2 64.1 ˘ 2.2 66.5 ˘ 3.5
LR - 73.2 ˘ 1.7 68.5 ˘ 3.8 70.2 ˘ 1.6
RF - 75.2 ˘ 3.1 67.7 ˘ 4.6 73.1 ˘ 3.6

Table 2: Top: zero-shot with different background and
question prompts. Scores are averaged across 6 runs.
Best score in each sub-section is in bold. Bottom: per-
formances using supervised classifiers.

4 Results with Foundation Models

Impact of Background and Question Prompts
on Zero-shot Prompting. We present zero-shot
results in Table 2. When using the Role pattern in
the Background prompt, Llama is highly sensitive
in detecting Patients (90%), but much less so for
Controls. In contrast, when the model is provided
only with the Context of the picture description
task, it predicts Controls more accurately. This
suggests that different background prompts shift
the model’s threshold for identifying Patient lan-
guage in distinct ways. Combining different back-
ground prompts (Context+Role+Ling) provides
more complete information, enabling the LLM to
retrieve the most relevant knowledge and deliver
optimal performance. With a 76% AUC score, it
matches and even surpasses supervised classifiers
(GNB 73%, LR 73%, RF 75%). In the Question
prompt, CoT significantly enhances model perfor-
mance compared to Short answers, and this im-
provement is consistent across various background
settings. Interestingly, we find that simply asking
the model to analyze before making predictions
helps the LLM to show moderation in its decision
making, as evidenced by a more balanced Sensitiv-
ity and Specificity rate.

Few-shot vs. Zero-shot Prompting. In few-shot
in-context learning, we use the same Background
and Question prompts as in the zero-shot setting,
but add input-output pairs as demonstration in the
Example Prompt. Table 3 demonstrates that few-
shot prompting consistently enhances AUC scores,
particularly when the background prompt lacks

Figure 2: LLaVA and LLama performances
on different Background (Role, Context,
Context+Role+Linguistic) and Answer prompt (G.
CoT) settings.

sufficient task information, as seen with the Role
background. Remarkably, we also find that zero-
shot prompting can be highly effective in some
cases, even surpassing few-shot prompting. This
occurs when the background is complete and a
CoT answer is employed—a trend also observed
in other clinical NLP tasks (Sivarajkumar et al.,
2024). In most prompt settings, random few-shot
outperforms kNN, suggesting that a more general
and representative set of examples leads to better
performance than semantically close ones. Similar
observations are made by Nori et al. (2023a). How-
ever, it comes with the trade-off of greater fluctua-
tions and less consistent Sensitivity and Specificity
rates.

Vision Language Model vs. Language-only
Model. While we were expecting VLMs to out-
perform pure LLMs due to their ability to pro-
cess the picture, Figure 2 reveals that LLaVA
significantly underperforms Llama on this task,
with lower AUC scores up to 10% across various
prompting, in both zero-shot and few-shot setups.
Specifically, we observe some extreme predictions
in zero-shot prompting, where LLaVA exclusively
predicts either Patient or Control, a behavior never
observed with Llama. While few-shot prompting
brings some improvement, the model remains bi-
ased toward producing high Specificity or Sensitiv-
ity scores (see detailed scores in Appendix 5). We
also note some anecdotal observations regarding
LLaVA’s reasoning. For instance, when asked to
analyze step by step, instead of reasoning from a
linguistic perspective, LLaVA simply lists the ob-
jects in the image, such as: “1. The image shows a
family. 2. The boy is standing. 3. Water is flowing.”
One plausible reason is that VLMs are not trained
to capture subtle linguistic nuances as LLMs are,
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Random Few-shot kNN Few-shot Zero-shot

B prompt Q prompt AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

Role Short 69.5 ˘ 7.5 74.4 ˘ 8.1 55.9 ˘ 14.8 64.5 ˘ 0.2 84.13 ˘ 0.0 38.8 ˘ 2.1 60.3 ˘ 1.1 96.4 ˘ 0.8 11.5 ˘ 0.8
CoT 71.3 ˘ 3.4 75.4 ˘ 9.0 50.0 ˘ 17.9 70.7 ˘ 2.1 94.4 ˘ 1.1 23.1 ˘ 1.0 65.8 ˘ 0.5 91.13 ˘ 1.1 24.6 ˘ 2.5
G. CoT 73.4 ˘ 7.0 74.9 ˘ 8.0 60.8 ˘ 12.1 72.9 ˘ 0.7 87.2 ˘ 2.4 33.6 ˘ 1.0 70.9 ˘ 0.4 84.7 ˘ 1.1 35.4 ˘ 2.1

Context Short 69.2 ˘ 9.6 77.2 ˘ 12.8 50.0 ˘ 18.5 68.3 ˘ 0.9 61.1 ˘ 1.1 69.4 ˘ 1.0 69.4 ˘ 1.5 35.9 ˘ 2.0 93.5 ˘ 1.4
CoT 65.0 ˘ 5.1 59.1 ˘ 12.4 65.3 ˘ 14.3 68.1 ˘ 2.7 61.1 ˘ 3.4 71.6 ˘ 0.0 68.9 ˘ 0.6 50.8 ˘ 1.1 73.9 ˘ 2.1
G. CoT 76.0 ˘ 4.1 64.6 ˘ 4.8 75.9 ˘ 8.9 74.3 ˘ 2.1 80.2 ˘ 1.1 64.2 ˘ 0.0 74.3 ˘ 1.1 69.4 ˘ 2.2 69.3 ˘ 0.0

Context Short 71.9 ˘ 3.7 58.1 ˘ 15.0 79.8 ˘ 10.5 71.1 ˘ 2.3 65.9 ˘ 1.1 71.6 ˘ 0.0 71.6 ˘ 0.5 72.6 ˘ 0.0 69.6 ˘ 1.4
+Role CoT 71.9 ˘ 3.6 61.4 ˘ 11.0 78.4 ˘ 7.2 74.9 ˘ 0.1 77.0 ˘ 3.3 64.2 ˘ 0.0 72.9 ˘ 3.8 70.2 ˘ 3.4 70.8 ˘ 4.3
+Ling G. CoT 76.4 ˘ 2.9 71.7 ˘ 7.6 75.8 ˘ 8.4 74.8 ˘ 1.3 83.2 ˘ 1.3 46.3 ˘ 0.0 76.1 ˘ 2.0 71.8 ˘ 3.4 73.9 ˘ 2.1

Table 3: Random, kNN few-shot, and zero-shot prompting results with Llama. Random few-shot results are averaged
from three sampling. Best AUC in random, kNN, and zero-shot sections is highlighted ; second best is underlined.

as they are primarily pretrained on image-text pairs
to recognize objects in images.

Recent studies reveal that VLMs are prone to
heavy hallucinations and can be easily misled by
deceptive prompts (Qian et al., 2024; Zhang et al.,
2024). To explore the “neuro-cognitive status” of
LLaVA, we prompt the model to perform the pic-
ture description task, similar to the human partici-
pants. We then apply trained classifiers (GNB, LR)
to analyze LLaVA’s generated speech, with details
in Appendix 5. Unsurprisingly, the supervised clas-
sifiers consistently predict LLaVA as a Patient with
high probability: GNBą 90%, LRą 80%. Since
LLaVA is unable to generate normal speech during
the picture description task, it is not surprising that
its predictions are not reliable.

5 Conclusion and Open Questions

In this paper, we explore the potential of foundation
models for lightweight use in Alzheimer’s Disease
detection via Picture Description task. Using ap-
propriate prompting strategies, we find that LLMs
can be activated to exhibit specialist capabilities
even in a no-data scenario, achieving performance
comparable to supervised classifiers, while provid-
ing clear and insightful reasoning. VLMs, however,
are not yet suited for complex language reasoning
tasks, as they may themselves exhibit symptoms
akin to “neurodegenerative” issues. In the near fu-
ture, we plan to expand our methods from picture
description narratives to conversational interactions
such as semi-structured conversations (Goodkind
et al., 2018), and other healthcare-related disease
detection (Li et al., 2022).

Several open questions remain worth exploring,
such as alternative methods for demonstration ex-
ample selection and whether a best example-pair
exists that could boost LLMs’ performance. For

multimodal models, a key challenge is how to ef-
fectively enhance their compositional capabilities,
thus enabling them to process different information
in a more intelligent and integrated way.

Limitations

Most LLMs do not consistently produce the same
output due to the inherent randomness in their pa-
rameter initialization. To address this and ensure
more robust results, we ran each setup at least three
times on different servers. In most cases (zero-shot
and kNN few-shot), the variations were minimal,
reinforcing our conclusions about different prompt-
ing strategies. However, we found that the relative
performance of prompt variations could vary sig-
nificantly when using random few-shot prompting.

We evaluate two model variations, Llama and
LLaVA, both of which are leading models of LLMs
and VLMs, respectively. However, further research
is needed to understand how different language
models, architectures, and datasets may impact the
sensitivity of prompt variations on this task.

Ethical Considerations

The dataset we use for this paper comes from
the CANARY project at University of British
Columbia (UBC), which was approved by the UBC
clinical research ethics board (H17-02803-A036).
During the experiments, we ensure that no private
information—such as participants’ health, clinical,
or demographic data—is disclosed. This is a main
reason for us exclusively testing with open-source
language models.
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Appendix A Prompt Templates

We provide prompting templates used in Llama and
LLaVA in Table 5 and Table 6, respectively.

Appendix B Supervised Classifiers

Following Jang et al. (2021), we reduplicate the su-
pervised learning results using Logistic Regression
(LR), Random Forest (RF), and Gaussian Naive
Bayes (GNB), all implemented with Scikit-learn li-
brary (Pedregosa et al., 2011). We split the dataset
into 10 folds with 10 different seeds for cross-
validation. The micro-averaged scores are given in

Table 4, in comparison with our best zero-shot and
few-shot prompting strategies.

Note that noting that our results differ slightly
from those reported in Jang et al. (2021), as we
do not use the exact same training samples (79
Patients and 83 Controls vs. our dataset with 63
Patients and 67 Controls). Additionally, we employ
different speech-to-text methods, which may have
led to variations in the transcripts.

Training Model AUC Sensitivity Specificity

Supervised GNB 72.8 ˘ 2.2 64.1 ˘ 2.2 66.5 ˘ 3.5
LR 73.2 ˘ 1.7 68.5 ˘ 3.8 70.2 ˘ 1.6
RF 75.2 ˘ 3.1 67.7 ˘ 4.6 73.1 ˘ 3.6

Ours (zero-shot) Llama-3.1 76.1 ˘ 2.0 71.8 ˘ 3.4 73.9 ˘ 2.1
Ours (few-shot) Llama-3.1 76.4 ˘ 2.9 71.7 ˘ 7.6 75.8 ˘ 8.4

Table 4: Comparison of fully supervised classifiers (top)
and our methods using LLMs (bottom). RF: random
forest, GNB: Gaussian Naive Bayes, LR: logistic re-
gression. Supervised results are averaged over 10-seed
10-fold cross-validation. Prompting results are averaged
over 2-trial 3-run per setup.

Appendix C LLaVA Prompting Results

We report zero-shot and few-shot prompting results
with LLaVA-NeXT-8B in Table 7. Textual prompts
and hyper-parameters are the same as with Llama.
Different from Llama, we do not observe a con-
sistent improvement with more complete prompts.
Plausibly, LLaVA is not capable of processing
longer and more complex textual information. We
also observe some extreme predictions where the
model only predicts Patient or Control, as high-
lighted in pink in Table 7.

Appendix D LLaVA’s Speech on Picture
Description Task

We prompt LLaVA twenty times on picture de-
scription task. The instruction is provided in the
same way as for human participants. We then use
supervised classifiers to categorize its responses.
Across all of LLaVA’s outputs, the three classifiers
consistently classify them as “Patient” with high
probabilities: RF ą 60%, GNB ą 90%, and LR
ą 80%. Two examples are given in Table 8.
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Llama-3.1

Strategy Template

Background
Prompt

Role: You are a medical expert in Alzheimer’s disease. You analyze linguistic features in the patient’s
speech, such as lexical richness, syntactic complexity, grammatical correctness, information content, and
semantic coherence. Based on the participant’s speech, provide an initial diagnosis of dementia patient
(P) and healthy control (H).

Context: The Boston Cookie Theft picture description task is a well established speech assessment
in Alzheimer’s disease. During the task, participants are shown the picture and are asked to describe
everything they see in the scene using as much time as they would like. Based on the participant’s
description, make a classification of dementia patient (P) versus healthy control (H).

Context+Role+Ling: The Boston Cookie Theft picture description task is a well established speech
assessment in Alzheimer’s disease. During the task, participants are shown the picture and are asked to
describe everything they see in the scene using as much time as they would like. The objects (also known
as information units) in this picture includes: “cookie”, “girl”, “boy”, “woman”, “jar”, “stool”, “plate”,
“dishcloth”, “water”, “window”, “cupboard”, “curtain”, “dishes”, “sink”. You are a medical expert in
Alzheimer’s disease. You analyze linguistic features in the patient’s speech, such as lexical richness,
syntactic complexity, grammatical correctness, information units, and semantic coherence. Based on the
participant’s description of the picture, provide an initial diagnosis of dementia patient (P) and healthy
control (H).

Example
Prompt

Zero-shot: None

Few-shot: Example: ## Text: <text> ## Answer: healthy control (H). ## Text: <text> ## Answer:
dementia patient (P).

Question
Prompt

Short: Given the text below, classify the participant as a dementia patient (P) or healthy control (H).
Please give an answer and a probability without explanation.

CoT: Given the text below, classify the participant as a dementia patient (P) or healthy control (H). First
explain step-by-step and then give a prediction with a probability.

G. CoT: Given the text below, classify the participant as a dementia patient (P) or healthy control (H).
Please first reason from the following perspectives: (1) Vocabulary richness: such as the usage of different
words; (2) Syntactic complexity: such as the length of the sentence and the number of subordinate
clauses; (3) Information content: whether the participant describe most of the information units in the
picture; (4) Semantic coherence: such as the usage of connectives and the change in description from one
information unit to another; (5) Fluency and repetitiveness: whether the text is fluent with less repetitive
sentences. Based on your reasoning, please give a prediction and the corresponding probability.

Table 5: Prompting template used in Llama.
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LLaVA-NeXT

Strategy Template

Background
Prompt

Role: This image is used for speech assessment in Alzheimer’s disease. You are a medical expert in
Alzheimer’s disease. You analyze linguistic features in the patient’s speech, such as lexical richness,
syntactic complexity, grammatical correctness, information content, and semantic coherence. Based on
the participant’s speech, provide an initial diagnosis of dementia patient (P) and healthy control (H).

Context: This image is used in Boston Cookie Theft picture description task, which is a well established
speech assessment in Alzheimer’s disease. During the task, participants are shown the picture and are
asked to describe everything they see in the scene using as much time as they would like. Based on the
participant’s description, make a classification of dementia patient (P) versus healthy control (H).

Context+Role+Ling: This image is used in Boston Cookie Theft picture description task, which is a
well established speech assessment in Alzheimer’s disease. During the task, participants are shown the
picture and are asked to describe everything they see in the scene using as much time as they would like.
The objects (also known as information units) in this picture includes: “cookie”, “girl”, “boy”, “woman”,
“jar”, “stool”, “plate”, “dishcloth”, “water”, “window”, “cupboard”, “curtain”, “dishes”, “sink”. You
are a medical expert in Alzheimer’s disease. You analyze linguistic features in the patient’s speech,
such as lexical richness, syntactic complexity, grammatical correctness, information units, and semantic
coherence. Based on the participant’s description of the picture, provide an initial diagnosis of dementia
patient (P) and healthy control (H).

Example
Prompt

Zero-shot: None

Few-shot: Example: ## Text: <text> ## Answer: healthy control (H). ## Text: <text> ## Answer:
dementia patient (P).

Question
Prompt

Short: Given the text below, classify the participant as a dementia patient (P) or healthy control (H).
Please give an answer and a probability without explanation.

CoT: Given the text below, classify the participant as a dementia patient (P) or healthy control (H). First
explain step-by-step and then give a prediction with a probability.

G. CoT: Given the text below, classify the participant as a dementia patient (P) or healthy control (H).
Please first reason from the following perspectives: (1) Vocabulary richness: such as the usage of different
words; (2) Syntactic complexity: such as the length of the sentence and the number of subordinate
clauses; (3) Information content: whether the participant describe most of the information units in the
picture; (4) Semantic coherence: such as the usage of connectives and the change in description from one
information unit to another; (5) Fluency and repetitiveness: whether the text is fluent with less repetitive
sentences. Based on your reasoning, please give a prediction and the corresponding probability.

Table 6: Prompting template used in LLaVA.
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Random Few-shot kNN Few-shot Zero-shot

B prompt Q prompt AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

Role Short 67.1 ˘ 7.0 45.1 ˘ 9.7 85.8 ˘ 10.1 58.1 ˘ 0.0 76.2 ˘ 0.0 40.3 ˘ 0.0 57.4 ˘ 0.0 19.4 ˘ 0.0 92.3 ˘ 0.0
CoT 62.4 ˘ 9.3 27.2 ˘ 16.2 90.8 ˘ 5.6 70.6 ˘ 1.0 81.0 ˘ 2.2 41.0 ˘ 1.1 49.2 ˘ 0.0 19.4 ˘ 0.0 92.3 ˘ 0.0
G. CoT 54.9 ˘ 5.2 3.0 ˘ 7.1 100.0 ˘ 0.0 69.8 ˘ 1.3 81.8 ˘ 1.1 39.6 ˘ 1.1 58.9 ˘ 0.0 37.1 ˘ 0.0 72.3 ˘ 0.0

Context Short 67.1 ˘ 7.0 54.3 ˘ 14.6 73.6 ˘ 12.5 67.3 ˘ 0.4 73.0 ˘ 0.0 57.5 ˘ 1.1 50.0 ˘ 0.0 100.0 ˘ 0.0 0.0 ˘ 0.0
CoT 61.4 ˘ 7.3 32.4 ˘ 7.4 89.2 ˘ 6.1 64.9 ˘ 2.5 77.0 ˘ 3.4 47.1 ˘ 3.2 59.0 ˘ 0.0 14.5 ˘ 0.0 100.0 ˘ 0.0
G. CoT 52.2 ˘ 1.8 3.2 ˘ 2.4 99.3 ˘ 1.6 65.1 ˘ 3.6 84.9 ˘ 1.1 29.9 ˘ 2.1 63.0 ˘ 0.0 66.1 ˘ 0.0 63.1 ˘ 0.0

Context Short 63.4 ˘ 4.3 30.7 ˘ 13.9 89.6 ˘ 11.2 65.8 ˘ 0.0 74.6 ˘ 0.0 56.7 ˘ 2.1 60.9 ˘ 0.0 82.3 ˘ 0.0 38.5 ˘ 0.0
+Role CoT 51.6 ˘ 11.1 19.3 ˘ 10.2 89.8 ˘ 8.8 65.1 ˘ 1.5 81.8 ˘ 1.1 35.1 ˘ 3.1 55.9 ˘ 0.0 33.9 ˘ 0.0 80.0 ˘ 0.0
+Ling G. CoT 50.1 ˘ 4.7 3.2 ˘ 3.6 99.3 ˘ 1.6 69.4 ˘ 0.4 84.1 ˘ 2.2 35.8 ˘ 4.2 64.9 ˘ 0.0 30.7 ˘ 0.0 95.4 ˘ 0.0

Table 7: Random, kNN few-shot, and zero-shot prompting results with LLaVA. Random few-shot results are
averaged from three sampling. Best AUC in random, kNN, and zero-shot sections is highlighted ; second best is

underlined. Extreme prediction such as very high Sensitivity and very low Specificity (or reversely) is highlighted .

Picture Description Task on LLaVA-NeXT

Prompt: You will do a picture description task. You’ll be shown a picture. Please describe everything you see going on
in the picture.

LLaVA: The image appears to be a black and white line drawing depicting a domestic scene. There are four figures in the
image, each outlined and shaded to suggest depth and form. The drawing style is simple and cartoonish, with no color or
shading other than the outlines and the shading within the outlines. In the foreground, there is a woman standing in the
kitchen, holding a pan. She seems to be engaged in cooking or preparing food. To her right, there is a child standing on a
stool, reaching for something on a shelf. The child is wearing a short-sleeved shirt and shorts, and appears to be in the
process of retrieving an item. In the background, there is another child standing on the floor, looking up at the woman.
This child is also wearing a short-sleeved shirt and shorts, and seems to be observing the woman’s actions. On the far
right, there is a baby lying on a surface, possibly a bed or a couch, with a blanket or sheet covering them. The baby
appears to be asleep or resting. The kitchen area includes a sink and a countertop with various items such as a bowl and
a bottle. There is also a window with curtains, and a door that is partially open. The room has a simple, clean layout
with minimal decoration. The overall scene suggests a domestic setting, possibly a family home, with the woman and
children engaged in everyday activities.

LLaVA: The image appears to be a black and white line drawing depicting a domestic scene. There are four characters
in the picture: 1. A woman standing in the center, holding a plate. She is wearing a dress and seems to be engaged
in an activity related to food preparation or serving. 2. A child standing on a stool to the left of the woman, reaching
for something on a shelf. The child is wearing a short-sleeved top and shorts. 3. Another child standing to the right
of the woman, also reaching for something on a shelf. This child is wearing a long-sleeved top and shorts. 4. A baby
lying on a surface to the right of the woman, seemingly asleep or resting. The setting appears to be a kitchen or a room
with a counter and a sink. There is a window with curtains to the right, and a door to the left. On the counter, there
are various items including what looks like a bowl and a jar. The overall scene suggests a family moment, possibly
meal preparation or cleanup. The characters are drawn in a simple, cartoon-like style, which is common in educational
materials or children’s books.

Table 8: Two examples of LLaVA’s generations on Cookie Theft task. The hallucinated context are marked in red.
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Abstract 

As digital health becomes more ubiquitous, 

people from different geographic regions 

are connected and there is thus a need for 

accurate language translation services. 

South Africa presents opportunity and need 

for digital health innovation, but 

implementing indigenous translation 

systems for digital health is difficult due to 

a lack of language resources. 

Understanding the accuracy of current 

models for use in medical translation of 

indigenous languages is crucial for 

designers looking to build quality digital 

health solutions. This paper presents a new 

dataset 1  with audio and text of primary 

health consultations for automatic speech 

recognition and machine translation in 

South African English and the indigenous 

South African language of isiXhosa. We 

then evaluate the performance of well-

established pretrained models on this 

dataset. We found that isiXhosa had limited 

support in speech recognition models and 

showed high, variable character error rates 

for transcription (26-70%). For translation 

tasks, Google Cloud Translate and 

ChatGPT outperformed the other evaluated 

models, indicating large language models 

can have similar performance to dedicated 

machine translation models for low-

resource language translation. 

1 Introduction 

Digital health has been recognized to improve 

access to healthcare services by decreasing wait 

times, improving care quality, and reducing cost 

                                                            
1 https://github.com/blocker-abby/xh-en-health-data/  

(Erku et al., 2023; Caffery et al., 2016; Gentili et 

al., 2022). Many digital health initiatives have 

focused on improving access in under-resourced 

areas, which face some of the largest challenges in 

providing healthcare services (Maita et al., 2024).  

However, as patients in under-resourced areas are 

connected to healthcare providers in various 

locations, language barriers present a serious 

challenge to be considered.  

In South Africa, 84.3% of the population is 

reliant public health facilities, many of which are 

under-resourced (Stats SA, 2023). There are 12 

official languages of South Africa, with 9 of these 

being indigenous languages (Stats SA, 2022). 

Incorporating language translation services for the 

indigenous languages of South Africa within 

digital health solutions is not only helpful but 

necessary. However, there isn’t a clear consensus 

on what the best available tools are for integrating 

translation services for digital health in South 

African languages.  

The aim of this paper is to understand the 

performance of automatic speech recognition 

(ASR) and machine translation (MT) services by 

assessing currently available pretrained models on 

South African English and isiXhosa, a South 

African indigenous language. Our contributions 

include a new dataset, consisting of audio and text 

in South African English and isiXhosa to support 

further development and evaluation of ASR and 

MT models.1 The results indicate that for ASR, 

error rates for South African English are 

comparable to human transcription; but, for 

isiXhosa, error rates are above an acceptable range, 

particularly for use in the medical field. For MT, 

large language models (LLMs) showed 

Benchmarking IsiXhosa Automatic Speech Recognition and  

Machine Translation for Digital Health Provision 
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comparable results to dedicated MT models, and 

the commercially available models outperformed 

the open-source models evaluated.  

2 Background and Related Works 

2.1 ASR 

A widely used open-source ASR model is Whisper, 

developed by OpenAI (Radford et al., 2022). 

Whisper supports ASR for South African English, 

but not isiXhosa. Whisper cites a 9.3% error rate 

for English, but English spoken with African 

accents showed lower accuracy rates (Afonja et al., 

2024). Therefore, assessment of South African 

English accents specifically is necessary to verify 

these results, and particularly on health-domain-

specific data. In addition to Whisper, the Massive 

Multilingual Speech (MMS) model is an open-

source ASR model developed by Meta, which 

supports South African English and isiXhosa. 

Pratap et al. (2023) demonstrated that MMS had 

higher accuracy when compared to Google and 

Whisper when using the FLEURS dataset (which 

includes isiXhosa data).  

In addition to open-source models, there are 

several successful commercial models for ASR. 

Particularly, the leaders in commercial cloud 

computing offer ASR APIs, these being Google 

Cloud Platform (GCP), Microsoft Azure, and 

Amazon Web Services (AWS) (Borra, 2024). Out 

of these, only GCP offers ASR for isiXhosa. These 

commercially available models have been cited to 

have better performance for ASR when compared 

to open-source models (Ferraro et al., 2023).  

2.2 Translation 

In the translation domain, the development of 

massive multilingual neural machine translation 

(NMT) models has contributed to improved 

translation of low-resource languages like 

isiXhosa. Meta’s No Language Left Behind 

(NLLB) is an open-source NMT model which 

provides translation for 200 languages, many of 

which are low-resource (Costa-jussà et al., 2022). 

In the commercial translation space, GCP, Azure, 

and AWS all offer translation APIs. Two of these 

(GCP and Azure) offer services for isiXhosa 

translation. Open source and commercial models 

have been cited to have similar performance in the 

translation domain (Licht et al., 2024). 

Current research has investigated the use of 

LLMs such as ChatGPT for translation tasks. Some 

research has found that they have high accuracy in 

comparison to NMTs (Wang et al., 2023). 

However, experiments with low-resource and 

African languages (of which isiXhosa is both) have 

shown results that still lag behind dedicated MT 

models like NLLB (Robinson et al., 2023; Ojo et 

al., 2024). 

2.3 Healthcare Applications 

ASR and MT in the healthcare sector is a debated 

topic. Accuracy in healthcare communication is 

vital, as miscommunication has the potential to 

drastically affect medical decisions and could lead 

to negative outcomes. Some healthcare bodies 

recommend against these techniques because of the 

risk (Vieira et al., 2019). However, when used 

responsibly, ASR and MT services can provide 

benefits in environments where human translation 

services cannot be provided, either due to resource 

constraints or lack of expertise. Recommendations 

for healthcare providers using these services 

include being aware of the potential errors, being 

alert to non-verbal communication from the 

patient, and for translation, back-translating 

(inputting translated materials into the MT model 

for translation back into the source language) to 

analyze where errors may have occurred 

(Randhawa et al., 2013). Therefore, it is important 

to understand the current state of ASR and MT, in 

order to apply it to digital health solutions safely. 

Understanding the development context is also 

important in determining the best-fit ASR and MT 

models for digital health applications. While 

accuracy is extremely important, there are other 

additional factors which can influence the uptake 

of solutions. The mobile application AwezaMed 

provides an example of this. The app provides 

translation of medical text for all South African 

languages using a list of predefined phrases 

(Marais et al., 2020). While there are benefits to the 

accuracy of using static translations, including the 

ability for human validation, there are also 

difficulties in that real-time and customized 

translation is not possible. In a real-time digital 

health application such as telemedicine, this 

solution may not address the needs of users; 

therefore, it is important to consider other factors 

along with accuracy to select the most appropriate 

translation models for digital health solutions. 
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3 Method 

3.1 Data 

Conversations between primary health care 

providers and patients were used as evaluation 

data. Conversation data was adapted from the 

PriMock57 dataset (Korfiatis et al., 2022), which 

provides audio and transcribed conversational data 

from mock telemedicine consultations. Ten 

random consultations were chosen from the 

available dataset of 57. The text data from each 

consult was then translated by a professional 

human translator with experience in English-

isiXhosa medical translation. 

While audio files of the consultations were 

available in the PriMock57 dataset, the speakers 

were not South African. As spoken accents can 

affect the accuracy of ASR models, it was 

important to utilize authentic audio of South 

African English speakers. Therefore, the 

conversations were re-enacted between South 

African paid actors. A total of 5 actors (3 male, 2 

female) were used, with two actors (one acting as 

the doctor, and one acting as the patient) per 

consultation. Two of the three male actors were 

included only in South African English recordings. 

The other male actor was included only in the 

isiXhosa recordings. The two female actors were 

included in both South African English and 

isiXhosa recordings. Each of the actors were fluent 

in the languages they recorded in. The actors read 

the consultation dialogue exactly as it was stated in 

                                                            
2 https://www.audacityteam.org/ 
3 https://cloud.google.com/speech-to-
text?hl=en 

the written text. Where speaking errors were made, 

this was cleaned in post-processing of the audio file 

using Audacity. 2  Audio was saved as a stereo, 

48kHz sampled FLAC file. Azure speech-to-text 

and MMS required a 16kHz sample WAV file 

input, so the audio was also converted to this 

format during evaluation of both models.  

Text data of the conversations was subdivided 

based on conversational dialogues. Each time the 

speaker changed, the text data was separated into a 

new text for evaluation. This resulted in a total of 

580 English texts and 580 isiXhosa texts. Each text 

was input into each model once and the first output 

result was used for evaluation. 

3.2 Selected ASR Models 

The chosen models for evaluation are highlighted 

in Table 1. The chosen models for ASR of South 

African English were Google Cloud Speech-to-

Text v1,3 Microsoft Azure AI Speech’s speech-to-

text,4 Whisper base model (Radford et al., 2022), 

and MMS speech-to-text (Pratap et al., 2023). Not 

all of the four chosen models offered isiXhosa 

services; those that did were Google Cloud Speech-

to-Text v1 and MMS speech-to-text.  

Whisper allowed for prompting capabilities, 

while the other ASR models did not. When 

providing an audio file input to Whisper, it is 

recommended to also provide a list of expected 

words to improve accuracy. The model was 

evaluated both with and without using this 

prompting feature. The expected terms used for 

4 https://learn.microsoft.com/en-
us/azure/ai-services/speech-

service/speech-to-text 

 

Automatic Speech Recognition 

Model Developer Availability Supported Language 

Google Cloud Speech-to-Text v1 Google Commercial en, xh 

Azure AI Speech speech-to-text Microsoft Commercial en 

Whisper base OpenAI Open Source en 

MMS Facebook Open Source en, xh 

    

Machine Translation 

Model Developer Availability Type 

Google Cloud Translate v2 Google Commercial Dedicated MT 

Azure Translator Microsoft Commercial Dedicated MT 

NLLB 200M distilled 600M Facebook Open Source Dedicated MT 

ChatGPT GPT-4o OpenAI Commercial LLM 

Gemini Flash 1.5 Google Commercial LLM 

 

Table 1: Selected Models for Evaluation 
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prompting were selected from the South African 

Department of Sport, Arts, and Culture’s medical 

terms list.5 This document translates medical terms 

into 10 of the 12 South African languages. The list 

was reduced to include only terms contained within 

the dataset, which totaled 39 unique English terms 

and 56 unique isiXhosa terms (given that some of 

the terms had multiple translations). Then, for each 

transcription, only the terms from the list included 

within the ground truth were included in the prompt 

input.  

3.3 Selected MT Models 

The chosen models for translation, featured in 

Table 1, were Google Cloud Translate v2, 6 

Microsoft Azure Translator,7  NLLB-200 distilled 

600M (Costa-jussà et al., 2022), ChatGPT GPT-4o 

mini, and Gemini Flash 1.5.8  

Given that ChatGPT and Gemini are LLMs, they 

require a prompt input to provide instructions 

rather than only the text to be evaluated. A modified 

prompt used by Robinson et al. (2023) was used for 

LLM translation, which was the following: “This 

is an [source language] to [target language] 

translation, please provide the [target language] 

translation for this sentence. Do not provide any 

explanations or text apart from the translation. 

[Translation text].” In addition to this prompt, a 

modified prompt was also tested by providing 

language pairs in English and isiXhosa. The 

language pairs were selected from the medical 

terms list translations, with only the terms in the 

input text being included in the prompt. This 

modified prompt added the following text before 

supplying the text to be translated: “In this 

context, [source language term] translates to 

[target language term].”  

3.4 Evaluation Metrics 

Two metrics were employed for evaluating ASR, as 

English and isiXhosa languages have different 

characteristics which are better explained by 

different methodologies. The standard measure for 

ASR evaluation is word error rate (WER). 

However, WER does not fully characterize ASR 

results for agglutinative languages such as isiXhosa 

                                                            
5 
https://www.dsac.gov.za/sites/defaul

t/files/2023-

11/Multilingual%20Pharmaceutical%20T

erminology%20List_0.pdf 

(Thennal et al., 2024). This is because words in 

isiXhosa have prefixes and suffixes that often 

correspond to individual words in English. 

Therefore, WER may incorrectly inflate the error 

rate of ASR for isiXhosa in comparison to English. 

To address this, both WER and character error rate 

(CER) were calculated for isiXhosa transcriptions. 

Both metrics were calculated using the 

HuggingFace evaluate library (Von Werra et al., 

2022). 

For translation, character level F-score 

(CHRF++) and bilingual evaluation understudy 

(BLEU) were used to evaluate model performance 

(Callison-Burch et al., 2007). The original and 

human-translated texts were used as ground truth 

comparisons. To address the agglutinative structure 

of isiXhosa, CHRF++ was chosen as it accounts for 

both character and word accuracy (Popović, 2015). 

Because the analysis aimed to understand model 

performance on health domain data, an analysis 

was also conducted on the error rate of models in 

transcribing and translating health terms. It is 

critical that this terminology be transcribed and 

translated correctly, as it has the potential to affect 

medical decision-making. Results were analyzed 

based on the list of health terms used for modified 

prompting. Error rate was calculated by dividing 

the occurrences of each health term in the resultant 

text by the occurrences in the ground truth text and 

subtracting from 100. Furthermore, because some 

health terms had multiple translations from English 

to isiXhosa, any of the isiXhosa translations were 

accepted for the accuracy measure. The type of 

isiXhosa translation used in the result was also 

noted and categorized into one of three types: an 

isiXhosa term; a borrowed English word with 

isiXhosa spelling; or a borrowed English word with 

English spelling. Additionally, all health terms in 

both languages were classified into the following 

three categories: anatomy; condition; or treatment.  

The average costs for transcription and 

translation were calculated using available pricing 

for commercial MT models. For LLMs, tokens 

used per character were calculated for each prompt 

and then converted to price per character based on 

the model pricing. Open source models were not 

6https://cloud.google.com/dotnet/docs/ref

erence/Google.Cloud.Translation.V2/latest 
7 https://azure.microsoft.com/en-
us/products/ai-services/ai-translator 
8 https://ai.google.dev/gemini-
api/docs/models/gemini#gemini-1.5-flash 
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included in the cost analysis, although it is 

acknowledged that running open-source models on 

local machines does incur associated costs. 

From the results, models which showed 

appropriate accuracies for digital health systems 

were implemented into an existing virtual clinic 

system web application (Blocker et al., 2024). The 

system involved ASR for South African English 

and translation of English and isiXhosa text. The 

system takes user input (either audio or text) and 

sends a request to the backend with the data. The 

backend then either processes the data (in the case 

of open-source models) or creates an additional 

request and sends the data to the cloud computing 

service (for commercial models). When the 

response is received, it is returned to the front-end 

and displayed for the user. The time taken for each 

model to return a text response to the front end was 

measured in milliseconds for each model. For 

commercial implementations (Azure and GCP), 

real-time translation methods were utilized instead 

of batch translations.  

4 Results 

4.1 ASR Model Error Rates 

Figure 1 presents the WER of South African 

English. Lower WER indicates higher accuracy of 

the ASR model. The lowest WERs for South 

African English were achieved by Whisper with 

prompting (7.1%) and Azure (7.6%). “Quick” 

human transcription of conversational speech has 

been cited with a WER of 9.6% (Stolcke & 

Droppo, 2017), indicating that the results from 

these models concur with human transcription. 

There was a 4.5% difference in WER between 

using Whisper with and without prompts. Similar 

prompting techniques were attempted with GCP 

and Azure ASR models using phrase lists; 

however, both models produced identical 

transcriptions regardless of whether phrase lists 

were employed. Results for South African English 

ASR by GCP ranged from 17.33-25.34%, which 

agrees with the literature range of approximately 

15-25% WER (Filippidou & Moussiades, 2020). 

Results for Whisper (without prompting) were 

slightly higher than the cited metric of 9.3% for 

English (Radford et al., 2022); however, this 

reported value was for general English (en), not 

South African English (en-za). 

Figure 2 presents the measured WER and CER 

for isiXhosa transcription. WER for both GCP and 

MMS were greater than human WER. CER as an 

evaluation metric for ASR is less common than 

WER, therefore there is not a generally accepted 

human error rate for comparison. However, ASR 

models in literature for isiXhosa transcription 

report CER values ranging from 13.8-40.7% 

(Reitmaier et al., 2022; Jacobs et al., 2025; Baas & 

Kamper, 2022). GCP and MMS had averages of 

43.7% and 51.4% CER respectively. These results 

are higher than those reported in literature, which 

highlights the challenge encountered in translating 

health-domain-specific conversations. The range 

of results is much wider than that seen for South 

African English, with a 45% difference between 

the lowest and highest error rate for isiXhosa. 

Given that the human WER is 9.3%, and CER 

 

Figure 1: Measured WER for transcription of South African English 
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tends to be lower than WER (Ravanelli et al., 

2024), this indicates that neither model performed 

adequately for isiXhosa ASR.  

Performance of commercial versus open-source 

models did not follow a clear trend. Both Whisper 

(open-source) and Azure (commercial) achieved 

low WERs for South African English, while GCP 

(commercial) and MMS (open-source) had higher 

error rates for both South African English and 

isiXhosa. 

ASR model results were also assessed for health 

term error rate, both generally and within the three 

categories – anatomy, condition, or treatment. 

Results for health term error rate are provided in 

Table 2. For transcription of South African English, 

Whisper with prompting had the lowest health term 

error rate at 5.39%, followed by Azure with 9.47%. 

Whisper had a 10.21% decrease in error rate when 

health terms were introduced into the prompt. For 

isiXhosa transcription, GCP had lower error rate 

than MMS. Treatment terms, which mainly 

consisted of medication names (Paracetamol, 

Ibuprofen, Metformin, etc.) had high error rates 

when transcribed from isiXhosa audio. For both 

South African English and isiXhosa, MMS had 

high error rate in transcribing treatment terms; this 

could be due to the nature of the training dataset 

used for MMS, which was domain-specific and not 

general. Overall, the models evaluated had 

acceptable performance for transcribing medical 

conversations in South African English, but 

struggled in transcribing isiXhosa medical 

conversations. 

4.2 Translation Model Results 

Table 3 provides CHRF++ and BLEU results for 

MT. Higher scores for both metrics indicate that 

predicted translations are closer to the ground truth 

translations. For English to isiXhosa, Google 

Cloud Translate reported the highest scores, 

 

Figure 2: Measured WER and CER for transcription of isiXhosa. 

 

South African English 

Model Overall  Anatomy  Conditions  Treatment  

GCP 26.02% 20.9% 39.18% 19.01% 

Azure 9.47% 4.70% 18.71% 9.63% 

MMS 50.34% 26.07% 77.00% 96.30% 

Whisper 15.6% 8.12% 19.21% 40.00% 

Whisper with prompting 5.39% 2.99% 12.50% 0.00% 

     

isiXhosa 

Model Overall  Anatomy  Conditions  Treatment  

GCP 58.84% 38.98% 78.65% 96.67% 

MMS 76.27% 67.73% 81.92% 100.00% 

 

Table 2: Error rate for ASR of health terms. 
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comfortably outperforming all other models. 

NLLB, Gemini, and Gemini with modified 

prompting had the lowest scores, with a difference 

of 16.15 between highest and lowest average score. 

For isiXhosa to English, the performance was less 

distributed, with the difference between highest 

and lowest scores at 6.8. ChatGPT and Google 

Cloud Translate were the highest scoring models, 

and NLLB the lowest scoring model.  

The only open-source translation-dedicated 

model tested, NLLB, had generally lower scores 

than the commercial models evaluated. In 

comparing translation-dedicated models to LLMs, 

ChatGPT had higher scores when compared to 

Azure and NLLB, for translation of isiXhosa to 

English, but this did not carry over to English to 

isiXhosa translation. Between LLMs, ChatGPT 

had higher scores than Gemini. Modified 

prompting did not have a significant effect on the 

overall score. 

Health term error rate was also calculated for 

translation results, with lower error rates indicating 

more accurate translations of health terms. Health 

term error rate decreased when using modified 

prompts with both ChatGPT and Gemini LLMs, as 

shown in Table 4. Google Cloud Translate had the 

lowest error rate of all evaluated models for 

English to isiXhosa translation, with a 10% 

difference  in error rates between the next best 

performing model, Azure. This is in contrast to 

isiXhosa to English translation, where the top 4 

performing models in terms of health term 

accuracy (ChatGPT, ChatGPT with modified 

prompts, Gemini with modified prompts, and 

Google Cloud Translate) were within 5% error rate 

of one another. Generally, health term accuracy 

Model 

CHRF++ Score BLEU Score 

English to 

isiXhosa 

isiXhosa to 

English 

English to 

isiXhosa 

isiXhosa to 

English 

Google Cloud Translate 63.79 57.23 0.284 0.286 

Azure 56.31 53.56 0.168 0.233 

NLLB 48.39 50.84 0.081 0.213 

ChatGPT 51.91 57.64 0.115 0.270 

ChatGPT (mod) 52.38 57.59 0.114 0.267 

Gemini 48.50 54.64 0.074 0.245 

Gemini (mod) 48.75 54.93 0.075 0.248 

 

Table 3: CHRF++ and BLEU scores for translation between English and isiXhosa. 

isiXhosa to English 

Model Overall Anatomy Condition Treatment 

ChatGPT 16.61% 14.13% 32.14% 0.00% 

ChatGPT with modified prompt 11.82% 10.87% 20.71% 0.00% 

Gemini 25.51% 26.09% 37.86% 0.00% 

Gemini with modified prompt 13.18% 14.13% 15.00% 5.26% 

Google Cloud Translate 14.44% 11.23% 30.71% 0.00% 

Azure 20.55% 11.96% 54.29% 0.00% 

NLLB 36.47% 23.91% 71.43% 32.89% 

     

English to isiXhosa 

Model Overall Anatomy Condition Treatment 

ChatGPT 49.14% 43.50% 78.86% 18.18% 

ChatGPT with modified prompt 38.14% 32.55% 64.13% 17.39% 

Gemini 62.32% 59.67% 93.48% 13.64% 

Gemini with modified prompt 55.17% 51.17% 82.98% 18.18% 

Google Cloud Translate 18.99% 14.91% 38.04% 4.55% 

Azure 29.25% 23.04% 58.70% 4.55% 

NLLB 58.91% 50.60% 87.68% 46.36% 

 

Table 4: Health term error rate for translations. 
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was lower for translations from English to isiXhosa 

compared to isiXhosa to English. 

The error rate for each health term category is 

also depicted in Table 4. Treatments (which mainly 

consisted of medications) had low error rates, with 

<10% error rate for isiXhosa to English translation 

for all models excluding NLLB. Highest error rates 

were seen with the translation of conditions from 

English to isiXhosa. This included terms for both 

diseases (i.e. diabetes, asthma, stroke) and 

symptoms (i.e. cough, headache, pain). For all 

models, translation from isiXhosa to English had 

lower health term error rates (for all term 

classifications) than translation from English to 

isiXhosa. IsiXhosa health terms were categorized 

further into three types – borrowed English terms 

with English spelling (i.e., i-Paracetamol, meaning 

Paracetamol); borrowed English terms with 

isiXhosa spelling (i.e., ifiva, meaning fever) and 

isiXhosa terms (i.e., isisu, meaning stomach). 

Borrowed English words with isiXhosa spelling 

were not used frequently by any of the models; 

both borrowed English terms with English spelling 

and isiXhosa words were used more frequently. 

4.3 Cost 

There are other factors besides accuracy that one 

might consider when choosing systems for ASR 

and MT. Particularly when considering 

commercial solutions, cost is an important factor. 

Table 5 compares the cost of the various models 

evaluated. For ASR, GCP and Azure have similar 

costs, with GCP offering slightly lower rates for 

higher volumes of audio. Whisper is unique in that 

it is open source, so it can be run on a local machine 

or accessed through OpenAI’s API. Running 

Whisper or MMS (open source) models on a local 

machine would incur costs for electricity and 

hardware. For MT, GCP and Azure can provide 

translation free of cost for low volumes of data 

(<500k and <2M characters, respectively). 

However, for larger volumes of translation, 

ChatGPT 4o mini provides a cheaper per-character 

rate at only $1.84 per million characters. Gemini 

1.5 Flash is free to use, offering the cheapest 

commercial option for translation.  

4.4 Latency 

The South African English ASR models (excluding 

MMS) and the four commercial translation models 

were implemented in the system as part of a 

language translation feature. Figures 3 and 4 depict 

the measured latencies when using each model in 

the end-to-end translation system. Microsoft Azure 

offered the lowest latencies for both ASR and MT 

compared to the other evaluated models, though 

occasionally latency could be over 10 seconds for 

transcribing long audio clips. ASR latency was 

much higher than MT, but likely because there was 

some post-processing formatting that occurred 

before transcription. Additionally, requests with 

text data are smaller in size than their audio data 

counterparts, so sending a larger request over the 

network incurs greater time.  

5 Discussion and Conclusion 

Based on the evaluation performed, we found that 

Microsoft Azure provided the best performance for 

ASR of South African English, and Whisper 

provided a viable open source alternative. 

Whisper’s performance can likely be attributed to 

its diverse training dataset, whereas the domain-

specific nature of the MMS training dataset limited 

its performance in the health domain, and with 

varied speakers. For isiXhosa ASR, GCP and MMS 

did not provide low enough error rates to be 

considered reliable. IsiXhosa ASR models also 

demonstrated high error rates for health terms, 

particularly for treatment terms (medications). This 

highlights the existing inequality between high- 

and low-resource languages, which in the health 

context may exacerbate the gap between high- and 

ASR (per minute) 

Model Cost 

GCP Tiered pricing ranging from 

$0.016-$0.004 per minute  

Azure $0.01667 per minute with 5 hours 

per month free 

Whisper Associated computing costs 

MMS Associated computing costs 

  

Translation (per million characters 

translated) 

Model Cost 

GCP $20 (first 500k characters per 

month free) 

Azure $10 (first 2M characters per 

month free) 

NLLB Associated computing costs 

ChatGPT 

4o mini 

$1.84 

Gemini 1.5 

Flash 

$0 

 

Table 5: Pricing of evaluated models. 
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low-resource medical care. If digital health 

developers must incorporate these models, then 

they should do so cautiously and with human input 

to validate results.  

For MT, Google Cloud Translate provided the 

most accurate translations in both directions. 

However, ChatGPT provided a viable alternative 

for isiXhosa to English translation. When possible, 

dictionaries should be incorporated within prompts 

to further improve performance of LLMs, 

particularly verified dictionaries of health terms. 

Translation of health terms had low error rate, 

particularly for treatment terms as generally these 

words are kept the same throughout translation. 

Condition terms such as headache, nausea, and 

diabetes should be paid specific attention when 

translated to and from isiXhosa; these may not 

follow a typical “one-to-one” translation structure 

and therefore should be approached with caution 

and verified by humans during medical translation.  

There are various advantages and disadvantages 

when comparing commercial and open-source 

models for ASR and MT. Open-source models 

provide a greater level of transparency, which 

provides greater opportunity for customization and 

development. Additionally, it allows developers to 

have more control over the privacy and security of 

their data. Given that medical transcriptions and 

translations may hold sensitive information about 

patients, this is an important factor to consider. 

However, not every digital health system has the 

capability to run large ASR or MT models. MMS 

and NLLB require high levels of computational 

power to run, which may not be feasible or 

necessary for small-scale applications. Latency 

should also be considered, especially in mission 

critical environments like trauma or emergency 

medicine. Open source models may experience 

latency depending on the hardware specifications 

used to run the models. Commercial options like 

GCP and Azure are susceptible to service outages 

an d slower response times depending on the traffic 

and conditions of their servers. Ultimately, one 

must consider the context of the digital health 

solution to select the best models for building a 

digital health translation system.  

Future work may focus on expanding the dataset 

to incorporate more medical conversation audio 

and text. This would be beneficial to validate the 

results achieved here. Additionally, this data could 

be used to improve and customize models for 

isiXhosa and for healthcare contexts. Further 

research might also follow similar methods to the 

health term analysis described here, to evaluate for 

age- or gender-related terminology accuracy. 

Developers may also take this work forward to 

make evidence-based decisions on ASR and MT 

models for digital health applications.  

Limitations 

A limitation of this research is that results were not 

validated by human evaluators. An evaluation of 

how the meaning of each result correlates to the 

meaning of ground truth statements would provide 

further valuable insights into the accuracy of these 

models. Additionally, the data published with this 

work contributes to the resources available for 

      

Figure 3: Measured latencies for Azure, GCP,                Figure 4: Measured latencies for GCP, Azure, 

and Whisper for South African English.                          ChatGPT, and Gemini for translating text. 
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isiXhosa language applications, but is not enough 

standalone data to train a domain-specific ASR and 

MT for health. Finally, because commercial 

enterprises such as Google and Azure are 

constantly improving their services, the more 

recently released models may return different 

results than those reported on in this paper.  

Ethical Considerations 

This work provides an overview of the current 

capabilities of ASR and MT models for isiXhosa. 

The authors do not provide commentary on 

whether the results indicate a maturity level that is 

ready for deployment within the healthcare sector. 

Rather, we provide benchmarks so developers can 

make educated decisions regarding ASR and MT 

model incorporation within digital health systems. 
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Abstract

Clinical documents are essential to patient care,
but their complexity often makes them inac-
cessible to patients. Large Language Models
(LLMs) are a promising solution to support the
creation of lay translations of these documents,
addressing the infeasibility of manually creat-
ing these translations in busy clinical settings.
However, the integration of LLMs into med-
ical practice in Germany is challenging due
to data scarcity and privacy regulations. This
work evaluates an open-source LLM for lay
translation in this data-scarce environment us-
ing datasets of German synthetic clinical doc-
uments and real tumor board protocols. The
evaluation framework used combines readabil-
ity, semantic, and lexical measures with the
G-Eval framework. Preliminary results show
that zero-shot prompts significantly improve
readability (e.g., FREde: 21.4 → 39.3) and
few-shot prompts improve semantic and lexi-
cal fidelity. However, the results also reveal
G-Eval’s limitations in distinguishing between
intentional omissions and factual inaccuracies.
These findings underscore the need for manual
review in clinical applications to ensure both
accessibility and accuracy in lay translations.
Furthermore, the effectiveness of prompting
highlights the need for future work to develop
applications that use predefined prompts in the
background to reduce clinician workload.

1 Introduction

Effective communication between clinicians and
patients is a core component of patient-centered
care (Stewart, 1995; Street Jr, 2013), yet it remains
a persistent challenge (Murugesu et al., 2022). The
stakes are particularly high in the context of molec-
ular tumor boards (MTBs), which operate at the
intersection of routine patient care and research.
Patients often face challenges in understanding

the highly technical content of clinical documents,
such as MTB protocols. Written lay translations
could provide a complementary approach to help
patients navigate emotionally charged and complex
decisions. However, clinicians must balance their
limited time with the aspiration to provide written
explanations. According to a clinician who leads
the MTB at a German university hospital, the man-
ual process of lay translation is time-consuming
and not scalable to high-volume clinical settings.

The integration of LLMs into clinical workflows
has received increasing attention (Thirunavukarasu
et al., 2023; Moor et al., 2023), particularly due to
their potential to address time constraints and com-
munication challenges in healthcare (Clusmann
et al., 2023). Much of the existing research fo-
cuses on closed-source LLMs (Busch et al., 2025),
such as GPT-4 (OpenAI et al., 2024), which cannot
be utilized with real patient data due to stringent
data protection regulations (Minssen et al., 2023).
Efforts to evaluate open-source LLMs, particularly
on German clinical text data, remain scarce (Hahn,
2024). Additionally, the lack of openly available
German clinical text data presents a challenge in
adapting models on pertinent in-domain data.

This work explores the application of a state-of-
the-art open-source LLM in the German healthcare
system, particularly its potential role in supporting
the writing process of lay translations in clinical
settings. Its lay translation performance is reported
on a publicly available German dataset containing
documents from various medical fields. Addition-
ally, preliminary results are shared on a sample of
real MTB protocols and their manually crafted lay
translations. By addressing technical and practical
challenges, we hope to contribute to the growing
research on LLMs in clinical contexts, with an em-
phasis on advancing patient-oriented application.
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2 Data

The accessibility of German clinical text data is
severely constrained (Hahn, 2024). Online health
resources, like forums and websites, frequently
lack clinical validation, the structural and linguis-
tic nuances of clinical documents, and are often
copyright-protected. Alternative datasets, like syn-
thetic corpora and domain proxies, have been de-
veloped to facilitate research in clinical natural
language processing. This section describes the
general and specialized data used in this work.

GRASCCO. The GRASCCO (German Syn-
thetic Clinical Corpus) (Modersohn et al., 2022)
dataset is derived through an extensive alienation
process to remove privacy-sensitive information
from real clinical documents. This process in-
volves obfuscating personal data, rephrasing con-
tent, and introducing fictional attributes to ensure
data anonymity. As reported by Modersohn et al.
(2022), this process preserves syntactic and seman-
tic similarities to real clinical documents. The
GRASCCO dataset is composed of 63 documents
and includes diverse medical topics such as oncol-
ogy, pneumology, and dermatology.

Tumor Board Protocols. Four MTB protocols,
along with their manually crafted lay translations,
were provided by a German university hospital.
These protocols are multi-disciplinary meeting
records that contain complex medical terminology
and clinical decision-making processes. The lay
translations were manually crafted by a clinician
leading a MTB. They encompass different sections:
a description of the diagnosis and the course of
treatment, an explanation of molecular pathology
findings, an optional short description of relevant
scientific literature, and the resulting recommenda-
tions of the MTB. The segmentation of the proto-
cols into these sections results in 14 sections, with
their corresponding lay translations. The language
utilized and the overall structure of the text align
with a previously formulated guideline, which was
developed with the input and guidance of psycholo-
gists/medical didacts, and a patient advisory board.

3 Model and Prompting

This work utilizes the open-source LLM LLama-
3.3-70B-Instruct (Dubey et al., 2024), a state-of-
the-art LLM optimized for instruction-following
tasks. Due to limited availability of training data,

neither fine-tuning nor instruction-tuning was per-
formed, reflecting real-world constraints faced by
many healthcare institutions with restricted re-
sources. Instead, the model operates in a zero-shot
and few-shot (Brown et al., 2020) prompting sce-
nario. Prompts serve to direct the LLM’s content
generation process through explicit instructions and
illustrative examples. All inference parameter and
prompts can be found in Appendices B, E and F.

Zero-shot prompting. For GRASCCO a simple
prompt is used to produce the lay translation based
on the original text. For the MTB protocols the
prompts are formulated per section based on the
aforementioned guidelines for lay translations.

Few-shot prompting. For the MTB protocols
the model is provided with examples from the
manually crafted lay translations to enhance the
task-specific performance (see Appendix C). These
examples simulate how hospitals with access to
curated examples might apply LLMs effectively
without fine-tuning.

4 Evaluation

The automatic evaluation of the generated texts
presents unique challenges, due to the absence of
comprehensive gold standard references and the
need for evaluation metrics tailored to the Ger-
man language. To address this, a combination
of well-established readability indices and mod-
ern, reference-free evaluation frameworks was em-
ployed. The readability of the texts was assessed
using three key metrics: The readability index LIX
(Swedish: Läsbarhetsindex) (Björnsson, 1968),
which evaluates sentence length and word complex-
ity to provide an estimate of text difficulty based
on thresholds for different text genres (e.g., chil-
dren’s or scientific literature); the Fourth Wiener
Sachtextformel (WSTF) (Bamberger and Vanecek,
1984), which calculates readability as an indica-
tor of the recommended educational grade level
using linguistic features such as syllable count
and sentence length; and FREde (Amstad, 1978),
a German adaptation of the Flesch Reading Ease
(Flesch, 1948), which provides an inverse scale
where higher values indicate simpler, more ac-
cessible texts. Beyond the assessment of read-
ability, G-EVAL (Liu et al., 2023) was employed
with LLama-3.3-70B-Instruct to score the correct-
ness, completeness, and comprehensibility of lay
translations. G-Eval is a framework that utilizes
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a LLM with chain-of-thought reasoning to assess
text quality without gold standard texts. Prompts
used for G-Eval can be found in Appendix D. Fur-
thermore, given the existence of gold standards
for the MTB protocols, the evaluation of seman-
tic and lexical similarity is achieved through the
utilization of BERTScore (Zhang et al., 2020) and
Recall-Oriented Understudy for Gisting Evaluation
(ROUGE-1) (Lin, 2004), respectively. Preliminary
evaluation of the various error types present in gen-
erated texts was conducted through a process of
manual annotation (see Appendix A).

Statistical significance (p<α, with α=0.05) was
used to evaluate differences in metrics between
the original texts and their lay translations. Nor-
mality of the differences was assessed using the
Shapiro-Wilk test (Shapiro and Wilk, 1965). For
normally distributed differences, a paired t-test was
applied to determine statistical significance, along
with a 95% confidence interval (CI95) for the mean
difference (MD). For non-normally distributed dif-
ferences, the Wilcoxon signed-rank test (Wilcoxon,
1947) was applied with the Hodges-Lehmann-Sen
(Hodges and Lehmann, 1963; Sen, 1963) estimator
to estimate the median difference (MdnD), with a
bootstrapped (n=20, 000) CI95.

5 Preliminary Results and Discussion

The results, measured using automatic metrics, are
summarized in Table 1.

The G-Eval framework evaluates the correctness
of the GRASCCO lay translations with an average
of 0.795. Their completeness is rated by the frame-
work as 0.757, indicating that the model preserves
a substantial amount of clinical content. Ideally,
correctness should measure the factual accuracy of
content independently of its completeness. How-
ever, a closer look at the results for the MTB proto-
cols suggests inconsistencies in correctness evalua-
tion. Specifically, the gold standard lay translations
exhibit relatively low correctness scores, which is
counterintuitive since these summaries are reliable
baselines. This discrepancy suggests that the G-
Eval correctness metric might not entirely disentan-
gle the inherent omissions and added background
explanations in lay translations from outright inac-
curacies. This limitation underscores the necessity
of enhancing the metric or incorporating manual re-
views, given the paramount importance of avoiding
factual errors in high-stake clinical settings. For
completeness, the results align with expectations:

gold standard and LLM-generated lay translations
exhibit lower scores due to the deliberate simplifi-
cation process, which inherently involves omitting
complex or non-essential information to enhance
accessibility for lay readers. Nevertheless, these
omissions may lead to the loss of clinically rele-
vant details, emphasizing the imperative of clin-
ician oversight in downstream applications. For
an analysis of error types, including insights into
factual errors and omissions, refer to Appendix A.

A comparison of the original texts with LLM-
generated lay translations reveals a substan-
tial improvement in G-Eval average compre-
hensibility from close to zero to approximately
0.80 for both GRASCCO and MTB lay trans-
lations. This improvement suggests that the
model successfully transforms technical language
into more lay-friendly phrasing. This find-
ing is further supported by the readability met-
rics. The LIX scores significantly decrease for
GRASCCO (Wilcoxon: p<0.0001, MdnD 8.99,
CI95: [5.98; 11.53]) as well as MTB lay trans-
lations (Paired t: p=0.0077, MD 8.80, CI95:
[2.76; 14.85] for MTBgold; p=0.0023, MD 9.32,
CI95: [3.99; 14.64] for MTBzero-shot; p=0.0011,
MD 9.35, CI95: [4.50; 14.20] for MTBfew-shot).
These differences indicate a change in the level
of readability by one text genre. The WSTF
also shows a significant improved readability for
GRASCCO lay translations (Wilcoxon: p<0.0001,
MdnD 1.90, CI95: [1.10; 2.90]). This difference
denotes a reduction in the grade level for which
the text is considered suitable. For GRASCCO,
the FREde demonstrates a significant increase
from 38.095 to 52.243 (Wilcoxon: p<0.0001,
MdnD −15.65, CI95: [−21.50;−11.20]). While
the improvement is less pronounced for MTB
lay translations it remains statistically signifi-
cant for LLM-generated lay translations produced
with zero-shot (Paired t: p=0.0055, MD −17.88,
CI95: [−29.50;−6.27]) and few-shot prompts
(p=0.0205, MD −13.42, CI95: [−24.41;−2.43]).
Across all metrics the readability of MTB lay trans-
lations is worse than that of GRASCCO. This dis-
parity can likely be attributed to the highly techni-
cal and specialized nature of the MTB protocols,
which originate from a domain with more complex
language and concepts. This is also reflected by the
spans annotated as too technical (see Appendix A).
This suggests that the technical nature of MTB pro-
tocols imposes a floor on how accessible the text
can become. However, metrics might miss when
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G-EvalCorr.↑ G-EvalCompl.↑ G-EvalCompr.↑ LIX↓ WSTF↓ FREde↑ BERTS↑ R-1↑
GRASCCO - - 0.0 54.973 10.590 38.095 - -

GRASCCOlay 0.795 0.757 0.805* 47.026* 8.96* 52.243* - -

MTB - - 0.0 65.206 13.064 21.445 - -
MTBgold 0.591 0.443 0.656* 56.405† 11.942 32.239 - -

MTBzero-shot 0.837 0.778 0.809* 55.887† 11.179† 39.329† 0.687 0.260
MTBfew-shot 0.810 0.679 0.805* 55.854† 11.743 34.864† 0.738 0.374

Table 1: Comparison of LIX, WSTF and FREde and G-Eval (correctness (Corr.), completeness (Compl.), and
comprehensibility (Compr.)) between original and lay translations. For the MTB protocols, MTBzero-shot and
MTBfew-shot were compared to MTBgold through BERTScore (BERTS) and ROUGE-1 (R-1). Statistically significant
improvements are marked with (*) for Wilcoxon signed-rank test or (†) for Paired p-test.

text becomes complex for lay readers due to exces-
sive detail rather than language complexity.

A comparison of zero-shot and few-shot prompt-
ing techniques reveals differences in the quality of
the generated outputs. Few-shot prompts yield en-
hancements in semantic (BERTScore) and lexical
similarity (ROUGE-1) to the gold lay summaries
in comparison to zero-shot prompts. The examples
employed in the few-shot prompts assist the model
in contextualizing, thereby facilitating better align-
ment with the structure and detail level of the gold
standard (see Appendix A). While few-shot lay
translations demonstrate slightly lower readability
compared to zero-shot lay translations, their read-
ability remains higher than that of the gold standard.
These findings underscore the potential of few-shot
prompting, when using LLMs to not only support
the writing process but also to enhance the overall
quality of lay translations.

6 Conclusion and Future Work

The findings presented in this work suggest that
LLMs are effective tools for reducing the linguis-
tic complexity of German clinical documents, ren-
dering them significantly more accessible to pa-
tients. However, this work also underscores critical
challenges, particularly in maintaining and eval-
uating correctness and completeness, which are
essential for preserving the reliability of lay trans-
lations. Therefore, the involvement of clinicians
is imperative to ensure that lay translations remain
both accurate and safe for patient use.

Lay translations of highly technical documents,
such as MTB protocols, pose additional challenges.
More advanced methods may effectively reduce
complexity while retaining crucial details. The in-
tegration of domain expertise into the model or the
enrichment of prompts with contextual information
has the potential to improve the quality of lay trans-

lations. Furthermore, even with improved readabil-
ity, lay audiences may still require additional tools,
such as glossaries or contextual explanations, to
ensure full understanding.

Future work should prioritize the development
of evaluation metrics that accurately capture cor-
rectness and completeness in lay translations. Ex-
ploration of strategies, such as the integration of re-
trieval augmented generation (Lewis et al., 2020) or
the leveraging of further task and domain specific
datasets, may enhance the accuracy and usability of
model outputs. This work also highlights the poten-
tial of few-shot prompting to achieve a balance be-
tween readability and semantic fidelity, particularly
in scenarios where resources for instruction-tuning
or fine-tuning are limited. Few-shot prompting
offers a practical solution in scenarios with con-
strained data availability, but the manual nature of
crafting prompts and examples limits scalability.
Automating this process within applications could
enable seamless few-shot prompting, making LLM-
based solutions more practical for real-world clini-
cal workflows. Empirical research is necessary to
evaluate the real-world impact of LLM-generated
lay translations on patients. It should include pa-
tients’ understanding of treatment options, trust in
medical information, and emotional responses to
lay translations. In addition, the impact of these
systems on reducing clinician workload warrants
further investigation.

To address the broader challenges of integrat-
ing LLMs into clinical contexts, future research
should aim to improve data availability, clinically-
relevant evaluation frameworks, and explore LLMs
tailored to the unique constraints of healthcare en-
vironments. By addressing these challenges, LLMs
have the potential to support patient communica-
tion and clinical workflows, ultimately improving
patient and provider outcomes.
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Limitations

This work demonstrates the potential of LLM-
assisted lay translations in a clinical setting, but
it is subject to several limitations. First, while
GRASCCO includes more general medical con-
cepts, the MTB data used represent a narrow do-
main within medicine, which limits the generaliz-
ability of the findings to other medical contexts. It
is also important to note that lay translations are
not a universal solution. Ideally, lay translations
should be customized to align with the education
and experience level of the intended audience. This
adds an additional layer of complexity to the eval-
uation process. The scarcity of evaluation data
represents a substantial challenge, as the limited
size and missing gold standards in the data impede
the robustness of evaluation. Ethical and privacy
concerns further constrain the availability of real-
world data. Consequently, the MTB protocols and
their lay translations utilized in this work cannot
be shared publicly, thereby limiting reproducibil-
ity. Additionally, the absence of validation by lay
readers precludes the investigation of these texts’
practical applications in real-world settings. An-
other critical concern pertains to clinical correct-
ness, as the current evaluation process does not
encompass rigorous verification of the generated
texts for potential inaccuracies, a crucial aspect par-
ticularly in clinical communication. In this work,
the same model was employed in both the G-Eval
evaluation and the generation process. This may
result in a model bias. Additionally, the readability
and quality metrics employed, such as LIX, WSTF,
and FREde, may not fully account for the unique
demands of clinical texts. Practical integration into
clinical workflows also remains an open question,
as clinician adoption of such tools, particularly in
high-volume settings, has not been thoroughly stud-
ied.
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A Appendix: Error Analysis

An error analysis of the MTB lay translations in
zero-shot and few-shot settings is presented below.

Figure 1: Count of error types, disaggregated by zero-
shot (blue/left) and few-shot (orange/right) generation.

This analysis distinguishes seven error types:

• Grammar - Grammatical mistakes such as
incorrect word endings or sentence structure.
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Figure 2: Distribution of Error-Lengths per Error Type in Characters. Lengths of individual error instances grouped
by error category, comparing zero-shot (blue/left) versus few-shot (orange/right) generation. Each point corresponds
to a single error, while the violin shapes depict the distribution of error lengths within each category.

• Repetition - Redundant phrases or repeated
content that does not add information.

• Too Detailed - Inclusion of excessive or irrel-
evant detail, beyond what a lay reader needs.

• Factual - Factually incorrect statements.

• Overly Simplified - Oversimplifications that
lose crucial details.

• Omission - Missing important information.

• Too Technical - Use of unexplained abbrevia-
tions or otherwise difficult language.

The error spans were annotated by the first au-
thor at the token level, using the INCEpTION (Klie
et al., 2018) annotation tool, and no overlapping
was allowed. During the annotation the generated
text was compared to the gold standard. Omissions
were marked in the gold standard whereas all other
types were marked in the generated text. The re-
liability of the analysis is limited because only a
single annotator identified the errors.

The count and lengths of individual error spans
are shown in are displayed in Figure 1 and Fig-
ure 2, respectively. The error length in characters
can indicate the scope of the errors: a few words
(length ≲ 50), a sentence (50 ≲ length ≲ 200
characters), or longer passages (length ≳ 200).
This information can inform the implementation

of practical improvements. Too Detailed errors
occurred most frequently overall. These kinds of
errors are less frequent in the few-shot setting, sug-
gesting that the few-shot examples provided can
direct the generation process in the right direction,
leading to an effective reduction in detail. However,
these errors remain frequent. This suggests that the
lay translations include superfluous detail, which
could overwhelm lay readers even if the overall fre-
quency is reduced by few-shot examples. Omission
errors are more prominent in the few-shot setting.
This phenomenon might stem from the detailed
information in the original MTB protocol and the
model’s failure to extract relevant information nec-
essary for the patient. The second most prevalent
error type is Too Technical language, which oc-
curs with nearly equal frequency in both Zero-Shot
(16 instances) and Few-Shot (17 instances) out-
puts. These errors tend to be considerably shorter
in length and consist of isolated instances of jargon
or abbreviations. Their brevity suggests that while
the model is consistently prone to inserting techni-
cal terms, the issue is confined to small segments
of text rather than sprawling sections. This obser-
vation highlights the challenge of fully eradicat-
ing domain-specific language, even with the provi-
sion of explicit examples. Factual errors frequently
arise from misinterpreting molecular findings and
incorrectly linking them to specific treatment op-
tions. This phenomenon may be attributed to the
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advanced level of specialization required to com-
prehend the subject matter, which encompasses the
latest advancements in the field of oncology. This
illustrates the importance of involving experts in
the lay translation process. In contrast, Grammar
errors were infrequent, with only a single instance
observed in both zero-shot and few-shot outputs,
underscoring the model’s proficiency in German.
The collective analysis of error frequency and er-
ror length indicates that, while the model’s output
benefits from few-shot prompting in terms of detail
level and the elimination of redundancies, there
may be a trade-off in achieving a balance between
detail and accuracy.

B Appendix: Inference Parameter

For all experiments with LLama-3.3-70B-Instruct,
consistent inference parameters were used. The
model is hosted using vLLM (Kwon et al., 2023)
within the university hospital computing infras-
tructure. The OpenAI python package1 version
1.60.0 was used to access the models for infer-
ence with default sampling parameters2, except
for max_tokens, which was set to 2000. The maxi-
mum number of generated tokens was 815.

C Appendix: Few-Shot Scenario

Figure 3 shows the few-shot scenario used in con-
junction with the prompts for the MTB protocols
(see Appendix F). In this scenario, the model is
presented once with the system prompt for the re-
quested section. The system prompt is followed by
the few-shot examples from the manually written
lay translations. The few-shot examples include
the user prompt (Few-shot user prompt), which in-
cludes the relevant section of the MTB protocol,
and an assistant response (Few-shot answer), which
includes the gold standard lay translation for the
example section. These examples demonstrate how
the model should respond to similar inputs. In the
few-shot scenario, up to three examples were used,
depending on the availability of examples in the
gold standard. Following the examples, the model
is then presented with the user prompt, which in-
cludes a new MTB protocol section.

1https://github.com/openai/openai-python, Last Accessed:
28. January 2025

2https://docs.vllm.ai/en/latest/api/inference_params.html,
Last Accessed: 28 January 2025

System:

{System prompt}

User:
{Few-shot user prompt}

Assistant:
{Few-shot answer}

...

User:
{User prompt}

Figure 3: Template for the few-shot scenario.

D Appendix: G-Eval Prompts

The prompts used in the G-Eval framework for
evaluation of Correctness, Completeness and Com-
prehensibility are shown in Figure 4. G-Eval is
implemented using the deepeval python package3.

Correctness
Determine whether the actual output is factually correct
based on the input.

Completeness

Determine whether the actual output contains all relevant
information that is present in the input based on the input.

Comprehensibility

Determine whether the actual output is comprehensible to a
layperson.

Figure 4: Prompts for G-Eval to determine: Correctness,
Completeness and Comprehensibility.

E Appendix: GRASCCO Prompts

Figure 5 shows the prompts used for GRASCCO
(see Figure 6 for the English translation). The sys-
tem prompt describes the task and the user prompt
provides the clinical document.

F Appendix: MTB Prompts

For the MTB protocols, Figures 7, 9, 11, and 13
show the prompts used for each section. Figures 8,
10, 12, and 14 show their English translations. The
system prompts specify the content, structure, and
rules for the section. The user prompts include a
short instruction followed by the relevant section
of the MTB protocol.

3https://github.com/confident-ai/deepeval, Last Accessed:
28. January 2025
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System:

Du bist Experte für die Vereinfachung medizinischer Dokumente. Deine Aufgabe ist es, die Inhalte eines Dokuments in
einfache Sprache zu übersetzen. Verwende nur einfache Sprache, um alle relevanten Informationen zu beschreiben. Vermeide
Fachausdrücke oder erkläre sie verständlich. Antworte nur mit der vereinfachten Version des Textes ohne zusätzliche
Informationen.

User:
{GRASCCO document}

Figure 5: Prompt used to generate lay translations of clinical documents in the GRASCCO dataset.

System:

You are an expert in simplifying medical documents. Your job is to translate the content of a document into simple language.
Only use simple language to describe all relevant information. Avoid technical terms or explain them clearly. Answer only
with the simplified version of the text without additional information.

User:
{GRASCCO document}

Figure 6: English translation of the prompt used to generate lay translations of clinical documents in the GRASCCO
dataset.

System:

Du bist Experte für die Vereinfachung klinischer Informationen. Du erstellst Abschnitte für Patienteninformationen, die
klinische Informationen aus den Protokollen des molekularen Tumorboards zusammenfassen und vereinfachen. Deine Aufgabe
ist es jetzt, den Abschnitt ’Diagnose und Therapieverlauf’ zu erstellen.
Der Abschnitt enthält:

Eine laien-verständliche Beschreibung der diagnostizierten Erkrankung, einschließlich des Krankheitsstadiums.
Eine vereinfachte, chronologische Zusammenfassung der bisherigen Behandlungen wie Medikamententherapien, Be-

strahlungen oder anderen Interventionen.
Regeln:

Einfache Sprache: Vermeide Fachjargon, Abkürzungen und komplizierte Sätze. Erläutere Begriffe kurz und verständlich,
z. B. „Das bedeutet...“.

Klarheit und Prägnanz: Fasse die wichtigsten Informationen zusammen, ohne ausschweifend zu werden. Nutze kurze,
prägnante Sätze.

Struktur: Beginne mit der Diagnose, gefolgt vom Therapieverlauf. Verwende Übergänge wie ’zuerst’, ’danach’ und
’abschließend’.

Positiver Ton: Verwende eine verständliche und unterstützende Sprache, um dem Patienten Sicherheit zu vermitteln.
Vermeide unbestimmte Formulierungen wie ’vielleicht’ oder ’eventuell’.

Formatierung: Verwende keine Markdown-Formatierung.
Antwort: Antworte nur mit dem geforderten Abschnitt ohne zusätzliche Informationen.

User:
Erstelle den Abschnitt ’Diagnose und Therapieverlauf’ auf Basis der folgenden Informationen aus der klinischen Dokumenta-
tion:
{MTB protocol section}

Figure 7: The Prompts used to generate the section ’Diagnosis and treatment course’ for lay translations of MTB
protocols.
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System:

You are an expert in simplifying clinical information. You create sections for patient information that summarize and simplify
clinical information from the molecular tumor board protocols. Your task is now to create the ’Diagnosis and treatment course’
section.
The section contains:

A description of the diagnosed disease in layman’s terms, including the stage of the disease.
A simplified, chronological summary of previous treatments such as drug therapies, radiotherapy or other interventions.

Rules:
Simple language: Avoid technical jargon, abbreviations and complicated sentences. Explain terms briefly and clearly, e.g.

“This means...”.
Clarity and conciseness: Summarize the most important information without being verbose. Use short, concise sentences.
Structure: Start with the diagnosis, followed by the course of treatment. Use transitions such as ’first’, ’then’ and ’finally’.
Positive tone: Use understandable and supportive language to reassure the patient. Avoid vague phrases such as ’maybe’

or ’possibly’.
Formatting: Do not use Markdown formatting.
Answer: Answer only with the requested section without additional information.

User:
Create the ’Diagnosis and treatment course’ section based on the following information from the clinical documentation:
{MTB protocol section}

Figure 8: English translation of the prompts used to generate the section ’Diagnosis and treatment course’ for lay
translations of MTB protocols.

System:

Du bist Experte für die Vereinfachung klinischer Informationen. Du erstellst Abschnitte für Patienteninformationen, die
klinische Informationen aus den Protokollen des molekularen Tumorboards zusammenfassen und vereinfachen. Deine Aufgabe
ist es jetzt, den Abschnitt ’Befunde und Erklärung der Befunde’ zu erstellen.
Der Abschnitt enthält:

Eine klare Auflistung der diagnostizierten genetischen oder molekularen Veränderungen, z. B. Mutationen.
Eine einfache Beschreibung, was diese Befunde bedeuten und wie sie mit der Erkrankung oder den Therapiemöglichkeiten

zusammenhängen. Zum Beispiel, ob und wie die Mutation das Wachstum des Tumors beeinflusst oder welche therapeutischen
Ansätze möglich sind.
Regeln für diesen Abschnitt:

Einfache Sprache: Vermeide Fachjargon, Abkürzungen und komplizierte Sätze. Erläutere Begriffe kurz und verständlich,
z. B. ’Das bedeutet...’.

Anschauliche Erklärungen: Nutze Beispiele oder Metaphern, um komplexe Zusammenhänge zu erklären.
Struktur: Erkläre jeden Befund nacheinander. Erkläre nur Befunde, bei denen eine Veränderung vorliegt.
Positiver Ton: Verwende eine verständliche und unterstützende Sprache, um dem Patienten Sicherheit zu vermitteln.

Vermeide unbestimmte Formulierungen wie ’vielleicht’ oder ’eventuell’.
Formatierung: Verwende keine Markdown-Formatierung.
Antwort: Antworte nur mit dem geforderten Abschnitt ohne zusätzliche Informationen.

User:
Erstelle den Abschnitt ’Befunde und Erklärung der Befunde’ auf Basis der folgenden Informationen aus der klinischen
Dokumentation:
{MTB protocol section}

Figure 9: The prompts used to generate the section ’Findings and explanation of findings’ for lay translations of
MTB protocols.
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System:

You are an expert in simplifying clinical information. You create patient information sections that summarize and simplify
clinical information from the molecular tumor board protocols. Your task is now to create the ’Findings and explanation of
findings’ section.
The section contains:

A clear list of the genetic or molecular changes diagnosed, e.g. mutations.
A simple description of what these findings mean and how they relate to the disease or treatment options. For example,

whether and how the mutation influences the growth of the tumor or which therapeutic approaches are possible.
Rules for this section:

Simple language: Avoid technical jargon, abbreviations and complicated sentences. Explain terms briefly and clearly, e.g.
’This means...’.

Vivid explanations: Use examples or metaphors to explain complex relationships.
Structure: Explain each finding in turn. Only explain findings where there is a change.
Positive tone: Use understandable and supportive language to reassure the patient. Avoid vague phrases such as ’maybe’

or ’possibly’.
Formatting: Do not use Markdown formatting.
Answer: Answer only with the requested section without additional information.

User:
Create the ’Findings and explanation of findings’ section based on the following information from the clinical documentation:
{MTB protocol section}

Figure 10: English translation of the prompts used to generate the section ’Findings and explanation of findings’ for
lay translations of MTB protocols.

System:

Du bist Experte für die Vereinfachung klinischer Informationen. Du erstellst Abschnitte für Patienteninformationen, die
klinische Informationen aus den Protokollen des molekularen Tumorboards zusammenfassen und vereinfachen. Deine Aufgabe
ist es jetzt, den Abschnitt ’Datenlage’ zu erstellen.
Der Abschnitt enthält:

Eine kurze, verständliche Darstellung der relevanten Studien und deren Ergebnisse in Bezug auf die spezifische Therapie
oder Mutation.

Angabe, wie viele Patienten in den Studien eingeschlossen waren und wie viele von ihnen auf die Therapie angesprochen
haben.
Regeln für diesen Abschnitt:

Einfache Sprache: Vermeide Fachjargon, Abkürzungen und komplizierte Sätze. Erläutere Begriffe kurz und verständlich,
z. B. ’Das bedeutet...’.

Anschauliche Erklärungen: Erkläre medizinische Fachbegriffe und Studienkonzepte leicht verständlich, z. B. ’In einer
Studie mit 10 Patienten hat sich gezeigt, dass...’.

Struktur: Fasse die Datenlage strukturiert zusammen. Verwende klare Übergänge und signalisiere die Reihenfolge der
Studien wie ’erstens’, ’zweitens’.

Positiver Ton: Verwende eine verständliche und unterstützende Sprache, um dem Patienten Sicherheit zu vermitteln.
Vermeide unbestimmte Formulierungen wie ’vielleicht’, ’manchmal’ oder ’eventuell’. Formuliere die Ergebnisse der Studien
möglichst präzise.

Formatierung: Verwende keine Markdown-Formatierung.
Antwort: Antworte nur mit dem geforderten Abschnitt ohne zusätzliche Informationen.

User:
Erstelle den Abschnitt ’Datenlage’ auf Basis der folgenden Informationen aus der klinischen Dokumentation:
{MTB protocol section}

Figure 11: The prompts used to generate the section ’Evidence’ for lay translations of MTB protocols.
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System:

You are an expert in simplifying clinical information. You create patient information sections that summarize and simplify
clinical information from the molecular tumor board protocols. Your task now is to create the ’Evidence’ section.
The section contains:

A brief, comprehensible presentation of the relevant studies and their results in relation to the specific therapy or mutation.
An indication of how many patients were included in the studies and how many of them responded to the therapy.

Rules for this section:
Simple language: Avoid technical jargon, abbreviations and complicated sentences. Explain terms briefly and clearly, e.g.

’This means...’.
Clear explanations: Explain medical terms and study concepts in a way that is easy to understand, e.g. ’In a study with 10

patients, it was shown that...’.
Structure: Summarize the data in a structured way. Use clear transitions and signal the order of the studies such as ’first’,

’second’.
Positive tone: Use understandable and supportive language to reassure the patient. Avoid vague phrases such as ’maybe’,

’sometimes’ or ’possibly’. Formulate the results of the studies as precisely as possible.
Formatting: Do not use Markdown formatting.
Answer: Answer only with the requested section without additional information.

User:
Create the ’Evidence’ section based on the following information from the clinical documentation:
{MTB protocol section}

Figure 12: English translation of the prompts used to generate the section ’Evidence’ for lay translations of MTB
protocols.

System:

Du bist Experte für die Vereinfachung klinischer Informationen. Du erstellst Abschnitte für Patienteninformationen, die
klinische Informationen aus den Protokollen des molekularen Tumorboards zusammenfassen und vereinfachen. Deine Aufgabe
ist es jetzt, den Abschnitt ’Empfehlung’ zu erstellen.
Der Abschnitt enthält:

Eine klare und verständliche Beschreibung der empfohlenen Therapie, einschließlich Name der Behandlung und deren
Ziel.

Eine kurze Erklärung, warum diese Therapie empfohlen wird, basierend auf den Befunden und der Datenlage. Hinweise
darauf, was der Patient als Nächstes tun soll (z. B. Gespräch mit dem behandelnden Arzt, Antrag auf Kostenübernahme).
Regeln für diesen Abschnitt:

Einfache Sprache: Vermeide Fachjargon, Abkürzungen und komplizierte Sätze.
Verbindlichkeit: Vermeide unsichere Formulierungen wie ’könnte’ oder ’sollte’. Nutze klare Aussagen wie ’Wir

empfehlen’.
Struktur: Starte mit der Zusammenfassung der Empfehlung und erkläre kurz, warum diese Empfehlung gegeben wird.
Positiver Ton: Verwende eine verständliche und unterstützende Sprache, die dem Patienten Zuversicht gibt. For-

matierung: Verwende keine Markdown-Formatierung.
Antwort: Antworte nur mit dem geforderten Abschnitt ohne zusätzliche Informationen.

User:
Erstelle den Abschnitt ’Empfehlung’ auf Basis der folgenden Informationen aus der klinischen Dokumentation:
{MTB protocol section}

Figure 13: The prompts used to generate the section ’Recommendation’ for lay translations of MTB protocols.
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System:

You are an expert in simplifying clinical information. You create patient information sections that summarize and simplify
clinical information from the molecular tumor board protocols. Your task now is to create the ’Recommendation’ section.
The section contains:

A clear and understandable description of the recommended therapy, including the name of the treatment and its goal.
A brief explanation of why this therapy is recommended, based on the findings and data. Instructions on what the patient

should do next (e.g. talk to the treating doctor, apply for reimbursement).
Rules for this section:

Simple language: Avoid technical jargon, abbreviations and complicated sentences.
Commitment: Avoid uncertain formulations such as ’could’ or ’should’. Use clear statements such as ’We recommend’.
Structure: Start with the summary of the recommendation and briefly explain why this recommendation is being made.
Positive tone: Use understandable and supportive language that gives the patient confidence. Formatting: Do not use

Markdown formatting.
Answer: Answer only with the requested section without additional information.

User:
Create the ’Recommendation’ section based on the following information from the clinical documentation:
{MTB protocol section}

Figure 14: English translation of the prompts used to generate the section ’Recommendation’ for lay translations of
MTB protocols.
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Abstract
Integrating external knowledge into large lan-
guage models has demonstrated potential for
performance improvement across a wide range
of tasks. This approach is particularly appeal-
ing in domain-specific applications, such as
in the biomedical field. However, the strate-
gies for effectively presenting external knowl-
edge to these models remain underexplored.
This study investigates the impact of different
knowledge presentation methods and their in-
fluence on model performance. Our results
show that inserting knowledge between demon-
strations helps the models perform better, and
improve smaller LLMs (7B) to perform on par
with larger LLMs (175B). Our further investi-
gation indicates that the performance improve-
ment, however, comes more from the effect of
additional tokens and positioning than from the
relevance of the knowledge 1.

1 Introduction

While Large Language Models (LLMs) can poten-
tially achieve strong performance in the medical
domain, they are often difficult to run locally and
hence raise significant data privacy concerns. Addi-
tionally, retraining and updating LLMs on biomed-
ical corpora is a costly and resource-intensive pro-
cess. Fortunately, the biomedical domain has es-
tablished knowledge bases that can be leveraged
to enhance LLMs without extensive retraining or
exposing sensitive data.

Our approach is to integrate external knowledge
from these knowledge bases into LLMs through
natural language prompts. We use smaller LLMs
which can be efficiently run locally. By incorpo-
rating additional knowledge as natural text, this
method can be more effective than alternatives such
as embedding-space integration or training mod-
els from scratch. As demonstrated, this approach

1Our code is available at: https://github.com/Dotkat-
dotcome/umls-prompts

outperforms graph-based models and knowledge
embeddings for drug-drug interaction prediction
(Zhu et al., 2023).

While the integration of external knowledge into
LLMs in the prompt has been widely explored in
general domains, its application in domain-specific
settings, such as biomedical, remains understud-
ied. Besides, existing guidelines for incorporating
external knowledge are often intuitive rather than
grounded in systematic experimentation.

In this work, we explore the use of the Uni-
fied Medical Language System (UMLS) Metathe-
saurus as a source of external knowledge to en-
hance prompts for biomedical relation extraction.
We propose leveraging UMLS for two key reasons:
(1) its background information can help highlight
critical contextual details, and (2) it can potentially
guide models toward specific relations with similar
relationships.

This study aims to address the following research
questions:

RQ 1. Which method is more effective to present
the additional knowledge to the models,
and how sensitive is model performance
to the quality of the external knowledge
provided?

RQ 2. If performance improves with presented ex-
ternal knowledge, is it truly due to the extra
information, or could it result from other
interconnected factors?

2 Experimental Design

To explore the integration of the Knowledge Base
(KB), we modularize our experiments into three
parts (see Figure 1). We first configure a good basic
prompt with development sets (Section 3). On top
of this foundation, we explore the use of external
knowledge (Section 4). Finally, we integrate text
from irrelevant knowledge sources to examine if
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Figure 1: The flowchart of the experiment design.

the performance is influenced by the relevance of
the knowledge (Section 5.3).

2.1 Datasets

We use four biomedical relation extraction datasets
— two in English: ChemProt (Kringelum et al.,
2016), DDI (Segura-Bedmar et al., 2013), and two
in non-English: a subset of ADE in German (ADE-
de) and French (ADE-fr) (Raithel et al., 2024) 2.
Details are described in Appendix A.

2.2 Models

Definition 2.1 (Demonstration) A demonstration
is a task sample provided to models during infer-
ence, included in the prompt to illustrate how the
task should be performed.

Definition 2.2 (In-Context Learning (ICL))
The model is conditioned on a natural language
instruction and/or a few demonstrations of the task
and is then expected to complete further instances
of the task simply by predicting what comes next. –
(Brown et al., 2020)

We use open source Mistral3 within the In-
Context Learning (ICL) framework for our experi-
ments. The models can handle sequences of arbi-
trary length due to the use of sliding window at-
tention. Mistral is an English model, but works
well even on our non-English datasets. We also use
BioMistral4 for some experiments. BioMis-
tral is a model based on Mistral and was
further pre-trained on the PubMed Central cor-
pus, primarily composed of English documents.
It is shown that BioMistral underperforms its

2To ensure meaningful annotations, we take subsets that
filter out relations with low inter-annotator agreement.".

3https://huggingface.co/mistralai/Mistral-7B-v0.1
4https://huggingface.co/BioMistral/BioMistral-7B

base model Mistral (Dorfner et al., 2024). We
focus our experiments on Mistral and include
BioMistral for further analysis.

As Causal Language Models (CLMs) do not al-
ways produce clean outputs for evaluation, we use
simple pattern matching to extract answers from
the models, discarding any responses that are out-
of-label.

3 Basic Prompt Setup

3.1 Prompt Format

To ensure a good-quality prompt, we reference the
prompt curated for the relation extraction task from
the prompt source framework5. We pick the best
one from a few trial runs on the development set.
We then run variants presenting the entities of in-
terest with different markers: ordered markers—
Entities are masked in their appearing order with
E1 and E2; entity markers—Entities are masked
with their entity type; decorated markers—Entities
are unmasked and enclosed in markers like [E1],
[/E1] or [E2], [/E2]. (see Appendix Figure 7, Fig-
ure 5, and Figure 6 for full examples.).

Our results in Table 1 echoed the findings in
(Zhang et al., 2024), that revealing the mention of
interest (decorated markers) does not always per-
form better than masking out the mentions. Surpris-
ingly, for DDI, entity markers perform best despite
arbitrary entity order; while ordered markers works
the best for ADE-de and ADE-fr, even with diverse
entity types.

For the following experiments, we use ordered
markers for ADE-de and ADE-fr, and decorated
markers for ChemProt and DDI, based on our re-
sults. The latter choice ensures comparability with

5https://github.com/bigscience-workshop/promptsource
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Marker Dataset
ADE-de ADE-fr DDI ChemProt

decorated (~~~~ [E1]paracetamol[/E1] ~~ [E2]headache[/E2] ~~~~) 73.5 82.8 34.8 59.0
entity (~~~~ @DRUG$ ~~ @DISORDER$ ~~~~) 70.2 77.5 40.4 50.5
ordered (~~~~ E1 ~~ E2 ~~~~) 74.5 85.7 35.6 47.8

Table 1: A comparison of different prompt formats over the development set with Mistral on 1-shot (per relation)
relation extraction.

C0000970: paracetamol ,

Acétaminophène,

4-Hydroxyacetanilide, ...

C0018681: headache, ...

~~ [E1] paracetamol [/E1] ~[E2] headache [/E2] ~~

QuickUMLS

( C0018681 , related_to, C0000970 )
,..., ( C0018681 , related_to, C0149931),

(C0149931, may_be_treated_by, C0000970 )

one-hop

two-hops

(headache, related to, paracetamol),
(headache, related to, migraine),

(migraine, may be treated by, paracetamol)

Figure 2: An illustration of extracting and verbalizing information from the UMLS.

prior work and adds task-relevant information.

3.2 Few-shot Demonstrations Selection

To improve performance over random demonstra-
tions, we implement a retrieval module using simi-
larity based on bag of n-gram token. The rationale
is that selecting samples with similar relations to
the inference sample increases the likelihood of cor-
rect predictions. In order to ensure a low-resource
setting, for each dataset, we randomly select 10%
of the training set to create a pool for drawing
demonstrations. We map samples to bi-grams and
tri-grams using NLTK toolkit6, compute Jaccard
similarity, and select the top-k most similar exam-
ples from all relations. Demonstrations are ordered
inversely by similarity, placing the most similar
samples near the model’s output.

4 KB-Enhanced Prompt Setup

The external knowledge source we use is the Uni-
fied Medical Language System (UMLS)7, a rich
biomedical resource. In this section, we introduce
the setup for applying the UMLS knowledge to
enhance the prompts for the biomedical relation
extraction task, as illustrated in Figure 2.

6https://github.com/nltk/nltk
7https://www.nlm.nih.gov/research/umls/index.html

4.1 Extracting Knowledge Triples from the
UMLS

To access the relevant part of the ontologies
recorded in the UMLS, we use the QuickUMLS 8

to map the two entities to be classified in a sample
to their CUIs (Concept Unique Identifiers)9. In Fig-
ure 2, “paracetamol” and “headache” are mapped to
“C0000970” and “C0018681” respectively for look-
ing up the associated relationships. This mapping
is an entity-linking process that uses an approx-
imate dictionary-based approach to find the best
match of concept identifiers in the UMLS for input
strings.

From the two CUIs of the associated en-
tities in one sample, we extract both di-
rect and one-hop relationships between these
CUIs from the UMLS table MRREL10. For in-
stance, one of the two-hops relationships ex-
tracted between “C0000970” and “C0018681” is “
(C00018681, related_to, C0149931), (C0149931,
may_be_treated_by, C0000970)”.

8https://github.com/Georgetown-IR-Lab/QuickUMLS
9CUIs are the key to obtaining information from the

UMLS. In the UMLS, terminology is mapped to the CUIs
for disambiguating the concepts, and for documenting rela-
tionships.

10https://www.ncbi.nlm.nih.gov/books/NBK9685/table/
ch03.T.related_concepts_file_mrrel_rrf/
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Figure 3: An illustration of the three knowledge injection methods, showcasing increasing levels of refinement
from top to bottom. Knowledge statements are in yellow. Top: Bag of Knowledge Injection has all knowledge
statements prepended altogether to the prompt. Middle: Instance-based Knowledge Injection has knowledge
statements prepended to each instance. Bottom: Refined Knowledge Injection has low-quality knowledge statements
removed from Instance-based Knowledge Injection.

4.2 Knowledge Statement: Verbalizing
Knowledge Statement with Triples

After extracting the relevant triples from the UMLS,
we process them to be more natural language-like
as it was demonstrated to help the model perform
tasks better (Gonen et al., 2023).

For instance, the extracted triples (C00018681,
related_to, C0149931) and (C0149931,
may_be_treated_by, C0000970) are processed
to “(headache, related to, migraine), (migraine,
may be treated by, paracetamol)”. The CUIs of
the intermediate concepts are mapped to their
preferred terms11 using UMLS table MRCONSO12,
C0000970 is mapped to “migraine”. On the other
hand, the CUIs of the entities are mapped to
their original mentions from their corresponding
samples. We select preferred terms in the same
language as the dataset13. In this way, we allow the

11The string preferred in a source or in the Metathesaurus
as the name of a concept, lexical variant, or string.

12https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.
T.concept_names_and_sources_file_mr/

13We use the column “TTY” in the MRCONSO table to select

external knowledge to be possibly more integrated
into the model’s reasoning process as in the case
where the preferred terms exist in the sample
sentences.

We refer to the processed triples as knowledge
statements— knowledge expressed as natural lan-
guage statements. The knowledge statements are
then injected into the prompt in different ways,
which we will introduce in the next section.

4.3 Knowledge Injection (KI)

We present the extracted knowledge statements into
the prompt at varying levels of quality, where qual-
ity is defined by granularity—the degree of associ-
ation between the task sample and the knowledge
statements. As illustrated in Figure 3, lower granu-
larity corresponds to less refined knowledge, requir-
ing minimal pre-processing but placing a greater
reasoning burden on the model to achieve strong
task performance. Conversely, higher granularity
involves more carefully curated knowledge, reduc-
ing the model’s reasoning load.

preferred terms.
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#Train Model Method ChemProt DDI ADE-de ADE-fr

1-shot Mistral

ICL w/o KI 42.2 39.6 78.5 73.9
Bag of KI 53.9 40.8 74.7 71.6
Instance-based
KI

60.1 44.9 79.9 77.3

Refined KI 60.2 44.3 80.0 77.3

1-shot
1 GPT-3.5-turbo (Zhang et al., 2024) ICL w/o KI 68.5 - - -

GPT-3.5 (Jahan et al., 2024) ICL w/o KI - 46.43 - -

full-shot
2 PubmedBERT finetuned 73.2 75.9 - -

XLM-RoBERTa finetuned - - 66.3 76.4

Table 2: Macro F1 across different methods on datasets ChemProt, DDI, ADE-de, and ADE-fr, aggregating over
five random seeds. Within the Mistral experiments, we highlight the best score with bold, and second-best score
with underline.

1 We collect the GPT-3.5-turbo and GPT-3.5 results from the benchmarking papers. 2 We train a classifier
using PubMedBERT for tasks in English, i.e., ChemProt and DDI; and XLM-RoBERTa for ADE-fr in French and
ADE-de in German. To address the issue of imbalanced class distribution, we employ a resampling technique while
training XLM-RoBERTa. 3 We set the similarity threshold for the Refined KI to 0.85 for ChemProt and DDI and
0.9 for ADE-de and ADE-fr.

• Bag of KI We prepended all extracted descrip-
tions to the beginning of the prompt as a bag.
This presentation requires the models to asso-
ciate and reason with the evidence.

• Instance-based KI We prepended extracted
descriptions to each associated instance. In
this presentation, the relevant information is
directly before the instance.

• Refined KI We prepended only the high-
quality, semantically relevant triples to associ-
ated instances. We used PubMedBERT to en-
code samples and knowledge statements, prun-
ing irrelevant knowledge statements based on
cosine similarity of CLS embeddings and a
similarity threshold.

5 Results

5.1 Knowledge Injection vs. Baselines
In this section, we discuss our experiment results,
summarized in Table 2.

ICL w/o KI > full-shot finetuned BERT-based
models on user-generated datasets Our base
setup (ICL w/o KI) performs better than the full-
shot fine-tuned BERT-based models on the user-
generated dataset, ADE-de (∼+5% F1) and per-
form almost on-par on ADE-fr (∼+1% F1); while
performs worse than the full-shot fine-tuned Pub-
MedBERT on the scientific dataset, ChemProt (∼-
30% F1) and DDI (∼-40% F1).

While we argued previously that ADE-de and
ADE-fr are more familiar to the models, it is
still surprising that Mistral works well on them

(even better than the fine-tuned XLM-RoBERTa)
despite not having any external knowledge nor en-
tity type information.

ICL w/o KI < full-shot finetuned BERT-based
models in English scientific dataset ChemProt
and DDI, on the other hand, are more challeng-
ing for CLMs with ICL, including our base setup
and the state-of-the-art. GPT-3.5-turbo, a very
strong baseline, yields lower performance than fine-
tuned models on ChemProt (∼-10% F1) and GPT-
3.5 underperforms on DDI (∼-35% F1).

Our ICL w/o KI with Mistral yields lower per-
formance than GPT-3.5 models on ChemProt (-
20% F1) and DDI (- 5% F1). GPT-3.5 is a larger
CLM with a parameter size of 175B, while our
model has 7B. To our knowledge, there is no study
with 7B CLMs on ChemProt and DDI for reference
here.

Bag of KI < ICL w/o KI Compared to our base
setup without any external knowledge (ICL w/o KI),
Bag of KI does not show consistent improvement
across the datasets; while ChemProt (∼+10% F1)
and DDI (∼+1% F1) show improvement, ADE-
de (∼-3% F1) and ADE-fr (∼-1% F1) show a de-
crease in performance. In the cases where Bag
of KI underperforms (ADE-de and ADe-fr), the
performance is very high to begin with, and the ad-
ditional knowledge might not be very helpful, since
it is background information that still requires mod-
els to associate it to the respective instances.

Instance-based KI ≈ Refined KI > ICL w/o KI
Instance-based KI and Refined KI show consis-
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tent improvement compared to Bag of KI and ICL
w/o KI on ChemProt (∼+20% F1), DDI (∼+5%
F1), ADE-de (∼+2% F1), and ADE-fr (∼+3% F1).
These results suggest that positioning the knowl-
edge closer to the instances is more beneficial for
the models to make the right prediction. Neverthe-
less, comparing Refined KI to Instance-based KI,
we can see that the performance is barely increas-
ing. We do not know if the insignificant improve-
ment is due to the Refined KI sometimes removing
the knowledge statements of good quality, or it is
due to that the quality of the knowledge statements
is not as important for the performance. Therefore,
we further explore the effect of the quality of the
knowledge statements in the next section, when we
explore the similarity threshold for Refined KI.

Instance-based KI boosts the performance of
smaller CLMs to be more on par with the big
CLMs Instance-based KI with Mistral obtain
better results than, the large CLM GPT-3.5 on
DDI (∼+1% F1) and much closer to GPT-3.5-
turbo on ChemProt (∼-5% F1) than the base
setup. These results, as GPT-3.5s results, are
still behind the full-shot fine-tuned BERT-based
models on ChemProt and DDI by a noticeable mar-
gin, but the gap is much smaller than the base setup.
Small BERT-based models are still highly effective
for biomedical relation extraction tasks due to their
ease of fine-tuning. Additionally, smaller CLMs
with appropriate knowledge injections can also
achieve competitive results and are significantly
more efficient to run than the larger CLMs.
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Figure 4: macro F1(%) over similarity threshold with
Mistral and BioMistral on ADE-de and DDI.
The x-axis similarity threshold runs from 0, which cor-
responds to Instance-based KI, to 1, which corresponds
to the w/o KI.

5.2 Effect of Similarity Threshold

The semantic similarity between the knowledge
statements and the instances is high, with scores
ranging from 0.80 to 0.95 (see Appendix Fig-
ure 8). We examine the effect with Mistral
and BioMistral on ADE-de and DDI (see Fig-
ure 4). With all additional knowledge (thresh-
old=0), BioMistral performs worse than Mis-
tral on ADE-de (-15% F1), but slightly better in
DDI (∼+5% F1). This discrepancy is likely due
to BioMistral’s medical training resources be-
ing predominantly in English, hence making it less
effective on multilingual datasets. Although Mis-
tral initially performs worse on DDI, enforcing
a similarity threshold brings Mistral to perform
on par with BioMistral. This result demon-
strates that general models can be improved by
high-quality knowledge statements to match the ca-
pacity of biomedical models trained with additional
large corpora.

The results show that the performance improves
with increasing similarity thresholds and that the
performance is saturated around 0.85 for DDI, and
0.9 for ADE-de; followed by a decline. These re-
sults suggest that while higher-quality knowledge
statements enhance performance, excessively high
thresholds may reduce the number of usable knowl-
edge statements, thereby hurting the overall perfor-
mance.

5.3 Effect of Knowledge Source and Position

The additional knowledge statements help all
datasets, yet they also change the prompt layout,
which could affect the model performance. Our
goal here is to investigate if the observed perfor-
mance gains are contributed by external knowledge
rather than extra tokens that changed the prompt
format. We, therefore, swap the knowledge state-
ments from the extracted UMLS triples.

• UMLS instance-unrelated: UMLS triples rele-
vant to the corpus (extracted as described in
Section 4) but irrelevant to the sample.

• UMLS corpus-unrelated: UMLS triples that
are completely irrelevant to the corpus. We
extract triples that do not involve any CUI
from the entities in the corpus.

• Bible: We take text from the Wikipedia page
of the Bible14 as our generation pool. This ex-

14https://en.wikipedia.org/wiki/Bible

198



Position Triple Source macro
F1

- ICL w/o KI 42.2
task background Bag of KI 53.9

close-to instances Instance-based KI
(UMLS instance-related)

60.2

close-to instances

UMLS instance-unrelated 60.0
UMLS corpus-unrelated 61.4
Bible 60.1
Empty 60.0

Table 3: macro F1 (%) with different adversarial knowl-
edge statements on ChemProt.

periment serves as a totally irrelevant knowl-
edge source.

• Empty: We discard the content in the triplet
template using just the placeholder, i.e., ( , , ).

Position Compared to Bag of KI where all knowl-
edge statements are collected as task background
altogether at the beginning of all instances, all
methods that place knowledge statements close to
instances show better performance (see Table 3),
regardless of whether the knowledge statements are
relevant or irrelevant. These results suggest that the
models can effectively benefit from relevant knowl-
edge statements when they are closely positioned to
the instances. However, when the knowledge state-
ments are distanced from the instances, the models
struggle to recognize and leverage the knowledge.

Knowledge Source All knowledge sources im-
prove the base setup (∼+20% F1), including Empty
(see Table 3). The results suggest that these addi-
tional tokens in between the instances improve the
performance.

6 Discussion and Conclusion

For our experiments on ADE-de and ADE-fr, the
prompts contain two languages: the instructions,
relations from the UMLS, and the ground truth la-
bel of the sample—known as the verbalizer—are
in English, while the samples, entities, and enti-
ties linked to the UMLS are respectively in French
and German. The mixing of languages in prompts
was studied in multilingual relation classification
tasks (Chen et al., 2022) and cross-lingual natural
language inference (XNLI) (Zhou et al., 2023).
These studies concluded that directly translating
the verbalizers to the target language for inference
is not helpful. However, the effect of other parts
of the prompt is still to be understood. Our results

show that the mixed-language prompts still achieve
competitive results in our tasks.

In this work, we explored the integration of ex-
ternal knowledge for the extraction of biomedical
relations within the context of in-context learning.
We extracted triples from the UMLS based on the
entities involved in the relations and injected them
into the prompt with different granularity.

Our experiments for configuring a basic prompt
revealed that different entity markers are effective
across different datasets, showing that entity men-
tions are not always more beneficial for the models
than marking with entity types or order. Our exper-
iments showed that Mistral with ICL performs
very well on the user-generated datasets in non-
English; however, the model still performs poorly
on more difficult tasks in English. With knowledge
integration, the performance of ICL is boosted to be
more on par with the larger autoregressive models.

The knowledge statements help the model per-
form better across all datasets. Additionally, ap-
plying a suitable similarity threshold for further
refining the knowledge statements further helps the
models, especially for models trained only on gen-
eral corpora. We observed that the performance
was even more affected by the positioning and the
addition of tokens. When the additional knowledge
is positioned close to the instances, the models can
effectively identify relevant knowledge statements.

Limitations

There are limitations to be noted for this work.
Firstly, in the experiment setup, the hyperparame-
ters are tuned in a cascaded manner, which is less
computationally expensive yet suboptimal. Sec-
ondly, entity linking can be a bottleneck for this
method, especially considering the typos and infor-
mal language of user-generated datasets. Third, the
effect of prompt length is still to be understood. We
found that the additional tokens can possibly help,
even if carrying irrelevant knowledge, however, the
effect of inserting irrelevant tokens and how one
places them in the prompt also require further in-
vestigation. While related work has studied this
direction (Levy et al., 2024), domain-specific tasks
remain understudied and require more research.
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A Dataset

Dataset Source #Relation Relations #Test

ChemProt PubMed
abstracts 6

activation (CPR:3)

16,943

inhibition (CPR:4)
agonist (CPR:5)
antagonist (CPR:6)
substrate (CPR:9)
false (none of above)

DDI MedLine
abstracts 5

DDI-advise

5,761
DDI-effect
DDI-int
DDI-mechanism
DDI-false

ADE-de Patient
Forum 7

caused

3,285

experienced_in
has_dosage
has_time
signals_change_of
treatment_for
false

ADE-fr Patient
Forum 7

caused

551

experienced_in
has_dosage
has_time
signals_change_of
treatment_for
false

Table 4: Dataset Overview

B Prompt Examples
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ordered markers E1-E2
Out of the possible relations: [CAUSED, EXPERIENCED_IN, HAS_DOSAGE, HAS_TIME, SIGNALS_CHANGE_OF, TREATMENT_FOR,
NONE]
###

Given the sentence, J’ai aussi E1 pour la première fois de ma vie E2.
What is the semantic relation between the two nominals (nouns or noun phrases) DISORDER E1 and TIME E2 in the sentence: HAS_TIME

Given the sentence, et de la dominance en œstrogène ! Depuis six mois, je prends E2 de E1.
What is the semantic relation between the two nominals (nouns or noun phrases) DRUG E1 and MEASURE E2 in the sentence: HAS_DOSAGE

Given the sentence, J’ai aussi E1 pour la première fois de ma vie au cours des six derniers mois. Moi aussi, je suis désespérée par mon E2 et, enfin .
What is the semantic relation between the two nominals (nouns or noun phrases) DISORDER E1 and ANATOMY E2 in the sentence: EXPERI-
ENCED_IN

Given the sentence, et de la dominance en œstrogène ! Depuis six mois, je prends 50 mg de E1....La fluoxétine est connue pour faire perdre du
poids....J’ai E2 au début.
What is the semantic relation between the two nominals (nouns or noun phrases) DRUG E1 and DISORDER E2 in the sentence: CAUSED

Given the sentence, E2, je résistais à tout ! Mais quand rien n’allait plus, j’ai accepté d’en prendre. J’ai aussi E1 pour la première fois de ma vie au
cours des six derniers mois.
What is the semantic relation between the two nominals (nouns or noun phrases) DISORDER E1 and TIME E2 in the sentence: NONE

Given the sentence, J’ai pris E2 après avoir pris 3 hormones différentes, ça a bien marché, mais j’ai dû E1 parce que j’avais des saignements
abondants (janvier).
What is the semantic relation between the two nominals (nouns or noun phrases) CHANGE_TRIGGER E1 and DRUG E2 in the sentence:
SIGNALS_CHANGE_OF

Given the sentence, Je prends maintenant Trisequens (depuis 2 mois) et E1 pour E2 et l’humeur.
What is the semantic relation between the two nominals (nouns or noun phrases) DRUG E1 and DISORDER E2 in the sentence: TREATMENT_FOR

###

Given the sentence,De plus, j’ai commencé à avoir des nausées, des E1 de E2, des muqueuses sèches, etc.
What is the semantic relation between the two nominals (nouns or noun phrases) DISORDER E1 and ANATOMY E2 in the sentence:

Figure 5: An example of the prompt with ordered markers.

entity-type markers @TYPE$
Out of the possible relations: [CAUSED, EXPERIENCED_IN, HAS_DOSAGE, HAS_TIME, SIGNALS_CHANGE_OF, TREATMENT_FOR,
NONE]
###

Given the sentence, J’ai aussi @DISORDER$ pour la première fois de ma vie @TIME$.
What is the semantic relation between the two nominals (nouns or noun phrases) @DISORDER$ and @TIME$ in the sentence: HAS_TIME

Given the sentence, et de la dominance en œstrogène ! Depuis six mois, je prends @MEASURE$ de @DRUG$.
What is the semantic relation between the two nominals (nouns or noun phrases) @DRUG$ and @MEASURE$ in the sentence: HAS_DOSAGE

Given the sentence, J’ai aussi @DISORDER$ pour la première fois de ma vie au cours des six derniers mois. Moi aussi, je suis désespérée par mon
@ANATOMY$ et, enfin .
What is the semantic relation between the two nominals (nouns or noun phrases) @DISORDER$ and @ANATOMY$ in the sentence: EXPERI-
ENCED_IN

Given the sentence, et de la dominance en œstrogène ! Depuis six mois, je prends 50 mg de @DRUG$....La fluoxétine est connue pour faire perdre
du poids....J’ai @DISORDER$ au début.
What is the semantic relation between the two nominals (nouns or noun phrases) @DRUG$ and @DISORDER$ in the sentence: CAUSED

Given the sentence, @TIME$, je résistais à tout ! Mais quand rien n’allait plus, j’ai accepté d’en prendre. J’ai aussi @DISORDER$ pour la première
fois de ma vie au cours des six derniers mois.
What is the semantic relation between the two nominals (nouns or noun phrases) @DISORDER$ and @TIME$ in the sentence: NONE

Given the sentence, J’ai pris @DRUG$ après avoir pris 3 hormones différentes, ça a bien marché, mais j’ai dû @CHANGE_TRIGGER$ parce que
j’avais des saignements abondants (janvier).
What is the semantic relation between the two nominals (nouns or noun phrases) @CHANGE_TRIGGER$ and @DRUG$ in the sentence:
SIGNALS_CHANGE_OF

Given the sentence, Je prends maintenant Trisequens (depuis 2 mois) et @DRUG$ pour @DISORDER$ et l’humeur.
What is the semantic relation between the two nominals (nouns or noun phrases) @DRUG$ and @DISORDER$ in the sentence: TREATMENT_FOR

###

Given the sentence,De plus, j’ai commencé à avoir des nausées, des @DISORDER$ de @ANATOMY$, des muqueuses sèches, etc.What is the
semantic relation between the two nominals (nouns or noun phrases) @DISORDER$ and @ANATOMY$ in the sentence:

Figure 6: An example of the prompt with entity-type markers.
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decorated markers [E]ENTITY_T[/E]
Out of the possible relations: [CAUSED, EXPERIENCED_IN, HAS_DOSAGE, HAS_TIME, SIGNALS_CHANGE_OF, TREATMENT_FOR,
NONE]
###

Given the sentence, J’ai aussi [E1]pris du poids[/E1] pour la première fois de ma vie [E2]au cours des six derniers mois[/E2].
What is the semantic relation between the two nominals (nouns or noun phrases) DISORDER pris du poids and TIME au cours des six derniers mois
in the sentence: HAS_TIME

Given the sentence, et de la dominance en œstrogène ! Depuis six mois, je prends [E2]50 mg[/E2] de [E1]fluoxétine[/E1].
What is the semantic relation between the two nominals (nouns or noun phrases) DRUG fluoxétine and MEASURE 50 mg in the sentence:
HAS_DOSAGE

Given the sentence, J’ai aussi [E1]pris du poids[/E1] pour la première fois de ma vie au cours des six derniers mois. Moi aussi, je suis désespérée par
mon [E2]ventre[/E2] et, enfin .
What is the semantic relation between the two nominals (nouns or noun phrases) DISORDER pris du poids and ANATOMY ventre in the sentence:
EXPERIENCED_IN

Given the sentence, et de la dominance en œstrogène ! Depuis six mois, je prends 50 mg de [E1]fluoxétine[/E1]....La fluoxétine est connue pour faire
perdre du poids....J’ai [E2]perdu immédiatement 3 kg[/E2] au début.
What is the semantic relation between the two nominals (nouns or noun phrases) DRUG fluoxétine and DISORDER perdu immédiatement 3 kg in
the sentence: CAUSED

Given the sentence, [E2]Jusqu’à l’année dernière[/E2], je résistais à tout ! Mais quand rien n’allait plus, j’ai accepté d’en prendre. J’ai aussi [E1]pris
du poids[/E1] pour la première fois de ma vie au cours des six derniers mois. What is the semantic relation between the two nominals (nouns or noun
phrases) DISORDER pris du poids and TIME Jusqu’à l’année dernière in the sentence: NONE

Given the sentence, J’ai pris [E2]Kliogest[/E2] après avoir pris 3 hormones différentes, ça a bien marché, mais j’ai dû [E1]arrêter[/E1] parce que
j’avais des saignements abondants (janvier).
What is the semantic relation between the two nominals (nouns or noun phrases) CHANGE_TRIGGER arrêter and DRUG Kliogest in the sentence:
SIGNALS_CHANGE_OF

Given the sentence, Je prends maintenant Trisequens (depuis 2 mois) et [E1]Insidon[/E1] pour [E2]l’anxiété[/E2] et l’humeur.
What is the semantic relation between the two nominals (nouns or noun phrases) DRUG Insidon and DISORDER l’anxiété in the sentence:
TREATMENT_FOR

###

Given the sentence,De plus, j’ai commencé à avoir des nausées, des [E1]inflammations[/E1] de [E2]l’estomac[/E2], des muqueuses sèches, etc.
What is the semantic relation between the two nominals (nouns or noun phrases) DISORDER inflammations and ANATOMY l’estomac in the
sentence:

Figure 7: An example of the prompt with decorated markers.

203



C Similar Distribution of Knowledge
Statements

0.75 0.80 0.85 0.90
similarity

0

50

100

150

200

250

300

350

fre
qu

en
cy

(a) ChemProt.

0.800 0.825 0.850 0.875 0.900 0.925
similarity

0

50

100

150

200

250

300

350

400

fre
qu

en
cy

(b) DDI.

0.825 0.850 0.875 0.900 0.925 0.950
similarity

0

20

40

60

80

100

120

140

fre
qu

en
cy

(c) ADE-de.

0.82 0.84 0.86 0.88 0.90 0.92
similarity

0

10

20

30

40

50

fre
qu

en
cy

(d) ADE-fr.

Figure 8: Similarity distribution of knowledge state-
ments for different datasets. (a) ChemProt, (b) DDI, (c)
ADE-de, and (d) ADE-fr.
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Abstract

Access to real-world medication prescriptions
is essential for medical research and health-
care quality improvement. However, access
to real medication prescriptions is often lim-
ited due to the sensitive nature of the infor-
mation expressed. Additionally, manually la-
belling these instructions for training and fine-
tuning Natural Language Processing (NLP)
models can be tedious and expensive. We
introduce a novel task-specific model archi-
tecture, Label-To-Text-Transformer (LT3),
tailored to generate synthetic medication pre-
scriptions based on provided labels, such as
a vocabulary list of medications and their at-
tributes, to facilitate safe healthcare research.
LT3 is trained on a set of around 2K lines of
medication prescriptions extracted from the
MIMIC-III database, allowing the model to
produce valuable synthetic medication prescrip-
tions. We evaluate LT3’s performance by con-
trasting it with state-of-the-art Pre-trained Lan-
guage Models (PLMs), T5-small/base/large,
analysing the quality and diversity of gener-
ated texts. We deploy the generated synthetic
data to train the SpacyNER model for the
Named Entity Recognition (NER) task over
the n2c2-2018 dataset. The experiments show
that the model trained on synthetic data can
achieve a 96-98% F1 score at Label Recogni-
tion on Drug, Frequency, Route, Strength, and
Form. LT3 codes and data will be shared for
research purposes at https://github.com/
HECTA-UoM/Label-To-Text-Transformer

1 Introduction

Access to real-world medication prescriptions is
pivotal for advancing medical research, includ-
ing clinical natural language processing (NLP) ap-
plications, which is useful for improving health-
care quality and fostering the creation of novel
solutions to address current research challenges
(Nazari Nezhad et al., 2022; Alrdahi et al., 2023;
Cui et al., 2023). However, given the confidential

nature of these instructions, there are significant
difficulties in acquiring and utilising them for re-
search purposes (Spasić et al., 2014). Addition-
ally, manual labelling of such data for training and
fine-tuning NLP techniques is labour-intensive and
costly. This is also discussed by recent overview
work in (Wornow et al., 2023; Rajendran et al.,
2024).

In response to these challenges, this study har-
nesses NLP methodologies to generate synthetic
medication prescriptions. These synthetic exam-
ples provide a feasible alternative when real medi-
cal data is not available, which is a common prob-
lem due to concerns about patient confidentiality.
The use of this synthetic data alongside, or in place
of, real medical data can therefore alleviate chal-
lenges associated with accessing and employing
sufficient data for NLP research, which is essential
for healthcare quality enhancement and the incep-
tion of innovative strategies toward better compu-
tational modelling of digital healthcare data (Chen
et al., 2019).

The generation of synthetic clinical data has
gained attention in recent years due to the chal-
lenges associated with accessing real-world clinical
data (Gonçalves et al., 2020; Marchesi et al., 2022).
Several studies have explored synthetic data gener-
ation for clinical NLP tasks. For instance, Amin-
Nejad et al. (2020) proposed a methodology for
generating synthetic clinical text using structured
patient information in a sequence-to-sequence man-
ner and experimented with state-of-the-art Trans-
former models. They demonstrated that their aug-
mented dataset could outperform baseline models
on a downstream classification task.

Lee (2018) explored the use of an encoder-
decoder model to generate synthetic chief com-
plaints from discrete variables in EHRs, such as
age group, gender, and discharge diagnosis. Af-
ter being trained end-to-end on authentic records,
the model generated realistic chief complaint text
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that preserved the epidemiological information en-
coded in the original record-sentence pairs. This
suggests that such a model could support the de-
identification of text in EHRs, helping address the
significant privacy concerns that often limit the
sharing and use of real-world clinical data. How-
ever, only some works have attempted to control
the generation of these models (Keskar et al., 2019).
Despite these advances, there is still room for im-
provement in generating synthetic clinical letters.

This study puts forth a novel task-specific model
architecture, the Label-To-Text-Transformer (LT3),
crafted to generate synthetic medication prescrip-
tions. Based on the Transformer’s architecture
(Vaswani et al., 2017) and trained on an extracted
set of around 2K medication prescriptions, LT3
is adept at generating high-quality synthetic med-
ication prescriptions by capturing the unique pat-
terns and dependencies involved in prescription
writing and other aspects of clinical documenta-
tion, such as sentence formatting. For example,
given a medication "docusate sodium" we would
expect to generate a prescription such as "docusate
sodium 100 mg Capsule Sig: One (1) Capsule PO
BID (2 times a day) as needed for constipation.".
To test how effective LT3 is, we will compare its
performance to that of another State-of-the-art Pre-
trained Language Model (PLM), T5 (Raffel et al.,
2020), which we fine-tuned for this particular task.
For downstream applications, we also deploy the
synthetic data generated by LT3 for training the
SpacyNER model to compare the model perfor-
mance with the ones trained from real data.

2 Related Work: PLMs for Clinical NLP

NLP technologies have been increasingly used in
healthcare over the past several years, contributing
to advancements in several areas such as clinical
decision support, patient triage, and automated clin-
ical documentation (Yang et al., 2022; Casey et al.,
2021). However, these applications face numerous
challenges, one of the most significant being the
scarcity of available data. This issue is predomi-
nantly due to stringent privacy regulations and the
sensitive nature of healthcare data, which prevent
access to large volumes of real-world clinical data
(Ive et al., 2020; Chapman et al., 2011).

To circumvent this problem, synthetic data gen-
eration has been explored as an alternative ap-
proach, aiming to produce data that mimics the
properties and structure of real-world clinical data

without compromising patient privacy (Li et al.,
2021). Despite this approach’s potential, produc-
ing high-quality, domain-specific synthetic data re-
mains challenging due to the complexity and speci-
ficity of medical language.

PLMs have shown remarkable capabilities in
generating contextualised texts, such as translations
(Xue et al., 2020) and summaries (Moradi et al.,
2019). However, they have struggled to generate
coherent text in the medical domain. This is due
to the considerable shift from standard NLP tasks
to the medical domain, which presents challenges
as pre-trained models have a more general-purpose
design and do not learn directly from restricted
domain-specific data (Grambow et al., 2022). For
example, the word "paracetamol" may be captured
in many training documents that do not correspond
to synthetic clinical letter generation tasks and,
therefore, be a noisy contribution. Moreover, PLMs
need more flexibility to handle different input types
and are not explicitly trained on label-to-text data,
resulting in sub-optimal accuracy for the specific
task. To address these challenges, this research
proposal aims to develop a task-specific model ar-
chitecture that can overcome the limitations of pre-
trained models and generate high-quality synthetic
clinical instructions.

Furthermore, in NLP fields, international shared
tasks have been one of the main factors pushing
research forward by having researchers compare
their results on the same data set. However, in the
healthcare and clinical domain, the data we use
to train the model is often sensitive and related
to personal information, so there is a big obstacle
to sharing the data for model training and testing.
Even the popular n2c2 shared task training data
cannot be simply uploaded to current popular ML
platforms, even though they are de-identified via
the user agreement. This aspect is also discussed
by (Wornow et al., 2023) that the publicly being
unable to share the learned models using clinical
data especially EHRs sets a bottleneck for current
LLMs in healthcare NLP. In such a situation, syn-
thetic data can be a good option.

3 LT3: Label-To-Text-Transformer

3.1 Problem Formulation

Let C be a space of clinical instruction features,
and c ∈ C represents a feature vector for individual
clinical instruction, e.g. a sentence piece. Let L
be a set of drug labels. We have a dataset DL

C with
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labels annotated over the clinical instructions.
For each drug label l ∈ L, we originally have

a sub-set data Dl defined as Dl = {cln}Nl
n=1 con-

taining clinical instructions associated with drug l.
Individual instructions are indexed by n for each l,
where Nl is the number of instructions for drug l.

Our primary objective is to generate a synthetic
dataset that replaces the real datasets entirely, con-
ditioned on the drug labels from L. To achieve this,
we aim to learn a density function d̂{C|l}, which
approximates the true distribution d{C|l} of the
clinical instructions conditioned on each drug label
l.

Once the distributions for each drug label l are
learned, we generate an entirely synthetic dataset
by drawing random variables from d̂{C|l} for each
drug l. This synthetic dataset will have clinical
instructions corresponding to every drug label in L
and completely replace the original dataset.

3.2 Model Architecture

We introduce a transformer-based architecture, LT3
with both an encoder and a decoder. The en-
coder processes the input labels, specifies drug
names, and produces a contextualised representa-
tion, which is subsequently used by the decoder to
generate output sequences in the form of prescrip-
tions.

LT3 implements the pre-trained word-piece
BERT tokeniser (Devlin et al., 2019). This selec-
tion is motivated by the objective of representing
words as a series of smaller sub-word tokens. Si-
multaneously, this approach serves the dual pur-
pose of minimising vocabulary size while handling
unseen words as the composition of a set of known
sub-words. Embedding layers are used within the
model’s architecture and are trained from scratch to
precisely cater to the requirements of the medical
prescription writing task (Figure 1).

Figure 1: LT3 Architecture with input/output behaviour
(this is a shortened example of a generated synthetic med-
ical prescription.)

3.3 B2SD: Beam Search Decoding using
Backtracking

LT3 implements a novel Beam Search Decoding
method using Backtracking (B2SD). While the con-
ventional technique adopts a greedy strategy, se-
lecting the best n next-token candidates at each
decoding step based on an overall probability func-
tion, this method instead employs a backtracking
strategy (Golomb and Baumert, 1965).

At each step, we select the best candidate
sequence generated so far. This selection relies on
a heuristic function, specifically a joint probability
function. Subsequently, the selected sequence
is expanded by its best n next-token candidates,
referred to as a beam. This strategy allows the
search tree to be flexible in size rather than limited
to a fixed n ∗ seqlen. However, in addressing the
notable space and time complexity challenges of
the B2SD algorithm, we decided to restrict the
explorable space to the top-m sequences generated
so far, based on the same heuristic function.

In the example from Figure 2, we compare the
execution of both algorithms in generating sen-
tences that describe someone as twelve years old.
Both algorithms use a beam size of two and gener-
ate two sequences. The desired outputs are the ones
with the highest total joint probabilities, namely
"I am twelve" (p=0.138) and "You are twelve"
(p=0.135). When comparing their execution, we ob-
serve that the backtracking algorithm (b) explores
seven vertices, including one dead-end labelled
"scored" (coloured in blue), in contrast to the origi-
nal algorithm (a), which only examines six vertices.
However, in this scenario, the probabilities are suf-
ficiently close to prevent a greedy algorithm, such
as the original one, from catching the best over-
all sequences. Therefore, one of the two optimal
solutions remains undiscovered, and instead, the
dead-end labelled "scored" is greedily considered
optimal by the original algorithm. However, B2SD
managed to discover both desired outputs at the
price of an additional vertex exploration.

There is a trade-off between complexity and
the main advantage of the backtracking algorithm,
which is its ability to find the best solution in the
beam tree according to its heuristic within a finite
time compared to the original BSD algorithm. This
means that a higher level of complexity may lead
to a longer search time but a better solution. In our
specific scenario, striking this balance is justified.
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(a) Original BSD (n = 2)

(b) B2SD (n = 2, m = 2, pb = 1)

Figure 2: Execution Examples of Conventional Greedy
BSD and B2SD Algorithms

That is because LT3 deals with a limited number
of samples to generate relatively short sequences.
Moreover, by utilising this algorithm, we can effi-
ciently bypass tokens within the beam that, while
still within the top-n candidates, are significantly
less likely to contribute to genuinely interesting
sequences. This approach encourages the model to
prioritise the development of promising sequences.

Therefore, the complexity of the newly proposed
B2SD algorithm can be expressed as exponential in
the sequence’s length, denoted O(nseqlen). At the
same time, the original one is linear: O(n∗seqlen).
However, worst-case complexity may not represent
the execution times for the above reasons (see Sec
A.3).

Besides using this backtracking approach, the
beam size n does not need to be greater or equal to
the number of desired output sequences. Instead,
m should follow this requirement, as it is the maxi-
mum number of sequences considered for output.

To enhance the quality of sequence genera-

tions, we implement an additional uni-gram repeat
penalty targeting sub-sequences of length 4. This
penalty aims to discourage the generation of se-
quences where a sub-sequence of four tokens con-
tains multiple instances of the same token. For
example, the sub-sequence [43, 32, 21, 43] incurs
a penalty as the token "43" appears twice. The
penalty itself is calculated using the following for-
mula.

p′(Y ) = p(Y )2−0.5∗pT (1)

where pT is the probability (or certainty) of the
last duplicate token, here "43", and p(Y ) is the
joint probability of the sequence Y . This design
allows the application of a penalty that accounts
for the token’s certainty level. In cases where a
duplicate token is suggested but has a high cer-
tainty, the penalty is reduced, considering that the
model may intentionally repeat it to convey spe-
cific information. This can be the case in sentences
such as "(once a day (at bedtime))" where closing
parenthesis are repeated consecutively.

Finally, to further reduce the search space, the
maximal probability difference in beam, pb, con-
strains the tokens considered in a beam. This value
tells how much lower the probability of a token
in the beam from the top probability token in that
same beam is allowed to be. For example, if the
top token of a beam has a probability of 0.5 and
pb = 0.5, tokens in the beam with a probability
< 0.5 ∗ 0.5 won’t be further considered. This is
useful whenever an obvious best candidate exists,
for instance, when selecting the drug name that was
itself given as input.

Therefore, the beam size n, maximum candi-
dates space m, and maximal probability difference
in beam pb are three hyper-parameters to fine-tune
to obtain optimal results. We assign them the
values n = 4, m = 3 ∗ nboutput and pb = 1.

Heuristic function
The heuristic function used is logarithmic in the
sequence’s joint probability

h(Y ) =
loge(p(Y0,...,n))

lp(Y )
(2)

where Yn is the nth token of the sequence Y
generated so far, and Y0,...,n refers to the product
of the probabilities associated with each token in
the sequence Y , which is referred to as the joint
probability of Y . The heuristic function applies
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length normalisation as taken from Google’s NMT
System paper (Johnson et al., 2017), where we set
α = 0.6.

lp(Y ) =
(5 + |Y |)α
(5 + 1)α

(3)

4 Evaluation

4.1 Dataset and Preprocessing

Our research draws upon a specialised subset of
the MIMIC-III (Medical Information Mart for In-
tensive Care) database (Johnson et al., 2016, 2020);
specifically, the portion that aligns with the Na-
tional NLP Clinical Challenges (n2c2) 2018 shared
task data on adverse drug events and medication
extraction with gold labels (Henry et al., 2019). We
chose the n2c2 dataset for two main reasons. First,
it contains many caregiver notes and medication
prescriptions over a varied range of clinical con-
ditions and treatments, ensuring a broad spectrum
of clinical instructions can be generated by our
models, enhancing their utility in different clinical
scenarios. Second, the n2c2 dataset annotations
conform to the 2010 i2b2/VA Challenge on Con-
cepts, Assertions, and Relations in Clinical Text, a
well-established and comprehensive framework for
processing and understanding clinical text. This
standardisation facilitates handling clinical notes’
diverse and complex language patterns. Moreover,
using these gold labels helps us ensure the accu-
racy and consistency of our model’s learning pro-
cess, which is crucial to generating high-quality
synthetic medical data. In addition, using a dataset
that adheres to a widely accepted annotation guide-
line enhances the replicability and validity of our
study. It allows other researchers and practitioners
to understand the method and results of our work
within a known context, promoting transparency
and further collaboration.

We divided the official training set into our "train-
ing" and "validation" sets with the ratio (9:1) and
kept the original test set. We implemented a pro-
cedure in our dataset to automatically extract and
structure discharge medication information from
the n2c2 dataset. The procedure scans each text-
based medical record in the original dataset and
identifies the text segment containing information
about the medications prescribed upon discharge.

The identified medication data is further decom-
posed into two primary components: the label (or
name of the medication) and the associated instruc-

tions. Both are captured and stored in a structured
format. Finally, we apply statistical filtering tech-
niques to remove outliers based on the medica-
tion labels’ length and instructions. This ensures a
dataset free from extreme values that could poten-
tially bias downstream applications.

4.2 Baseline Foundation Models: T5 Small,
T5 Base, and T5 Large

The Text-to-Text Transfer Transformer (T5) im-
plements an Encoder-Decoder Transformer archi-
tecture and was pre-trained on various sequence-
to-sequence tasks. It has demonstrated state-of-
the-art results across a wide spectrum of natural
language processing tasks, showcasing its remark-
able capabilities in capturing nuanced semantics
and generating content through transfer learning
techniques. Notably, it has been successfully em-
ployed in various fields, such as generating clinical
text(Yermakov et al., 2021) and document ranking
(Nogueira et al., 2020), making it an ideal choice
for our task.

The reasons to opt for T5, particularly with en-
hancements proposed by Senadeera and Ive (2022),
are manifold. First, controlled text generation is
essential for our application, and the novel method
proposed can aid in generating text conforming to
specific attributes. Second, the novel soft prompt
tuning approach, attaching tunable input embed-
dings at both encoder and decoder levels in T5,
could offer better performance while saving com-
putational resources compared to full model fine-
tuning. Third, it allows for the steering of text gen-
eration at the decoder level, giving more control
over the output. Lastly, it facilitates the effective
utilisation of artificially generated text, thus sup-
porting AI-related tasks like training AI models.

Given the provided labels, we leverage T5
language processing capabilities to fine-tune the
model to generate appropriate text responses. The
labels represent medications such as "paracetamol"
and "ibuprofen," which are used to train the model
and their associated clinical letter. The fine-tuning
process involves adapting the pre-trained T5 model
to this specific task by updating its parameters us-
ing the labeled examples.

4.3 On the Evaluation Settings
To provide a lexical evaluation of the generated
data, we aim to assess the performance of LT3
compared to T5-small, T5-base, and T5-large at
generating synthetic prescriptions from unseen data
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(Figure 3). To process the comparison, we use the
labels from the testing set to generate synthetic
data, creating a five times larger dataset than the
original testing dataset. For instance, ten prescrip-
tions will be generated if a particular label appears
twice in the testing data. We conduct two types of
evaluations:

• Closeness to Reference Evaluation to assess
the quality of the generated prescriptions by
comparing LT3 and T5 against reference pre-
scriptions.

• Lexical Diversity Evaluation to measure the
diversity of the generated prescriptions from
LT3 compared to T5.

The overall framework of this experimental de-
sign for lexical evaluation is displayed in Figure
3. This experiment aims to show that (1) LT3 can
generate lexically diverse prescriptions, as well as
(2) significantly larger volume of data compared
to the available real data. (3), despite generating a
larger dataset, we intend to confirm that the quality
of LT3’s generated prescriptions remains high in
terms of quantitative scores against references. (4)
Most importantly, we try to assess LT3’s overall
abilities at generating prescriptions from unseen
data.

4.4 Model Selection
We conduct a model evaluation experiment to se-
lect the most optimal LT3 model. This experi-
ment entails training each model on the training set
and using them to generate five times the amount
of data from the validation set as synthetic data.
We then assess the models’ performance using the
quantitative metrics BLEU, ROUGE-1/2/L, and
BERTScore. Based on the results, we select the
best model and retrain it on the training and valida-
tion sets to obtain a final LT3 model.

For the T5 model, given the provided labels,
we leverage T5 language processing capabilities
to fine-tune the model to generate appropriate
text responses in the form of medication prescrip-
tions from labels representing medications such as
"paracetamol" or "ibuprofen".

We plot the training loss (Figure 6) and evalua-
tion scores (Table 1) on the validation set to pro-
vide a comprehensive assessment of each model’s
learning trajectory and generation quality. This ap-
proach helps readers understand how each model
evolves through the learning process.

4.5 On Evaluation Metrics

BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and BERT Score (Zhang et al., 2020) represent
key evaluation metrics, each illuminating different
facets of text quality. BLEU focuses on the syn-
tactic elements, measuring the overlap of n-grams
between the machine-generated text and a refer-
ence. It incorporates a brevity penalty for transla-
tion length, making it particularly useful for tasks
like machine translation.

On the other hand, ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) is more recall-
focused and assesses the quality of summaries by
comparing them to reference summaries. It con-
siders the number of overlapping units, such as
n-grams, word sequences, and word pairs between
the generated and reference summaries.

Finally, the BERT Score leverages the power of
pre-trained language representations to go beyond
mere syntactic overlap, capturing semantic nuances
between predicted and reference texts through co-
sine similarity measures. These approaches reflect
a shift from rigid, rule-based evaluations toward
more dynamic, context-aware metrics, aligning
more closely with human perceptions of text qual-
ity.

4.6 Lexical Similarity Evaluation against
References

For this experiment, we fine-tuned three versions
of T5, namely t5-small, t5-base, and t5-large,
paired with their sentence-piece pre-trained to-
keniser. Each is fine-tuned independently on the
same dataset as LT3 to provide comparable results,
with the prompt "summarise:" as it is the closest
to our task. The results in Table 2 show that LT3’s
generations are the closest match to the reference
samples. We use multi-reference evaluation to con-
solidate our results. Refer to Section 4.3 for more
details on this evaluation’s strategies and motiva-
tions.

4.7 Lexical Diversity Evaluation within
Generated Outputs

A diverse range of content is crucial in the note-
generation process to create unbiased and individ-
ualised clinical instructions. To achieve this, we
have implemented a diversity score that measures
the breadth of our model’s output. For each la-
bel, we measured the Jaccard similarity (Jaccard,
1908; Ivchenko and Honov, 1998) score of the gen-
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Figure 3: Lexical Evaluation Pipeline

Figure 4: Model Selection Pipeline

erations of our models. A higher Jaccard Score
indicates more similarity between the two popu-
lations. A lower score indicates better diversity
in our tasks. The results in Table 3 show a lower
intra-similarity score for the generations of LT3,
implying that LT3 produces more diverse samples.

4.8 Downstream Named Entity Recognition
Task

In the cross-model evaluation (Figure 5), we aim to
substantially increase the size of our dataset beyond
what we initially extracted from n2c2. To achieve
this, we generate synthetic data using LT3 on the
known training labels. This synthesis allows us to
create a dataset that is five times larger than the
original one. Subsequently, we perform fine-tuning
on Spacy1 using both the original and synthetically

1https://spacy.io

generated datasets. Finally, we compare the three
resulting NER models, one fine-tuned on the real
dataset, one on the synthetic dataset, and the last on
a combination of real and synthetic data. Specifi-
cally, the real dataset is oversampled, ranging from
100% (identical to the original) to 500% (five times
the original size). The synthetic dataset is gener-
ated using real labels, ranging from 100% to 500%.
The combined real and synthetic dataset starts with
100% real data, to which synthetic data is incre-
mentally added, from 100% to 400%. The NER
model is trained to recognise medical labels: Drug,
Strength, Form, Route, and Frequency. This com-
parison helps us to quantify the effectiveness of
using synthetic data generated using LT3 to aug-
ment or replace the training dataset by assessing
the ability of the fine-tuned models to recognise
named entities in unseen data.
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Figure 5: Cross-model Evaluation Pipeline

Table 1: Closeness to Reference Evaluation Results of LT3 Models on the Validation Set

Tokenizer Embeddings Beam Search BLEU ROU-1 ROU-2 ROU-L BERTScore
BERT Emb. layers B2SD 66.31 70.74 60.01 70.03 0.65

Pre-trained 36.11 43.16 28.56 41.81 0.29
Emb. layers Default 54.33 67.01 55.46 66.20 0.60

Custom B2SD 64.19 70.00 58.34 68.13 0.63
T5-base 65.78 68.99 58.63 68.22 0.63

Figure 6: Training Loss of LT3 Models

The evaluation scores F1 in Figure 7 show that
LT3 could successfully train Spacy on this NER
task on five labels "drug, form, frequency, route,
and strength" achieving 0.96+ scores. The eval-
uation on Drug labels always yields around 1.00
accuracy. Most importantly, it yielded compara-
ble performance to the real data, demonstrating the
quality of generated texts and the benefit of using
the generated synthetic data as an alternative to real
data.

We list some discussion and comparisons on
tokenisations, embeddings and Beam Search De-
coding Algorithms in Section A.1, A.2 and A.3.

Figure 7: Average F1 score for five labels (Drug,
Strength, Form, Route, Frequency) using Synthetic data,
Real data, and Real+Synthetic. RealSynthetic: 100%
real + n*100% Synthetic. Real: over-sampled.

5 Conclusion and Future Work

To facilitate clinical NLP research and address the
data privacy and restriction issues, we proposed
LT3 for generating synthetic clinical data using
pre-defined drug labels and related attributes from
the n2c2-2018 shared task. The evaluation against
the T5 model demonstrated that LT3 can generate
better quality and diversity outputs. Furthermore,
utilising synthetic data generated by LT3 for the
NER task demonstrated its ability to effectively
train SpacyNER, resulting in performances compa-
rable to those achieved with real data. This under-
scores the advantages of employing LT3 as a viable
alternative to real data. 1) Firstly, LT3 has demon-
strated comparable or superior performance to the
pre-trained Large Language Model (LLM) T5 at
generating prescriptions for previously unseen la-
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Table 2: Quantitative evaluation of LT3 (learned-scratch) vs T5 (fine-tuned) on the Testing Set.

Models BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore
T5 Small 71.75 76.16 66.24 75.55 0.70
T5 Base 71.98 76.28 66.30 75.45 0.70
T5 Large 69.89 75.07 65.19 74.22 0.68

LT3 78.52 78.16 68.72 77.55 0.72

Table 3: Jaccard scores of LT3 and T5 on the testing set
(lower score is better).

Median Jaccard Average Jaccard
LT3 0.650 0.652

T5 Base 0.658 0.660

bels. Compared to reference data, this assertion
is substantiated by our quantitative evaluation re-
sults (refer to Table 2). All five metrics, namely
BLEU, ROUGE-1/2/L, and BERTScore, exhibit
improvements ranging from 3% to 9%. This sup-
ports that, despite generating five times more data
than presented in the testing dataset, the quality of
LT3’s generated prescriptions remains high in quan-
titative evaluation scores. Moreover, LT3 could
generate considerably more diverse samples, as
evidenced by the Jaccard scores in Table 3. 2)
Secondly, we showcased LT3’s ability to gener-
ate a synthetic dataset five times larger than the
original. When fine-tuning Spacy NER on the syn-
thetic and the real data separately, the NER trained
on LT3 demonstrated significant performance im-
provements comparable to the ones obtained on
real data. Our experiments confirmed that the syn-
thetic data was an efficient resource for training a
NER model, which can act as a replacement for the
original dataset extracted from n2c2.

We conclude that LT3 demonstrated its capabil-
ities in generating synthetic medical data. This
proves advantageous due to the non-sensitive na-
ture of synthetic writings, ensuring quality and di-
versity comparable to real data. Furthermore, LT3
has proven to generate significantly larger volumes
of data while preserving the high quality and diver-
sity of generated prescriptions.

In future work, we plan to design new bench-
marks on clinical NLP tasks using synthetic data
to move the field forward. We also plan to con-
duct model training on new label sets such as "di-
agnoses" and generating full clinical letters. Fur-
thermore, generating full sentence-level free text
beyond the prescription level is our next step to

address the low-resource and privacy concerns in
clinical and healthcare NLP.

Limitations

To evaluate the usefulness of generated medical pre-
scriptions, we carried out downstream application
task on training a NER model on medications and
related attributes mining. To evaluate the clinical
soundness of the generated text, we need to carry
out expert-based human evaluation. However, due
to the limitations of resources, we leave this task
into the future work if we manage to recruit experts
such as clinicians who are willing to conduct this
task.

Furthermore, relation extraction and evaluation
shall be considered for automatic setting if possible,
e.g. the relations between drug names and their
strength, form, route, and frequency.

Ethical Considerations

To generate synthetic clinical data, we used the
publicly available n2c2-2018 data set, which is
already annonymised by the shared task organisers.
It does not identify any personal information.
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A Discussion and Comparisons

A.1 On tokenisation

Experiments were conducted to select the most ef-
fective tokenisation strategy for this task, for which
results are summarised in Table 1 and Figure 6.
Three different types of tokenisers were consid-
ered: a custom full-word tokeniser, a pre-trained
word-piece tokeniser (BERT-base-cased), and a pre-
trained sentence-piece tokeniser (T5-base).

Throughout the experiment, LT3 encountered
challenges implementing the full-word tokeniser
built from scratch. Although this tokeniser yielded
overall good performances, it struggled with han-
dling unknown words, for which the only solution
seemed to be significantly expanding the vocabu-
lary size to cover a vast tokenisation space. With-
out an extensive vocabulary, the tokeniser fails to
map unseen words, leading to a lack of contextual
understanding for LT3.

On the other hand, significant improvements
were observed when using the word-piece tokeniser
(BERT) due to his ability to represent any word as
a sequence of smaller sub-words while minimis-
ing its vocabulary size. This allows the model to
effectively handle unseen words and cover a large
tokenisation space to yield better generalisation
capabilities.

Experiments were also carried out using the pre-
trained sentence-piece tokeniser provided by T5.
This tokeniser demonstrated improvements similar
to those of the word-piece tokeniser (BERT), ef-
fectively mitigating the issues faced by the custom
tokeniser. However, we observed that the word-
piece tokeniser (BERT) could generate predictions
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for unseen data at an earlier stage of training com-
pared to the pre-trained sentence-piece tokeniser
(T5). This might be due to LT3 generating short
sentences with low correlation and no repetitive pat-
terns between words, a task for which word-piece
tokenisers may be more adapted.

Considering these factors, we concluded that
the BERT word-piece tokeniser aligned most effec-
tively with our task.

A.2 On Embeddings
Alternatively, this study explored two interesting
embedding methods: transfer learning using pre-
trained embeddings and embedding layers trained
from scratch. Transfer learning used BioBERT
(base-v1.1) embeddings, pre-trained on large med-
ical corpora, including PubMed 1M, while em-
bedding layers were trained during LT3’s training
phase.

Although transfer-learning can provide a solid
foundation for the model, especially when task-
specific data is scarce or when the pre-training do-
main closely matches the task, its experimental
results displayed challenges when applied to our
task (Table 1). Despite training in medical texts,
pre-trained embeddings could not grasp the pre-
scriptions’ nuances and unique formats. This led to
a need for extensive training to overwrite the previ-
ous embeddings, as seen in Figure 6. On the other
hand, embedding layers outperformed pre-trained
embeddings by addressing the task’s unique format
and leveraging the extensive available data. As a
result, LT3 displayed a much better learning shape
and evaluation results when implementing embed-
ding layers.

Note that, when using pre-trained embeddings,
the disparity between the learning curve, which ap-
pears to be reasonably good (Table 1), and the eval-
uation scores, which are rather very low (Figure 6),
is attributed to the application of teacher forcing
during training. This explains that the model with
pre-trained embeddings can accurately predict the
next token, provided with an accurate context and
a generated sequence. However, it struggles when
tasked with independently creating an appropriate
context from the input and generating a complete
sequence that is contextually coherent.

A.3 Comparisons on Beam Search Decoding
Algorithms

To quantify the difference in execution time be-
tween the original BSD algorithm and the proposed

backtracking variant, we ran the following experi-
ment on a TPU v2.

Initially, the validation set is 304 samples di-
vided into 157 unique labels, with a median of 36
samples per label. This experiment used LT3 to
generate four synthetic datasets from the validation
set by increasing its size by 2, 5, 7, and 10. The
increase in size is proportional to the number of
samples per unique label. Hence, the same num-
ber of unique labels remains while the number of
samples increases. For instance, if the first label
has three samples, it will be increased to 6 in the
first synthetic dataset, 15 in the second, etc. Thus,
we force the beam search tree to expand in size for
each label to quantify its impact on the execution
time.

For each synthetic dataset, we use five different
versions of the LT3 model from different check-
points of its training. This is done to simulate the
execution time of the algorithm on models of vary-
ing efficiency and certainty.

In practice, we observe a rather linear increase in
complexity when using both algorithms, reducing
the huge trade-off in their theoretical complexi-
ties. LT3 deals with a limited number of samples
per generation, and the generated sequences are
relatively short. On the other hand, most of the
advantages of the backtracking algorithm are pre-
served.

It is important to note that, whereas B2SD uses
a heuristic function based on the joint probability
of a sequence, this algorithm will perform the best
on well-trained models with certainty in their to-
ken selection, meaning high distinction between
sequence probabilities. This ensures that the algo-
rithm goes straight at generating the most promis-
ing sequences. However, on ineffective or un-
trained models, it may perform slowly as it might
consider many dead-end sequences where proba-
bilities are close to each other due to uncertainty in
token generation.

B Objectives

We highlight our paper below. Contributions This
research project aims to design and develop a task-
specific model architecture for synthetic clinical
text generation that addresses the limitations of
pre-trained models and healthcare analytics safety
issues. The specific objectives include:

Objective 1 Introducing a simpler architecture
than existing pre-trained models, thus accelerating
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the training process by forgoing the pre-training
step and concentrating the model on generating
synthetic clinical letters only.

Objective 2 Customising the model architecture
to capture the unique patterns and dependencies
involved in prescription writing.

Objective 3 Gaining fine-grained control over
the training process, including data preprocessing,
augmentation techniques, and specialised loss func-
tions, to optimise the model for the specific task of
prescription generations.

Objective 4 Incorporating label-to-text genera-
tion into the model architecture to ensure accurate
and contextually appropriate synthetic clinical let-
ter generation.

Objective 5 Comparing the performance of the
proposed task-specific model architecture against
existing pre-trained models to demonstrate its supe-
riority in generating high-quality synthetic clinical
letters.

C Model hyperparameters

We list model parameters in Table 4 where:

• dmodel represents the dimension of the
model’s hidden states or embeddings;

• dff represents the dimension of the feed-
forward network within the Transformer’s
self-attention layers;

• dkv represents the dimension of the query, key,
and value vectors used in the attention compu-
tation.

Figure 8: Quantitative Evaluation Scores of LT3 Models
on the Testing Set
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Figure 9: Average Execution Time of Original BSD and B2SD Algorithms

Parameters LT3 T5 Small T5 Base T5 Large
dmodel 515 512 768 1024
dff 2038 2048 3072 4096
dkv 64 64 64 64
Dropout 0.2 0.1 0.1 0.1
Heads 5 8 12 16
Layers 2 6 12 24
Learning rate 0.0004 0.0004 0.001 0.001
Weight decay 0.02 0.02 0.02 0.02
Epochs 10 12 10 10
Batch size 53 10 10 10
FP16 False False False
Optimizer AdamW AdamW AdamW AdamW
Params (x106) 56 60 220 770

Table 4: Parameters
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Abstract

Clinical coding is a critical task in health-
care, although traditional methods for automat-
ing clinical coding may not provide suffi-
cient explicit evidence for coders in produc-
tion environments. This evidence is crucial,
as medical coders have to make sure there
exists at least one explicit passage in the
input health record that justifies the attribu-
tion of a code. We therefore propose to re-
frame the task as an entity linking problem,
in which each document is annotated with its
set of codes and respective textual evidence,
enabling better human-machine collaboration.
By leveraging parameter-efficient fine-tuning
of Large Language Models (LLMs), together
with constrained decoding, we introduce three
approaches to solve this problem that prove ef-
fective at disambiguating clinical mentions and
that perform well in few-shot scenarios.

1 Introduction

Medical reports are essential documents that detail
patient medical history, procedures, exams, symp-
toms, and diagnoses. Clinical coding involves as-
signing standardized codes, such as those from
ICD-10, to these records. This process is crucial
for hospitals, since it helps justify expenses, secure
funding, or file insurance claims to cover health-
care costs. Furthermore, labeling Electronic Health
Records (EHRs) through clinical coding makes
their data more searchable and suitable for statisti-
cal analysis, e.g. potentially revealing cause-effect
relationships between diseases and symptoms.

Automated solutions can help medical coders by
accelerating their work and reducing errors. How-
ever, traditional automated systems that treat cod-
ing as a Multi-Label Classification (MLC) problem
are often non-explainable (Teng et al., 2023; Dong
et al., 2022), making it difficult for healthcare pro-
fessionals to trust or verify their outputs. If systems
are explainable, we can critically reason about their

decisions, allowing medical practitioners to bet-
ter work alongside AI tools (Arrieta et al., 2020;
Goldberg et al., 2024).

To address these challenges, we propose framing
clinical coding as an entity linking problem. This
particular task involves annotating documents with
specific entities and providing textual evidence for
each one. This could enable clinical coders to un-
derstand where each code is mentioned in a record,
allowing easier cooperation with AI systems. How-
ever, clinical entity linking remains largely under-
explored and lacking in terms of annotated data.

Recently, we have seen several advances in
Transformer-based (Vaswani et al., 2017) Large
Language Models (LLMs), such as LLaMA (Tou-
vron et al., 2023), Mistral (Jiang et al., 2023), or
Gemini (Anil et al., 2023), and in the formulation
of data- and compute-efficient ways to fine-tune
them (Hu et al., 2021; Dettmers et al., 2023). Con-
sequently, we focus on mitigating the above chal-
lenges by exploring clinical entity linking as a gen-
erative task through a biomedical LLM, namely
BioMistral (Labrak et al., 2024). By fine-tuning
an LLM, we aim to develop a system capable of
solving clinical entity linking tasks effectively.

Our contributions are three-fold: (i) we propose
to frame the explainability of ICD coding as an en-
tity linking task; (ii) we investigate the performance
gains of prompting versus fine-tuning a clinical
LLM for this task, evaluating how different formu-
lations for generative entity linking can enhance
model performance; and (iii) we compare the entity
linking approach to MLC, assessing the potential it
has for few-shot classification of mentions.

2 Proposed Approaches

Traditionally, clinical coding is treated as MLC,
in which a model annotates the input medical re-
port with its set of labels. In our setting, we treat
clinical coding as an entity linking problem. This
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means that given a medical report and its set of gold
mentions (i.e., our work assumes mentions have
been pre-detected, for instance, via named entity
recognition), our model must disambiguate each
mention by assigning it the corresponding entity.

The following subsections detail different ap-
proaches for tackling clinical entity linking.

2.1 ICL-BIOMISTRAL

ICL-BIOMISTRAL (in-context learning) prompts
a pre-trained Transformer decoder model. The
prompt comprises a (pre-determined) mention, and
a medical report excerpt, corresponding to the con-
text that surrounds it. The model must output an
ICD-10 code representation, corresponding to the
entity which the mention refers to.

Inspired by Boyle et al. (2023), we designed a
prompt with a short context and the task description.
To improve the model’s capability to solve the task,
we use in-context learning (thoroughly analyzed
by Dong et al. (2024)). As such, we add 10 random
examples to the prompt. We illustrate the prompt
template in Appendix A.

Similarly to GENRE (De Cao et al., 2021), we
use constrained greedy decoding,1 to ensure that
the model output is always a valid ICD-10 code
representation. This is implemented with a pre-
fix tree of all possible outputs, and by forcing the
generated tokens to stay within the set of possible
continuations for titles of ICD codes.

2.2 SFT-BIOMISTRAL

SFT-BIOMISTRAL (supervised fine-tuning) is si-
miliar to ICL-BioMistral, as it also outputs an in-
context mention, given a report excerpt. However,
instead of learning through examples, this model
was fine-tuned on a causal language modeling ob-
jective, where we maximize the conditional proba-
bility for each output token, considering the input
and the expected previously generated output to-
kens (Williams and Zipser, 1989). We consider as
input the prompt (i.e., the task description and con-
text), and compute the cross-entropy loss over the
tokens of the output (the title of the desired ICD-10
code). Decoding with this model again relies on a
constrained decoding algorithm.

2.3 INSGENEL-BIOMISTRAL

Our last proposed model is inspired by INS-
GENEL (Xiao et al., 2023), which is based on

1https://huggingface.co/blog/
constrained-beam-search

GENRE (De Cao et al., 2021). Our model outputs
multiple mention-entity pairs for a medical report
in a single pass. This is closer to the approach clin-
ical coders take when annotating, and it enriches
predictions through the document’s global context,
improving coherence between predictions.

Like GENRE, our model receives a docu-
ment (with gold mentions) and outputs the doc-
ument with annotated mention-entity pairs. Un-
like GENRE, and following INSGENEL, we use a
Transformer decoder to annotate the documents.
The fine-tuning process optimizes a causal lan-
guage modeling objective by learning from super-
vised instruction-response pairs (Ren et al., 2024).
A prompt template is presented in Appendix A.

During inference, we ensure a valid generation
using constrained decoding. We implemented a
function (based on GENRE’s proposal) that re-
ceives the generated tokens and returns the possible
continuations. First, it determines the state as either
outside an entity—which can be the case when pro-
cessing a non-mention or mention token—or inside
an entity—where the model is disambiguating a
mention. If outside an entity, then the possible con-
tinuation is to resume copying the input document.
Otherwise, the model generates an entity represen-
tation. Similarly to our previous approaches, we
use a prefix tree to ensure the model generates valid
ICD-10 code representations.

3 Experimental Setup

To train and evaluate our models, we used pub-
licly available datasets for explainable ICD cod-
ing, i.e. including span evidences for each code,
namely CodiEsp (Miranda-Escalada et al., 2020),
DisTEMIST (Miranda-Escalada et al., 2022), and
MDACE (Cheng et al., 2023). Further details on
these datasets are given in Appendix B. Additional
experimental details are given in Appendix C.

Knowledge Base. In entity linking, entities are
organized in knowledge bases. We focus on the
International Classification of Diseases (ICD)2 cod-
ing system, proposed by the World Health Organi-
zation, as a standardized way of representing diag-
noses and procedures. The ICD is a hierarchical
ontology, as codes are first organized into chapters,
sub-chapters, and partial codes. We considered
version 10, which is divided into ICD-10-CM (for
diagnoses) and ICD-10-PCS (for procedures).

2https://www.who.int/standards/
classifications/classification-of-diseases
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Micro Macro
C

od
iE

sp ICL-BM 6.36 5.93
SFT-BM 63.39 62.41
INSGENEL-BM 66.85 64.40

M
D

A
C

E ICL-BM 10.36 7.79
SFT-BM 64.88 60.94
INSGENEL-BM 57.10 55.45

Table 1: Accuracy in the CodiEsp and MDACE test sets
for the entity linking task. BM denotes BIOMISTRAL.
We highlight in bold the best-in-class performance.

Evaluation Details. In end-to-end entity link-
ing, we distinguish the precision, recall, and F1
metris. In our case, where we used gold men-
tions, these equate to a measure of accuracy, as
explained by Balog (2018). We consider micro-
accuracy (where we average the accuracy of all
mentions) and macro-accuracy (where we compute
the accuracy per document and average all values).
To compare our results with existing work, we com-
puted coding evaluation metrics. By aggregating
all assignments for the entity linking task, we ob-
tain a solution for MLC that can be evaluated with
precision, recall, and F1. These were computed
with the script by Miranda-Escalada et al. (2020).

4 Experimental Results

Table 1 presents our micro- and macro-accuracy on
the CodiEsp and MDACE test datasets.

Practical Highlights. From Table 1, we con-
clude that fine-tuned models perform consider-
ably better than ICL-BIOMISTRAL. We highlight
that SFT-BIOMISTRAL has a stable performance
for both evaluation corpora, whereas INSGENEL-
BIOMISTRAL has limitations in MDACE, which
we hypothesize might be related to the increased
length of the documents. Additionally, we find
that INSGENEL-BIOMISTRAL is beneficial in pro-
duction scenarios: not only does it better alleviate
the coder’s job with its increased accuracy, but it
also deals with all of a document’s mentions si-
multaneously. Nonetheless, clinical coders receive
non-annotated documents and a separate procedure
must be used to recognize and annotate the textual
evidence to which a code should be assigned.

Partial Results. Since the ICD-10 is organized
hierarchically, a wrong prediction can be partially
correct if it determines the code’s ancestors up to

Chap Sub Part

C
od

iE
sp ICL-BM 30.64 18.33 12.55

SFT-BM 85.65 82.27 75.94
INSGENEL-BM 87.79 83.60 78.81

M
D

A
C

E ICL-BM 43.88 33.90 23.35
SFT-BM 89.17 84.84 78.91
INSGENEL-BM 90.09 83.73 76.18

Table 2: Micro-accuracy in the CodiEsp and MDACE
test sets for the entity linking task, considering only
the chapter (Chap), subchapter (Sub), and partial (Part)
code of each ICD-10. BM denotes BIOMISTRAL.

1-shot 5-shot

CodiEsp
SFT-BM 47.49 56.66
INSGENEL-BM 34.97 49.30

MDACE
SFT-BM 36.74 40.89
INSGENEL-BM 24.39 29.66

Table 3: 1- and 5-shot micro-accuracy in the CodiEsp
and MDACE test corpora. BM denotes BIOMISTRAL.

a certain point. We assessed micro-accuracy on
the chapter, subchapter, and partial code levels (a
partial code contains the first three digits of an
ICD), and the results are in Table 2. Both SFT-
BIOMISTRAL and INSGENEL-BIOMISTRAL can
provide orientation helpful in practical scenarios.

Few-shot Analysis. In Table 3, we compare the
few-shot performance for all codes seen at most
once or 5-times during training (1-shot and 5-shot).
The number of such codes in the inference corpora
is given in Appendix B. The model with the best
few-shot performance was SFT-BIOMISTRAL, but
INSGENEL-BIOMISTRAL is nevertheless able to
predict codes trained in few-shot scenarios. We hy-
pothesize that the reduced performance on MDACE
is related to the increased document length, which
may lead to hard long-range dependencies.

4.1 Comparison with Existing Results

The CodiEsp-D and CodiEsp-P tasks can be eval-
uated with MLC metrics, as we explain in §3.
CodiEsp also proposes an end-to-end entity link-
ing task, CodiEsp-X. It is not evaluated with entity
linking metrics, since if a code is mentioned more
than once in the same document, it only needs to
be correctly predicted once to be considered cor-
rect. This means the evaluation micro-metrics for
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Multi-label Classification Entity Linking

CodiEsp-D CodiEsp-P CodiEsp-X

P R F1 P R F1 P R F1

IAM CodiEsp 81.70 59.20 68.70 69.10 42.00 52.20 75.00 52.40 61.10
DAC-E − − 74.40 − − 56.0 − − −
ICL-BM 8.91 7.19 7.96 11.34 12.45 11.87 8.42 7.19 7.76
SFT-BM 75.04 76.20 75.62 34.31 38.53 36.30 64.66 67.10 65.86
INSGENEL-BM 73.93 71.94 72.92 46.26 46.78 46.52 68.34 66.96 67.64

Table 4: Comparison of automated medical coding and entity linking micro performance metrics on the CodiEsp
test set with existing results for the CodiEsp shared task. BM denotes BIOMISTRAL.

CodiEsp-X do not equate to our micro-accuracy.
In Table 4, we compare our results to those of

the challenge’s winner, i.e., the IAM team (Cossin
and Jouhet, 2020), and to a solution that was sub-
sequently proposed, DAC-E (Barros et al., 2022).
These systems are described in Appendix D. Al-
though a strict comparison is not possible, since
we used gold mentions contrarily to the shared
tasks, our fine-tuned models had similar or better
performance in most settings, indicating that our
approaches remain useful in the MLC scenario.

MDACE was proposed for a different task: given
the output of MLC, finding sufficient textual evi-
dence for each code. This means that we cannot
compare with the paper’s benchmarking results.

5 Related Work

We briefly describe previous related work on auto-
mated ICD coding and also on entity linking.

ICD Coding & Explainability. Most solutions
for automated ICD coding are based on MLC. For
example, Barros et al. (2022) leverage the ICD hier-
archy and propose two MLC sub-tasks on different
granularities. Furthermore, many studies have ad-
dressed the importance of solving explainable ICD
coding, so that clinical coders can understand the
system’s decisions. However, most studies focus
on label-wise attention mechanisms (Glen et al.,
2024; Amjad et al., 2023; Figueira et al., 2023),
which are challenging to systematically evaluate,
as pointed out by Teng et al. (2023) and Dong et al.
(2022). More recently, researchers have developed
methodologies to evaluate these interpretability so-
lutions (Edin et al., 2024; Wu et al., 2024).

Entity Linking & Different Entity Linking Ap-
proaches. Entity linking solutions range from

discriminative to generative models. Discrimina-
tive models are the most common, but many state-
of-the-art models, such as those of Yamada et al.
(2022), Ayoola et al. (2022), and Shavarani and
Sarkar (2023), were trained on large corpora (the
Wikipedia), which is not available for our domain.
Generative models require less fine-tuning data to
achieve similar performance. For example, Xiao
et al. (2023) performed better than Ayoola et al.
(2022), using 50 times less data. The model was
inspired by a previous proposal from De Cao et al.
(2021), which uses constrained decoding to ensure
valid generation.

Clinical & Biomedical Entity Linking. The
clinical and biomedical domains are specialized,
and general-purpose models cannot solve clinical
problems, even with a target domain fine-tuning
corpus (Alekseev et al., 2022). Existing work
uses methodologies similar to general-domain al-
gorithms, but with models trained on domain cor-
pora (Yuan et al., 2022a; Agarwal et al., 2022). For
instance, Yuan et al. (2022b) propose a method sim-
ilar to GENRE. In the clinical domain, most entity
linking studies focus on the DisTEMIST (Miranda-
Escalada et al., 2022) and CodiEsp (Miranda-
Escalada et al., 2020) challenges. For example, Gal-
lego et al. (2024) propose a Transformer encoder-
based solution to DisTEMIST.

6 Conclusions

We described three approaches for the clinical en-
tity linking problem, based on BioMistral 7B, that
annotate medical reports with each mention’s ICD-
10 code. The models we fine-tuned, i.e., SFT-
and INSGENEL-BIOMISTRAL, were substantially
better than the prompted ICL-BIOMISTRAL, and
yielded interesting results for few-shot codes.
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Limitations

Our models only deal with the disambiguation sub-
problem of entity linking, using pre-detected men-
tions. Future work should explore mention detec-
tion to obtain an end-to-end solution, which makes
our models useful in production environments.

In addition, our experiments were limited to
three publicly available datasets, which only rep-
resent a small subset of patients, possible medical
conditions, and medical procedures. There is not a
lot of clinical data publicly available to support re-
search studies, especially annotated for entity link-
ing. In the future, we can explore other approaches
to data collection, and even leverage additional
information from clinical knowledge bases, such
additional information in ICD-10 itself and UMLS.

Finally, large generative models such as BioMis-
tral 7B are generally very costly to use. For in-
stance, the IAM system (Cossin and Jouhet, 2020),
based on a dictionary, only takes 5 seconds to run
on an 8 CPUs’ machine. The DAC-E (Barros et al.,
2022) system, while using GPU processing, is also
more efficient as it uses a smaller Transformer en-
coder as the backbone. Future work can perhaps
assess the impact of using LLMs of different sizes.

Ethical Considerations

ICD coding is a sensitive task that influences clini-
cal and financial decisions. In our problem formu-
lation, we facilitate keeping practitioners in charge
of all clinical decisions, as they can critically assess
each model decision. This allows medical coders to
work alongside AI tools, fostering human-machine
collaboration rather than replacing human input,
with basis on the supporting evidence.

Due to restrictions in data access, we used pub-
licly available datasets that only represent a small
part of the target population. To use the MDACE
corpus, we took the Data or Specimens Only Re-
search training course from the CITI program.3
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A Prompt Templates

The prompt used for ICL-BIOMISTRAL is in List-
ing 1. For SFT-BIOMISTRAL, we used a similar
prompt, without the [Example]s. For INSGENEL-
BIOMISTRAL, we used the prompt in Listing 2.
We use a prompt in English, and generate outputs
in English, even with CodiEsp’s Spanish reports.

1 You are a medical coder at a hospital ,
and you have to assign ICD -10 codes
to mentions. I will give you a
report excerpt and a mention that
can be found in that excerpt. Your
job is to associate the mention to
an ICD -10 code.

2 Each code can be a Diagnosis in ICD -10-
CM or a Procedure in ICD -10-PCS. You
should give the ICD -10 code

according to its type (Diagnosis or
Procedure).

3 [Example ]:
4 The following report excerpt , written in

<language >: """<
example_mention_in_context >""",
contains the following mention: <
example_mention >.

5 It corresponds to the ICD -10 entity: <
example_icd >.

6 [Task]:
7 The following report excerpt , written in

<language >: """< mention_in_context
>""", contains the following mention
: <mention >.

8 It corresponds to the ICD -10 entity:

Listing 1: Prompt for ICL-BIOMISTRAL.

1 You are a medical coder at a hospital ,
and you have to assign ICD -10 codes
to mentions.

2 I will give you a medical report , whose
mentions are annotated between { and
}. Your job is to associate each

mention to an ICD -10 code.
3 Each code can be a Diagnosis in ICD -10-

CM or a Procedure in ICD -10-PCS. You
should give the ICD -10 code

according to its type (Diagnosis or
Procedure) and hierarchy , that is,
you should first write the chapter ,
then the subchapter up until the

title of the ICD -10 code , separated
by "-->".

4 ICD -10 codes should be delimited by |
and |.

5 Annotate the following report:
6 <report >

Listing 2: Prompt for INSGENEL-BIOMISTRAL.

B Dataset Details and Statistics

We used three different corpora during training.

• CodiEsp (Miranda-Escalada et al., 2020) con-
sists of Spanish medical reports, which were
manually annotated with their ICD-10 codes
and textual evidence spans. The corpus was
developed for the CodiEsp shared task, which
comprises three sub-tasks: automated ICD
coding for ICD-10-CM (CodiEsp-D) and ICD-
10-PCS (CodiEsp-P), and end-to-end clinical
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Diagnoses Procedures

Reports Samples Codes 1-shot codes Samples Codes 1-shot codes

CodiEsp 500 8, 199 1, 720 618 2, 799 435 86
DisTEMIST 750 1, 912 451 176 23 4 1
MDACE 181 4, 993 966 446 168 89 61

Total 1, 431 15, 104 2, 513 912 2, 990 515 138

Table 5: Datasets used for training. Codes refers to the number of distinct ICD-10 codes in the training data, and
1-shot codes refers to the number of codes that only appear once.

CodiEsp MDACE

No. 1-shot codes 219 49
No. 5-shot codes 923 203

Table 6: Number of 1-shot and 5-shot codes in the
CodiEsp and MDACE test sets, considering the number
of times they were seen in the training corpus.

entity linking for ICD-10 (CodiEsp-X).

• DisTEMIST (Miranda-Escalada et al., 2022)
comprises medical reports in Spanish and En-
glish (we only used the English version), man-
ually annotated with their SNOMED CT dis-
ease codes and textual evidence spans. The
authors mapped the SNOMED CT codes to
ICD-10 using UMLS. This mapping was only
performed for the training data, so we could
not evaluate our model’s performance on the
DisTEMIST validation and test splits.

• MDACE (Cheng et al., 2023) consists of En-
glish medical reports, which are part of the
MIMIC-III collection (Johnson et al., 2016),
with manually annotated ICD-10 codes and
respective textual evidence spans.

The number of test few-shot codes is in Table 6.
Table 5 summarizes the training datasets.

C Experimental Details

Our models were initialized with BioMistral-
7B (Labrak et al., 2024). SFT- and INSGENEL-
BIOMISTRAL were fine-tuned for 5 epochs on an
NVIDIA RTX A6000 GPU for 20 hours, with a
batch size of 4. We used QLoRA (Dettmers et al.,
2023), with rank r = 64 and 4-bit NF quantization,
and the AdamW (Loshchilov and Hutter, 2019) op-
timizer with a learning rate of 2 ∗ 10−4 and weight
decay equal to 10−3. For inference, models were

loaded without quantization on the same GPU, and
we used the same batch sizes and a greedy decoding
strategy. Inference took 8 hours for all datasets.

For INSGENEL-BIOMISTRAL, to ensure all
training samples did not exceed the model’s con-
text window of 8, 192 tokens, we truncated all doc-
uments to 5, 000 characters. During inference, the
entire documents were processed.

D Comparison Systems

In Table 4, we compare our experimental results on
the CodiEsp test corpus with those of the IAM and
DAC-E systems, which work as follows:

• The IAM (Cossin and Jouhet, 2020) system
performs explainable ICD coding. It starts by
normalizing every document in the training
data, and composing a dictionary whose items
are the normalized mentions (denoted terms)
and their corresponding ground-truth ICD-10
codes. Additionally, the KB entities’ normal-
ized titles are added to the dictionary. Then,
each dictionary term is tokenized and stored
in an n-gram tree. For inference, a matching
algorithm parses each document’s tokens to
find matching dictionary entries. Three match-
ing strategies are employed: perfect matching,
abbreviation matching (where a hand-crafted
dictionary of abbreviations is used), and Lev-
enshtein distance-based matching.

• The DAC-E (Barros et al., 2022) approach
is not as directly explainable, as it treats
ICD coding as MLC. This system comprises
two sub-tasks, respectively performed by
matcher and ranker models. The matcher as-
sociates documents to clusters (the chapters in
ICD-10), leveraging a biomedical RoBERTa
model (Liu et al., 2019). The ranker computes
the likelihood of each code being present in
a document, considering its chapter. It was
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implemented with a binary classifier for each
code, trained only with documents with codes
in the same cluster, for better fine-grained dif-
ferentiation. The ranker was trained using the
XGBoost algorithm (Chen et al., 2015).
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Abstract
The remarkable results shown by medical
question-answering systems lead to their
adoption in real-life applications. The systems,
however, may misinform the users, even when
drawing on scientific evidence to ground the
results. The quality of the answers may
be verified by the users if they analyze the
evidence provided by the systems. User
interfaces play an important role in engaging
the users. While studies of the user interfaces
for biomedical literature search and clinical
decision support are abundant, little is known
about users’ interactions with medical question
answering systems and the impact of these
systems on health-related decisions. In a study
of several different user interface layouts, we
found that only a small number of participants
followed the links to verify automatically
generated answers, independently of the
interface design. The users who followed the
links made better health-related decisions.

1 Introduction

The 2022 Health Information National Trends
Survey highlighted the pervasive presence of
health misinformation in social media and
particular vulnerability of younger adults (18-34)
to it (Chandrasekaran et al., 2024). Misinformation
generated by Large Language Models (LLMs),
referred to as hallucinations, is a known problem
that instigated research in approaches that require
LLMs provide references for each fact stated in
the answer. A community-wide evaluation of the
evidence provided by LLMs to support answers to
medical questions shows that some of the provided
references are irrelevant, do not support or even
contradict the answer statements (Gupta et al.,
2024). Having a question answering system to
provide evidence is, therefore, not enough: it is also
important to provide easy access to evidence and
encourage its exploration through user interface
design (Hullman and Gelman, 2021).

While research on interface design to support
clinical decisions is substantial, it mostly addresses
supporting clinical workflows and, based on many
studies, recommends minimizing cognitive load by
reducing the number of mouse clicks, among other
approaches (Miller et al., 2018). Our objective,
however is to find a layout that may encourage the
users to drill down and analyze the evidence, i.e.,
increase the click-through without overwhelming
the users. A study of strategies that ensure the
users remain engaged with mobile phone health
applications showed that the number of clicks
increased due to content and graphics, among other
factors (Moungui et al., 2024). Similarly to our
goals, medical conversational agents are interested
in keeping the users engaged. A recent review
on artificial intelligence-based question-answering
systems in health care, however, found that more is
reported on the systems’ effectiveness, and less is
known about their use (Budler et al., 2023).

In this work, we explore several UI/UX
design choices to determine if highlighting access
to evidence leads to better use of evidence
and, subsequently, better health-related decisions.
Specifically, we studied if interleaving the links to
evidence with answer sentences and highlighting
the links with graphics, as well as making the
images illustrating the answers more visible and
clickable will lead to increased engagement of the
users. In addition, after reviewing the answer and
the evidence provided for a given health-related
scenario, the users were asked to make a health-
related decision or answer a health-related question
on the topic of the scenario.

The results of this pilot study show an alarming
tendency among the young and well-educated
users with fair health literacy levels to blindly
accept the displayed answer and subsequently
make suboptimal health-related decisions. Only
about a third of the study participants explored the
evidence. These participants made better health-
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Figure 1: A user interface design with answer sentences
interleaved with references, vertical figure bar, and links made
more prominent using icons.

related decisions.

2 Methods

To eliminate biases introduced by the order of
presentation of the layouts and health scenarios,
we chose the Latin Square design for our
experiment (Richardson, 2018). We developed
eight health scenarios containing a question,
reference answers composed using reliable sources,
and found relevant images linked to evidence using
an image search engine. Using these scenarios, we
studied two variants each of 1) answer layout & link
placement, 2) image placement, and 3) augmenting
the links with icons, making it 8 different types of
interface from A to H. The answer was displayed as
a paragraph followed by the references, or sentence
by sentence interleaved with references as shown
in Figure 1. The related pictures were shown in a
horizontal or vertical image scroll bar.

We recruited eight students from a convenience
sample of summer interns in the age range found
most vulnerable in the 2022 Health Information
National Trends Survey. Their educational
background ranged from incoming college
freshman to graduate level. A health literacy
evaluation of the participants was performed to
assess their medical data interpretation skills. This
evaluation was performed in a classroom setting
with limited time, to capture most accurate user
health literacy information about the participants.
We have used the test designed by Schwartz,
Woloshin and Welch to establish the basic
attributes, reliability and validity of a medical
data interpretation test in a group of people with
a wide range of quantitative abilities (Schwartz

Scenario
User 1 2 3 4 5 6 7 8
1 A B H C G D F E
2 B C A D H E G F
3 C D B E A F H G
4 D E C F B G A H
5 E F D G C H B A
6 F G E H D A C B
7 G H F A E B D C
8 H A G B F C E D

Table 1: Different interface types used in 8x8 Latin square
design. Conditions – text: blob (TB), sentence-by-sentence
(TS); pictures: Vertical (PV), Horizontal (PH); links: Text
(LT), icons (LI). A: TB, PV, LT; B: TS, PV, LT; C: TB, PH,
LT; D: TS, PH, LT; E: TB, PV, LI; F: TS, PV, LI; G: TB, PH,
LI; H: TS, PH, LI

et al., 2005). In their experiment, the scores were
normally distributed with a mean score of 61 and
standard deviation of 17. Based on this mean
score and the scores in our test, we divided the
participants into 3 bins with score ranges 0 to 43,
44 to 78 and 78 to 100.

After completing the health literacy test, the
students were given access to a web-based
evaluation interface that displayed the eight
questions according to the random Latin Square
shown in Table 1. The questions were selected
to reflect three levels of difficulty: factoid
questions, questions about treatment effects, and
information needed to support clinical decisions.
The participants were instructed to read the
scenario, and explore the answer and the presented
evidence until they believed they could act on
the information. In the next screen, they were
presented with multiple choice answers / actions,
from which they had to select one. For example,
for the scenario shown in Figure 1, the choices
where: a) Give your elbow some rest, apply hot or
cold, take more painkillers. b) Ask your doctor for
advice. c) Ask your doctor for steroid injection. d)
Ask your doctor about the experimental treatments
such as acupuncture. e) Ask your doctor to refer
you to see a surgeon.

During the evaluation, all user actions were
captured by the interface. Interactions, such as
link clicks to patient-oriented reputable websites,
data popup clicks (which displayed the original
scientific publications corresponding to the patient-
oriented materials accessible through the links),
and related image scrolls were captured. Number
of links clicked by the participants were recorded.
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Time spent on every question by participants was
also captured. After completing all eight scenarios,
the participants completed a survey.

The survey asked which parts of the presented
evidence informed the user’s answers to the
questions and decisions for immediate actions. It
also asked if the answers were supported by the
provided evidence and if the user felt a need to
verify the answer before acting on it. Finally, the
survey asked if the users would change any of the
answers to the above questions if they knew the
whole process was automated. After the study, the
preferences for the page layout were discussed in
the focus group with study participants.

2.1 Data Analysis

We assessed the responses to the selection of
multiple choice answers/actions for a given
scenario in two ways. In a strict evaluation,
participants were awarded 1 point for each correct
answer and 0 points for incorrect answers. Since
the second choices for most questions are also
reasonable, in a more lenient evaluation, the best
answers received 2 points, while the second-best
answers were assigned 1 point and the other
answers received 0 points. We used Analysis of
Variance (ANOVA) python package (Seabold and
Perktold, 2010) for three factor design to analyze
the effect of participants, questions, and interface
types on use of evidence.

3 Results and Discussion

User Score Group
1 67 2
2 33 1
3 44 2
4 67 2
5 78 3
6 72 2
7 56 2
8 78 3

Table 2: Health literacy scores.

Health literacy, defined as capacity to understand
basic health information needed to make
appropriate health decisions, was measured
solely to mitigate the potential bias introduced
by different health literacy levels. Our study
participants were at least at the basic health literacy
level, most of them were at the intermediate level,

Source SS DF F Pr(>F)
Participants 1.11 7 1.18 0.34
Questions 7.86 7 8.34 0.001
Interface 1.36 7 1.44 0.21
Residual 5.66 42 NA NA

(a) ANOVA results for strict evaluation of health-related
decisions.

Source SS DF F Pr(>F)
Participants 2.67 7 1.28 0.29
Questions 7.94 7 3.78 0.002
Interface 2.19 7 1.04 0.42
Residual 12.63 42 NA NA

(b) ANOVA results for lenient evaluation of health-related
decisions.

Source SS DF F Pr(>F)
Participants 24103 7 2.99 0.01
Questions 13794 7 1.7 0.127
Time 6667 7 0.826 0.57
Residual 40682 42 NA NA

(c) ANOVA table, results for time spent on every question by
each participant.

SS: Sum of squares
DF: Degree of freedom
F: F score
Pr(>F): P value

Table 3: ANOVA results for strict and lenient evaluation of
the use of evidence in health-related decisions.

and two had high health literacy level as shown in
Table 2. This finding agrees with the results of
health literacy evaluation of college students that
showed the university students seem to have good
health literacy levels that would allow them to
navigate the health care system (Ickes and Cottrell,
2010). The results of the literacy tests were not
shared with the participants.

Table 3a presents the ANOVA results for the
strict evaluation of the use of evidence in health-
related decisions, while Table 3b shows the results
for the lenient evaluation. In both evaluations, only
the questions significantly affect the participants’
decisions (p = 0.001 and p = 0.002).

On the aggregation of points scored by the
participants, we find the Interface type C has
achieved the highest scores (5 and 14) for both the
methods of scoring. This suggests that participants
could analyze and retain the data presented in
this layout better. The focus group discussion
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confirmed that the participants preferred seeing
the whole answer (rather than the individual facts
interleaved with links to evidence), along with
a horizontal image scroll bar, and the text only
links to related research and clinical evidence. See
Appendix D that shows the most and least popular
interface designs.

Only 3 participants consistently clicked the links
to patient-oriented evidence. Only 2 participants
looked at scientific evidence (data pop-ups). Only
one participant scrolled through the images on
the screen. It shows that despite the preference
for layout C, none of the layouts consistently
engaged the users to drill through to the evidence.
This suggests that the UI/UX we tested did not
motivate the participants to check for evidence.
Rather, the decision to seek supporting evidence
was driven by their background knowledge, level
of understanding, and confidence in the generated
answers.

For the three users that engaged in interactions,
we found a moderately positive correlation between
the total number of user interactions and the
score on health-related decisions. (See Appendix
B ). The participants who interacted more with
the interface answered the follow-up questions
better. Appendix C shows the amount of time
spent by participants on the answer and evidence
analysis before answering the follow-up question.
ANOVA results in Table 3c show that variance
in participants is statistically significant (p =
0.01), hence, the time spent on questions by
every participant is not random, and a pattern
is observed in user interactions. A moderately
positive correlation in the amount of time spent on
a question and score on the answers to follow-up
questions and decisions was observed (see Table 4).
It can be said that participants who spent more time
reviewing the provided answers to the questions
have answered the follow-up questions better.

The analysis of the exit survey results shows that
all participants preferred information for patients,
indicating a specialized patient-friendly system
is needed. Only three participants did not trust
the answer, they were the same participants that
followed the links. This means that it’s the
application’s responsibility to verify the correctness
and accuracy of the user-facing information and
ensure the information is absolutely trustworthy.
This recommendation is reinforced by the fact
that only one participant would make a distinction
between the answers generated automatically and

User HL SS LS Clicks Time (ms)
1 2 5 13 12 2968
2 1 5 13 34 895
3 2 2 9 20 859
4 2 3 11 4 675
5 3 4 12 1 326
6 2 4 10 2 408
7 2 3 9 2 815
8 3 5 13 125 2409

Table 4: Users scores on the health-related decisions, their
health literacy levels, and activity and time spent reviewing
the answers to health scenario questions. HL - health literacy,
SS - strict score, LS - lenient score.

manually. The remaining seven participants
indicated it doesn’t matter how the answer is
generated.

4 Conclusion

Our study of the UI/UX designs for engaging
users to verify the answers to their health-related
questions shows that well-educated young adults
with intermediate health literacy prefer seeing a
full answer with unobtrusive links to supporting
evidence and having illustrations below the answer.
Studying the evidence provided to support the
answers is associated with better scores on health-
related decisions and medical topic understanding
tasks. To confirm the association is significant
and the results are generalizable, larger number of
participants from more diverse population groups
are needed. More studies are also needed to refine
UI/UX design that engages the users and leads
to optimal health-related decisions. Our results
indicate that the majority of the users will not
attempt to verify the answer reliability, which
implies the onus of ensuring the correctness and
accuracy of the answers is on the systems. The
users who followed the links preferred reliable
patient-oriented sources, which emphasizes the
need for having such resources current, maintained,
and curated by experts.

5 Future Works

In this pilot study, we experimented with only 8
users for the design choices of UI/UX to determine
the appropriate way to highlight the evidence that
may lead to better health-related decisions. In the
future, we plan to extend the experiments with a
more diverse and larger pool of users. We also plan
to enrich the experimental setups with sophisticated
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tracking, such as eye gaze tracking (Wasfy et al.,
2024), qualitative user feedback, and longitudinal
studies (Kujala et al., 2011) to measure lasting
behavior changes. We also plan to introduce more
variables in designing choices by experimenting
with different color schemes and font emphasis. To
determine the usability of the UI/UX component,
we plan to design a thorough questionnaire to
assess the system Usability Scale (SUS) for better
UI/UX designs of an effective QA system.

Limitations
This pilot study focused on a single age group.
Although deemed vulnerable, the group is more
technology savvy and better educated than
many other population groups. To determine
if the interaction patterns and health-related
behavior displayed by this group is representative
of the overall population, broader studies are
needed. We hope that the study design and the
evaluation interface code https://github.com/
soumyagayen/chqa-interface-evaluation
will help conducting more studies of the use of
online medical question answering system and
conversational agents.

Ethical Considerations
The patients’ cases in this study were derived
from the questions provided in the publicly
available medical questions collections. The
study participants volunteered and consented to
participate in the study as part of their paid
internship.

Data and code availability
All use cases, surveys and code are available
at https://github.com/soumyagayen/
chqa-interface-evaluation.
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Appendix

A Health-related decision and topic
understanding evaluation results for
each participant

Scenario ID
1 2 3 4 5 6 7 8

Participant

1 1 0 1 1 0 1 0 1
2 1 1 1 1 0 0 0 1
3 1 0 0 1 0 0 0 0
4 1 0 1 1 0 0 0 0
5 1 0 1 1 0 1 0 0
6 1 1 1 0 0 1 0 0
7 0 0 1 1 0 0 0 1
8 1 0 1 1 0 1 0 1

Table 5: Strict evaluation results.

Scenario ID
1 2 3 4 5 6 7 8

Participant

1 2 1 2 2 1 2 1 2
2 2 2 2 2 1 1 1 2
3 2 1 0 2 1 1 1 1
4 2 1 2 2 1 1 1 1
5 2 1 2 2 1 2 1 1
6 2 2 2 0 0 2 1 1
7 0 1 2 2 0 1 1 2
8 2 1 2 2 1 2 1 2

Table 6: Lenient evaluation.

B User behavior and interactions

Scenario ID
1 2 3 4 5 6 7 8

Participant

1 4 1 2 1 1 0 0 0
2 0 5 2 0 0 2 1 0
3 19 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 2 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0
8 23 9 7 6 10 7 5 0

Table 7: Number of links clicked by each participant on every
question.

Scenario ID
1 2 3 4 5 6 7 8

Participant

1 3 0 0 0 0 0 0 0
2 0 0 3 0 0 6 7 0
3 0 1 0 0 0 0 0 0
4 3 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0 0
8 4 6 0 0 5 6 0 0

Table 8: Number of popups (link to scientific evidence)
opened by each participant on every question.

Scenario ID
1 2 3 4 5 6 7 8

Participant

1 0 0 0 0 0 0 0 0
2 8 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 16 0 12 0 0 9 0 0

Table 9: Number of times the images have been scrolled by
each participant on every question.

C Time spent on questions

Scenario ID
1 2 3 4 5 6 7 8

Participant

1 1040 87 1261 159 266 45 66 44
2 205 111 149 90 106 96 92 46
3 368 138 24 27 57 16 206 23
4 200 47 54 40 71 88 67 108
5 146 40 14 26 19 35 18 28
6 78 43 42 60 45 45 46 49
7 101 94 73 81 58 66 57 285
8 814 351 224 234 120 226 240 200

Table 10: Time spent by each participant on every question
in seconds.
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D Interface screen shots

Figure 2: Most popular interface Type C - (TB,PH,LT)
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Figure 3: Least popular interface Type B - (TS,PV,LT)
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Abstract

Chronic Kidney Disease (CKD) is a global
health challenge, affecting 5–10% of the pop-
ulation, with a significant burden on health-
care systems. Early prediction of CKD pro-
gression from stage III to stage V is crucial to
enable timely interventions. Traditional pre-
dictive methods rely on biochemical markers
and demographic factors, but are often limited
by issues such as missing data and reliance
on structured inputs. This study explores the
potential of several encoder-based language
models, to predict CKD progression using a
cohort from the Clinical Practice Research
Datalink (CPRD) GOLD database. We applied
both Full Fine-Tuning (FFT) and Parameter-
Efficient Fine-Tuning (PEFT) with LoRA to
pre-trained models, comparing them against
traditional machine learning algorithms such
as Random Forest and XGBoost. Our results
show that fine-tuned models, particularly dmis-
lab/biobert-v1.1-FFT, outperform traditional
models in predicting CKD progression, with an
AUC of 0.7787, precision of 0.7261, and accu-
racy of 0.7045. Although LoRA-based models
are more computationally efficient, they con-
sistenly exhibit lower performance. These find-
ings suggest that fine-tuned encoder models
hold significant potential for improving CKD
progression prediction. However, there is still
room for further enhancement in their accuracy
and applicability in clinical settings.

1 Introduction and Related Work

1.1 Introduction

Chronic Kidney Disease (CKD) is one of the
leading causes of mortality worldwide, affecting
approximately 5–10% of the global population
(Eknoyan et al., 2004; Martínez-Castelao et al.,
2014). The disease imposes a significant burden on
healthcare systems, and early prediction of CKD
progression is crucial for improving patient out-
comes. CKD is classified into five stages: stage I,

stage II, stage III, stage IV, and stage V —based
on estimated glomerular filtration rate (eGFR) val-
ues: stage I (eGFR 90), stage II (60 eGFR 89),
stage III (30 eGFR 59), stage IV (15 eGFR 29),
and stage V (eGFR < 15). Accurate prediction of
progression from stage III to stage V is critical to
enable timely interventions that can help mitigate
associated risks.

The United States Renal Data System (USRDS)
report indicates that approximately 35.4% of CKD
patients are referred to interdisciplinary programs
later than recommended, likely due to insufficient
risk profile classification (Isaza-Ruget et al., 2024;
Mendelssohn et al., 2009). This delay can com-
promise the effectiveness of potential treatments,
highlighting the need for more efficient methods of
early detection and intervention.

Current predictive methods rely heavily on bio-
chemical markers like urinary albumin/creatinine
ratio (uACR), eGFR, and demographic factors such
as age and sex. While these models are useful, they
often suffer from limitations, such as missing data
in biochemical measures, making imputation unre-
liable and potentially leading to biased predictions.
However, it is important to note that bias is not
exclusive to these methods—pre-trained language
models and other machine learning approaches can
also exhibit biases, depending on data distributions.
Additionally, existing risk calculators are often con-
strained by structured data and require extensive
manual feature engineering, which can limit their
flexibility and adaptability.

The potential for language models to improve
CKD progression prediction remains largely unex-
plored, especially in the context of large, complex
datasets such as those from the Clinical Practice
Research Datalink (CPRD). This study seeks to ad-
dress this gap by applying state-of-the-art encoder
models like BioBERT and ClinicalBERT to pre-
dict CKD progression, focusing on domain-specific
fine-tuning to improve prediction accuracy. The
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motivation for this approach stems from the recog-
nition that language models pre-trained on medical
texts can uncover subtle patterns in clinical data
that traditional models may miss.

Our key contributions are as follows:

• Comparing domain-specific and general-
domain BERT models for CKD progression
prediction.

• Benchmarking BERT models against tradi-
tional machine learning approaches (XGBoost
and Random Forest).

• Assessing Parameter-Efficient Fine-Tuning
(PEFT) as a resource-efficient adaptation
method.

1.2 Related Work
A significant body of research has focused on pre-
dicting CKD progression using machine learning
models. For instance, a study by Isaza-Ruget et al.
(2024) utilized logistic regression, random forests,
and neural networks for CKD progression predic-
tion. This study incorporated a variety of patient
features, including demographics, lab results, and
comorbidities, to build a robust risk prediction
model. Despite promising results, traditional mod-
els like these are often constrained by the need
for structured data and manual feature engineering,
which can limit their scalability and accuracy when
applied to diverse populations.

Similarly, Klinrisk’s proprietary machine learn-
ing model (Tangri et al., 2024), validated in clinical
trial populations such as CANVAS (Neal et al.,
2013) and CREDENCE (Jardine et al., 2018),
demonstrated improved prediction of CKD progres-
sion compared to the Kidney Disease Improving
Global Outcomes (KDIGO) heatmaps and kidney
failure risk equations (KFRE). These models rely
on routinely collected laboratory data like eGFR
and albuminuria. However, they still face chal-
lenges when dealing with unstructured clinical data
or missing information, which transformer models
could address more effectively. The study by Zhu
et al. (2023), employs recurrent neural networks for
CKD progression prediction. Their model achieved
an AUROC of 0.957 with eGFR time-series data
alone, improving to 0.967 with additional clinical
variables.

In a similar vein, Reddy et al. (2024) developed
explainable machine learning models, including
decision trees and random forests, to predict CKD

progression. Their models achieved high predic-
tive accuracy (ROC-AUC: 0.94–0.98) using key
variables like eGFR slope and recent eGFR.

Saito et al. (2024) applied time-series cluster-
ing and LightGBM to stratify patients based on
eGFR trajectories, achieving a prediction accu-
racy of 0.675. According to Shapley values, the
most predictive features included baseline eGFR,
hemoglobin, and BMI, reinforcing the importance
of these variables in forecasting renal function de-
cline.

2 Methodology

This study aimed to predict the progression of
chronic kidney disease (CKD) from stage III (CKD
III) to stage V (CKD V) using a cohort of patients
from the CPRD GOLD database. To address class
imbalance, we employed age as a covariate in the
propensity score matching process, ensuring com-
parability between patients with differing progres-
sion outcomes. For prediction, we utilised machine
learning models, including traditional algorithms
(Random Forest and XGBoost) and encoder-based
language models. Our goal was to develop mod-
els for predicting CKD progression using both ap-
proaches.

We fine-tuned pre-trained models using Full
Fine-Tuning (FFT) and Parameter-Efficient Fine-
Tuning (PEFT) with LoRA, while also optimizing
hyperparameters for Random Forest and XGBoost
models. The following sections detail these ap-
proaches, including their implementation and eval-
uation.

2.1 Cohort Selection Criteria

We selected patients from the CPRD GOLD
database who were registered in a GP practice be-
tween 01/01/2010 and 31/12/2020, aged 16 years
or older, and had two or more long-term conditions
(LTCs). We used READ v2 and ICD10 codes to
identify individuals with CKD, specifically target-
ing stages III and V. A list of the relevant codes is
available in the provided GitHub link. We excluded
secondary care events that occurred after patients
were transferred out of their GP practices, result-
ing in a distribution of 206,553 patients in class
0 (CKD3) and 4,606 patients in class 1 (CKD5).
We then refined the cohort by removing patients
from the negative class (CKD3) who had a median
follow-up period of less than 6 years-2.4 months,
excluding 93,926 patients. We also excluded 166
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patients with terms related to preparatory care for
dialysis, renal transplant planning, ligation of arte-
riovenous dialysis fistulas, acute hypercalcaemia
of dialysis, or creation of graft fistulas for dialy-
sis. The final cohort comprised 122,267 patients
in class 0 (CKD3) and 4,606 patients in class 1
(CKD5).

2.2 Age-Matched Cohort

To reduce bias from confounding variables and
address the extreme imbalance between the neg-
ative and positive classes in our dataset, we used
the MatchIt R package with 1:1 nearest neighbor
(NN) for propensity score matching (PSM). This
approach matched patients from the CKD progres-
sion group with those from the non-progression
group based on the key covariate: age. By min-
imising the confounding effect of age, which sig-
nificantly influences CKD progression, we ensured
a balanced and fair comparison between the two
groups, despite the severe class imbalance. We
chose age as the sole matching criterion because it
is a critical risk factor for CKD progression. Differ-
entiating between physiological and pathological
kidney function decline becomes increasingly chal-
lenging with age (Noronha et al., 2022). Balancing
the age distribution between the progression and
non-progression cohorts was essential, given the
strong link between ageing and renal function de-
cline. After matching, the dataset included 4,596
instances in both the positive and negative classes.

2.3 Data Summary Statistics Table

Table 1 summarizes the key characteristics of the
dataset, providing an overview of the variables and
their distribution, which informs the subsequent
analysis.

2.4 Full fine-tuning and Parameter Efficient
fine-tuning (LoRA)

We framed CKD progression prediction as a se-
quence classification task, where each input se-
quence S represents a concatenation of patient-
specific attributes and can be defined as in Equa-
tion 1. :

S = [E,C1, P1, C2, P2, . . . , Cn, Pn], (1)

where E denotes the patient’s ethnicity, Ci repre-
sents the i-th LTC, and Pi denotes the i-th con-
tinuous prescription. A list of all possible LTCs

can be found in the GitHub link: AI MULTIPLY
GOLD Read Codes. A continuous prescription
is defined as a group of consecutive prescriptions
where each pair of prescriptions is at most 84 days
(Guthrie et al., 2011) apart. This group of con-
secutive prescriptions must contain at least three
prescriptions (Connor et al., 2024). We included
continuous prescriptions in our analysis that are
known to be associated with drug-induced renal in-
jury and nephrotoxicity. A comprehensive list can
be found in (Connor et al., 2024). The sequence
length is variable and depends on the number of
recorded conditions and prescriptions for each pa-
tient. Labels were assigned as y=1 for cases (pro-
gression) and y=0 for controls (non-progression).
To reduce potential confounding, we introduced a
6-month buffer period before CKD stage III diagno-
sis, excluding clinical events that occurred within
this window. A patient’s CKD stage III diagnosis
date might not reflect the exact onset of kidney dys-
function. Events occurring just before diagnosis
might be influenced by external factors rather than
true disease progression.

3 Experimental Setup

We evaluated several pre-trained encoder-based
models, including UFNLP/gatortron-base
(Yang et al., 2022), bert-base-uncased (De-
vlin, 2018), dmis-lab/biobert-v1.1 (Lee et al.,
2020), microsoft/BiomedNLP-BiomedBERT-
base-uncased-abstract-fulltext (Gu et al.,
2021), allenai/scibert_scivocab_uncased
(Beltagy et al., 2019),
bionlp/bluebert_pubmed_mimic_uncased_L
(Peng et al., 2019), and medicalai/ClinicalBERT
(Huang et al., 2019). Model training was conducted
using the Hugging Face Transformers library, with
each model fine-tuned over three epochs. We
tokenised the sequences to a maximum context
length of 512, used a learning rate of 2e-5, and
used AdamW optimization with weight decay of
0.001. Stepwise decay of the learning rate (gamma
= 0.1) was applied, along with gradient clipping
(max norm 1.0) to prevent exploding gradients.
Early stopping was used to stop training when the
validation error did not improve.

We compared LoRA (Low-Rank Adaptation)
(Hu et al., 2021) and full fine-tuning (FFT) for
CKD progression prediction, both of which used
similar configurations (learning rate of 2e-5, 5
epochs, maximum sequence length of 512, and
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Table 1: Summary Statistics of CKD Cohort

Variable Class 1 (N = 4,596 ) Class 0 (N = 4,596)
Age (mean ± SD) 66.34 ± 14.37 66.51 ± 13.84
Sex (Male / Female) 2,663 / 1,933 2,705 / 1,891
Ethnicity - -

White (%) 86.79 88.79
Black or Black British (%) 2.08 3.62
Asian or Asian British (%) 6.82 2.78
Mixed (%) 0.67 0.34
Unknown (%) 0.36 5.14
Chinese or Other Group (%) 1.71 0.84

Median progression time Stage V 6.24 years NA

batch size of 8). In full fine-tuning (FFT), all model
parameters are updated during training, which can
be computationally expensive. In contrast, LoRA
adapts the model weights using low-rank matri-
ces with a reduced number of trainable parameters.
Specifically, we apply a LoRA adaptation param-
eter r=16, which controls the rank of the matrices
and significantly reduces the number of parameters
being trained. This makes LoRA a more compu-
tationally efficient alternative to full fine-tuning,
particularly for large pre-trained models.

Both methods were evaluated using stratified 5-
Fold cross-validation, where each fold was split
into training, validation, and test sets. The valida-
tion set comprised 10% of the training data, strati-
fied by class labels. We reported the performance
metrics (accuracy, F1-score, precision, recall, and
AUC) averaged across folds, using mean values.

We tokenised and encoded input sequences us-
ing each model’s corresponding tokeniser, apply-
ing padding and truncation to ensure uniform in-
put lengths. Training was performed with a batch
size of 32 for FFT and 8 for LoRA, and Data-
Parallel was used when multiple GPUs were avail-
able. The validation performance was assessed
after each epoch, and the model with the lowest
validation loss was selected for testing. The train-
ing process involved optimizing the models using
the AdamW optimizer with weight decay and ad-
justing the learning rate using stepwise decay.

For each fold, the best model was evaluated on
the corresponding test set. Predictions were made
using softmax probabilities, which allowed us to
compute additional metrics such as area under the
receiver operating characteristic curve (AU-ROC),
accuracy, precision and recall.

For the tabular models, we conducted a grid

search to optimize hyperparameters for XGBoost
(learning rate, max depth, and number of estima-
tors) and Random Forest (number of estimators,
max depth, and minimum samples per split). We
employed 5-fold cross-validation, training the mod-
els on training subsets and evaluating them on val-
idation subsets. We report averaged performance
metrics: accuracy, F1 score, precision, recall, and
ROC AUC—across folds and record the best per-
forming hyperparameter configurations for each
metric.

4 Evaluation and Results

Figure 1 compares the performance of various mod-
els using five metrics: Accuracy, F1, Precision, Re-
call, and AUC (Area Under the Curve). Models
evaluated include different fine-tuning strategies
FFT and LoRA in addition to RF and XGBoost.

The model dmis-lab/biobert-v1.1-FFT has the
highest performance across most metrics, partic-
ularly AUC (0.7787), Precision (0.7261), Accu-
racy (0.7045) and F1 scores (0.6890). Its recall is
low (0.6622), meaning the model is highly selec-
tive in identifying progression but fails to detect
many actual cases. In practice, this could mean
missing patients whose disease progression might
have slowed with earlier intervention. While some
models like UFLNLP/gatortron-base-FFT perform
well in accuracy (0.7034) and recall (0.7293), they
slightly lag in precision (0.6477), which might not
be ideal for our clinical applications. The contrast-
ing performance of our fine-tuned models in pre-
cision and recall highlights the trade-off between
these two metrics. A potential approach to mitigate
this is employing a Mixture of Experts (MoE) ar-
chitecture with a gating mechanism. Future work
will explore MoE’s effectiveness in optimizing both
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Figure 1: Heatmap of performances across various metrics.

precision and recall in CKD progression prediction.
Models fine-tuned using FFT generally outper-

form their LoRA counterparts across all metrics.
This trend is consistent for models like bert-base-
uncased, allenai/scibert_scivocab_uncased, and
microsoft/BiomedNLP-BiomedBERT.

While traditional methods like Random For-
est and XGBoost perform reasonably well
(AUC of 0.7663 and 0.7671, respectively),
they lag behind transformer-based models fine-
tuned with FFT, particularly in metrics like
Precision and Recall. Models pre-trained
on biomedical data, such as dmis-lab/biobert-
v1.1, microsoft/BiomedNLP-BiomedBERT, and
bionlp/bluebert_pubmed_mimic_uncased, tend to
perform better than general domain models like
bert-base-uncased in terms of accuracy. While
dmis-lab/biobert-v1.1-FFT achieved the best ac-
curay, its recall (0.6622) remains a concern in clin-
ical settings where minimizing false negatives is
critical.

5 Discussion

In this study, we demonstrate the potential of
encoder-based models for predicting CKD progres-
sion from stage III to stage V using LTCs, con-
tinuous prescriptions, and ethnicity from CPRD.
To achieve this, we developed three types of mod-
els: full fine-tuning, parameter-efficient fine-tuning

(PEFT) using Low-Rank Adaptation (LoRA), and
tabular models, including Random Forest (RF) and
XGBoost. Model names bearing the suffix FFT
indicate that the models have been fully fine-tuned,
whereas those with the suffix LoRA represent Low-
Rank Adaptation fine-tuning, a method categorised
under PEFT.

While our primary aim was to evaluate the po-
tential of fine-tuned language models for predicting
CKD progression, we also included tabular models
in the study. This enabled us to compare the per-
formance of advanced deep learning methods with
traditional models like RF and XGBoost, which are
often better suited to structured data. By incorporat-
ing both approaches, we provide a comprehensive
assessment of the different modeling techniques
for this task.

The results indicate that FFT consistently outper-
forms PEFT using LoRA across all evaluated met-
rics, particularly in recall and AUC suggesting that
full adaptation of pre-trained models is necessary
for tasks as complex as CKD progression. Among
the fine-tuned models, those pre-trained on biomed-
ical corpora, such as BioBERT, ClinicalBERT, and
BlueBERT, demonstrate strong performance, with
AUC values around 0.77. This reinforces the im-
portance of domain-specific pre-training for clin-
ical prediction tasks. Among all models tested,
dmis-lab/biobert-v1.1-FFT achieved the highest
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AUC (0.7787), Precision (0.7261), and Accuracy
(0.7045), indicating its robustness in CKD pro-
gression prediction tasks. Its domain-specific pre-
training on biomedical text, coupled with fully fine-
tuned (FFT) models, has proven promising for the
task of CKD progression prediction.

LoRA-based models exhibit lower performance,
with AUC scores ranging between 0.6911 and
0.7298. While LoRA fine-tuning offers compu-
tational efficiency, its lower recall and precision
suggest limitations in capturing subtle predictive
patterns in the data. Notably, some LoRA models,
such as BiomedBERT-LoRA, show comparatively
better recall (0.7135) but at the expense of preci-
sion (0.6348), indicating a tendency towards higher
false positives. While LoRA’s efficiency may be
compelling in resource-constrained scenarios, its
limited recall capabilities could make it less suit-
able for critical, high-stakes clinical applications

The results highlight the importance of recall
in high-stakes applications like CKD progression
prediction, where minimizing false negatives is
crucial for timely intervention. Among the models
tested, bert-base-uncased-FFT achieves the highest
recall, suggesting its potential for capturing at-risk
patients. However, as a general-domain model fine-
tuned on CPRD data, it lacks the medical domain
specificity of models like BioBERT.

Interestingly, tabular models, including RF and
XGBoost, perform competitively with language
models. XGBoost and RF achieve AUC of 0.7671
and 0.7663, closely matching several fine-tuned
language models.

6 Conclusion and Future Work

In conclusion, the study demonstrates that encoder
models, particularly BioBERT FFT, significantly
contribute to predicting the progression of CKD.
Through the use of domain-specific pre-training
and fine-tuning strategies, BioBERT surpasses tra-
ditional machine learning methods such as Ran-
dom Forest and XGBoost. By identifying pat-
terns in clinical data, BioBERT shows promise in
predicting CKD progression with an accuracy of
nearly 70%. While this isn’t perfect, it points to the
model’s potential for advancing predictive analyt-
ics in kidney disease and could ultimately support
better decision-making in both research and clinical
settings.

Although the findings show potential, further im-
proving the model’s accuracy is essential for its

practical application in medical settings. There-
fore, future work will focus on extending this study
to include prompt-based decoder models in few-
shot and zero-shot settings with Chain-of-Thought
reasoning, potentially incorporating domain knowl-
edge. Additionally, we plan to evaluate these mod-
els against the standard kidney failure risk equa-
tion commonly used in general practice settings.
Refining the predictions further by accounting for
mortality as a competing risk will also be a key
area of exploration.

7 Limitation

This study examines CKD progression over time,
including patients who died during the observa-
tion period. While mortality may influence disease
trajectories, our approach focuses on progression
patterns independent of competing events. Future
research could explore alternative modeling strate-
gies that explicitly account for competing risks to
provide a complementary perspective.

In addition to competing risks, an important lim-
itation of this work is the lack of interpretability
analysis. Techniques such as SHAP or LIME could
offer insight into model decisions, and future work
will explore these methods along with systematic
error analysis. Further, as this study is limited to
internal validation, future efforts will evaluate gen-
eralizability using an independent dataset. Lastly,
while we frame CKD progression as a static classi-
fication problem, future research could incorporate
time-series modeling or survival analysis to better
capture disease dynamics.
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Abstract

Recruiting patients to participate in clinical tri-
als can be challenging and time-consuming.
Usually, participation in a clinical trial is initi-
ated by a healthcare professional and proposed
to the patient. Promoting clinical trials directly
to patients via online recruitment might help
to reach them more efficiently. In this study,
we address the case where a patient is initiat-
ing their own recruitment process and wants
to determine whether they are eligible for a
given clinical trial, using their own language
to describe their medical profile. To study
whether this creates difficulties in the patient-
trial matching process, we design a new dataset
and task, Natural Language Inference for Pa-
tient Recruitment (NLI4PR), in which patient-
language profiles must be matched to clinical
trials. We create it by adapting the TREC 2022
Clinical Trial Track dataset, which provides pa-
tients’ medical profiles, and rephrasing them
manually using patient language. We also use
the associated clinical trial reports where the
patients are either eligible or excluded. We
prompt several open-source Large Language
Models on our task and achieve from 56.5 to
71.8 of F1 score using patient language, against
64.7 to 73.1 for the same task using medical
language. When using patient language, we
observe only a small loss in performance for
the best model, suggesting that having the pa-
tient as a starting point could be adopted to help
recruit patients for clinical trials. The corpus
and code bases are all freely available on our
Github1 and HuggingFace2 repositories.

1 Introduction

Many efforts have been made to develop methods
based on Natural Language Processing (NLP) to
solve ongoing challenges in healthcare. These stud-
ies are targeting either medical professionals or

1https://github.com/CTInfer/NLI4PR
2https://huggingface.co/datasets/Mathilde/

NLI4PR

patients. However, patients and medical profes-
sionals use different kinds of language. A system
trained and designed on medical language might,
therefore, fail when used with patient language.

Before releasing a new medicine on the market,
clinical trials must be performed and recruit sev-
eral cohorts of patients with profiles that comply
with the inclusion and exclusion criteria of the trial.
Recruiting patients can be challenging and costly,
especially for studies focusing on certain diseases
or targeting a specific population, e.g. a study tar-
geting young children with a rare disease. This can
cause major delays for the trial: in 2012, 80% of
trials in the US were aborted because of the lack of
fitting participants (Johnson, 2015). While enroll-
ment into the trial is usually proposed by a medi-
cal practitioner to an already known patient, new
online recruitment solutions3 are promoting trials
directly to patients who might not be familiar with
clinical trials. These solutions could help speed up
and reduce the cost of the patient recruitment pro-
cess, allowing to recruit hard-to-reach populations,
and target underrepresented populations (Brøgger-
Mikkelsen et al., 2020).

In this study, we focus on patient recruitment
for clinical trials by adopting the patient’s point
of view, thus using patient language (PL) to de-
scribe the patient’s medical profile. To enable the
research community to explore this setting, we de-
sign a novel task, Natural Language Inference for
Patient Recruitment (NLI4PR). We create a dataset
derived from patient profiles from the shared task
TREC 2022 Clinical Trial Track (TREC-CT 2022)
(Roberts et al., 2022) and clinical trials’ eligibility
criteria for which the patient would be eligible or
excluded. We frame the recruitment task into a
Natural Language Inference (NLI) task. Our aim
is to evaluate models’ ability to infer from a given
premise (the trial’s eligibility criteria) whether the

3See for instance Klineo or DigitalECMT.
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statement (the patient’s medical profile) is entailed
or contradicts the given premise. If there is an en-
tailment, the patient can be enrolled in the trial;
otherwise, the patient does not match the trial’s
eligibility criteria. Since Large Language Models
(LLMs) have demonstrated competitive results in
similar shared tasks (Jullien et al., 2023b, 2024),
we evaluate how they fare on the present new task.
Our contributions are the following:

• Using patient language instead of medical doc-
tor’s language to describe the patient’s medi-
cal profile and perform the patient-trial match-
ing task.

• Creating a new dataset and task, NLI4PR, aim-
ing at matching patients to clinical trials using
patient language.

• Evaluating and comparing Large Language
Models on the patient-matching task using
medical and patient language.

2 Related Work

2.1 Natural Language Processing for
recruiting patients for clinical trials

Recruiting patients for clinical trials can be chal-
lenging and time-consuming. This is one of the
main causes for trials to fail (Kantor and Morzy,
2024). Trials target a certain population, defined
through the eligibility criteria designed at the be-
ginning of the study (see Fig. 1). These criteria are
expressed as free text in the Clinical Trial Reports
(CTRs). The traditional way of promoting trials
to patients was made directly by healthcare profes-
sionals to known patients that might fit the trial.
However, this involves a long manual review of
patient profiles, which can also lead to screening er-
rors. Thanks to the digitization of patients’ medical
records, called electronic health records (EHRs),
systems based on NLP (Ghosh et al., 2024; Murcia
et al., 2024) aimed at providing support to solve the
patient-trial matching task. These systems allow
the automatic review of patients’ profiles and trial
eligibility criteria. They can either follow the trial-
to-patients paradigm (for a given trial, the system
suggests several patient profiles) or patient-to-trials
(for a given patient, the system proposes several
trials).

The TREC-CT 2021 (Soboroff, 2022), 2022
(Roberts et al., 2022), and 2023 (Soboroff, 2024)

Inclusion Criteria

          -  Patient gives an informed consent.

          -  Patient is over 21 years of age.

          -  Having a diagnosis of a essential tremor confirmed by a trained movement disorders
             neurologist;

          -  Having failed or not tolerated conventional medical management, at the discretion of
             the neurologist managing the patient;

 Exclusion Criteria

          -  Having alternative diagnoses to essential tremor;

          -  Having comorbid neurodegenerative disorders that may affect mobility or cognition
             (e.g. comorbid Parkinson's disease or dystonia);

          -  Having sequelae of prior brain insult (e.g. prior stroke or brain tumor);

          -  History of prior resective brain surgery (e.g. tumor resection);

          -  Not being a DBS candidate;

          -  Receiving unilateral implants

          -  Having a higher surgical risk that precludes patient from having standard
             intraoperative mapping.

No condition on gender to be admitted to the trial.
No healthy subjects accepted to join the trial.
Subject must be at least 21 Years old.
Subject must be at most 85 Years

.

Figure 1: Example of a CTR’s eligibility criteria. Taken
from NCT04581941, available on clinicaltrials.gov

shared tasks promote the development of NLP-
based systems that address the patient-trial match-
ing problem. These tasks provide patient topics,
which are a short description of a patient’s medical
profile, in free-text form in the 2021 and 2022 edi-
tions or as structured text (as questionnaires) in the
2023 edition. The goal is to provide for each patient
a ranked list of CTRs for which the patient would
be eligible, excluded, or not relevant. With the re-
cent advent of Large Language Models, methods
using these models (Jin et al., 2024; Nievas et al.,
2024; Wornow et al., 2025) have been developed to
perform the patient-trial matching. These methods
have demonstrated competitive results compared
to previous methods based on Masked Language
Models.

Natural Language Inference is a task that aims
to determine whether a statement can be inferred
from a given premise. This task is quite challeng-
ing as it requires different kinds of knowledge, and
involves finding evidence in the given pieces of
text and confronting these pieces of evidence all
together in order to conclude if there is an entail-
ment or a contradiction. The NLI4CT task (Jullien
et al., 2023a) uses NLI on clinical trials for vari-
ous applications. Clinical trials are used as NLI
premises, and statements have been manually gen-
erated. One of the targeted applications is patient
recruitment, but the statements are using doctor’s
medical language. NLI4CT offers a benchmark to
evaluate models on their common-sense, numeri-
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cal, and biomedical abilities applied to the clinical
trial domain. Besides, these premises not only con-
sist of the eligibility criteria section, but also, in
some instances, they consist of result, intervention,
or adverse events sections. Systems like that of
Zhang et al. (2020) use NLI to model the patient
recruitment task, using a fragment of the patient’s
EHR as the statement and the trial’s eligibility as
a premise. All of these approaches are based on
the patient’s EHR or other medical documents, and
never on the patient’s medical profile using patient
language in a free-text form. Our task is the first
to propose an approach using patient language to
match patients to clinical trials.

2.2 Processing Patient Language

According to Seiffe et al. (2020), a medical, tech-
nical term is either used by a physician or comes
from Latin or Greek; a lay term is a term that can
easily be understood by patients or is based on
everyday language. Here, we define patient lan-
guage (PL) as the expressions, terms, and formu-
lations expressed in natural language that patients
use to talk about their health and any health-related
topic, which is broader than the definition proposed
by Seiffe et al. (2020). Processing such language
poses different challenges from those in traditional
medical texts. While medical language uses precise
terms to describe a concept, patients will use less
precise expressions due to a lower level of med-
ical knowledge, which often causes the patient’s
text to be inaccurate and also longer compared to
one written by a healthcare professional. The pa-
tient’s medical language is also highly influenced
by their health literacy, often depending on their so-
cial background, age, and education level. PL also
often conveys a load of negative emotions, such
as fear, worry, anger, or anxiety (Anderson et al.,
2008). In written text, typos and misspellings can
also occur. Lay terms (or plain English) bridge the
gap between the jargon of a complex domain and
“everyday life” language. In the medical domain,
they allow patients to make informed decisions, as
for instance in the README dataset (Yao et al.,
2024), which aims to provide patients with defini-
tions for technical terms found in their EHRs in lay
terms. Medical to lay term glossaries have been
created, such as that from the University of Michi-
gan4 or that of the European Medicines Agency.5

4https://medicaldictionary.lib.umich.edu/
5https://www.ema.europa.eu/en/documents/other/

ema-medical-terms-simplifier_en.pdf

MedlinePlus6 (Miller et al., 2000) also provides a
glossary of medical concepts explained using lay
terms and other synonyms. The Unified Medical
Language System (UMLS) (Bodenreider, 2004) is
a set of health, biomedical-related vocabularies and
standards for the medical domain. In particular
the Consumer Health Vocabulary (CHV) provides
some medical term to lay language mappings.

Usually, the goal behind the use of lay language
is to summarize (Giannouris et al., 2024) or sim-
plify (Attal et al., 2023) the original technical text.
Giannouris et al. (2024) summarized clinical trial
reports with lay language to make them more easily
accessible to non-experts but did not address the
recruitment process. In this paper, we do not try to
summarize or simplify the patient profile but we
use lay terms to study whether patient language is
processed as well as medical technical language in
clinical trial matching, so that patients themselves
could be the starting point of recruitment for clini-
cal trials.

3 Corpus Creation

To the best of our knowledge, no dataset exists in
which lay language descriptions of patient profiles
are used to identify matching clinical trials. We
therefore decided to create one. To do so, we em-
ploy a 3-step process: (i) we start from TREC-CT
2022’s patient topics, which express patient profiles
in free-text, medical language. We then rephrase
these topics using patient language (see Sec. 3.1).
(ii) We collect the CTRs labeled as eligible and
excluded in TREC-CT. Finally, (iii) we convert
the task into a 2-way NLI classification task (see
Sec. 3.2). Figure 2 summarizes the process.

TREC-CT 2022 - topics:
patients’ profiles in
medical language

TREC-CT 2022 - CTRs

TREC-CT 2022 -
Annotations:

eligible or excluded

NLI annotations:
Entailment or
Contradiction

Patient’s profile
(statement)

patient natural language

CTRs’ eligibility section
(premise)

all CTRs labeled as
eligbile & excluded

Extraction

Manual
rephrasing

Convertion

Figure 2: Corpus creation steps

6https://medlineplus.gov/
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3.1 Rephrasing into Patient Language

We used the 50 TREC-CT 2022 patient topics that
describe the patient’s last medical visit (emergency
room, clinic, or primary care physician). Topics
are written using medical language. Following
MIMIC-IV’s (Johnson et al., 2023) descriptors,
the patient topics contain the following informa-
tion: chief complaint, history of present illness,
patient demographics (age and gender), physical
exams, and discharge diagnoses. Topics cover var-
ious diseases, such as genetic, endocrinal, or der-
matological diseases, with patients presenting var-
ious profiles, from newborns to the elderly. To
obtain PL topics, we tried two different approaches.
The first consists of using Large Language mod-
els to rephrase the topics automatically. We tried
with GPT-4o (OpenAI et al., 2024) and Llama3-8B-
Instruct (Dubey et al., 2024) and applied a simple
prompt, displayed in Appendix A. Both models
seemed to grasp most of the information and adopt
a patient perspective, using lay terms and the ap-
propriate tone. However, they sometimes tended to
remove quite important information (in the exam-
ple displayed in Appendix A, in both cases, gender
is missing). To avoid these issues, we discarded
this approach and opted for the approach below.

To ensure consistency in the information con-
tained in the topics, the first author manually
rephrased the topics. This author is experienced
in working on medical texts and performing anno-
tation tasks on medical documents, but does not
hold any medical degree. We estimate that this
level of expertise is suitable for our task since we
are trying to represent the health literacy of an av-
erage patient. To get a better grasp of different
patients’ writing styles, we first conducted a man-
ual evaluation with 6 human annotators presenting
various patient profiles, described in detail in Ap-
pendix B. We adopted a language similar to the one
used by the participants. Apart from mapping the
concepts from medical language to PL, we noticed
that patients tend to use expressions representing
their emotions, usually referring to fear, worry, or
anxiety. We took this aspect into consideration in
the rephrasing. Figure 3 gives an example of the
rephrasing process:

1. Selecting the important concepts in the orig-
inal patient topic (following the MIMIC-IV
categories mentioned before).

2. Converting these concepts into patient lan-

guage by using MedlinePlus for concepts un-
known to the annotator or by using a lay-to-
medical terms glossary. For each medical
term, the annotator checks first MedlinePlus
to understand the concept and look for lay
language equivalents. They also check lay-to-
medical glossaries to see other existing terms
(although these glossaries often fall short for
specific terms). If no equivalent was found
in glossaries and MedlinePlus, the annotator
paraphrases the term.

3. Styling the text using words that reflect the
patient’s emotions, by using adjectives that
reflects fear, worry, etc. and by using exclam-
atory sentences. Additionally, we also tried to
adjust language to the patient’s age.

4. Proofreading to ensure consistency with the
original topic.

To guide the rephrasing process, the annotator
produced topics following this instruction (similar
to the one given to the participants of the manual
evaluation): "Describe the purpose of your last doc-
tor appointment, the tests undergone, the obtained
results or diagnosis as well as your age, gender,
and past medical history. All in no more than a
dozen sentences.".

Table 1 displays a small sample of reformula-
tions of the initial medical terms. To analyze a few
linguistic features of the NLI4PR dataset, we com-
pute readability and similarity metrics. Using some
of the scores of BioLaySumm 2024 (Goldsack
et al., 2024), we computed BERTScore (Zhang*
et al., 2020) for similarity between the patient
and medical version of the topics, Flesch-Kincaid
Grade Level (FKGL) (Flesch, 1948), Coleman-
Liau Index (CLI) (Coleman and Liau, 1975), and
Dale-Chall Readability Score (DCRS) (Dale and
Chall, 1948) scores for readability. Tab. 2 reports
the results of the different metrics.

The patient and medical topics still keep similar
features with a high BERTScore of 89.5%. For the
patient language topics, FKGL and DCRS scores
both respectively indicate that a 11-17 years old stu-
dent and a 11−12th grade student could understand
the topics written in patient language. Although,
the CLI measure estimates the readability to be
accessible for a 5-6th grader. However the topics
produced are accessible to the majority of the pop-
ulation and correspond to what we would expect
from an adult’s average health literacy. For the
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Medical term PL example Rephrasing strategy
ALS (amyotrophic lateral sclerosis) sclerosis MedlinePlus + name simplification
ear discharge fluid in my ear MedlinePlus’ description
hearing loss I could not hear as well as I used to Paraphrase of the symptoms
His father died suddenly at age 35. My dad died suddenly when he was 35,

so I’m kind of scared.
Add emotion (fear)

dyslipidemia cholesterol MedlinePlus (Alternative names section)
Allopurinol Zyloric MedlinePlus (Brand names section)

Table 1: Examples of medical and patient language (PL) equivalents used in our task and the corresponding
rephrasing strategy employed.

Metric Patient Medical
BERTScore 89.5%
FKGL 6.24 8.83
DCRS 8.13 10.89
CLI 5.88 10.76

Table 2: Similarity (BERTScore) between patient and
medical versions of the topics. Readability (FKGL, CLI,
and DCRS) measures for patients vs medical versions
of the topics.

medical version of the topics, the scores are higher
(2.5 points more for FKGL and DCRS) and almost
doubled for CLI, bringing the readability level to a
10-11th grade student. To see if the proportion of
medical terms is more important in the medical ver-
sion of the topics, we used QuickUMLS (Soldaini
and Goharian, 2016) to extract medical concepts in-
dexed in UMLS. For 92% of the topics, the medical
language version contains more terms taken from
the UMLS than its patient language equivalent. On
average, patient language topics contain 21 terms
taken from the UMLS versus 25 for the topic’s
medical version. Although the average length of
a patient language topic is 116 words versus 98
for medical language. This suggests that patient
indeed tend to use paraphrase to refer to medical
terms.

3.2 Conversion into an NLI task

TREC-CT’s original aim is to rank a large num-
ber of CTRs in terms of eligibility for a given pa-
tient topic. There are 3 ranking levels: eligible
(the patient described in the topic can take part in
the trial), not relevant (the trial’s eligibility crite-
ria do not seem relevant for the patient described
in the topic and there is not enough information
to qualify for the trial), and excluded (the patient
described in the topic does not match the trial’s eli-
gibility criteria). Natural Language Inference aims
to determine whether a statement entails a given
premise, thus in our context, whether the patient
topic (statement) entails the trial’s eligibility crite-

ria (premise). We map TREC-CT’s annotations to
NLI annotations: eligible is mapped to entailment,
and excluded to contradiction. We did not map
the instances labeled as not relevant to neutral as
TREC-CT’s goal was to rank trials by relevance
and not to test patients’ eligibility. We describe the
internal inference process that should be employed
in order to predict the right label. The patient topic
Pat has a set of n features f (age, disease, gen-
der, etc.): Pat = {f1, ..., fn}. The eligibility
section is composed of m inclusion criteria Inc
and k exclusion criteria Exc: Inc = {i1, ..., im}
and Exc = {e1, ..., ek}. We define the inference
relationship between the statement Pat and the
premise Inc,Exc as:

∀i ∈ Inc, ∃f ∈ Pat; entail(i, f) (1)

∀e ∈ Exc,∀f ∈ Pat, contradict(e, f) (2)

(1) ∧ (2)⇒ Entailment (3)

where contradiction holds if entailment does not.
In other words, the model has to infer that for every
feature f of a patient, it entails with every inclusion
criteria and that it contradicts with every exclusion
criteria, for the model to output Entailment as the
final prediction.

For each topic, we extract all the CTRs labeled
as excluded and eligible in TREC-CT, resulting in,
for each patient topic, several (patient topic, CTR)
pairs labeled either with entailment or contradic-
tion. Our resulting task is a 2-way NLI classifica-
tion task.

3.3 Resulting dataset

The resulting dataset consists of 7007 instances,
split into training, development, and test sets (rep-
resenting 70%, 10%, and 20% of the whole dataset,
respectively). 3939 are labeled as Entailment and
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Figure 3: Rephrasing of a patient topic, following MIMIC-IV categories and using MedlinePlus.

3068 as Contradiction. Table 3 displays the num-
ber of instances per split and the label distribu-
tion. We provide two kinds of statements: state-
ment_medical, which is the original TREC-CT’s
patient topic (in medical language), and state-
ment_pl, which is the PL rephrased topic. The
premise field is composed of the extracted eligibil-
ity section of the CTR. Additionally, we provide
the study’s title in the NCT_title field and its corre-
sponding id in NCT_id. As in Jullien et al. (2023a),
our dataset involves several challenges: biomedical
reasoning, numerical reasoning, and commonsense
reasoning. Appendix C displays more statistics.
The dataset is freely available on HuggingFace.7

Split # Entailment # Contradiction
Train 2757 2147
Dev 295 230
Test 887 691

Table 3: Distribution of Entailment and Contradiction
instances in the dataset splits.

4 Methods

Using this new dataset, we perform initial experi-
ments to evaluate the ability of LLMs to solve the
task with lay- vs. medical-language patient profiles.

We prompt four open-source Large Language
Models using two prompting templates. The first
template, vanilla, is made of a simple instruction
described in Figure 4a; the second template, per-
sona, aims at impersonating the model into a medi-
cal practitioner reviewing patient profiles and de-

7https://huggingface.co/datasets/Mathilde/
NLI4PR

ciding whether they can participate into the trial or
not (see Figure 4b).

The templates are structured as follows: the
premise, which is the eligibility criteria section
of the clinical trial, the instruction, the statement,
which is the patient profile, either expressed in PL
or using medical language, and finally we provide
the possible answers, Entailment or Contradiction.
We perform all the experiments in a zero-shot set-
ting, meaning that we do not show any previous
demonstration to the model.

We use models that previously achieved competi-
tive results on the similar SemEval task of NLI4CT:

• Flan-T5-XXL (Chung et al., 2022), an 11 bil-
lion parameters instruction-tuned sequence-to-
sequence model.

• Qwen2.5-7B-Instruct and Qwen2.5-14B-
Instruct (Yang et al., 2024), instruction-tuned
decoder-only models respectively with 7 and
14 billion parameters.

• Mixtral-8x7B-Instruct-v0.1 (Jiang et al.,
2024), a 45 billion parameters decoder-only
model pretrained using a mixture of experts
approach.

These models are all pretrained on general domain
data. As in Jullien et al. (2023a), we choose macro-
F1 score as the evaluation metric. We perform
the evaluation on the whole test set. We use a
temperature of 0.7, a top_p of 1 and top_k of 0.
For comparison, we compute the majority baseline
corresponding to the case where all the predictions
would be labeled as Entailment. Comparison is
also done against a random classifier where the
seed used is 42.
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Instruction 

Statement

Premise

Label options

Question: Does the previous eligibility criteria imply
that the following patient can participate to the trial?

OPTIONS: - 'Entailment'
 - 'Contradiction'

Inclusion Criteria:
          -  Moderate to severe pain attributed to knee osteoarthritis

Exclusion Criteria:
          -  Significant comorbidity

          -  Significant pain states other than osteoarthritis
          -  Concomitant medications that might affect assessments

No condition on gender to be admitted to the trial.
No healthy subjects accepted to join the trial.

Subject must be at least 18 Years old.
Subject must be at most 75 Years

I'm a 47-year-old woman, married with 3 kids. I don't
smoke and I drink occasionally. I went to the doctor

because of pain in my calf and knee when I was
bending down. This has been limiting my daily

activities. I have been diagnosed with osteoarthritis for
which I have taken anti-inflammatory drugs for the
past 2 years. The doctor saw a small fluid buildup in

my right knee. This buildup became a bit bigger and I
have a swollen calf. The pain is worse when I bend and

straighten my knee.

(a) Example of a prompt using the Vanilla template

Instruction 

Statement

Premise

Label options

Question: Imagine that you are a doctor reviewing
patients profiles to enroll them for a clinical trial. Does
the previous eligibility criteria imply that the following
patient can participate to the trial?\n Patient profile:

OPTIONS: - 'Entailment'
 - 'Contradiction'

Inclusion Criteria:
          -  Moderate to severe pain attributed to knee osteoarthritis

Exclusion Criteria:
          -  Significant comorbidity

          -  Significant pain states other than osteoarthritis
          -  Concomitant medications that might affect assessments

No condition on gender to be admitted to the trial.
No healthy subjects accepted to join the trial.

Subject must be at least 18 Years old.
Subject must be at most 75 Years

I'm a 47-year-old woman, married with 3 kids. I don't
smoke and I drink occasionally. I went to the doctor

because of pain in my calf and knee when I was
bending down. This has been limiting my daily

activities. I have been diagnosed with osteoarthritis for
which I have taken anti-inflammatory drugs for the
past 2 years. The doctor saw a small fluid buildup in

my right knee. This buildup became a bit bigger and I
have a swollen calf. The pain is worse when I bend and

straighten my knee.

(b) Example of a prompt using the Persona-style template

Model Lay-V Lay-P Med-V Med-P
Majority 36.0
Random 50.0
Flan-T5-XXL 66.0 61.8 72.1 67.5
Qwen-7B 64.1 62.9 65.5 64.7
Qwen-14B 71.8 69.8 73.1 73.7
Mixtral-8x7B 60.7 56.5 70.8 71.2

Table 4: Macro F1 score (in %) for the different base-
lines, using our different prompting templates in a zero-
shot setting, on the test set. Lay is patient language,
Med is medical doctor’s language, V stands for vanilla
template and P stands for persona template. The major-
ity baseline is Entailment. Seed for the random baseline
is 42.

5 Results

Table 4 displays the results obtained by the models
on the two types of templates.

Qwen-14B achieves the best results for all kinds
of templates, up to 37.7 points higher than the ma-
jority baseline and 23.7 for the random baseline.
All models perform better on medical language
than on PL. We believe this loss of performance
may come in part from the lack of precision of lay-
man terms used in PL, in comparison to medical
terms that define a more precise concept. When
trying to match eligibility criteria, the model might
not be able to determine the patient’s eligibility
if in the PL statement, the concept is not precise
enough. E.g., in the following example, the eligi-
bility criteria states "Subjects having a diagnosis
of probable or definite ALS in accordance with the
Revisited El-Escorial Criteria.", the patient topic in
medical language uses the acronym ALS, however
in the patient topic in PL, the term used is simply
sclerosis (see Table 1). With PL, the model can-
not determine which type of sclerosis the patient is

suffering from and thus might not match it to the
trial.

Using a persona template did not necessarily
lead to better results; Flan-T5 performed even
worse when using PL. Despite being the larger
model, Mixtral is the worst-performing when using
PL, and in the worst case being only 6.5 points
above the random baseline. In the case of Qwen,
more parameters (increasing from 7B to 14B) im-
proved performance, with a gain of up to 9 points
for the Med-P template.

6 Error Analysis

Medical vs Patient Language We examined on
which patient topic models tend to fail, either us-
ing PL or medical language: for this purpose, we
compute the misclassification rate (MCR) for each
patient topic t using the predictions of each model
and the gold standard:

MCR(t) =
misclassification_topic_t

total_count_topic_t

We compute MCR for all topics with all mod-
els’ predictions across all templates, where
misclassification_topic_t is the number of mis-
classifications for topic t and total_count_topic_t
the number of instances using topic t as the state-
ment in the dataset. We derive MCRpl>med where
the models perform better with topics using medi-
cal language than PL, and conversely MCRmed>pl

where models were better using patient language,
for each patient topic n:

MCRpl−med(t) = MCRpl(t)−MCRmed(t)
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MCRpl>med = max
t∈[1,50]

MCRpl−med(t)

MCRmed>pl = − min
t∈[1,50]

MCRmed−pl(t)

Across all the models, the patient topic occur-
ring the more often for MCRpl>med is patient #21,
and the one for MCRmed>pl is patient #30. Ap-
pendix D displays both patients’ profiles. The de-
scriptions of patient #21 in medical language and
PL are similar in terms of demographics, chief com-
plaint, and physical exams. However, for the dis-
charge diagnosis, medical language mentions ALS
while PL mentions sclerosis (see Tab. 1), thus not
mentioning the specific kind of sclerosis diagnosed.
For patient #30, the physical exam observations
have been greatly simplified in the PL version. Oth-
erwise, information remains consistent with the
medical language version.

We quickly investigate if these differences can
be the reason for misclassification. We allow Qwen-
14B to output a longer sequence of tokens when
prompted with a single example of patient #21 and
#30 (see Appendix E). Qwen provides a brief expla-
nation of the reason for its prediction. We compare
the justifications given for the Lay-V and Med-V
prompts.

For #21, Qwen predicted the right label (Entail-
ment) for Med-V and the wrong label for Lay-V.
The misclassification comes from the case depicted
in Sec. 5. Qwen mentioned that sclerosis does not
necessarily involve an ALS, which is technically
true. PL lacks precision, which can lead to misclas-
sification, whereas the model can predict the right
label with medical language for the same case.

For #30, Qwen predicted the right label (Entail-
ment) for Lay-V and the wrong label for Med-V.
The patient topic describes a woman suffering from
osteoarthritis. In order to solve the inference, the
model has to perform numerical inference to deter-
mine if her age fits the age range of the inclusion
criteria, check that the diagnosis of osteoarthritis
fits with the inclusion and exclusion criteria and
that the patient does not suffer from other disorders.
For Lay-V the model reports that it compared the
age range, the osteoarthritis diagnostic with the eli-
gibility criteria. For Med-V the model got misled
by one of the symptoms and inferred another po-
tential disease, that could fall under one exclusion

(a) Entailment and Contradiction accuracy for Qwen-14B’s
predictions.

(b) Entailment and Contradiction accuracy for Flan-T5-XXL’s
predictions.

Figure 5: Lay is patient language, Med is medical doc-
tor’s language, V stands for vanilla prompt and P stands
for persona prompt.

criterion. In this case, having more information
that was not directly linked to the criteria confused
the model and led to a wrong prediction.

Which is harder, Entailment or Contradiction?
We compute the accuracy per label for the two
best-performing models, Qwen-14B and Flan-T5-
XXL (see Figure 5). Qwen is performing up to
26 points better on Contradiction than on Entail-
ment. This behavior is consistent with all the types
of templates. Surprisingly, Flan-T5 obtains up
to 50 points more in predicting Entailment than
Contradiction, and this observation applies to all
templates except Lay-V. Predicting Contradiction
seems rather simple compared to predicting Entail-
ment. Since a patient would not be eligible for a
clinical trial if their characteristics do not comply
with at least one of the exclusion criteria, this would
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lead to a direct assertion of the Contradiction label.
Meanwhile, for Entailment, the model has to go
through all the patient’s features and compare them
to all the inclusion and exclusion criteria, which
involves more knowledge and computations.

7 Future Work and potential applications

One direction for future work would be to fine-tune
the models (using our training and development
sets) to see if it would improve performance. Sys-
tematically evaluating models’ explanations would
also allow to determine if the model is predicting
the right label for the right reason and, hence, de-
tecting the right pieces of evidence in the text to
make its prediction. This evaluation could be done
using the LLM-as-a-judge paradigm (Zheng et al.,
2023), where one or several LLMs could evalu-
ate if the retrieved evidence and explanations are
correct. Expanding the dataset with new patient
profiles with various health literacy levels and dis-
eases would also allow to evaluate the models on
more diverse cases.

We hope this work can pave the way to the de-
velopment of more NLP applications to promote
clinical trials directly to patients, using their own
language. We believe that proposing these kinds
of interfaces would allow to reduce the recruitment
workload and to promote trials to a wider popula-
tion.

8 Conclusion

In this study, we present a novel task, Natural Lan-
guage Inference for Patient Recruitment (NLI4PR),
that aims to use patient language to match patients
to clinical trials. The patient-to-trial matching is
usually done using a description of the patient in
doctor’s medical language. Here, we adopt an-
other approach where the patient describes their
own profile using their own language. Patient lan-
guage presents major differences compared to doc-
tor’s medical language due to the patient’s limited
health literacy. We evaluated the ability of several
open Large Language Models to deal with patient
language and compare it to the use of medical lan-
guage. We frame the task as a Natural Language
Inference task. For this, we create a new dataset de-
rived from the patient profiles provided by TREC-
CT 2022, and the clinical trials ranked as eligible
and excluded in TREC-CT 2022.

We found that all models obtained an F1 score
much higher than the majority baseline on our test

set, using medical language but also using patient
language. Models struggled more with patient lan-
guage than with medical language, however the gap
between the two settings was rather low. We found
that this gap in performance is mainly coming from
the loss of precision in the terms used by patients
compared to medical professionals. We observe
that most of the errors are coming from issues in
enforcing the inclusion and exclusion criteria rather
than the difference between the patient language
and the doctors’ medical language.

9 Limitations

The patient topics have been built to keep important
patient information. We hypothesize that in a real-
world scenario, a patient describing their medical
history and condition might miss some elements,
making the task even more challenging. In addition,
despite the effort made to diversify the phrasings,
the rephrasing has been done by a single annotator,
which might limit diversity. An improved approach
would be to ask a diverse pool of patients to pro-
duce their own statements to represent differences
in pathology, social background, levels of health
literacy, and phrasing.

Since we perform a 2-way classification and we
did not consider the cases labeled as not relevant
from TREC-CT, we cannot directly compare our
results with those of TREC-CT participants.

10 Ethical Considerations

The patient profiles are taken from the original
TREC-CT 2022 shared task. They do not contain
any element or piece of information that could lead
to identification of any individual. The rephrased
version using layman’s terms does not contain any
personal information either. Clinical trials are ex-
tracted and processed from clinicaltrials.gov. This
resource is freely available, provided by the Na-
tional Library of Medicine, and is an official U.S.
Department of Health and Human Services web-
site.
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like it would be expressed by the patient
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Source Output text
Original topic A 19-year-old male came to clinic with some sexual concern. He recently

engaged in a relationship and is worried about the satisfaction of his girlfriend.
He has a "baby face" according to his girlfriend’s statement and he is not as
muscular as his classmates. On physical examination, there is some pubic hair
and poorly developed secondary sexual characteristics. He is unable to detect
coffee smell during the examination, but the visual acuity is normal. Ultrasound
reveals the testes volume of 1-2 ml. The hormonal evaluation showed serum
testosterone level of 65 ng/dL with low levels of GnRH.

ChatGPT I’m 19, and I recently started a relationship. I’ve been feeling a bit worried
about whether I’m making my girlfriend happy. She mentioned that I have a
’baby face,’ and I’ve noticed I’m not as muscular as most of my classmates. I
also can’t smell coffee, which I realized during this visit. I do have some pubic
hair, but I think I might be behind in developing other features that guys my
age have. The doctor checked me out, and they said my testosterone levels are
low, and my testicles are smaller than normal. They also mentioned something
about low levels of another hormone, GnRH.

Llama-3-8B-Instruct I’m 19 years old and I’ve been dating someone for a little while now. To be
honest, I’m really worried that I’m not good enough for her. She says I have
a ’baby face’ and I’m not nearly as muscular as my friends. I feel like I don’t
measure up. When we’re together, she sometimes mentions how unsatisfied she
is with our intimate moments, which makes me even more anxious. Physically,
I notice that I don’t have much body hair or muscle development compared to
others my age. During our last exam, I couldn’t even smell the coffee because
of my poor sense of smell! But at least my eyesight seems okay. I also just
had an ultrasound done on my testicles, and the doctor told me they’re smaller
than usual. And when they checked my hormone levels, it turned out that my
testosterone levels are super low - way lower than normal. It’s making me feel
really self-conscious and unsure about who I am and what I can do to make
things better between me and my girlfriend.

Human I’m 19 years old guy and I just went to see a doctor at the clinic after I just got
with my girlfriend. I’m kinda worried because she thinks that I have a baby
face and to be honest, I’m way less muscular than my classmates. I don’t have
much hair down there, and yes, I don’t have that macho look. The doctor made
me smell some coffee and I couldn’t smell anything special. I also had some
eyesight checkups and the doctor told me everything was normal. I got my test
results back and it says: testes volume is 1-2 ml and serum testosterone level of
65 ng/dL with low GnRH levels.

Table 5: Outputs obtained after rephrasing the original topic into PL. Using either LLMs or a human annotator.
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B Rephrasing patient topics using
patients

Goal To have examples of the way patients ex-
press themselves, we asked 6 participants to pro-
duce statements using patient language. These par-
ticipants are volunteers who are not authors of this
paper. They all have different profiles in terms of
health literacy, cultural backgrounds, educational
backgrounds, and age. All the materials (persona,
generated medical reports and guidelines) are avail-
able here8.

Participants We note Ai a participant.
A1: 25-year-old Cambodian man with no med-

ical training. He holds a Master’s degree in com-
puter science. His mother tongue is Khmer, but has
a B2 English level.

A2: 69 years old French man. He has a PhD in
biochemistry but no particular training in medicine.
His native language is French.

A3: 60-year-old French woman. She is a sec-
ondary teacher with no special training in medicine.
Her native language is French.

A4: 29 years old Greek woman. She is a PhD
student majoring in NLP. She has no particular
medical training. Her native language is Greek, but
she has a C2 English level.

A5: 26 years old Chinese man. He is a PhD
student in biology working on oncology. His na-
tive language is Chinese, but he has a B2 level in
French.

A6: 25 years old French woman. She is cur-
rently pursuing her 8th year of medical training,
specializing in anesthesiology and intensive care.
Her native language is French.

Settings We designed our experiment in order
to obtain as spontaneous as possible answers from
the participants. We gave all participants a persona
directly adapted from one of the TRECT-CT’s pa-
tient topics. To avoid influencing the participants,
the persona was built as a set of fields (age, gender,
tests undergone, chief complaint, medical history,
current medication) with keywords only. We also
used ChatGPT to generate mock-ups of test results9

with the results mentioned in the original TREC-
CT 2022 topic. We gave the following instruction
to the participants:

8https://github.com/CTInfer/NLI4PR/tree/main/
human_evaluation

9For instance, a generated karyotype report here.

Following the provided persona and test
report, describe the purpose of your last
doctor appointment, the tests undergone,
the obtained results or diagnostic as well
as your age, gender and past medical his-
tory. All in no more than a dozen of
sentences.

Results A1: “I’m a 25 year old man. My room-
mate always says that mostly when we are watch-
ing TV in the afternoon, he noticed that I usually
fall asleep even while we are talking. it’s a bit em-
barrassing. I think I am not a person like that. I
feel something is wrong. So I decided to meet a
doctor to check about this. So the doctor asked
me to do the sleep test which is called Multiple
Sleep Latency Test. This test just requires me to
take a bunch of short naps during the daytime and
the doctor monitored my sleep. It is so surprising
that the test also confirms that I quickly fall asleep
and enter REM sleep. The doctor said this could
be narcolepsy, which is a sleep disorder that causes
excessive daytime sleepiness. I’m waiting to do an
overnight sleep study and see a sleep specialist to
figure out what the next steps are.”

A2 (translated): “My medical check-up is not
very encouraging. The blood test results are alarm-
ing. Serum antibodies are abnormally high, indi-
cating an inflammatory state. The muscle biopsy
confirms the presence of inflammation. The inter-
pretations provided by the medical analysis labora-
tory suggest systemic inflammatory muscle dam-
age. The doctor suspects dermatomyositis. How-
ever, he suggests further tests. In my quest to under-
stand dermatomyositis, I learn that it is associated
with various cancers. I think my life is about to be
turned upside down if the doctor’s diagnosis proves
correct. Maybe I’ll have to undergo chemotherapy
and so on. At my age, my professional and emo-
tional life could be seriously devalued. I’ll decide
after the next medical examinations.”

A3 (translated): “I am a 33-year-old woman. I
consulted a doctor because I’m persistently tired,
have less appetite than before and have lost 4 kilos
in two months. At the hospital, tests showed gener-
alized hyperpigmentation. A blood test revealed ab-
normally low levels of cortisol, a sign of “primary
adrenal insufficiency”, a dysfunction of the glands
above the kidneys that produce hormones. Could
my health problem be due to my past history? I
suffer from Hashimoto’s disease, an autoimmune
disorder caused by a thyroid disorder. I am treated
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for this disease by taking levothyroxine on a regu-
lar basis. But obviously, this medication no longer
seems sufficiently effective. To resolve the adrenal
insufficiency I’m suffering from, and thus stimulate
the function of the adrenal glands, the doctors have
prescribed a glucocorticoid-based treatment, on a
long-term basis but under supervision. I will need
to consult my GP regularly to observe the clinical
symptoms - the extent of the brown spots on my
skin - and to prescribe a blood test to monitor cor-
tisol levels and, if necessary, adjust and rebalance
the treatment. I was also recommended a parallel
follow-up with an endocrinologist.”

A4: “I am a 67 year old woman. I went to the
ophthalmologist because I was not seeing well from
both of my eyes especially during the night. The
physical exam showed that my pupils are normal
in diameter both in the light and darkness, however
the acuity test results confirmed that I have a blurry
vision of 50/100 that is probably linked to cataract.
I will need to consult a second ophthalmologist
to confirm the diagnosis and I might need to do
further lab tests.”

A5 (translated): “My name is Jean Martin and
I’m 52 years old. On 22/01 I had two radiology
examinations: a thoracic X-ray and an oeso-gastro-
duodenal transit. The purpose of these examina-
tions was to find an explanation for my symp-
toms of thoracic burning and acid reflux, which
have been treated piecemeal with PPIs (proton
pump inhibitors = anti-acids). I have no other an-
tecedents than my obesity, I don’t smoke or drink.
Dr. Dupuis, a radiologist, interpreted these exam-
inations and concluded that I had a hiatal hernia
due to stomach sliding, with no signs of compli-
cations: no ulcerations, no digestive perforation
and permeability of the lower esophageal sphincter,
with no visualized esophageal reflux. Treatment
with ipp is indicated, as is follow-up by a special-
ist in gastroenterology. If the symptoms become
too incapacitating, I’m advised to undergo 2nd-line
laparoscopic surgery to reconstruct the stomach,
which is still a major operation. I prefer to try med-
ical treatment in 1st intention as agreed. I have
been informed of the serious signs of my illness,
which require me to undergo urgent appointment.”

A6 (translated): “Hello, I’m currently 26 years
old. I went to the clinic today because I felt down at
the gym. I exercise often but it’s been the 4th time
that this happens. From time to time, I experience
vertigo while I’m resting and I don’t understand
why. I exercise everyday and I don’t have any

other diseases for now. At the emergency room,
the doctor asked me to do an X-ray and he showed
me that I have a heart malformation. He told me
that the volume of my left and right side are not
equivalent. What’s wrong? Should I stop working
out?”

Conclusion Most participants followed the in-
structions correctly or at least partially (A2 forgot
to mention their age and gender). A1, A2, A3,
and A5 expressed some kind of worry regarding
their symptoms and diagnosis, especially for A1
and A2, where the participants inquired about the
consequences of their disease. All participants use
reported speech to talk about their test results or
the doctor’s diagnosis. A3 and A4 directly cite
some results directly taken from their test results.
We observe that A2 and A3 did some supplemen-
tary research regarding their diagnosis (probably
by searching their diagnosis in a search engine).
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C Corpus statistics

Metric Value
# of CTRs (whole dataset) 6649
# of CTRs (train dataset) 4713
# of CTRs (dev dataset) 523
# of CTRs (test dataset) 1564

Table 6: Dataset metrics

D Patients #21 and #30

D.1 Patient #21

Medical language: A 47-year-old man comes to
the clinic for the follow up of his neuromuscular
disease. He experienced gradual, progressive weak-
ness of the left upper extremity over the last year.
Over the last few months, he has also noticed weak-
ness in the right upper extremity. BP is 120/75, PR
is 80 and temperature is 37 C. Reflexes are brisk in
the upper extremities, and the plantar responses are
extensor. Mild gait ataxia is present. The patient
is under treatment of Riluzole 50 mg BID with the
diagnosis of ALS.
Patient language: I’ve been suffering from a neu-
romuscular disease for a while now, and I went to
my doctor’s office. I’m now a 47-year-old man
and over the past year I experienced a progressive
and gradual weakness of my left upper extremity,
and over the past month, I also noticed a weak-
ness over my right upper extremity. My heart rate
was 120/75, and my PR was 80 with 37°C for tem-
perature. My reflexes are not good in my upper
extremities, and I have trouble with my balance.
I’m also under Exservan 50 mg for my sclerosis.

D.2 Patient #30

Medical language: A 47-year-old woman comes
to the office complaining of pain in the calf and
knee when she bends down. The pain limits her
activity. Her medical history is significant for os-
teoarthritis, for which she uses nonsteroidal anti-
inflammatory drugs (NSAIDs) for the past two
years. She is living with her husband and has 3
children. She doesn’t smoke but drinks alcohol
occasionally. Her vital signs are normal. On phys-
ical examination, there is a small effusion in the
right knee. The effusion grew a little larger and she
developed a tender swelling in the popliteal fossa
and calf. Both the pain and swelling worsened as
she bent and straightened her knee.

Patient language: I’m a 47-year-old woman, mar-
ried with 3 kids. I don’t smoke and I drink oc-
casionally. I went to the doctor because of pain
in my calf and knee when I was bending down.
This has been limiting my daily activities. I have
been diagnosed with osteoarthritis for which I have
taken anti-inflammatory drugs for the past 2 years.
The doctor saw a small fluid buildup in my right
knee. This buildup became a bit bigger and I have
a swollen calf. The pain is worse when I bend and
straighten my knee.

E Qwen-14B prompted for explanations

E.1 Patient #21

Premise (NCT03160898): See Fig 6.

Inclusion Criteria:

          -  Diagnosis of familial or sporadic ALS ≤ 24 months prior to screening

          -  Upright Slow Vital Capacity (SVC) ≥ 60% of predicted for age, height and sex at
             screening

          -  Able to swallow tablets

          -  A caregiver (if one is needed)

          -  Able to perform reproducible pulmonary function tests

          -  Pre-study clinical laboratory findings within the normal range or, if outside the
             normal range, deemed not clinically significant by the Investigator

          -  Male patients who have not had a vasectomy and confirmed zero sperm count must
agree
             after receiving the first dose of study drug until 10 weeks after the last dose to
             either use acceptable methods of contraception or abstain from sex

          -  Female patients must be post-menopausal or sterilized or must not be breastfeeding,
             have a negative pregnancy test, have no intention to become pregnant during the study
             and use acceptable methods of contraception or abstain from heterosexual intercourse
             from Screening until 10 weeks after last dose of study drug

          -  Patients must be either on riluzole for at least 30 days prior to screening or have
             not taken riluzole for at least 30 days prior to screening and not planning to start
             riluzole during the course of the study.

          -  Patients on edaravone must have completed at least 2 cycles of dosing with edaravone
             at the time of screening or have not taken edaravone for at least 30 days prior to
             screening and not planning to start edaravone during the course of the study.

        Exclusion Criteria:

          -  At the time of screening, any use of non-invasive ventilation (NIV), e.g. continuous
             positive airway pressure [CPAP], noninvasive bi-level positive airway pressure [NPPV]
             or noninvasive volume ventilation [NVV] for any portion of the day, or mechanical
             ventilation via tracheostomy, or on any form of oxygen supplementation

          -  Neurological impairment due to a condition other than ALS

          -  Presence at screening of any medically significant cardiac, pulmonary, GI,
             musculoskeletal, or psychiatric illness that might interfere with the patient's
             ability to comply with study procedures or that might confound the interpretation of
             clinical safety or efficacy data

          -  Has taken any investigational study drug within 30 days or five half-lives of the
             prior agent, whichever is longer, prior to dosing

          -  Known to have received CK-2127107 or tirasemtiv in any previous clinical trial

          -  Has received or is considering receiving during the course of the study any form of
             stem cell therapy for the treatment of ALS

          -  Has received or is considering receiving during the course of the study any form of
             gene therapy for the treatment of ALS

          -  Has received or is considering obtaining during the course of the study a
             diaphragmatic pacing system

          -  History of substance abuse within the past 2 years

          -  Use of certain medications

No condition on gender to be admitted to the trial.
No healthy subjects accepted to join the trial.
Subject must be at least 18 Years old.
Subject must be at most 80 Years

.

Figure 6: Eligibility criteria from trial NCT03160898,
used as the premise.

Medical answer:
“Entailment
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Explanation: Based on the information provided
about the 47-year-old male patient, it seems he
meets some key inclusion criteria such as being di-
agnosed with ALS (within 24 months before screen-
ing), currently taking Riluzole which aligns with
the pre-screening requirement of having been on
riluzole for at least 30 days prior to screening, and
being within the specified age range (at least 18
but at most 80 years). However, there isn’t enough
information given to determine whether his SVC
is ≥ 60%, if he has an able caregiver, can swal-
low tablets, etc., nor is there sufficient detail to
ascertain if he fulfills all exclusion criteria (such
as absence of neurological impairment not related
to ALS, no history of substance abuse within the
past two years, specific medical conditions that
could interfere, or recent participation in another
clinical trial). The presence of mild gait ataxia
mentioned does raise concern potentially regarding
the exclusion criterion of "Presence at screening
of any medically significant...psychiatric illness"
or possibly indicating another neurological disor-
der; however, without explicit confirmation that
this is not due to ALS, we cannot definitively rule
him out based solely on this symptom alone. Sim-
ilarly, without more specifics on the rest of the
criteria, particularly those relating to functional ca-
pacity and absence of contraindicating health con-
ditions, it is prudent to default towards entailment
barring concrete contradictions. Therefore, the an-
swer leans toward entailment pending verification
of additional details necessary for full eligibility
assessment.”
PL answer:

“Contradiction
The provided patient information does not spec-

ify whether they have been diagnosed with Amy-
otrophic Lateral Sclerosis (ALS). Furthermore, it
mentions that the patient is taking medication for
sclerosis rather than riluzole which is typically used
for ALS. Additionally, there is no mention of their
SVC percentage which is required to meet the inclu-
sion criteria. Hence based solely on the provided
information, we cannot conclude that this patient
meets all the necessary conditions to be eligible for
the trial as described.”

E.2 Patient #30
Premise (NCT03563690): See Fig 7.
Medical answer:

“Contradiction
The patient’s presentation includes a tender

Inclusion Criteria:

          1. Meet the Clinical Classification Criteria for Osteoarthritis of the Knee, diagnosed by
             specialist.

          2. Aged 40-75 years old;

          3. History of chronic knee pain for more than 3 months, and complain of knee pain on most
             days of the past month;

          4. Kellgren and Lawrence Grades 1-3;

          5. With related knee pain in one or both knees rated > 4 cm on a 10 cm Visual Analog
             Scale(VAS) (VAS:0 to 10)

          6. Who volunteer to participate and sign the consent form .

        Exclusion Criteria:

          1. Knee osteoarthritis patients with gout, infection, tumor, autoimmune diseases, trauma
             or other causes of knee pain or knee deformities;

          2. Patients who have local skin damage, poor skin conditions or coagulant dysfunction and
             patients who are not suitable for acupuncture;

          3. Patients who are accompanied with serious medical problems or mental disorders,
             cognitive dysfunction，disorders of shallow sensation or who cannot cooperate with the
             treatment;

          4. Patients who have received acupuncture or needle knife in the past month;

          5. Other patients who are not suitable for acupuncture treatment.

No condition on gender to be admitted to the trial.
No healthy subjects accepted to join the trial.
Subject must be at least 40 Years old.
Subject must be at most 75 Years

.

Figure 7: Eligibility criteria from trial NCT03563690,
used as the premise.

swelling in the popliteal fossa and calf along with
an enlarged effusion due to bending and straight-
ening the knee, which may indicate other causes
of her knee pain beyond osteoarthritis, such as
possible vascular issues (e.g., deep vein thrombo-
sis). This could fall under the exclusion criteria
point number 1 ("Knee osteoarthritis patients with
... other causes of knee pain..."). Therefore, based
on this information, it contradicts the full eligibility
to participate merely under the inclusion criteria
for osteoarthritis without further clarification or
exclusion of other potential diagnoses.”
PL Answer:

“Entailment
Based on the information provided about your

condition and comparing it against the inclusion
and exclusion criteria outlined in the clinical trial
requirements, there is no direct contradiction found
that would exclude you from participating in the
trial. However, final determination should involve
a thorough review by the healthcare professionals
involved in the study as they will need to confirm
all specific details such as severity grade, pain level
on VAS, and absence of any other listed exclu-
sions like concurrent illnesses that could disqualify
participation. Given the description of meeting
age range, having chronic knee pain due to con-
firmed osteoarthritis diagnosis, experiencing signif-
icant pain which impacts daily life, and willingness
to take part (assuming voluntary agreement and
signed consent), you appear to meet several key
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criteria which allows for potential entailment into
the trial framework.”
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Abstract

In this paper, we investigate the effectiveness of
large language models in generating accessible
lay summaries of medical abstracts, targeting
non-expert audiences. We assess the ability of
models like GPT-4, Biomistral, and LLaMA
3-8B-Instruct to simplify complex medical in-
formation, focusing on layness, comprehensive-
ness, and factual accuracy. Utilizing both au-
tomated and human evaluations, we discover
that automatic metrics do not always align with
human judgments. Our analysis highlights the
potential benefits of developing clear guide-
lines for consistent evaluations conducted by
non-expert reviewers. It also points to areas for
improvement in the evaluation process and the
creation of lay summaries for future research.

1 Introduction

In the dynamic field of medical research, rapid
and clear dissemination of knowledge is essential.
Automatic text summarization of medical abstracts
serves as an efficient method for providing access
to crucial information to both medical profession-
als and researchers, facilitating quicker and clearer
information exchange (Luo et al., 2022). The need
to communicate complex medical findings also
extends to non-expert audiences such as caregivers,
journalists, and the general public, who often
struggle with the complex sentence structures and
specialized terminology of medical literature (Guo
et al., 2021; Goldsack et al., 2023b; Friedman
et al., 2002; Korsch et al., 1968). Lay summaries
of these abstracts are crucial in making scientific
discoveries accessible to these groups by avoiding
medical jargon and using clear, straightforward
language (Guo et al., 2021; Chandrasekaran
et al., 2020; Goldsack et al., 2023b). Initially, the
generation of biomedical lay summaries utilized
the fine-tuning of transformer-based models (Guo
et al., 2021; Goldsack et al., 2022). However,
recent progress has shown that large language

models (LLMs) are especially effective in this
area, with LLM-generated summaries not only
surpassing traditional references in news datasets
(Zhang et al., 2024a) but also demonstrating robust
capabilities in generating comprehensible sum-
maries in biomedical contexts, using techniques
like retrieval-augmented generation (Guo et al.,
2024) and zero-shot approaches (Jahan et al.,
2024). Additionally, employing methods such as
few-shot learning and the use of context-specific
prompts has been shown to enhance the accuracy
and relevance of the generated summaries (Pakull
et al., 2024). Moreover, the use of few-shot
learning with pre-trained LLMs has proven to be a
robust approach at the BioLaySumm shared task
2023 (Turbitt et al., 2023).

In this paper, we investigate the effectiveness of
LLMs in generating lay summaries from biomed-
ical abstracts. Using a few-shot prompting strat-
egy, we evaluate the performance of four distinct
LLMs: GPT-4 (Achiam et al., 2023), Mistral-large-
Instruct-2407(AI), LLaMA 3-8B-Instruct (Meta-
Llama), and BioMistral (Labrak et al., 2024). We
assess the ability of models to generate lay sum-
maries, focusing on comprehensiveness, layness,
and factual accuracy. Three research questions
guide our evaluation:

1. How comprehensive are lay summaries gener-
ated by various LLMs?

2. How readable are biomedical summaries for
lay audiences?

3. How faithful are lay summaries to their origi-
nal abstracts?

Our evaluation methodology incorporates both au-
tomated and human assessments of the generated
summaries on the publicly available PLABA (Attal
et al., 2023) and the PLOS dataset (Goldsack et al.,
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2022). We also conducted an in-depth analysis of
various evaluation metrics that are widely used for
lay summarization tasks.

In this study, we introduce detailed guidelines for
the manual evaluation of lay summaries, designed
as a comprehensive rubric that enables non-expert
audiences to effectively assess lay summaries. By
integrating human evaluations alongside automated
metrics, we indicate the crucial role of human judg-
ment in assessing summary quality, highlighting
the inconsistencies that may emerge by relying
solely on automatic metrics and discussing future
directions for this research area.

2 Background

The BioLaySumm shared task was first introduced
at the BioNLP Workshop during ACL 2023 (Gold-
sack et al., 2023a). This task focuses on abstrac-
tive summarization of biomedical articles, with the
goal of creating lay summaries accessible to gen-
eral audiences. It makes use of the PLOS and eLife
corpus for this task and assesses summaries ac-
cording to three criteria: Relevance, Readability,
and Factuality. Each of these criteria is measured
using one or more automatic metrics. Initial re-
search on lay summarization primarily employed
fine-tuned transformers such as BART (Guo et al.,
2021), which were prominently featured at the Bi-
oLaySumm shared task in 2023. However, strong
performance on the task was demonstrated by em-
ploying zero-shot and few-shot prompts with pre-
trained LLMs (Turbitt et al., 2023).

By the following year, the majority of proposed
approaches by participating teams involved the
use of LLMs (Goldsack et al., 2024). At Bio-
LaySumm 2024, models such as GPT-3.5, GPT-
4, and LLAMA3 were used in few-shot settings
to generate lay summaries (Chizhikova et al.,
2024). Another approach highlighted that fine-
tuning LLMs like Biomistral with few-shot learn-
ing significantly enhances the accuracy of these
summaries (Pakull et al., 2024). Additionally, re-
cent research has explored retrieval-augmented gen-
eration (RAG), which utilizes LLMs and external
knowledge sources such as Wikipedia to refine lay
summarization (Guo et al., 2024). This RAG-based
approach can be further enhanced by coupling it
with reinforcement learning, optimizing the read-
ability of the generated summaries (Ji et al., 2024).

3 Analysis on LLM generated plain
language summaries

3.1 Lay Summary and Evaluation Guidelines
Based on our three research questions, we decided
to evaluate the summaries on comprehensiveness,
layness, and factuality. To ensure a consistent and
robust assessment, we assume that our target au-
dience has a limited background in biology (high
school level) and intends to understand the article
on a high level. Therefore, we aim for a lay sum-
mary that uses minimal medical jargon and effec-
tively employs definitions or analogies to explain
challenging biological concepts. Furthermore, it
should be complete, explaining the topic, imple-
mentation, and findings of the study so that our
intended readers can grasp the study (King et al.,
2017).

Guided by previous research (Goldsack et al.,
2022; Zhang et al., 2024b), our assessment method-
ology employs a 1-5 Likert scale for each defined
metric. We sampled 15 abstracts from the PLABA
and PLOS test set for lay summary generation by
the models. Two undergraduates evaluated each
generated summary using the guidelines. For both
datasets, evaluators first read each abstract indepen-
dently, and then the corresponding lay summaries.
The evaluators were computer science majors who
studied biology only until high school (10th grade).

We developed explicit scoring criteria, which
was used for assessing summaries from both
datasets, aiming to standardize evaluations and
ensure reliability across different evaluators.

Comprehensiveness
Through comprehensiveness, we assess the extent
to which the model-generated summaries encap-
sulate all the essential information necessary for a
non-expert to grasp the high-level topic and signifi-
cance of the research. The specifics of each score
are as follows:

Score 1: The summary is incomplete; an evaluator
cannot understand the topic or the significance of
the research.

Score 2: The summary is partially complete; an
evaluator gains a vague idea of the topic but cannot
grasp the significance due to missing key details.

Score 3: The summary allows an evaluator to un-
derstand the topic but lacks important details that
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convey the research’s significance.

Score 4: The summary enables an evaluator to un-
derstand both the topic and significance, missing
only minor details that could enhance understand-
ing.

Score 5: The summary thoroughly covers all nec-
essary information, allowing an evaluator to fully
understand the topic and the significance of the
research.

Layness
Layness measures the extent to which the model-
generated text reduces medical jargon, enhances
understanding of the summary by adding defini-
tions and background context for the study’s topic,
and employs simpler sentence structures or analo-
gies, making the content accessible to a general
audience. The specifics of each score are as fol-
lows:

Score 1: There is not much difference between the
plain text summary and the abstract.

Score 2: The plain text summary omits a few sen-
tences that include jargon or omits a few words in
sentences. It becomes easier to read but does not
truly simplify the content.

Score 3: The summary is a mix of jargon and sim-
ple terms, as well as simple and complex sentences,
along with some definitions. Laypersons may un-
derstand the main points but could find specific
terms or sentences confusing.

Score 4: The summary is overall easy to under-
stand, with the occasional presence of a complex
sentence or medical terms that are not explained to
the reader.

Score 5: The summary removes jargon or uses
simple synonyms for them. If it cannot do either, it
adds context for the evaluator to grasp the complex
term. It uses simple, straightforward sentences or
makes use of examples, making it easy for anyone
to understand.

Factuality
Factuality measures the degree to which the infor-
mation in the model-generated summaries remains

true to the original abstracts. The specifics of each
score are as follows:

Score 1: The study alters the findings or method-
ology, misrepresenting the study. The misrepresen-
tation might be intentional or due to a misunder-
standing of the original data.

Score 2: The study alters part of the study that can
lead to misinterpretation of sections such as method
or results, but not the entire study. These alterations
could potentially skew the reader’s understanding.

Score 3: The summary contains accurate informa-
tion about the study but with frequent minor in-
consistencies such as typos, incorrect figures, or
omitting key details in findings. These inconsisten-
cies do not majorly affect the overall integrity of
the summary.

Score 4: The study contains accurate information
about the study but with one or two minor excep-
tions. These exceptions are usually not critical to
the study’s main conclusions.

Score 5: The summary is fully factual and aligns
completely with the study. It provides a detailed
and accurate depiction of the original research with-
out any significant omissions or errors.

3.2 Data
We evaluated our approach using the publicly avail-
able PLABA dataset (Attal et al., 2023) and the
PLOS dataset (Goldsack et al., 2022). In the case of
the PLOS dataset, we noted that associated author-
written lay summaries presented readability chal-
lenges for a layman. Consequently, we used these
summaries as the baseline for evaluating the effec-
tiveness of our approach with the PLOS abstracts.
We would like to point out that in Table 2, we keep
the factuality score for them as ’N/A’ since they
were written by humans and not generated by a lan-
guage model. For the PLABA dataset, we used the
summaries generated by the fine-tuned Biomistral
model as the baseline.

3.3 Evaluation Metrics
We evaluated the generated summaries for PLABA
using several metrics. To measure comprehen-
siveness, we used: ROUGE-1, ROUGE-2 and
ROUGE-L (Lin, 2004), and SARI (Xu et al., 2016).
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Method Model ROUGE-1 ROUGE-2 ROUGE-L SARI FKGL DCRS CLI LENS SummaC AlignScore

Fine-tuned Biomistral 0.634 0.369 0.514 48.611 12.278 9.876 13.812 56.433 54.5 79.9
Prompt Biomistral 0.443 0.264 0.373 36.307 14.376 11.967 15.959 40.816 82.3 87.7
Prompt GPT-4 0.548 0.213 0.351 40.973 9.692 8.753 11.094 74.958 34.0 75.7
Prompt Mistral 0.528 0.206 0.335 40.722 9.514 9.001 12.063 72.021 32.3 70.7
Prompt Llama3 0.547 0.258 0.385 41.680 11.764 9.474 13.462 67.407 47.9 81.4

Table 1: Model performance measured by automatic metrics on the PLABA dataset

For readability, we used the Coleman-Liau In-
dex (CLI), Dale-Chall Readability Score (DCRS),
Flesch-Kincaid Grade Level (FKGL), and LENS
(Maddela et al., 2023). Additionally, we used
AlignScore (Zha et al., 2023) and SummaC (Conv)
(Laban et al., 2022) to assess the factuality of the
summaries.

4 Our Analysis

RQ1: How comprehensive are lay summaries
generated by various LLMs?

We observed in Table 1, in terms of automatic
metrics, none of the prompt-based models were
able to outperform the baseline. The fine-tuned
Biomistral achieved scores of 0.634 and 48.611 on
ROUGE-1 and SARI, respectively. This highlights
that LLMs using prompts have added more abstrac-
tiveness to the plain text summaries, resulting in
less overlap. However, in human evaluation, we
found GPT-4 and Mistral achieved better ratings,
scoring 4.165 and 4.565, respectively, compared to
the baseline at 4.065. These final scores were com-
puted by taking the average of the sum of ratings
for the comprehensive facet.

These scores suggest that if models are better
at restructuring or emphasizing key points by
leveraging simple sentence structures and omitting
non-essential details, it could enhance human
understanding of the article’s content and signifi-
cance, leading to higher comprehensiveness scores
(as presented in Table 3 in the appendix). We also
observed this with the PLOS dataset, where GPT-4
and Mistral achieved higher comprehensiveness
than the reference lay summaries. Lastly, the gap
between automatic ROUGE and SARI scores
and human ratings for models like Biomistral
reveals the shortcomings of current metrics
in fully assessing how much information the
summary conveys. This indicates a need for novel
metrics that better evaluate sentence structure
and highlight informational content, essential to
measure comprehensiveness.

RQ2: How readable are biomedical summaries
for lay audiences?

We observe from Table 1 that GPT-4 gets the
lowest scores on DCRS (8.75) and CLI readabil-
ity ratings (11.09) and the highest on the LENS
metric (74.96), indicating high simplicity and read-
ability of the text it generates. Mistral achieves the
lowest score on the FKGL metric (9.5). In the hu-
man evaluation, GPT-4 and Mistral again showed
strong performance, with layness scores of 4.735
and 4.770, respectively. The lower FKGL rating
indicates that Mistral most likely generated shorter
sentences with simple syllables, whereas GPT-4 re-
lies on more common words and potentially longer
sentences than Mistral.

The readability metrics depend on sentence
lengths (FKGL), word familiarity (DCRS),
characters per word (CLI), and LENS evaluates
simplification on a sentence level and not a
paragraph(Xu et al., 2016). Thus, the scores
potentially may look a bit aligned because we
prompt models to generate simple sentences. What
is not currently captured is a measure of how many
complex words were omitted by the model, how
many were simplified, and how many contexts
or definitions were added since these are other
characteristics apart from simple sentences on
which humans evaluated the summaries for layness.
This may potentially be the reason Mistral gets a
higher rating on Layness than GPT-4 in the human
evaluation. Additionally, this could also be a great
metric to reflect on the nature of model-generated
summaries, whether the LLM prefers to simplify
sentences, omit jargon, replace terms, or add more
context. For instance, in the PLOS evaluation,
Mistral and GPT-4 received higher layness scores
as they added definitions and used simpler terms,
in contrast to the baseline summary that, despite its
simple sentence structure, included medical jargon
that reduced its layness.
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Model PLABA Dataset PLOS Dataset
Comprehensiveness Layness Factuality Comprehensiveness Layness Factuality

Baseline 4.065 4.165 4.230 4.1 2.233 N/A
GPT-4 4.165 4.735 4.150 4.767 4.667 4.7
Mistral 4.565 4.77 4.835 4.767 4.567 4.8
Llama3 4.000 4.099 4.395 4.533 3.2 4.667
Biomistral 3.520 3.105 3.935 3.933 2.2 3.967

Table 2: Human Evaluation Results on PLABA and PLOS Datasets

RQ3: How faithful are lay summaries to their
original abstracts?

SummaC and AlignScores evaluated the factual
alignment of generated summaries with original
abstracts. High scores of 87.7 (AlignScore) and
82.3 (SummaC) for Biomistral in a prompt setting
indicate these metrics favor text similar to the ab-
stracts, despite occasionally favoring incomplete
summaries. SummaC scores showed inconsistency
with human evaluations, while AlignScores per-
formed slightly better with respect to alignment
with human evaluations. In the human evaluation,
we observe Mistral achieving the highest rating for
factuality, followed by Llama3, scoring 4.835 and
4.395, respectively. In the PLOS, along with GPT-
4 and Mistral, Biomistral and Llama-3 achieved
high factuality by maintaining sentence structures
similar to the abstracts. However, we would like
to highlight that the factuality score on both hu-
man and automatic metrics reflects solely intrinsic
factuality. The LLMs also incorporate additional
definitions and context to enhance user understand-
ing, which may sometimes be inaccurate, leading
to extrinsic hallucinations (Ramprasad et al., 2024).
However, in this scenario, it is unreasonable to
expect non-experts to identify and assess these in-
accuracies.

5 Discussion

Our research examined how various language mod-
els generate lay summaries to simplify scientific
findings. The Biomistral fine-tuned model effec-
tively reflected the reference summaries and oc-
casionally added definitions for complex terms.
However, its prompt-based version often generated
the same abstract or missed crucial information.
LLama3 did simplify sentences, but it did not add
necessary definitions and contexts, impacting its
layness. Both GPT-4 and Mistral models excelled
in creating understandable summaries, though they
sometimes omitted detailed information. This un-
derscores the trade-off between simplicity and fac-
tual accuracy in lay summaries.

Our results indicate that for prompt-based ap-
proaches, model size correlates with performance,
with larger models like GPT-4 and Mistral showing
superior adherence to guidelines and creativity in
using analogies. Lastly, clear guidelines enhance
the consistency of lay summary evaluations (as
seen in Table 4 in appendix) by standardizing as-
sessment criteria for non-expert reviewers.

6 Conclusion

In this study, we investigated how LLMs gener-
ate lay summaries for non-experts. Our findings
show that while LLMs can simplify complex med-
ical information effectively, there’s a significant
gap between automated metrics and human eval-
uations of the summary quality. This gap reveals
the limitations of current evaluation methods and
the need for metrics that align more closely with
human perceptions of comprehensiveness, layness,
and factuality. In the future, we plan to analyze
other summarization methods and develop an ef-
fective human evaluation design that includes ex-
trinsic factuality, on a larger dataset to refine our
understanding of evaluation metrics perform across
broader contexts.

7 Limitations

Our work has a few limitations. Firstly, LLMs ex-
hibit an indeterministic nature, as they generate
different lay summaries for the same input. Sec-
ondly, the format of the generated text often de-
viates from the example provided in the prompt,
particularly in the cases of the Llama3 and Mis-
tral models. Therefore, post-processing with regu-
lar expressions might be necessary to achieve the
most effective results from these prompts. Addi-
tionally, we used a fixed prompt, which may not
work equally well across all models, potentially
leading to poorer-quality lay summaries. Lastly,
there is a potential limitation concerning the train-
ing data of the LLMs. It is possible that the models
were unintentionally trained on or exposed to the
reference summaries used in our evaluations, which
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could boost their performance on the lay summa-
rization task.

8 Ethical Considerations

Although the LLMs perform well, they occasion-
ally add additional definitions and context that
could be incorrect. Moreover, in their efforts
to simplify complex medical information, LLMs
sometimes oversimplify, potentially leading to mis-
interpretations of the results. Therefore, non-
experts should exercise caution when using LLM-
generated lay summaries to ensure they are not
misled by inaccuracies.
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A Prompt

This appendix outlines the prompt employed for
generating lay summaries as described in this paper.
This prompt was used across all four models with
a minor change. The symbol ’#’ was included in
the prompt for the Mistral and LLaMA3 models.

Prompt:
You are a biology teacher in a high school and

want to teach students in 10th grade about a re-
search study. Your goal is to convey the informa-
tion in the abstract in plain and easy to understand
language that students can follow.

You decide to generate a plain text for the same
abstract keeping in mind what makes a text simple
and easy to understand.

1. It attempts to avoid as much scientific jargon as
possible. If it cannot avoid it, then it replaces it
with easy to understand synonyms.

2. It has an explanation and definition for complex
biological terms and can include simple real-life
examples to make it easier to understand.

3. The sentence structure is simple, and the text
has a good coherent flow.

4. The word count cannot exceed 300 words.

5. The text should have all the important points.
And if words are replaced by simpler terms, it
is good to connect them to original words by
referencing them using brackets.

6. Ensure the text is factually correct, this includes
definitions, synonyms, important numeric fig-
ures, and findings.

Here is an example of what you should generate:
Abstract: [Sample Abstract]
Here is the rationale to use:

1. Read the abstract thoroughly to grasp main
ideas.
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2. Avoid scientific jargon; use simple synonyms or
explanations.

3. Define complex terms and provide real-life ex-
amples for clarity.

4. Use simple sentence structures for better under-
standing.

5. Keep the text under 300 words.

6. Include all important points, referencing origi-
nal terms in brackets when replacing them.

7. Ensure all information is factually correct, in-
cluding definitions and key data.

Generated Plain Text: [Sample Plain Summary]
Abstract: [Test set abstract]
Generated Plain Text:

B Implementation Details

We accessed the GPT-4 ("gpt-4") and Mistral
Large models("mistral-large-2407") using the API
provided by OpenAI and Mistral respectively.
The Llama-3-8B model and Biomistral were ac-
cessed through Huggingface and were run on 1
NVIDIA Tesla T4-16GB and 1 NVIDIA Tesla
A100 Ampere-40GB respectively. Biomistral used
as the baseline was fine-tuned on the PLABA
dataset through QLORA (Dettmers et al., 2024).

We generated plain text abstracts for all 148 ab-
stracts in the PLABA test dataset using the one-shot
prompt approach for each model. For Biomistral
and Llama3 we observed that the summaries con-
tained the prompt prefix, the test abstract. More-
over, for Llama3 there were cases where we found
rationale or references being generated after the
plain text. Thus, we employed a post-processor
using regular expression for both models to extract
the plain text summary.
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Model Text
Abstract To reduce the damage to posteromedial knee capsule, we developed a direct

extra-articular arthroscopic approach for excision of symptomatic popliteal
cysts. This study aimed to demonstrate the surgical technique and present the
2-year follow-up results. Cystectomy is performed by extra-articular surgical
approach through a high posteromedial portal. Twenty-one consecutive patients
diagnosed of symptomatic popliteal cysts with failed initial conservative
treatments were included. At a median follow-up of 29.4 months, all knees had
improved clinical function assessed by Rauschning and Lindgren knee
classification (p<0.001). The cysts were either disappeared (95.2%) or reduced
in size (4.8%). Only one (4.8%) patient had recurrent cyst, which was solved
after ultrasound-guided aspiration. This direct extra-articular arthroscopic
technique could be a feasible alternative for treatment of symptomatic popliteal
cysts.

Biomistral
fine-tuned
(baseline)

To reduce the damage to the knee capsule, we created a new way to remove
cysts (growths) in the knee. This new way is called a direct extra-articular
arthroscopic approach. This study aimed to show how the surgery is done and
present the 2-year follow-up results. Cystectomy is performed by a high
posteromedial portal. Twenty-one patients with cysts in the knee were included.
At a median follow-up of 29.4 months, all knees had improved function. The
cysts were either disappeared or reduced in size. Only one patient had a
recurring cyst, which was solved by draining the cyst. This direct
extra-articular arthroscopic technique could be a good way to treat cysts in the
knee.

Mistral-
large

A popliteal cyst is a fluid-filled swelling that forms at the back of the knee. It
can cause pain and other symptoms. To treat these cysts without damaging the
nearby knee structures, doctors developed a new surgical method using a tiny
camera called an arthroscope. This study aims to explain this new method and
show the results two years after the surgery. The surgery is done through a
small opening on the inner back side of the knee, allowing doctors to remove
the cyst without going into the knee joint itself. Twenty-one patients who had
painful popliteal cysts and didn’t get better with other treatments were included
in the study. After an average follow-up of about 29 months, all the patients
reported improved knee function based on a specific knee classification system.
In almost all cases (95.2%), the cysts disappeared, and in a few cases (4.8%),
the cysts became smaller. Only one patient (4.8%) had the cyst come back, but
it was successfully treated with an ultrasound-guided needle to drain the fluid.
This new surgical technique, which involves removing the cyst from outside the
knee joint using an arthroscope, seems to be a good option for treating painful
popliteal cysts.

Table 3: Summaries generated by Biomistral and Mistral-large for an abstract in PLABA. Colors in the text indicate:
additional background information (brown), simpler terms used (blue), and simplified sentences (orange).

Model Comprehensiveness Layness Factuality
Baseline 0.667 0.45 0.880
GPT-4 0.435 0.717 1.000
Mistral 0.690 0.755 0.755
Llama3 0.606 0.74 0.698
Biomistral 0.693 0.822 1.000

Table 4: Inter annotator agreement (Cohen’s Kappa) on
PLABA Dataset

Model Comprehensiveness Layness Factuality
Baseline 0.688 0.688 N/A
GPT-4 0.318 0.700 0.300
Mistral 0.800 0.605 1.00
Llama3 0.744 0.615 0.412
Biomistral 0.783 0.455 0.503

Table 5: Inter annotator agreement (Cohen’s Kappa) on
PLOS Dataset
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Abstract

Health literacy enables individuals to navi-
gate healthcare systems and make informed
decisions. Plain language summaries (PLS)
can bridge comprehension gaps by simplify-
ing complex biomedical texts, yet their manual
creation is both time-consuming and challeng-
ing. This study advances the field by (1) con-
structing a novel corpus of paired technical and
plain language texts from medical trial libraries,
(2) developing machine learning classifiers to
rapidly identify plain language features, and
(3) establishing a multi-dimensional evaluation
framework that integrates computational met-
rics with human expertise. We iteratively opti-
mized prompts for diverse large language mod-
els (LLMs)—including GPT models, Gemini
1.5, DeepSeek-R1, and Llama-3.2—to gener-
ate PLS variants aligned with domain-specific
guidelines. Our classifier achieved 97.5% ac-
curacy in distinguishing plain from technical
language, and the generated summaries demon-
strated high semantic equivalence to expert-
written versions.

1 Introduction

Health literacy refers to an individual’s capacity
to access, understand, and use health information
(Nielsen-Bohlman et al., 2004). This ability is
essential for patients and their families to effec-
tively navigate healthcare systems, comprehend
medical instructions, adhere to treatment regimens,
and make informed decisions about clinical trials,
treatments, or procedures (Berkman et al., 2011a,b;
Miller, 2016). However, inadequate health literacy
remains a widespread problem, one that has been
linked to increased mortality, higher rates of pre-
ventable hospitalizations, and poorer treatment ad-
herence (Berkman et al., 2011a). In particular, the
2015 European Health Literacy Survey found that
nearly half of the respondents, particularly older
adults, people with financial constraints, or those

with lower educational attainment, exhibit insuffi-
cient health literacy (Sørensen et al., 2015; Bahador
et al., 2020).

In today’s healthcare landscape, where patient
participation in decision-making is increasingly
critical, improving health literacy is essential to
reduce disparities and improve public health out-
comes (Nielsen-Bohlman et al., 2004; Stormacq
et al., 2019; Schillinger, 2021). Moreover, align-
ing with the transparency principles of the General
Data Protection Regulation (GDPR) (GDPR, 2023;
Trezona et al., 2018), stakeholders are compelled
to ensure that health documentation is both clear
and accessible.

Plain language summaries (PLS) offer a viable
solution by translating complex clinical and scien-
tific texts into accessible language (Bahador et al.,
2020; Centers for Disease Control and Prevention,
2022). However, the manual production of such
summaries is labor-intensive and particularly chal-
lenging in fields dominated by technical terminol-
ogy. While large language models (LLMs) have
demonstrated promise in automating the genera-
tion of lay summaries, previous efforts have largely
centered on text generation, often overlooking the
need for systematically curated training data and
comprehensive evaluation frameworks.

To bridge these gaps, our work introduces a
novel resource and an integrated methodological
framework that addresses key challenges in health
communication. By compiling a corpus of paired
technical and plain language texts from medical
trial libraries, we provide a valuable dataset that un-
derpins the development of machine learning clas-
sifiers capable of rapidly distinguishing between
plain and technical language. Using state-of-the-art
LLMs and iteratively refining our prompts, we gen-
erate plain-language variants that adhere to domain-
specific guidelines. Furthermore, our evaluation
framework, which combines automated metrics
with an expert in health literacy assessments, of-
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fers critical insights into the factors that define an
effective plain-language summary.

Through this integrated approach, our study not
only provides practical tools for producing patient-
centered medical summaries but also enhances our
understanding of the linguistic variables that sup-
port clear and accessible healthcare communica-
tion.

2 Related Work

Recent efforts in biomedical text simplification
have increasingly focused on automatically gen-
erating PLS using NLP and LLMs. Ondov et al.
(2022) reviewed a range of approaches and ob-
served that, although neural methods show promise,
their progress is limited by the scarcity of high-
quality, parallel corpora. This data challenge was
similarly highlighted by Devaraj et al. (2021), who
introduced a new corpus of parallel texts specifi-
cally designed to aid the training of models that
could effectively reduce jargon in biomedical infor-
mation.

LLMs offer a compelling solution to overcome
these limitations due to their extensive training data
and advanced text generation capabilities. For in-
stance, the BioLaySumm contest (Goldsack and
Lin, 2025) targets the task of generating PLS from
abstracts. In the 2023 BioLaySumm Task, Turbitt
et al. (2023) demonstrated that GPT-3.5—when
used in a few-shot setting—produced summaries
with superior relevance and factuality compared to
those of the specialized BioGPT model, despite the
latter’s advantage in readability. Additional stud-
ies (Veen et al., 2024; Mirza et al., 2024) further
indicate that LLMs can outperform human experts
in summarizing clinical texts and enhancing the
clarity of informed consent documents.

However, there remains a critical need for sys-
tematically curated datasets and evaluation frame-
works that combine computational metrics with
human expertise. We aim to enhance existing work
by building a comprehensive database of plain and
technical biomedical texts. We will then imple-
ment advanced LLMs alongside a classification
system to automatically ensure that the generated
summaries are composed in plain language. Addi-
tionally, we will conduct a thorough evaluation of
the generated PLS by domain experts, employing
metrics such as readability, factuality, and accuracy,
as outlined in the BioLaySumm shared task.

3 Materials and Methods

Our methodology, outlined in Figure 1, consisted
of 3 main steps: (1) collecting and processing of
sample texts in technical and plain language, (2)
conducting a quantitative analysis of the plain and
technical texts to generate a plain language clas-
sification model and a qualitative analysis of the
texts to generate the prompts for the LLMs, and
(3) assessing the use of the LLMs to generate PLS
from technical texts.

3.1 Data Collection and Processing
We collected biomedical texts in both technical and
plain language (see Table A1 for data sources) and
assembled them into a dataset comprising 14,441
texts. This “main dataset” was then divided into
training and testing sets, containing 4,596 plain and
6,721 technical texts for training, and 1,149 plain
and 1,975 technical texts for testing.

We further enlarged the dataset by treating each
paragraph of at least 250 words as a distinct unit,
while excluding texts shorter than 250 words. As a
result, our "augmented dataset" contained 61,354
texts, split into 16,731 plain and 31,740 technical
texts for training, and 5,090 plain and 7,793 techni-
cal texts for testing. To mitigate source imbalance,
we limited the dataset to 23,695 texts, divided into
9,093 plain and 8,654 technical for training, and
2,741 plain and 3,205 technical for testing. Ad-
ditionally, we obtained a validation set of PLOS
and eLife texts from (Goldsack et al., 2022; Luo
et al., 2022) to evaluate the ML models on a dataset
external to our own.

3.2 Analysis of Plain Language
We conducted qualitative and quantitative analyses
of the texts to identify unique linguistic traits and
variables that classify a text as plain language.

3.2.1 Qualitative Analysis
Driven by the varying and broad-scope guidance
on creating high-quality PLS (Stoll et al., 2022),
we analyzed a subset of our plain texts and created
a ’criteria checklist’ (see Table 1) with the linguis-
tic attributes most commonly present in plain texts.
Key resources used in this process were guides and
reviews, such as Your Guide to CLEAR WRITING
by CDC (Centers for Disease Control and Preven-
tion, 2022), Federal Plain Language Guidelines
(The Plain Language Action and Information Net-
work, 2011), Health Literacy Universal Precautions
Toolkit by Agency for Healthcare Research and
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Figure 1: Methodology. Our methodology consists of three main steps: (1) collecting and processing biomedical
texts (technical and plain language documents) to construct training and testing datasets, (2) conducting quan-
titative analysis to develop a plain language classification model and qualitative analysis to identify linguistic
traits guiding prompt engineering for LLM-based PLS generation, and (3) evaluating LLM-generated PLS both
quantitatively—using our classification model, semantic equivalence/relevance (BERTScore, Zhang et al. (2020)),
factuality (AlignScore, Zha et al. (2023)), and readability metrics—and qualitatively through expert assessments.

Quality (AHRQ) (Brach, 2023), Just Plain Clear
Glossary by United Health Group (United Health
Group, 2023), EU 536/2014 Summary of Clinical
Results for Laypersons (European Union, 2023),
and results presented by Stoll et al, in their sys-
tematic review of theory, guidelines, and empirical
research on PLS (Stoll et al., 2022). We used the
resultant checklist to complement the qualitative
findings described in the next section and aid in
developing the prompt detailed in the section LLM
Prompt for Plain Language Summary Generation.

3.2.2 Quantitative Analysis
We computed readability metrics and language vari-
ables for each text in the augmented dataset using
the Readability (2019) and SpaCy (2023) libraries,
respectively. This resulted in 64 variables present-
ing each text’s readability and linguistic traits (see
Table B1 and Section B).

For each language variable characteristic k, we
evaluated its discriminative potential for classifying
texts as either technical or plain. To this end, we
randomly selected a sample of size n from the plain
texts, denoted by

X
(k)
1 , X

(k)
2 , . . . , X(k)

n ∼ P
(k)
X ,

and a corresponding sample of size n from the

technical texts, denoted by

Y
(k)
1 , Y

(k)
2 , . . . , Y (k)

n ∼ Q
(k)
Y .

An independent hypothesis test was then conducted
for each k to determine whether the distributions
differ statistically between the two text types.

Specifically, for each linguistic feature k, we
considered the following hypotheses:

• Null Hypothesis (H(k)
0 ): P (k)

X = Q
(k)
Y . The

distributions of the characteristic k for plain
and technical texts are identical.

• Alternative Hypothesis (H(k)
1 ): P

(k)
X ̸=

Q
(k)
Y . The distributions of the characteristic k

for plain and technical texts differ.

To evaluate these hypotheses, we employed
several non-parametric tests, namely the
Wilcoxon signed-rank test (Wilcoxon, 1945),
the Kolmogorov-Smirnov test (Kolmogorov,
1933), and the Mann–Whitney U test (Mann
and Whitney, 1947), ensuring robustness across
different statistical assumptions. Since a total of
64 independent hypothesis tests were performed
(one for each characteristic k), a Bonferroni
correction (Benjamini and Hochberg, 1995) was
applied to control the family-wise error rate. Thus,

271



Linguistic Attributes PLS Characteristics

• Use simple and everyday words. Avoid technical,
medical, or scientific terms, jargon, or complex
terminology (e.g., explain technical terms such as
copayment, electrocardiogram, pyrexia, screening,
double-blind).

• Readability level 6 or below

• Active voice over passive voice

• Mostly 1-2 syllable words

• Sentences of less than 20 words

• Short paragraphs of 3-5 sentences

• Simple numbers that do not require any math (e.g.,
4 out of every 10 community members, not 40%
of community members)

• Approximate length of 700-900 words

• Specific structure and content by domain (e.g., EU-
CTR suggested a specific structure and content for
lay protocol synopsis)

Table 1: PLS Criteria Checklist of linguistic attributes and characteristics as defined by qualitative analysis of
sample texts and Plain Language guidelines frequently used by domain experts.

the nominal significance level of α = 0.05 was
adjusted to α′ = 0.05

64 ≈ 0.0008.
Figure 2 illustrates examples of the distribution

comparisons for selected characteristics. Notably,
of the 64 characteristics examined, only ‘Interjec-
tions’ and ‘Passive Voice’ did not provide sufficient
evidence to reject the null hypothesis (i.e., their p-
values exceeded 0.0008), whereas the remaining 62
characteristics exhibited statistically significant dif-
ferences and were subsequently incorporated into
our classification model.

3.3 Plain Texts Classification Model

We used the reduction of the augmented dataset and
first preprocessed the 62 linguistic variables by ap-
plying standard min-max normalization. For vari-
ables representing counts of specific word types,
normalization was performed relative to the total
number of words in the text. We then built our
models using the processed features.

For the Gradient Boosting (GB) model, we man-
ually set the parameters as follows: the number
of estimators was fixed at 120 (i.e., the number of
boosting stages), the learning rate was set to 0.25
to scale the contribution of each tree, a subsample
rate of 0.8 was used to fit each base learner on 80%
of the training instances, the maximum depth of
each tree was limited to 5 to minimize overfitting,
a minimum of 5 samples was required to split an
internal node, and at least 3 samples were needed
in a leaf node. A fixed random state (0) ensured

reproducibility.
For the Random Forest (RF) model, we config-

ured 100 estimators (trees) with a maximum tree
depth of 10 and also set the random state to 0.

Note that we did not perform automated hyper-
parameter tuning (e.g., using grid search) or use
K-fold cross-validation to select optimal training
and testing splits; instead, the parameters were ad-
justed manually through trial and error, given the
rapid training times observed.

3.4 LLM Prompt for Plain Language
Summary Generation

Our objective was to design a prompt for LLMs
capable of translating biomedical technical docu-
ments into plain language summaries (PLS). Be-
ginning with a clinical trial protocol from Clini-
calTrials.gov (see data sources in Table A1), we
used an initial simple prompt: “Using the follow-
ing clinical trial protocol text as input, create a
plain language summary.” We tested this prompt
using both GPT-3.5 and GPT-4, analyzed the gen-
erated outputs, and iteratively refined the prompt
by adding further details and instructions.

We aimed to produce a PLS that met the follow-
ing qualitative criteria: (1) Accuracy: the content
is clinically and scientifically correct; (2) Read-
ability: the text is grammatically correct and easily
understood by a lay audience (as defined in Ta-
ble 1); (3) Completeness: the summary adheres to
the expectations of a Protocol Plain Language Sum-
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a. Interjections. These are words or phrases used
to express a feeling (e.g., Wow! or Uh-oh). It is
uncommon in biomedical settings and is not present
in either our technical or plain texts.

b. Passive Voice: when the subject undergoes the
action of the verb (e.g., ‘The cells were counted by
the scientist’). According to our qualitative analysis,
the use of passive voice can make sentences more
complex, less direct, and harder to understand. As
evidenced in our quantitative analysis, it is avoided
in both scientific/biomedical settings, both in plain
and technical texts.

c. Stopwords. The proportion of words such as
‘a’ and ‘the’ is higher in plain texts is higher in
plain texts, most likely as they aid in the fluency
and comprehension of a text by acting as connec-
tors between words, enhancing the coherence and
naturalness of sentences for readers.

d. Complex Words. The proportion of words
with three or more syllables is higher in technical
texts, consistent with our qualitative assessments
and plain language guidelines.

Figure 2: Comparison of the distribution of a sample of readability metrics or language variables between plain and
technical texts.

mary (PPLS) as specified by EU CTR No 536/2014
(United Health Group, 2023); and (4) Usefulness:
the generated PLS can serve as a reliable first draft
for final study documentation.

Because PPLS are intended for review by pro-
fessional evaluators, they required a higher level
of care and were generated in limited numbers.
This qualitative evaluation method, although rigor-
ous, did not scale efficiently to large sample sizes.
To address this limitation, for the more numerous
Cochrane Review PLS we adopted a scalable, quan-
titative evaluation approach based on the three cri-
teria used in the BioLaySumm competition (Gold-
sack and Lin, 2025). Specifically, we assessed:

1. RELEVANCE: measuring the semantic simi-
larity between the LLM-generated summaries
and a ground-truth summary (created by a hu-
man) using BERTScore (Zhang et al., 2020);

2. FACTUALITY: evaluating the consistency of
the generated content with the source text (i.e.,
ensuring that no contradictory information
is introduced) using AlignScore (Zha et al.,
2023); and

3. READABILITY: assessing grammaticality
and ease of comprehension through computa-
tional metrics such as Flesch–Kincaid Grade
Level (Flesch, 1948), Coleman-Liau Index
(Coleman and Liau, 1975), Flesch Reading
Ease, Gunning Fog Index (Gunning, 1952),
SMOG readability formula, and Dale–Chall
Readability Score (Chall and Dale, 1995).

In addition, we considered the CLASSIFICATION

results from our best ML model, which predicts if
the LLM-generated text is plain or technical.

Our final prompt (see Figure C2) for generating
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a PPLS included the following elements:

• Context: a clear explanation of why a plain
language summary is needed for the given
clinical trial protocol.

• Output: the desired structure and format of
the generated summary, including specific sec-
tions.

• Content: guidelines on the expected informa-
tion in each section, with examples and rules
to direct the generation process.

• Restrictions: limitations on the output (e.g.,
word count, inclusion of only information pro-
vided in the original protocol, and adherence
to the plain language criteria outlined in Ta-
ble 1).

After finalizing the prompt for generating a
PPLS, we used a similar approach to create a
prompt for generating Cochrane Review PLS (see
Table A1 and Figure C1). This two-pronged strat-
egy allowed us to balance the need for careful, qual-
itative review (for PPLS) with a scalable, quanti-
tative evaluation method (for Cochrane PLS) that
can handle larger sample sizes.

4 Results

4.1 Plain Texts Classification Model

The classification models accurately distinguished
between plain and technical texts. The GB model,
in particular, achieved a slightly higher F1 Score
(see Table 2). Since most of the training data were
derived from Cochrane texts, we further evaluated
the models on a completely separate validation set
composed of PLOS and eLife documents (see Ta-
ble A1) to assess potential bias. The performance
metrics, reported as Main/PLOS+eLife in Table 2,
indicate that the models generalize well to unseen
data and exhibit minimal bias.

Metric Main (Test) PLOS + eLife (Test)
RF GB RF GB

Accuracy 0.968 0.9752 0.9421 0.9557
Recall 0.973 0.9813 0.9616 0.9672
Precision 0.959 0.9655 0.9255 0.9455
F1 Score 0.966 0.9734 0.9432 0.9562

Table 2: Performance comparison of classification mod-
els on the Main Dataset and the PLOS + eLife test
dataset.

4.2 LLM Prompt for Plain Language
Summary Generation

4.2.1 Cochrane Reviews: Plain Language
Summaries

We randomly selected 600 Cochrane texts from
the main dataset—300 technical abstracts and their
corresponding plain language summaries (ground
truth). Using our final prompt, we generated sum-
maries for the technical abstracts and computed
average metrics—READABILITY, FACTUALITY,
and RELEVANCE—for each model (Table 3). The
factuality metric was calculated using the origi-
nal abstracts to ensure the summaries remained
faithful. We also evaluated classification accuracy
(i.e., whether our ML classifier recognized the sum-
maries as plain language) as shown in Table 4.

Overall, API-based models produced summaries
consistently classified as plain language, while lo-
cally executed models tended to yield more techni-
cal outputs, as indicated by lower readability scores.
Among the GPT models, those with higher read-
ability were more often recognized as plain lan-
guage, although their factuality and relevance were
slightly lower than those of GPT-3.5. These results
suggest that some models generate easier-to-read
texts, whereas others retain a more technical tone.

4.2.2 Protocol Plain Language Summaries

We randomly selected a sample of nine clinical
trial protocols from ClinicalTrials.gov. Since the
corresponding PPLS were not publicly available,
we used Trial Summaries by Citeline Regulatory
to obtain the Results Plain Language Summaries
(RPLS) and extracted four sections equivalent to a
PPLS: ‘Why is this study needed?’ (Background
and hypothesis of the trial, i.e., Rationale), ‘Who
will take part in this study?’ (Population), ‘How
is this study designed?’ (Trial Design), and ‘What
treatments are being given during the study?’ (In-
terventions).

Quantitative Analysis

We generated PPLS from technical protocols using
our prompt with both API-based models (e.g., GPT-
3.5, GPT-4, GPT-4o, Gemini-1.5) and locally exe-
cuted models (DeepSeek R1, Llama-3.2). For each
model, we computed average metrics for READ-
ABILITY, FACTUALITY (AlignScore), and RELE-
VANCE (BERTScore), as shown in Table 3. Our
ML classifier also confirmed that nearly all outputs
were recognized as plain language (see Table 4).
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Quantitative Evaluation for Cochrane
READABILITY FACTUALITY RELEVANCE

Model CLI ↓ FRE ↑ GFI ↓ SMOG ↓ FKGL ↓ DCRS ↓ AlignScore ↑ BERTScore ↑
deepseek-r1-7b 16.99 22.75 17.69 12.31 14.80 9.45 0.7955 0.8496
gemini-1.3-flash 9.60 66.87 8.75 9.08 6.90 5.94 0.6333 0.8474
gpt_4-32k 12.48 48.52 13.39 11.20 10.80 7.41 0.7801 0.8519
gpt_4o 11.49 57.13 11.16 9.91 9.09 6.88 0.7383 0.8527
gpt_35-turbo-16k 15.52 28.08 17.33 12.59 13.91 8.60 0.8781 0.8585
llama-3.2-3b 16.42 21.96 18.58 10.79 15.73 9.39 0.8785 0.8490

Quantitative Evaluation for PPLS
READABILITY FACTUALITY RELEVANCE

Model CLI ↓ FRE ↑ GFI ↓ SMOG ↓ FKGL ↓ DCRS ↓ AlignScore ↑ BERTScore ↑
deepseek-r1-7b 15.70 24.73 15.03 11.88 13.89 9.88 0.9657 0.8305
gemini-1.3-flash 9.11 65.09 8.61 11.40 6.74 5.75 0.9331 0.8479
gpt_4-32k 10.86 52.26 12.15 10.45 10.79 6.86 0.9646 0.8472
gpt_4o 11.20 55.67 10.37 10.97 8.91 7.05 0.9515 0.8465
gpt_35-turbo-16k 14.30 29.10 16.07 13.49 13.68 8.15 0.9697 0.8434
llama-3.2-3b 13.54 35.17 14.75 11.72 13.26 8.47 0.9826 0.8386

Table 3: Comparison of model metrics. Upper table: Metrics computed as averages from generated summaries
derived from 300 Cochrane abstracts. Lower table: Metrics computed as averages over the 9 generated PPLS
produced by the LLMs. Best values are in bold and worst values are underlined. READABILITY metrics are
lower-is-better (except FRE, where higher is preferred), while FACTUALITY and RELEVANCE are higher-is-better.

CLASSIFICATION
Model Cochrane PPLS
deepseek-r1-7b 0.5567 0.5556
gemini-1.3-flash 1.0000 1.0000
gpt_4 0.9433 1.0000
gpt_4o 0.9767 1.0000
gpt_35 0.8733 1.0000
llama-3.2-3b 0.7033 0.7778

Table 4: Accuracy of generated summaries as deter-
mined by our plain language classifier. Since all outputs
should be plain language by instruction, these results
indicate the extent to which each model adheres to this
requirement.

Overall, API-based models achieved higher preci-
sion and better factuality, while locally executed
models performed worse due to computational lim-
itations. Among the GPT models, GPT-4 and GPT-
4o produced the most readable summaries (and
were most frequently classified as plain language),
though their factuality and relevance were slightly
lower than those of GPT-3.5. These results indicate
that models like GPT-4o, Gemini-1.5, and GPT-
4 tend to generate easier-to-read texts, whereas
DeepSeek R1 and Llama-3.2 yield more technical
summaries.

Qualitative Analysis
For the qualitative evaluation, only the plain lan-
guage summaries generated by GPT-3.5 and GPT-4
were selected. Due to time constraints for experts,
we selected only the best models based on previ-
ous results, considering that GPT-4o has minimal

differences from GPT-4 in content generation. Rat-
ings by three domain experts who evaluated each
LLM-generated text demonstrated that GPT-4 out-
performed GPT-3.5 in all four criteria: Accuracy,
Readability, Completeness, and Usefulness, as indi-
cated by an average overall score of 4.71 for GPT-4
texts compared to 3.93 for GPT-3.5 (see Figure 3
and Table 5).

Figure 3: Radar diagram comparing the qualitative as-
sessment of the LLM-generated texts in four criteria:
Accuracy, Readability, Completeness, and Usefulness.

In terms of accuracy, both GPT-3.5 and GPT-4
received high scores. Reviewers noted that both
language models exhibited scientific accuracy and
relied exclusively on the input text (study proto-
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col). Notably, even when the content in the origi-
nal RPLS contained inconsistencies (e.g., an incor-
rect age limit or indication), both language models
generated accurate PLS. This finding suggests that
language models can be used to automatically gen-
erate a first draft of a PLS while minimizing data
inaccuracies resulting from human error.

Metric GPT 3.5 GPT 4
Accuracy 4.52 4.81
Readability 3.59 4.44
Completeness 3.96 4.81
Usefulness 3.63 4.78
Overall Score 3.93 4.71

Table 5: Ratings for GPT 3.5 and GPT 4 plain language
summaries in four criteria: Accuracy, Readability, Com-
pleteness, and Usefulness.

5 Discussion

In this study, we used NLP and LLMs to improve
health literacy by generating PLS from biomed-
ical texts. Our approach involved building a ro-
bust database that generalizes well across diverse
sources and developing a highly accurate classi-
fication model to distinguish technical from plain
texts. This model serves as a valuable tool for ensur-
ing that patient-targeted documents adhere to plain
language guidelines, while our LLM-based genera-
tion framework leverages well-designed, domain-
specific prompts to produce PLS.

Our evaluation shows that API-based models
generally generate easier-to-read and more semanti-
cally faithful summaries, although they sometimes
exhibit slightly lower factuality—possibly due to
hallucination issues. In contrast, locally executed
models, while maintaining acceptable factual ac-
curacy, tend to yield more technical outputs, most
probably because they have difficulty understand-
ing instructions better, due to computational limi-
tations. Qualitative feedback from domain experts
confirmed that GPT 4 outperformed GPT 3.5 in
terms of accuracy, readability, completeness, and
usefulness. These findings highlight the value of
using well-designed, domain-specific prompts and
robust LLMs to streamline the generation of plain
language summaries. Future research should ex-
plore the use of fully-featured, open-source models
comparable to the API-based alternatives and in-
corporate broader stakeholder feedback to refine
these methods for diverse biomedical domains.

In conclusion, by leveraging the capabilities of
NLP and LLMs, our framework represents a signif-

icant step towards bridging the gap between com-
plex biomedical texts and comprehensible sum-
maries for the general audience, paving the way
for innovations in health literacy.

6 Future Work

We plan to expand and diversify our dataset by in-
corporating the full collections of PLOS and eLife,
obtaining more plain language samples, and em-
ploying advanced techniques to better separate and
curate the data.

Future evaluations should include a larger and
more diverse set of documents as well as input from
multiple stakeholder groups (e.g., patients, medi-
cal writers, and clinicians). Additionally, further
research should explore advanced prompt engineer-
ing techniques, such as chain-of-thought strategies,
particularly for open-source models.

7 Limitations

Our study has some limitations. First, our dataset
is predominantly composed of Cochrane texts with
very few samples from other sources (e.g., Pfizer),
which may lead to overfitting and reduce gener-
alizability. Additionally, the current database is
not human-curated, which may introduce parsing
errors or inaccuracies. Second, our qualitative as-
sessment was based on a limited number of clini-
cal protocols and evaluated only the outputs from
GPT-3.5 and GPT-4, with feedback from just a
few domain experts. Furthermore, due to compu-
tational and API cost constraints, the number of
generated samples was limited, potentially affect-
ing the statistical significance of our findings and
complicating comparisons between API-based and
locally executed models.
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A Supplemental Material

Data Source Text Type Overview Count of Texts Extraction Method

U.S National
Library of
Medicine (NIH),
ClinicalTri-
als.gov

Technical

Largest and publicly available
database of clinical research
studies and information about
their results (U.S National
Library of Medicine (NIH),
2023a).

100

ClinicalTrials.gov API that pro-
vides access to all posted infor-
mation on study records (U.S
National Library of Medicine
(NIH), 2023b).

Cochrane Library
by Wiley

Technical
and Plain

International not-for-profit
organization that publishes
trusted reviews of biomedical
research in two formats: a
technical abstract and a plain
language summary.

8465 projects
(13,922 texts)
(*shorter than
250 excluded)

Python libraries: Selenium
(2023) (for automated browser
interactions) and Beautiful
Soup (2023) (for web scrap-
ing).

Pfizer Results
Plain Language
Summaries

Plain

Plain Language Study Results
Summaries (RPLS) of Pfizer
clinical studies (Pfizer, 2023).
Sections containing tables or di-
agrams were excluded.

125

Specific sections of the PDF
documents were mapped and
extracted (e.g., “What hap-
pened during the Study?”).

Trial Summaries
by Citeline Regu-
latory

Plain

Trial results summaries (RPLS)
for studies that started in late
2015 and beyond, provided
by sponsors (e.g., AstraZeneca,
GSK, Amgen) (Pharma Intelli-
gence UK Limited, 2023).

294

Automatic PDF extraction in-
troduced errors (missing letters,
broken words). GPT-3.5 API
was used only to correct these
errors, ensuring texts matched
the original RPLS PDFs.

PLOS + eLife
(Luo et al., 2022;
Goldsack et al.,
2022; Goldsack
and Lin, 2025)

Technical
and Plain

Dataset from the BioLaySumm
competition containing biomed-
ical and life sciences article
summaries. We only used the
validation sets.

1376 (PLOS)
241 (eLife)

Official data published by Gold-
sack and Lin (2025)

Table A1: Overview of the data sources used in this study. All texts are available in our GitHub Data Repository1.

1https://github.com/feliperussi/bridging-the-gap-in-health-literacy/tree/main/data_collection_and_
processing/Data%20Sources
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B Linguistic Features and Readability
Indexes

In this study, the readability indexes (items 1–9)
were computed using formulas based on variables
from Readability (2019), while the linguistic fea-
tures (items 10–49) were extracted using SpaCy
(2023) (model en_core_web_sm). The remaining
readability features (items 50–62) were obtained
with the Readability library. Below is an enu-
merated list and for a concise overview, Table B1
presents the same variables along with their enu-
meration.

1. Flesch-Kincaid Grade Level (FKGL): Esti-
mates the U.S. school grade level needed to
comprehend the text (Flesch, 1948; Kincaid
et al., 1975).

2. Automated Readability Index (ARI): Com-
putes readability using characters, words, and
sentences (Senter and Smith, 1967).

3. Coleman-Liau Index (CLI): Measures read-
ability based on letter and word counts per
sentence (Coleman and Liau, 1975).

4. Flesch Reading Ease (FRE): Produces a
score where higher values indicate easier read-
ability (Flesch, 1948; Kincaid et al., 1975).

5. Gunning Fog Index (GFI): Estimates the
number of years of formal education needed
to understand the text (Gunning, 1952).

6. LIX: Calculates readability by analyzing the
proportion of long words in the text (Ander-
son, 1983).

7. SMOG readability formula (SMOGIndex):
Estimates readability by counting polysyllabic
(Mc Laughlin, 1969).

8. RIX: Computes readability from the number
of long words per sentence (Anderson, 1983).

9. Dale-Chall Readability Score (DCRS): As-
sesses readability by comparing text words
against a list of familiar words (Chall and
Dale, 1995).

10. total_words: Total number of words in the
text (excluding punctuation), identified by
spaCy. e.g., in “Hello, world!”, there are 2
words.

11. total_sentences: Total number of sentences
in the text, based on spaCy’s sentence seg-
mentation. e.g., “Hello. World!” yields 2
sentences.

12. total_characters: Total number of characters
in the text. e.g., “Hello” has 5 characters.

13. passive_voice: Frequency of passive voice
constructions, determined via verb forms
tagged as VBN. e.g., “was given” in “John
was given a book by Mary.”

14. active_voice: Frequency of active voice con-
structions, counted as verbs (VERB) not
tagged as VBN. e.g., “ran” in “Alice quickly
ran to the store,” or “decided” in “He decided
to give up his job.”

15. passive_toks: Count of tokens in passive con-
structions, where spaCy marks passive sub-
jects with nsubjpass. e.g., “John” in “John
was given a book by Mary.”

16. active_toks: Count of tokens in active con-
structions, based on the nsubj dependency;
e.g., “Alice” in “Alice quickly ran to the
store.”

17. verbs: Count of verbs in the text, determined
by tokens with the part-of-speech VERB; e.g.,
“bought” in “Alice bought 3 apples.”

18. nouns: Count of nouns in the text, determined
by tokens with the part-of-speech NOUN; e.g.,
“book” in “John was given a book.”

19. adjectives: Count of adjectives in the text,
determined by tokens with the part-of-speech
ADJ; e.g., “incredible” in “That was incredi-
ble.”

20. adverbs: Count of adverbs in the text, de-
termined by tokens with the part-of-speech
ADV; e.g., “quickly” in “Alice quickly ran to
the store.”

21. prepositions: Count of prepositions in the
text, determined by tokens with the part-
of-speech ADP; e.g., “by” in “the ball was
thrown by him.”

22. auxiliaries: Count of auxiliary verbs in the
text, determined by tokens with the part-of-
speech AUX; e.g., “was” in “John was given
a book by Mary.”
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Readability Indexes (1) FKGL, (2) ARI, (3) CLI, (4) FRE, (5) GFI, (6) LIX, (7) SMOGIndex,
(8) RIX, (9) DCRS

Linguistic Characteristics (10) total_words, (11) total_sentences, (12) total_characters, (13) pas-
sive_voice, (14) active_voice, (15) passive_toks, (16) active_toks, (17)
verbs, (18) nouns, (19) adjectives, (20) adverbs, (21) prepositions, (22)
auxiliaries, (23) conjunctions, (24) coord_conjunctions, (25) determin-
ers, (26) numbers, (27) particles, (28) pronouns, (29) proper_nouns, (30)
punctuations, (31) subordinating_conjunctions, (32) symbols, (33) other,
(34) persons, (35) norp, (36) facilities, (37) organizations, (38) gpe, (39)
products, (40) works, (41) dates, (42) times, (43) quantities, (44) ordinals,
(45) cardinals, (46) percentages, (47) locations, (48) laws, (49) stopwords
(50) characters_per_word, (51) syll_per_word, (52) words_per_sentence,
(53) sentences_per_paragraph, (54) type_token_ratio, (55) syllables,
(56) paragraphs, (57) long_words, (58) complex_words, (59) com-
plex_words_dc, (60) tobeverb, (61) auxverb, (62) nominalization

Table B1: Variables used to describe the readability and linguistic characteristics of the texts. Items 1–9 (readability
indexes) were computed using formulas based on variables from Readability (2019), items 10–49 (linguistic features)
were extracted using SpaCy (2023) (model en_core_web_sm), and items 50–62 were obtained using Readability
(2019).

23. conjunctions: Count of conjunctions in the
text, determined by tokens tagged as CCONJ
or SCONJ; e.g., “because” and “and” in “Alice
quickly ran to the store and bought 3 apples
because it was late.”

24. coord_conjunctions: Count of coordinating
conjunctions, determined by tokens with the
part-of-speech CCONJ; e.g., “and” in the ex-
ample of conjunctions.

25. determiners: Count of determiners in the
text, determined by tokens with the part-of-
speech DET; e.g., “the” in “the qwerty word
is unknown.”

26. numbers: Count of numerical values in the
text, determined by tokens with the part-of-
speech NUM; e.g., “3” in “Alice bought 3
apples.”

27. particles: Count of particles in the text, de-
termined by tokens with the part-of-speech
PART; e.g., “to” in “He decided to give up his
job.”

28. pronouns: Count of pronouns in the text, de-
termined by tokens with the part-of-speech
PRON; e.g., “him” in “the ball was thrown by
him.”

29. proper_nouns: Count of proper nouns in the
text, determined by tokens with the part-of-
speech PROPN; e.g., “Google” or “JFK Air-
port.”

30. punctuations: Count of punctuation marks in
the text, determined by tokens with the part-of-
speech PUNCT; e.g., “,” in “John was given a
book, and the ball was thrown by him.”

31. subordinating_conjunctions: Count of sub-
ordinating conjunctions in the text, deter-
mined by tokens with the part-of-speech
SCONJ; e.g., “because” in the example of
conjunctions.

32. symbols: Count of symbols in the text, de-
termined by tokens with the part-of-speech
SYM; e.g., “$” in “worth $100,000.”

33. other: Count of tokens not classified in other
categories, determined by tokens with the part-
of-speech X (uncategorized).

34. persons: Count of person mentions in the text,
determined by entities labeled PERSON; e.g.,
“John” or “Mary.”

35. norp: Count of references to nationalities,
religious or political groups, determined by
entities labeled NORP; e.g., “American.”

36. facilities: Count of facilities (e.g., buildings,
airports, roads), determined by entities labeled
FAC; e.g., “JFK” and ‘Airport” in “JFK Air-
port.”

37. organizations: Count of organizations, deter-
mined by entities labeled ORG; e.g., “FAA”
or “Google.”
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38. gpe: Count of geopolitical entities (countries,
cities), determined by entities labeled GPE;
e.g., “London.”

39. products: Count of products mentioned, de-
termined by entities labeled PRODUCT.

40. works: Count of creative works (e.g., art,
books, movies), determined by entities labeled
WORK_OF_ART; e.g., “Hamlet.”

41. dates: Count of dates mentioned, determined
by entities labeled DATE; e.g., “March”, “15”,
“,” and “2025” in “March 15, 2025.”

42. times: Count of time expressions, determined
by entities labeled TIME; e.g., “3:00” and
“PM” in “3:00 PM.”

43. quantities: Count of quantity expressions,
determined by entities labeled QUANTITY;
e.g., “10” and “kg.” in “10 kg.”

44. ordinals: Count of ordinal numbers, deter-
mined by entities labeled ORDINAL; e.g.,
“first” in “She is the first in its field.”

45. cardinals: Count of cardinal numbers, deter-
mined by entities labeled CARDINAL; e.g.,
“3” in “Alice bought 3 apples.”

46. percentages: Count of percentage expres-
sions, determined by entities labeled PER-
CENT; e.g., “50” and “%” in “yield 50% dis-
counts.”

47. locations: Count of location mentions, deter-
mined by entities labeled LOC; e.g., “Alps” in
“The Alps are breathtaking.”

48. laws: Count of laws mentioned, determined
by entities labeled LAW; e.g., “Section” and
“2” in “Section 2 of the law applies to this
case.”

49. stopwords: Count of stopwords in the text,
determined by tokens identified as stop words
by spaCy; e.g., “was,” “the,” or “and.”

50. characters_per_word: Average number of
characters per word, computed as total char-
acters divided by total words.

51. syll_per_word: Average number of syllables
per word, computed as total syllables divided
by total words.

52. words_per_sentence: Average number of
words per sentence, computed as total words
divided by total sentences.

53. sentences_per_paragraph: Average number
of sentences per paragraph, computed as total
sentences divided by total paragraphs.

54. type_token_ratio: Ratio of unique words to
total words, computed as the number of dis-
tinct tokens divided by total words.

55. syllables: Total number of syllables in the
text.

56. paragraphs: Total number of paragraphs in
the text.

57. long_words: Count of long words in the text,
defined as words exceeding a specified length
threshold (e.g., more than 7 letters).

58. complex_words: Count of complex words in
the text, defined as words with three or more
syllables (e.g., “inconceivable”), indicating
text complexity.

59. complex_words_dc: Count of complex
words according to the Dale–Chall method
(i.e., unknown polysyllabic words from a list
of basic words).

60. tobeverb: Count of occurrences of the verb
“to be” in the text (e.g., “is,” “are,” “was”).

61. auxverb: Count of auxiliary verbs in the text
(e.g., “have,” “will,” “do”).

62. nominalization: Count of nominalizations
in the text, i.e., instances where verbs, adjec-
tives, or other linguistic elements are trans-
formed into nouns (e.g., “development” from
“develop”).
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C Prompts

Using the following abstract of a biomedical study as input, generate a Plain Language Summary
(PLS) understandable by any patient, regardless of their health literacy. Ensure that the generated text
adheres to the following instructions which should be followed step-by-step:
a. Specific Structure: The generated PLS should be presented in a logical order, using the following
order:

1. Plain Title

2. Rationale

3. Trial Design

4. Results

b. Sections should be authored following these parameters:

1. Plain Title: Simplified title understandable to a layperson that summarizes the research that was
done.

2. Rationale: Include: background or study rationale providing a general description of the
condition, what it may cause or why it is a burden for the patients; the reason and main hypothesis
for the study; and why the study is needed, and why the study medication has the potential to
treat the condition.

3. Trial Design: Answer ‘How is this study designed?’ Include the description of the design,
description of study and patient population (age, health condition, gender), and the expected
amount of time a person will be in the study.

4. Results: Answer ‘What were the main results of the study’, include the benefits for the patients,
how the study was relevant for the area of study, and the conclusions from the investigator.

c. Consistency and Replicability: The generated PLS should be consistent regardless of the order of
sentences or the specific phrasing used in the input protocol text.
d. Compliance with Plain Language Guidelines: The generated PLS must follow all these plain
language guidelines:

• Have readability grade level of 6 or below.

• Do not have jargon. All technical or medical words or terms should be defined or broken down
into simple and logical explanations.

• Active voice, not passive.

• Mostly one or two syllable words.

• Sentences of 15 words or less.

• Short paragraphs of 3-5 sentences.

• Simple numbers (e.g., ratios, no percentages).

e. Do not invent Content: The AI model should not invent information. If the AI model includes data
other than the one given in the input abstract, the AI model should guarantee such data is verified and
real.
f. Aim for an approximate PLS length of 500-900 words.

Figure C1: Prompt to translate Cochrane technical abstract into a plain language summary.
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Using the following abstract of a biomedical study as input, generate a Plain Language Summary (PLS)
understandable by any patient, regardless of their health literacy. Ensure that the generated text adheres to the
following instructions which should be followed step-by-step:

a. Specific Structure: The generated PPLS should be presented in a logical order, using the following headings:

1. Plain Protocol Title

2. Rationale

3. Objectives

4. Trial Design

5. Trial Population

6. Interventions

b. Sections should be authored following these parameters:

1. Plain Protocol Title: Simplified protocol title understandable to a layperson but including specific indication
for which the study is meant.

2. Rationale: Include the phrase ‘Researchers are looking for a better way to treat [condition]; background or
study rationale describing the condition: what it is, what it may cause, and why it is a burden for the patients;
the reason and main hypothesis for the study; and why the study is needed, and the study medication has the
potential to treat the condition.

3. Objectives: Answer ‘What are the goals of the study?’ Specify the main and secondary objectives of the trial
and how they will be measured (e.g., the main trial endpoint is the percent change in the number of events
from baseline to a specified time or the total number of adverse reactions at a particular time after baseline).

4. Trial Design: Answer ‘How is this study designed?’ Include the description of the design and the expected
amount of time a person will be in the study.

5. Trial Population: Answer ‘Who will participate in this study?’ Include a description of the study and patient
population (age, health condition, gender), and the key inclusion and exclusion criteria.

6. Interventions: Answer ‘What treatments are being given during the study?’ Include a description of the
medication, vaccine, or treatment(s) being studied, the route of administration, the duration of treatment, and
any study-related diagnostic and monitoring procedures used. Include justification if a placebo is used.

c. Consistency and Replicability: The generated PPLS should be consistent regardless of the order of sentences or
the specific phrasing used in the input protocol text.
d. Compliance with Plain Language Guidelines: The generated PPLS must follow these plain language guidelines:

• Have readability grade level of 6 or below.

• Do not have jargon. All technical or medical words or terms should be defined or broken down into simple
and logical explanations.

• Active voice, not passive.

• Mostly one or two-syllable words.

• Sentences of 15 words or less.

• Short paragraphs of 3-5 sentences.

• Simple numbers (e.g., ratios, no percentages).

e. No Extra Content: The AI model should not invent information or add content that is not present in the input
protocol. The PPLS should only present information from the original protocol in a simplified and understandable
manner.
f. Aim for an approximate PPLS length of 700-900 words.

Figure C2: Prompt to translate a protocol into a plain language summary compliant with EU CTR No 536/2014.
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Abstract

The massive size, continual growth, and techni-
cal jargon in biomedical publications make it
difficult for laypeople to stay informed about
the latest scientific advances, motivating re-
search on lay summarization of biomedical lit-
erature. Large language models (LLMs) are
increasingly used for this task. Unlike typi-
cal automatic summarization, lay summariza-
tion requires incorporating background knowl-
edge not found in a paper and explanations of
technical jargon. This study explores the use
of MeSH terms (Medical Subject Headings),
which represent an article’s main topics, to en-
hance background information generation in
biomedical lay summarization. Furthermore,
we introduced a multi-turn dialogue approach
that more effectively leverages MeSH terms
in the instruction-tuning of LLMs to enhance
the quality of lay summaries. The best model
improved the state-of-the-art on the eLife test
set in terms of the ROUGE-1 score by nearly
2%, with competitive scores in other metrics.
These results indicate that MeSH terms can
guide LLMs to generate more relevant back-
ground information for laypeople. Addition-
ally, evaluation on a held-out dataset, one that
was not used during model pre-training, shows
that this capability generalizes well to unseen
data, further demonstrating the effectiveness of
our approach.

1 Introduction

Biomedical publications contain valuable research
findings on health topics that may interest a wide
range of audiences, including laypeople. PubMed,
the biomedical bibliographic database, contains
more than 37 million articles as of January 2025,
with an increase of almost one million articles
in less than a year 1. Despite the abundance of
health-related scientific information available in

*Corresponding author
1https://pubmed.ncbi.nlm.nih.gov/about/

Abstract
Plasmodium sporozoites, the mosquito-transmitted forms
of the malaria parasite, first infect the liver for an initial
round of replication before the emergence of pathogenic
blood stages. Sporozoites represent attractive targets for
antimalarial preventive strategies, yet the mechanisms of
parasite entry into hepatocytes remain poorly understood.
Here we show that ...

Lay Summary
Malaria is an infectious disease that affects millions of peo-
ple around the world and remains a major cause of death,
especially in Africa. It is caused by Plasmodium parasites,
which are transmitted by mosquitoes to mammals. Once
in the mammal, the parasites infect liver cells, where they
multiply. ...

Table 1: Comparison of the first few sentences of the
abstract and lay summary from an eLife article.

these articles, it is challenging for laypeople to
make sense of this information due to the enor-
mous size and growth of the literature and the spe-
cialized jargon used in these publications (August
et al., 2023). Summarizing lengthy literature into
concise, jargon-free lay language that explains the
article’s background and motivation can help alle-
viate information overload for laypeople (Goldsack
et al., 2022).

Table 1 demonstrates how lay summarization re-
quires explaining jargon and providing background
information to contextualize the study, which can-
not always be fully derived from the source article
alone. Text highlighted in blue from the abstract
was simplified into two sentences highlighted in
green in the lay summary. Text highlighted in yel-
low in the lay summary explains the term “Malaria”
and background information missing from the ab-
stract but necessary for laypeople.

To address this gap, previous work has explored
the use of auxiliary inputs to incorporate relevant
background knowledge from external resources
(Guo et al., 2024; Goldsack et al., 2023) or to elicit
hidden knowledge from LLMs through a two-stage
inference process (Goldsack et al., 2025). For in-
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stance, Guo et al. (2024) employed a separate re-
triever model to extract biomedical term definitions
from Wikipedia, augmenting the input source arti-
cles. Similarly, Goldsack et al. (2023) constructed
a graph-based knowledge representation, where
biomedical concepts served as nodes and their re-
lationships as edges, derived from the UMLS Se-
mantic Network (McCray et al., 2001). This syn-
thesized knowledge was then integrated with lan-
guage models during fine-tuning. Both approaches
demonstrated improvements in the relevance (i.e.,
alignment with gold-standard summaries) and read-
ability of lay summaries.

In another line of research, keywords, length,
readability, or other aspects of control have been
used as non-parametric knowledge to modify
prompts, rather than changing the parameters of the
model, to generate desirable summaries (Fonseca
and Cohen, 2024; He et al., 2022). Such mod-
ifications to the input prompt guide the model’s
conditional generation process during decoding,
influencing the content, tone, or structure of the
model output. However, the use of controllabil-
ity in LLMs for the lay summarization task has
achieved limited success compared to generic sci-
entific summarization tasks, due to the highly ab-
stractive nature of lay summaries and their particu-
lar emphasis on research background information
(Jahan et al., 2024).

MeSH (Medical Subject Headings), developed
at the National Library of Medicine, is a standard-
ized terminology used to index medical and life
science articles, offering relevant topical informa-
tion and reflecting the broader context of the entire
document. In this study, we hypothesize that using
descriptive prompts consisting of a set of MeSH
terms can guide the model’s generation to provide
tailored background information in lay summaries.
To test this hypothesis, we designed a sequence of
experiments using LLaMA-32 as the base model
(Dubey et al., 2024) and instruction-response pairs
constructed from the eLife dataset (Goldsack et al.,
2022).

Specifically, we investigate the following re-
search questions:

• What is the most effective approach for in-
corporating MeSH knowledge into the fine-
tuning process to achieve high performance?

• How does the choice of MeSH terms (gold
2https://huggingface.co/meta-llama/Llama-3.

2-3B-Instruct

standard, predicted by another model, or a
more focused subset of gold standard MeSH
terms) affect the quality and relevance of lay
summaries?

• Does the performance on articles published
after LLaMA’s knowledge cutoff date remain
consistent when compared to the eLife test set,
which contains articles published before the
release date of the LLaMA model?

Our contributions are:

• Our enhanced instruction-tuning approach, us-
ing two-turn conversations, produces more di-
verse background information that is aligned
with the source document and accessible to
non-expert readers.

• We incorporate structured knowledge (MeSH)
into the supervised fine-tuning (SFT) model,
serving as classifier-free guidance that is eas-
ier to obtain compared to previous approaches
relying on auxiliary retrieval-augmented gen-
eration (RAG) models or graph structures.

• We constructed a recent dataset from the eLife
corpus, using a cutoff date of June 30, 2024,
to compare and assess the generalizability of
different approaches.

2 Methods

In this section, we first describe the datasets we
use. Next, we discuss our proposed main approach,
multi-turn instruction tuning, followed by several
ablation studies to verify the effectiveness of each
model component and our hypothesis. Finally, we
outline the experimental setup and evaluation met-
rics used to compare different settings.

2.1 Dataset and Data Collection
We trained and tested our model on the eLife
dataset (Goldsack et al., 2022), which consists of
4,346 pairs of full-text articles and lay summaries
for training, along with 241 pairs each for valida-
tion and testing. Compared to the PLOS dataset
(Goldsack et al., 2022), another commonly used
biomedical lay summarization dataset, eLife con-
tains much longer lay summaries written by expert
editors and exhibits a strong content bias toward
research background (You et al., 2024). This char-
acteristic makes the summaries easier for a lay au-
dience to understand but presents a greater chal-
lenge for the LLM to generate (Fonseca and Cohen,
2024).
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The eLife corpus may have been included in the
LLaMA model’s training data, potentially giving
the model an advantage by allowing it to memorize
and reproduce information it has already encoun-
tered. To test the generalizability of our proposed
method, we collected 71 articles published in the
eLife corpus after June 30, 2024, through the open-
source repository3 on November 15, 2024, and
used them as a held-out dataset for evaluation.

2.2 Multi-turn Instruction Tuning

Figure 1 illustrates the overall model architec-
ture. The main method involves two back-and-
forth conversational turns: the first turn focuses on
MeSH prediction as an auxiliary task, while the
second turn generates a lay summary conditioned
on both the source document and the generated
MeSH terms. During training, both MeSH terms
and lay summaries are learned by minimizing the
cross-entropy loss between the generated outputs
and their respective gold standards for each arti-
cle. Gold standard MeSH terms for each article
were extracted by querying the PubMed database
through the Entrez package4.

The loss function is defined as follows:

L = −
J∑

j=1

Tj∑

t=1

1[yt,j∈ya,j ] logP
(
yt,j | y<t,j ,

y≤,j−1, X, I; θ
)

(1)
In this formulation, the loss function L uses

cross-entropy to compare the model’s generated
responses at each turn with the gold-standard out-
puts, which consist of both MeSH terms and lay
summaries. Here, yt,j denotes the token at time
step t during the j-th conversation turn, while ya,j
represents the set of tokens specific to the model’s
output in turn j. The indicator function 1[yt∈ya]
checks whether the token yt,j belongs to the set of
target tokens ya,j . If it does, the indicator returns 1,
allowing the token to contribute to the loss compu-
tation; otherwise, it returns 0, excluding irrelevant
tokens such as those from the user prompt.

The conditional probability term logP
(
yt,j |

y<t,j , y≤,j−1, X, I; θ
)

represents the likelihood of
predicting token yt,j , given all preceding tokens

3https://github.com/elifesciences/
elife-article-xml

4https://biopython.org/docs/1.75/api/Bio.
Entrez.html

in the same turn y<t,j , all tokens from previous
turns y≤,j−1, the input article X , and any additional
instructions I . This setup ensures that tokens from
the current turn j are conditioned on both intra-
turn context and inter-turn history, enabling the
model to incorporate contextual information from
the entire conversation.

Figure 1: Workflow of the multi-turn instruction tuning
at inference time. The generated MeSH terms serve
as external guidance for the second forward pass. The
upper portion of the figure illustrates the input prompts,
while the lower portion displays the model’s outputs.

We observed that some overly general MeSH
terms, such as “Human” or “Animals,” could mis-
lead the model into generating irrelevant or overly
broad background information. Our main approach
involved applying a filtering strategy based on the
hierarchical structure of the MeSH tree and its as-
sociated tree numbers5 to retain only a subset of
gold-standard MeSH terms. Specifically, if mul-
tiple terms shared the same tree prefix, we in-
cluded the term with the longest identifier (indi-
cating the highest specificity) and excluded others
with shorter identifiers. For example, consider the
full set of gold-standard MeSH terms separated by
semi-colons: “Animals; Behavior, Animal; Cere-
bellum; Conditioning, Eyelid; Cues; Extinction,
Psychological; Feedback; Learning; Male; Move-
ment; Purkinje Cells; Rabbits; Time Factors”. Af-
ter applying the filtering strategy, more generic
terms were removed in favor of more specific ones.
For instance, “Animals” was eliminated because a
more specific term, “Rabbits,” from the same hi-
erarchical branch (sharing the same prefix), was
retained.

We used a parameter-efficient fine-tuning tech-
nique (PEFT), low-rank adaptation (LoRA) (Hu
et al., 2021), to fine-tune large language models

5https://hhs.github.io/meshrdf/tree-numbers

287

https://github.com/elifesciences/elife-article-xml
https://github.com/elifesciences/elife-article-xml
https://biopython.org/docs/1.75/api/Bio.Entrez.html
https://biopython.org/docs/1.75/api/Bio.Entrez.html
https://hhs.github.io/meshrdf/tree-numbers


efficiently. LoRA achieves efficiency by inserting
trainable matrices and updating only a small subset
of weights while keeping the original model param-
eters frozen. In Equation 1, θ denotes the subset of
parameters updated during fine-tuning via LoRA.

2.3 Multi-turn Instruction Modeling

We conducted another experiment, INSTRUC-
TION_MODELING, based on previous research
findings (Shi et al., 2024). These findings suggest
that training the model to generate both instruc-
tions and responses, mimicking how humans pro-
vide task descriptions and guidance, yields more
robust and higher-performing results, especially
when the number of training examples is limited.
Unlike INSTRUCTION_TUNING, which focuses on
training the model to follow instructions and gen-
erate high-quality contextual responses, INSTRUC-
TION_MODELING introduces a modified loss func-
tion that applies to both the user input and the as-
sistant’s response. The updated loss function is
defined as follows:

L = −
J∑

j=1

Tj∑

t=1

logP (yt,j | y<t,j , y≤,j−1, X, I; θ)

(2)
The key distinction from Equation 1 is the ab-

sence of the indicator function. This omission al-
lows the model to be trained on both the user’s
input and the assistant’s responses. The goal of
this approach is to evaluate whether it improves the
model’s ability to understand and distinguish the
linguistic differences between a scientific article
and its lay summary, as well as the translations be-
tween them, thereby enhancing lay summary gen-
eration.

2.4 Ablation Study on Adaptation Methods
and Knowledge Integration

We conducted various ablation studies to under-
stand the contribution of each component to the
overall performance of the main model, including
the impact of integrating MeSH terms as guidance,
the role of different training objectives, and the
effect of MeSH term selection on summary quality.

2.4.1 In-context Learning
Another technique for adapting the pre-trained
model to a domain-specific downstream task is
in-context learning, which is a more lightweight

alternative to PEFT. We tested three experimen-
tal setups: (1) an instruction-only setting without
any external knowledge or guidance (Experiment
0-SHOT). (2) An approach in which the instruction
was augmented with a pair consisting of an abstract
and its corresponding lay summary selected from
the training data (Experiment 1-SHOT). Specifi-
cally, for each source article, we retrieved the most
similar abstract from the training set using Sim-
CSE (Gao et al., 2021). The corresponding abstract
and its associated lay summary from the training
set are then provided as an exemplar to guide the
generation. (3) An external knowledge-guided set-
ting in which ground truth MeSH terms were ex-
plicitly integrated into the prompts (Experiment
MESH_GUIDANCE). Unlike the main approach,
which strictly requires the model to predict MeSH
terms that closely match the gold standard, this
method acts as a guiding framework, allowing the
model greater flexibility to interpret and utilize
MeSH terms based on its learned knowledge.

The prompt template is shown as below:

• 0-SHOT:
Article: <Abstract>
Summarize the above biomedical article in
simple, layperson-friendly language.

• 1-SHOT:
Article: <Abstract>
Summarize the above biomedical article in
simple, layperson-friendly language. Use the
example below to guide the tone, structure,
and the inclusion of relevant background con-
text in your summary.
Example abstract:<Example Abstract>
Example lay summary:<Example Lay Sum-
mary>.

• MESH_GUIDANCE:
Article: <Abstract>
Summarize the above biomedical article in
simple, layperson-friendly language. Use the
following Medical Subject Headings (MeSH)
as guidance for providing relevant back-
ground context where appropriate: <List of
MeSH terms>.

2.4.2 Single-turn Instruction Tuning
In the multi-turn experiment setting, MeSH term
generation is trained as an auxiliary task. We also
designed two single-turn experimental setups that
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do not include training on MeSH terms: (1) SIN-
GLE_TURN: instruction tuning using the same tem-
plate as 0-SHOT for lay summary generation only,
and (2) MESH_SINGLE_TURN: Instruction tun-
ing that incorporates ground truth MeSH terms
retrieved from the PubMed database into the user
input prompt as non-parametric guidance, using
the same template as MESH_GUIDANCE. Simi-
larly, the training objective is shown below. The
cross-entropy loss L is computed exclusively on
the model’s generated summaries.

L = −
T∑

t=1

1[yt∈ya] logP (yt | y<t, I,X; θ) (3)

2.4.3 MeSH term selection
MeSH terms serve as a signal for identifying which
topics are essential and relevant to the source ar-
ticle, guiding the model to incorporate these con-
cepts as background knowledge in the lay summary.
Our main approach, described in Section 2.2, uses
a heuristic-based curation method to select a subset
of ground truth MeSH terms as the gold standard
during the fine-tuning process. We also used all the
ground-truth MeSH terms, without applying our fil-
tering strategy, to investigate how training with the
complete set of ground-truth MeSH terms versus a
subset affects performance. We refer to this experi-
ment as INSTRUCTION_TUNING_FULL_LIST.

In addition, we designed an ablation study to
evaluate the impact of MeSH terms on the model’s
performance in a single-turn setting. Instead of pro-
viding ground truth MeSH terms in the prompt,
we used predicted MeSH terms generated by a
BERT-based MeSH classifier (BERTMeSH (You
et al., 2021)), which achieves a Micro-F1 score
of 63%. This comparison aimed to assess how
both the quality and inclusion of different sets
of MeSH terms in the input affect the model’s
performance. We refer to this experiment as
BERT_MESH_SINGLE_TURN.

2.5 Experimental Settings
We used the LLaMA-3.2-3B-Instruct as the base
model for all experiments. Due to computational
resource limitations and the high memory require-
ments for fine-tuning large language models, we
set the maximum input length to 2,500 tokens. We
integrated the Accelerate (Gugger et al., 2022) and
DeepSpeed (Rasley et al., 2020) libraries for fine-
tuning. In addition, we employed an early stopping

strategy based on validation performance, restrict-
ing training to a maximum of 3 epochs. The check-
point that achieved the best performance on the
validation set was then selected for inference on
the test set. During inference, we set the tempera-
ture to 0 to ensure consistency in our summariza-
tion experiments. We set max_new_tokens to 512
to allow sufficient space for complete summaries
while preventing excessively long outputs that may
introduce irrelevant information.

2.6 Evaluation

The experiments were assessed solely for lay sum-
mary generation, using two sets of commonly
applied metrics in previous lay summarization
work: relevance and readability. Specifically,
we employed ROUGE scores (Lin, 2004), includ-
ing ROUGE-1, ROUGE-2, and ROUGE-L, which
measure n-gram overlaps, as well as BERTScore
(Zhang et al., 2019), which evaluates semantic
similarity in the embedding space, to assess rel-
evance. For readability evaluation, we used the
Flesch-Kincaid Grade Level (FKGL) (Kincaid
et al., 1975), Coleman-Liau Index (CLI) (Coleman
and Liau, 1975), and the Dale-Chall Readability
Score (DCRS) (Dale and Chall, 1948).

We did not include factuality-related metrics be-
cause previous findings show that existing auto-
matic evaluation metrics for faithfulness do not
align well with human evaluation in the context of
biomedical plain language summarization (Fang
et al., 2024; Chen et al., 2024). For example,
fact-checking or natural language inference (NLI)-
based evaluations, such as SummaC (Laban et al.,
2022) and AlignScore (Zha et al., 2023), are de-
signed and trained at the sentence level. These
methods are highly sensitive to benign modifica-
tions and perturbations, which limits their ability
to evaluate abstractive summarization tasks that of-
ten require text rewriting and paraphrasing (Tang
et al., 2022; Ramprasad and Wallace, 2024). More-
over, those evaluations focus on whether the con-
tent aligns with the source, whereas in our case, lay
summarization requires incorporating new external
knowledge not present in the source article.

We assessed the statistical significance of the dif-
ferences between the generated summaries across
several experimental settings using the Wilcoxon
signed-rank test (Woolson, 2005) in a pairwise man-
ner, following the methodology of previous studies
(Van Veen et al., 2024).
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Relevance Readability

R-1 R-2 R-L BERTScore FKGL ↓ CLI ↓ DCRS ↓
SINGLE_TURN 0.5003 0.1374 0.4718 0.8518 10.6904 10.8585 8.6497

INSTRUCTION_TUNING_FULL_LIST 0.5004 0.1395 0.4714 0.8516 10.5369 10.7346 8.5793*
INSTRUCTION_TUNING 0.5021 0.1408* 0.4733 0.8524 10.4203** 10.6960** 8.5705**

INSTRUCTION_MODELING 0.5026 0.1399 0.4747 0.8520 10.5381* 10.9456 8.6068

Table 2: Results for the multi-turn conversation and single turn approach on the eLife test set. ↓ indicates that lower
scores are better for that metric. Asterisks indicate statistical significance relative to the baseline model without
MeSH (SINGLE_TURN), as determined by the Wilcoxon signed-rank test (* p < 0.05, ** p < 0.01).

Relevance Readability

R-1 R-2 R-L BERTScore FKGL ↓ CLI ↓ DCRS ↓
0-SHOT 0.3284 0.0781 0.3022 0.8399 9.2091 10.2627 8.5570
1-SHOT 0.3949*** 0.0851*** 0.3675*** 0.8409* 9.4726* 10.3205 8.3313***

MESH_GUIDANCE 0.4186*** 0.0907*** 0.3895*** 0.8412** 10.1078*** 11.0801*** 8.6826*

Table 3: In-Context Learning Experiments: Comparison of 0-SHOT, 1-SHOT, and MESH_GUIDANCE Results.
Asterisks denote statistical significance relative to 0-SHOT: * p < 0.05, ** p < 0.01, *** p < 0.001.

Relevance Readability

R-1 R-2 R-L BERTScore FKGL ↓ CLI ↓ DCRS ↓
SINGLE_TURN 0.5003 0.1374 0.4718 0.8518 10.6904 10.8585 8.6497

MESH_SINGLE_TURN 0.5007 0.1405 0.4714 0.8521 10.4605* 10.7297* 8.6129
BERT_MESH_SINGLE_TURN 0.4983 0.1388 0.4695 0.8517 10.5622 10.8195 8.6464

Table 4: Results for the single-turn conversation approach augmented with different sets of MeSH terms (ground
truth vs. MeSH classifier) on the eLife test set. Asterisks indicate statistical significance relative to the baseline
model without MeSH (* p < 0.05)

3 Results and Discussion

3.1 MeSH Prediction as an Auxiliary Task vs.
No MeSH

The main results on the test set are presented in
Table 2. Both INSTRUCTION_TUNING and IN-
STRUCTION_MODELING incorporate MeSH term
prediction as an auxiliary task within a multi-turn
instruction tuning framework. Compared to the
baseline approach (SINGLE_TURN), INSTRUC-
TION_TUNING achieved statistically significant
improvements in ROUGE-2 (p < 0.05) and all
readability metrics (p < 0.01). In contrast, IN-
STRUCTION_MODELING, which trains the model
to generate both user inputs (scientific articles)
and assistant responses (lay summaries), achieved
the highest ROUGE-1 (p = 0.23) and ROUGE-L
(p = 0.06) scores but did not show significant
improvements over the baseline approach. No-
tably, the ROUGE-1 score represents state-of-the-
art performance, improving by nearly 2% com-
pared to prior work (which reported results of ap-
proximately 0.48–0.49) (Jahan et al., 2024).

In prior assessments on benchmark datasets, al-
though the INSTRUCTION_MODELING approach
has proven effective in language understanding
tasks, as evidenced by high BLEU scores in
benchmarks such as OpenBookQA (Mihaylov
et al., 2018) and MMLU (Hendrycks et al.,
2020), significance tests indicate that INSTRUC-
TION_MODELING offers no improvements over IN-
STRUCTION_TUNING in ROUGE-1 and ROUGE-
L, and it even performs significantly worse on read-
ability metrics in CLI (p < 0.001).

We also compare training with the full list
of ground truth MeSH terms (Experiment IN-
STRUCTION_TUNING_FULL_LIST) versus a se-
lectively chosen subset as the gold standard
(INSTRUCTION_TUNING) in a multi-turn setting.
Improvements were observed across all metrics but
were not statistically significant.

3.2 Ablation Results

In-context Learning The results without instruc-
tion tuning are shown in Table 3. We com-
pared experiments using a basic prompt only (0-
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SHOT), incorporating ground truth MeSH terms
(MESH_GUIDANCE), or using an exemplar pair of
a scientific abstract and lay summary as guidance
(1-SHOT). When using MeSH as guidance, all the
relevance metrics showed statistically significant
improvement over the basic prompt (p < 0.001 for
ROUGE scores; p < 0.01 for BERTScore). How-
ever, the readability scores significantly decreased
when the user prompt became more complex due
to the augmentation with MeSH terms (p < 0.001
for FKGL and CLI; p < 0.05 for DCRS).Using
the most similar example from the training data,
which serves as the standard approach in a few-
shot learning setting, yielded significant improve-
ments across all ROUGE scores compared to the 0-
SHOT setting (p < 0.001), also achieving the best
DCRS score. Notably, when comparing 1-SHOT

and MESH_GUIDANCE, all the ROUGE scores
were significantly improved (p < 0.001), as well
as the BERTScore (p < 0.01), but all readability
scores decreased (p < 0.001 for FKGL and CLI;
p < 0.05 for DCRS).

When incorporating prompts with MeSH terms,
even without any fine-tuning, the model achieves
higher lexical overlap and improved semantic align-
ment with the gold-standard lay summary, suggest-
ing that it can effectively distill useful topical infor-
mation from these terms.

The Effect of MeSH Term Selection in Single-
Turn Instruction Tuning. As shown in Table
4, the SINGLE_TURN experiment, which uses
only the abstract as input for instruction tuning,
demonstrated less competitive performance than
the MESH_SINGLE_TURN experiment, which
incorporates ground truth MeSH terms in the
prompt and improves results on all metrics except
ROUGE-L. When using predicted MeSH terms
from a BERT-based classifier (You et al., 2021),
BERT_MESH_SINGLE_TURN, the improvement
was less pronounced, with only a non-significant
increase observed in ROUGE-2 (p = 0.3), FKGL
(p = 0.2), CLI (p = 0.8), and DCRS (p = 0.7).

We selected the BERT-based MeSH classifier for
its strong performance and ease of implementation,
providing a reliable baseline for comparison. While
using a more recent model could have yielded
slightly better results, it is unlikely to reach the
performance achieved with ground truth terms. Al-
though the improvements with machine-generated
MeSH terms were not statistically significant, they
suggest potential for applying our method to ar-
ticles without ground truth MeSH terms. With

further refinement of MeSH prediction models and
more sophisticated term selection strategies, this
approach could be extended to biomedical litera-
ture beyond PubMed.

The Effectiveness of Incorporating MeSH in
Multi-Turn Conversations vs. Single-Turn Ap-
proach. Comparing the MESH_SINGLE_TURN

approach in Table 4 with the multi-turn instruc-
tion tuning experiments in Table 2, INSTRUC-
TION_TUNING, which was fine-tuned on a selec-
tively chosen subset of MeSH terms, demonstrated
improvements across all metrics. This is likely due
to two key factors: (1) iterative interactions, where
the second-turn summary generation builds upon
the previously predicted MeSH terms, allowing
the model to engage in a step-by-step reasoning
process that mirrors the chain-of-thought strategy,
and (2) improved calibration of MeSH term selec-
tion during fine-tuning, which ensures that a more
focused subset of gold standard MeSH terms are
incorporated into the generation process.

Overall, we observed performance gains by in-
corporating MeSH terms in both in-context learn-
ing and PEFT settings, including single-turn and
multi-turn approaches. Our results suggest that
MeSH terms can serve as an effective proxy for
guiding the LLM in generating coherent, relevant,
and readable lay summaries with essential back-
ground explanations. Moreover, the fact that the
most significant improvement is more pronounced
in a simpler, training-free setting (see Table 3) mo-
tivates the development of a more sophisticated
method for selecting gold-standard MeSH terms
as an auxiliary task during multi-turn instruction
tuning, which could further improve the quality of
lay summary generation.

3.3 Performance on the held-out evaluation
set

LLMs are often pretrained on vast datasets. If the
test set overlaps with pretraining data, the model
might perform well due to memorization rather
than generalization. To fairly and accurately eval-
uate the effectiveness of our approach, we further
investigate whether the fine-tuned summarizer can
achieve comparable results when applied to a held-
out dataset consisting of articles published after the
release date of LLaMA-3.2-3B-Instruct.

As shown in Table 5, the best performance was
achieved in Experiment INSTRUCTION_TUNING,
the multi-turn approach with instruction tun-
ing, yielding results that closely align with the
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Relevance Readability

R-1 R-2 R-L BERTScore FKGL ↓ CLI ↓ DCRS ↓
INSTRUCTION_TUNING 0.4954 0.1346 0.4580 0.8550 10.4887 10.8483 8.6276

INSTRUCTION_MODELING 0.4863 0.1273 0.4508 0.8537 10.8408 11.1756 8.7201
SINGLE_TURN 0.4843 0.1237 0.4466 0.8521 10.8084 11.0800 8.7638

MESH_SINGLE_TURN 0.4876 0.1270 0.4501 0.8526 10.6718 10.8514 8.7322

Table 5: Held out evaluation results for relevance and readability. ↓ denotes the scores that need to be minimized for
those metrics.

test data. This suggests that the model is not
simply memorizing the training data from pre-
training stage. However, a pronounced decrease
in all ROUGE scores and readability metrics
was observed in Experiments SINGLE_TURN and
MESH_SINGLE_TURN on the held-out dataset
compared to the test set. These findings indi-
cate that multi-turn conversation instruction-tuning,
with MeSH generation as an auxiliary task, ensures
better generalizability to unseen data than other
approaches.

4 Qualitative Analysis

Tables 6 and 7 in the Appendix compare
the generated summaries across different ex-
perimental settings. In this example, Ex-
periment INSTRUCTION_TUNING achieved the
best relevance score, followed by Experi-
ment INSTRUCTION_MODELING and Experiment
MESH_SINGLE_TURN. Notably, in the abstract,
the first sentence begins with the study design of the
approach, whereas the gold standard lay summary
includes additional sentences introducing the im-
portance of the topic, the symptoms of the disease,
and the current research gap, which are highlighted
in different colors. Both multi-turn conversation ap-
proaches closely follow the same information flow
and context as the gold standard. They also state
the method precisely as conveyed in the abstract’s
first sentence. The SINGLE_TURN approach con-
tained more technical jargon, which is harder for
laypeople to understand, and lacked sufficient back-
ground information.

5 Related Work

Current research in biomedical plain language sum-
marization focuses on two main subtasks: text sim-
plification and explanation and background gen-
eration. Text simplification involves linguistic
transformations, such as rewording and replacing
biomedical terminology with less technical terms,

to make content more accessible (Attal et al., 2023;
Devaraj et al., 2021). On the other hand, explana-
tion and background information generation lever-
age external knowledge to enhance the informative-
ness of summaries (Guo et al., 2024).

Two main model architectures are commonly
used for plain language summarization: encoder-
decoder models (e.g., T5 (Raffel et al., 2020),
BART (Lewis, 2019), Longformer (Beltagy et al.,
2020)) and generative models such as the GPT fam-
ily (Radford et al., 2019) and LLaMA (Touvron
et al., 2023). Generative LLMs have demonstrated
strong zero-shot and few-shot summarization capa-
bilities, producing coherent and relevant text from
demonstrations alone, without the need for fine-
tuning or parameter updates (Zhao et al., 2024).

While LLMs are inherently capable of follow-
ing natural language instructions, instruction-tuned
models, such as Flan-T5 (Chung et al., 2024),
demonstrate improved generalization to unseen
tasks. This fine-tuning allows LLMs to better un-
derstand and respond to user requests, enhancing
both zero-shot and few-shot learning capabilities.
PEFT techniques have been developed to address
the challenges posed by the growing number of
trainable parameters in LLMs (Xu et al., 2023).

6 Conclusion

In this study, we aimed to improve the biomedi-
cal lay summarization of scientific publications by
augmenting article text with MeSH terms. We in-
troduced a novel method for integrating this knowl-
edge into a generative LLM, providing guidance
for background information generation through a
multi-turn conversation. Our results demonstrated
that MeSH terms offer a broader perspective on the
content of a biomedical article, helping the model
generate more focused and relevant background
information specific to the article’s topic.
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7 Limitations

First, due to computational costs and memory lim-
itations, we used only the abstract as input and
tested our experimental design on a single dataset.
Second, we evaluated performance based on rele-
vance and readability metrics, as there is a lack of
satisfactory evaluation for faithfulness that aligns
well with human preferences, as revealed in pre-
vious studies (Fang et al., 2024). Although in-
corporating MeSH generation as an auxiliary task
led to some improvements, its performance was
not statistically significant different from the SIN-
GLE_TURN approach. However, ablation studies
indicate that MeSH selection plays a crucial role in
guiding lay summary generation. In future work,
we aim to further enhance its effectiveness by inte-
grating it into the learning process with automatic
feedback. Moving forward, we plan to conduct
human evaluations to better assess how well model-
generated summaries align with human judgments.
Additionally, we will explore both closed- and
open-source LLMs to evaluate the generalizabil-
ity of our approach across different models.
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Gold Standard: Although Parkinson’s disease is the second most common neurodegenerative disorder, its cause is not
known and there is no cure. The symptoms of Parkinson’s disease, which include tremor and slowing of voluntary movements,
get progressively worse over time. The numbers of neurons in certain brain regions also decrease, causing those parts of the
brain to shrink; this is known as “atrophy”. However, no conclusive signs of atrophy have been found in the brains of people
in the early stages of the disease. One theory suggests that Parkinson’s disease is caused by a toxic protein that is able to
spread from neuron to neuron. Recent advances in brain imaging have made it possible to map networks in the living human
brain—the so-called brain connectome. These networks could form the ‘highways’ through which a disease-causing agent
might spread. The Parkinson’s Progression Markers Initiative (PPMI) is a large study that collects data from hundreds of
people in an effort to identify the causes of Parkinson’s disease. Zeighami et al. have now analyzed MRI scans that were
collected as part of this initiative, which show the structure of the brains of 230 people in the early stages of Parkinson’s
disease. Comparing these scans to those from age-matched healthy individuals allowed Zeighami et al. to identify the set
of brain regions that show atrophy in the early stages of Parkinson’s disease. These regions correspond to a normal brain
network, and the relative extent of atrophy in each brain region supports the theory that the disease spreads through the
connectome. The patients who were enrolled in this study will continue to be evaluated on a yearly basis. Zeighami et
al. plan to continue mapping how the disease progresses throughout the brain and to relate this to the development of new
symptoms of Parkinson’s disease.
Abstract: We mapped the distribution of atrophy in Parkinson’s disease (PD) using magnetic resonance imaging (MRI) and
clinical data from 232 PD patients and 117 controls from the Parkinson’s Progression Markers Initiative. Deformation-based
morphometry and independent component analysis identified PD-specific atrophy in the midbrain, basal ganglia, basal
forebrain, medial temporal lobe, and discrete cortical regions. The degree of atrophy reflected clinical measures of disease
severity. The spatial pattern of atrophy demonstrated overlap with intrinsic networks present in healthy brain, as derived from
functional MRI. Moreover, the degree of atrophy in each brain region reflected its functional and anatomical proximity to a
presumed disease epicenter in the substantia nigra, compatible with a trans-neuronal spread of the disease. These results
support a network-spread mechanism in PD. Finally, the atrophy pattern in PD was also seen in healthy aging, where it also
correlated with the loss of striatal dopaminergic innervation.
INSTRUCTION_TUNING Parkinson’s disease is a neurodegenerative disorder that affects millions of people around the
world. It is characterized by the progressive loss of dopamine-producing neurons in the brain, which leads to symptoms
such as tremors, rigidity, and difficulty with movement. However, it is not clear how the disease starts or how it spreads
through the brain. One theory is that Parkinson’s disease begins in a region of the brain called the substantianigra, which
is responsible for producing dopamine. From there, the disease may spread to other brain regions via a network of nerve
fibers. To better understand how Parkinson’s spreads, researchers studied the brains of 232 patients with the disease and
compared them to 117 healthy individuals. The brains of the patients were imaged using a technique called MRI, which
allows researchers to measure the volume of different brain regions. This revealed that patients with Parkinson’s had more
atrophy than healthy individuals in several brain regions, including those involved in movement, emotion, and memory.
Furthermore, the extent of this atrophy was related to the severity of the symptoms experienced by the patients. The brain
regions affected by Parkinson’s were also found to be connected to each other via nerve fibers, which supports the theory that
the disease spreads through a network. The study also found that the pattern of brain atrophy seen in Parkinson’s patients
was similar to that seen in older adults without the disease, suggesting that age-related changes may also contribute to
the development of Parkinson’s. Overall, the findings of this study provide new insights into the mechanisms underlying
Parkinson’s, and may help researchers to develop new treatments for the disease in the future.

Table 6: Comparison of experiments. The text highlighted in the same color conveys the same information.
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INSTRUCTION_MODELING Parkinson’s disease is a neurodegenerative disorder that affects millions of people around the
world. It is characterized by the progressive loss of dopamine-producing neurons in the brain, which leads to symptoms
such as tremors, stiffness and difficulty with movement. The disease is caused by the accumulation of abnormal protein
clumps, known as Lewy bodies, in the cells of the brain. However, it is not clear how these clumps lead to the death of brain
cells, or how they cause the symptoms of Parkinson’s disease. One theory is that the clumps disrupt the connections between
different brain regions, leading to a loss of communication between them. This theory is supported by the fact that some brain
regions are more affected than others in Parkinson’s patients. For example, the brain region known as the ‘basal ganglia’,
which is involved in movement control, is one of the first regions to be affected by the disease, while other regions such as
the hippocampus and the amygdala, which are involved in memory and emotion, are later affected. To better understand
how the disease affects the brain and to develop new treatments, researchers need to map the extent of brain damage in
patients with Parkinson’s. One way to do this is to use a technique called MRI, which uses magnetic fields and radio waves to
create detailed images of the inside of the body. Using this technique, a team of researchers has now mapped the amount
of damage to the brain in over 350 patients and healthy individuals. The results show that the extent and location of the
damage vary greatly from person to person, and that the brain regions that are most affected are those that are farthest from
the area of brain where the disease is thought to start. This suggests that the disease spreads through the brain via a network
of interconnected regions, rather than through a single pathway. The next step will be to investigate whether the same pattern
of damage is seen in people who are at risk of developing Parkinson’s, but have not yet been diagnosed.
SINGLE_TURN The human brain is made up of billions of neurons that communicate with each other through electrical and
chemical signals. In Parkinson’s disease, a protein called alpha-synuclein clumps together and forms abnormal structures
called Lewy bodies, which are toxic to neurons. This leads to the death of many neurons in areas of the brain that control
movement, leading to symptoms such as tremors, stiffness and slowness of movement. However, it is not clear how the disease
affects the brain, or which areas are most affected. To address this question, researchers from the University of California,
Los Angeles ( UCLA ) and the National Institute of Neurological Disorders and Stroke ( NINDS ) used a technique called
diffusion tensor imaging ( DTI ) to map the structure of the brains of 232 people with Parkinson’s, as well as 117 people who
did not have the condition. The DTI scans showed that the brains affected by Parkinson’s were smaller than those of people
without the disease, and that the extent of this shrinkage was related to the severity of the symptoms. The researchers also
found that the brain areas that were most affected by the disease were those that are most connected to each other, suggesting
that the disease may spread from one area to another. Furthermore, the patterns of brain shrinkage seen in Parkinson’s patients
were similar to those seen in people who are aging normally. This suggests that the changes in brain structure that occur with
aging may also contribute to the development of Parkinson’s. The next step will be to use these findings to develop new
treatments for Parkinson’s that can target the specific brain regions that are affected.
MESH_SINGLE_TURN The human brain is made up of billions of neurons that communicate with each other through
electrical and chemical signals. Parkinson’s disease is a neurodegenerative disorder that affects millions of people worldwide.
It is characterized by the progressive loss of dopamine-producing neurons in the brain, which leads to symptoms such as
tremors, rigidity, and difficulty with movement. However, it is not clear how these neurons are affected by the disease, or
how their loss leads to the symptoms that people with Parkinson’s experience. To address this question, researchers from
the University of California, Los Angeles ( UCLA ) used a technique called MRI to scan the brains of 232 people who had
Parkinson’s, as well as 117 people who did not have the condition. The scans were then analyzed to identify areas of the
brain that were affected by Parkinson’s. The results showed that the disease causes atrophy – or shrinkage – in several brain
regions, including the basal ganglii, the basal fore-brain, the medial temporal lobes, and specific regions of the cortex. The
extent of the shrinkage in each of these brain regions was related to the severity of the symptoms experienced by the patients.
Furthermore, the regions that were most severely affected were those that are closest to the brain region known to be damaged
in Parkinson’s: the substantian nigra. These findings suggest that Parkinson’s may be caused by a network of interconnected
brain regions that are damaged as the disease progresses. The next step will be to investigate whether the same pattern of
brain atrophy is seen in people who do not have Parkinson’s but are aging.

Table 7: Continued from Table 6
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Abstract

The proliferation of wearable devices and
sports monitoring apps has made tracking phys-
ical activity more accessible than ever. For in-
dividuals with Type 1 diabetes, regular exercise
is essential for managing the condition, mak-
ing personalized feedback particularly valuable.
By leveraging data from physical activity ses-
sions, NLP-generated messages can offer tai-
lored guidance to help users optimize their
workouts and make informed decisions. In
this study, we assess several open-source pre-
trained NLP models for this purpose. Contrary
to expectations, our findings reveal that models
fine-tuned on medical data or excelling in med-
ical benchmarks do not necessarily produce
high-quality messages.

1 Introduction

Type 1 diabetes (T1D) is an autoimmune disease
in which the immune system attacks the pancreatic
cells responsible for producing insulin, a hormone
essential for regulating blood glucose levels. With-
out insulin, cells cannot absorb glucose, leading
to potentially life-threatening consequences if not
externally managed (NIH). Physical activity plays
a crucial role in managing T1D, as it enhances
insulin sensitivity, helps regulate blood glucose lev-
els, and promotes overall health (Colberg et al.,
2016). However, exercise must be carefully man-
aged, as improper glucose regulation during physi-
cal activity can result in hypoglycemia (low blood
glucose) or hyperglycemia (high blood glucose),
both of which pose significant health risks.

Our study leverages data from wearable devices
and insulin monitoring, together with domain ex-
pert inputs, to develop a Natural Language Process-
ing (NLP)-based approach that generates person-
alized messages based on an individual’s physical
activity history. These messages, delivered after
each activity session, help individuals adjust their
behavior to minimize the risk of excessive glucose

fluctuations. This work serves as a proof of concept
for the feasibility of using personalized NLP-driven
messages in diabetes management, with the ulti-
mate goal of driving behavior change.

In this article, we primarily focus on the message
generation aspect of our work, evaluating several
open-source models by assessing the quality of
their generated messages and benchmarking them
against expert-written text. The choice of open-
source models was driven by our goal to integrate
our approach into an app that prioritizes user pri-
vacy and transparency.

Related work Several studies have explored inte-
grating wearable sensor data with NLP approaches,
using data from various sources, including phys-
iological and motion sensors (Ferrara, 2024), as
well as smartphone, self-reported (e.g., survey re-
sponses) (Li et al., 2024a) and voice-assistant data
(Li et al., 2024b). One notable example is PH-
LLM (Cosentino et al., 2024), which introduces a
fine-tuned large language model (LLM) based on
Gemini, designed to interpret and reason over phys-
iological data. Another example is PhysioLLM
(Fang et al., 2024), which focuses on sleep moni-
toring by leveraging GPT-4-turbo. It enables users
to analyze their sleep patterns and their impact on
health, providing insights in the form of correla-
tions and trends.

2 Problem and dataset description

Our aim was to generate short advice messages to
be shown to app users at the end of a workout, to
help them stay within normal glucose levels (70-
180 mg/dL) during future workouts.

We broadly categorized workouts into two types:
negative-outcome (i.e., the individual’s glucose
level went out of range, further subdivided into
hypo- and hyperglycemia) and positive-outcome
ones (i.e., the individual’s glucose level remained
within the range). Negative-outcome workouts re-
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Outcome Behavioral
Pattern

Expert-provided
Information

Ideal Response Mistral Model Hermes Model

negative
(hypo-
glycemia)

You
spent 18
minutes
below 70
mg/dL
during
this work-
out.

Prolonged periods
of hypoglycemia
can lead to fatigue
and potentially
dangerous low
glucose lev-
els. Consider
adjusting your
carbohydrate
intake before and
during exercise.

To prevent hypo-
glycemia, consume
10–30 g of carbs before
exercise if glucose is
below 120–140 mg/dL,
trending downward,
or if active insulin is
high. Adjust insulin in
advance and monitor
glucose regularly.
Use fast-acting carbs
during workouts if
levels drop below 140
mg/dL.

To prevent prolonged
hypoglycemia during
exercise, consider
extending your
pre-workout carbo-
hydrate intake and
consume small, fre-
quent carbohydrate
snacks during your
workout. Start your
sessions later in
the day to minimize
the impact on your
glucose levels.

In order to prevent hypo-
glycemia during your next
workout, consider adjust-
ing your carbohydrate
intake prior to the ses-
sion. As the start hour
has no effect, focus on
consuming carbs 18 min-
utes before the workout to
help maintain normal glu-
cose levels throughout the
physical activity. Mon-
itor your glucose levels
closely and adjust your
diet accordingly to ensure
you stay within the normal
range during exercise.

Table 1: An example of a hypo-glycemia scenario "Time spent <70mg/dL". To the right: models output for best
actionable insights prompt with (0,0,1) (start time should increase). Color coding: black-action, red-hallucination,
violet-nutrition (carbs), blue-insulin, green-monitoring, grey-specific quantity.

quire a behavior change, and messages should ad-
vise the individual on how to adjust. Conversely,
if the outcome is positive, the individual should be
encouraged to maintain their current behavior.

As such, we used a more detailed characteriza-
tion of workouts, referred to as behavioral patterns
(i.e., a more precise description of the out-of-range
behavior selected from a pre-defined set of possi-
bilities). Each behavioral pattern was accompanied
by additional expert-provided information. We re-
fer to the combination of behavioral pattern and
expert-provided information as observable insight.
An example of an observable insight is shown in
the second and the third column of Table 1.

We considered a total of 17 different observable-
insight scenarios: 13 with negative outcomes and
4 with positive outcomes. For 11 of the negative-
outcome scenarios, we were also provided with
the ideal responses generated by domain experts,
which we used in our study as the ground truth.

In addition, we trained a machine learning model
that also considered the activity history of the indi-
vidual1 to provide information on whether (and if
so, how) changing their behavior with respect to at
least one actionable variable could help the individ-
ual stay within the normal glucose range. Session
intensity, duration, and start time were selected as
the three actionable variables since they have eas-
ily interpretable meaning and are fully under the
person’s control. We refer to the outcomes of the
ML model as actionable insights.

1Details about the model are not reported here due to space
constraints and the focus on NLP methods.

3 Methodology

Model choice Given our commitment to using
open-source models, we focused exclusively on
these, excluding popular options like GPT-3.5 and
GPT-4. Additionally, due to the limited size of
the dataset available to us, fine-tuning was not a
viable option, which further influenced our model
selection process. The open-source models we
considered are listed in Table 2.

Framework design We based our methodology
on prompting (Brown et al., 2020) the open-source
NLP models using different (types of) prompts in
order to generate personalized user-friendly mes-
sages based on the aforementioned insights. Fur-
thermore, as additional external knowledge from
T1D experts (see expert knowledge in Table 1)
was available, instead of relying solely on the pre-
trained knowledge, we used that knowledge as ad-
ditional information to enhance message genera-
tion. In other words, we simulated2 Retrieval Aug-
mented Generation (RAG) (Lewis et al., 2020) by
extending our designed prompts with the related
expert knowledge as the relevant context.

Prompt types We designed two types of prompts:
one that receives only observable insights, and
another that on top of these includes actionable
insights. In the first iteration, we evaluated a
wide range of models using the observable-insight

2We opted for not implementing a separate retrieval com-
ponent for a RAG system as the additional inputs are too short
and our dataset is too small to justify it.
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Model (Owner) Motivation
Starling-LM-7B-beta (Nexusflow) FT; OML
gemma-2-2b-it (Google) instruct FT; OML
Mistral-7B-Instruct-v0.3 (MistralAI) instruct FT; OML
Hermes-2-Pro-Mistral-7B (NousRe-
search)

FT; OML

JSL-MedPhi2-2.7B (John Snow
Labs)

FT on medical
data

Llama-3.2-3B-Instruct (Meta) instruct FT
falcon-7b-instruct (TII) chat/instruct FT

Table 2: List of the open-source models and motivation
for choosing them. "FT" stands for fine-tuned, while
"OML" denotes the model’s high-rank (among top-4) at
The Open Medical-LLM Leaderboard (Pal et al., 2024).

prompt type. The rationale was that models per-
forming poorly on simpler prompts should not be
considered for more complex ones. Following the
initial selection, we introduced the second type of
prompt (full-insight), which also includes action-
able insights. For example, in the scenario from Ta-
ble 1, the desirable behavior might involve provid-
ing suggestions on how the user should adjust their
activity to avoid hypoglycemia, such as reducing
workout intensity. We encoded actionable insights
from our ML model as a three-dimensional vector,
with dimensions corresponding to session intensity,
duration, and start hour, respectively. Each dimen-
sion can take one of three values (0, -1, 1), where 0
denotes no effect on glucose level (hence no action
required), -1 denotes that the variable should be
decreased to reduce out-of-range risk, while +1 de-
notes that the variable should be increased for the
same purpose. A well-performing model should be
able to incorporate this information and generate
a corresponding message. Both observable- and
full-insight prompts were then iteratively refined
based on the evaluation criteria described below.

Evaluation We evaluated the generated mes-
sages both qualitatively and quantitatively. The
qualitative analysis focused on prompt adherence,
correctness, level of detail, emotional tone, and
medical content comprehension. Quantitative
analysis was feasible only for observable-insight
prompts, where ground truth allowed comparison
by measuring semantic similarity between gener-
ated messages and expert-provided ideal responses.

4 Results

Qualitative analysis The formulation of the ini-
tial observable-insight prompt (P ) can be seen in
Figure 1. We found that many models have diffi-
culty adhering to this prompt. Besides Gemma, that

Initial observable-insight prompt (P): "You will be pro-
vided with an observed PATTERN in a physical activity
session of a person with a T1 diabetes condition. You are
supposed to generate a 15-20 words long ADVICE related
to the observed pattern that can help the person to stay
within normal glucose levels. You should also incorporate
the given CONTEXT."

Best full-insight prompt: "You will be provided with
an observed PATTERN in a physical activity session of
a person with a T1 diabetes condition which leads to a par-
ticular EFFECT in person’s glucose level. The PATTERN
is a three-dimensional vector where the first component
refers to session intensity, the second component refers
to session duration and the third component refers to ses-
sion’s start hour. Each of the three components can take
exactly one of the values -1, 0 or 1. Value 0 denotes that
i-th component has no effect at all on person’s glucose
level and as such it is not relevant for the advice. Non-zero
value on i-th position denotes that the i-th component has
negative effect on person’s glucose level and is very rele-
vant for the advice. Value -1 on i-th position denotes that
decrease in the i-th component would make person stay
within the normal glucose levels. Value 1 on i-th position
instead denotes that increase in the i-th component would
make person stay within the normal glucose levels. You are
supposed to generate a 15-20 words long ADVICE lever-
aging the observed PATTERN and the given CONTEXT
to help the person stay within normal glucose levels, com-
menting only on those particular components that have
an effect on the patient glucose levels in the given case.
Make sure to take into account glucose level when giv-
ing the advice and not to mix recommendations for hypo-
glycemia (glucose level below 55 mg/dL) with those for
hyperglycemia (glucose level above 180 mg/dL). Keep a
professional tone and focus more on prevention that can
be done prior and/or during the workout instead of giving
a precise medical advice. PATTERN: (X,Y,Z)."

Figure 1: Examples of prompts. In the second one,
(X,Y,Z) is the 3-dimensional output of the ML model.
Moreover, the underlined parts are shared with the best-
performing observable-insight prompts.

had different problems (see examples 1 & 2 in Ta-
ble 3), Starling-LM and JSL-MedPhi2 consistently
generated overly long responses (here omitted in
the interest of space). The same issue was often
also observed with Falcon. Even more importantly,
JSL-MedPhi2 frequently exhibited undesired be-
havior: after a paragraph it would either start re-
peating itself or encounter hallucination issues.

Examples 3-5 in Table 3 illustrate other issues
which do not necessarily stem from not adhering
to the prompt, but nevertheless were judged by ex-
perts as inappropriate. We, therefore, implemented
an iterative-refinement strategy in order to: 1) re-
duce emotional expressiveness (denoted as: Pe)
and avoid giving medical advices (Pm); 2) focus
on the observed behavioral pattern (Pf ); 3) enforce
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Ex. Scenario Model Response Problem/Experts comment

1 Time spent below 55
mg/dL Gemma "Increase carbohydrate intake before and dur-

ing exercise to avoid prolonged hypoglycemia."
Not adhering to prompt (length)

2
Time spent above 250
mg/dL (if workout >2h
in duration)

Gemma "Monitor your glucose closely and adjust
insulin as needed to stay within target range."

Lack of necessary detail, too gen-
eral and ignoring context (expert
input)

3
Time spent above 250
mg/dL (if workout >2h
in duration)

Llama
"Reassess insulin strategy and carbohydrate in-
take to prevent glucose spikes, aiming for a
5-10% increase in daily insulin doses."

Wrong type of response: provid-
ing medical advice instead of gen-
eral well-being recommendations

4 Time spent below 55
mg/dL

Mistral "Immediately consume fast-acting..." Time aspect ("immediately" or
"within the next 5 minutes")Llama "Consume ... within the next 5 minutes"

Gemma "Consume ... carbs immediately"

5 Glucose variability
<36% during exercise

Gemma "Keep up the good work! Your consistent
glucose management is key to optimal perfor-
mance."

A bit too much excessive emo-
tional expressiveness.

Table 3: Examples illustrating some of the challenges with generated responses using the initial observable-insight
prompt (P ) with different NLP models.

Figure 2: Similarity scores for each observable-insight prompt and model combination. To the left: boxplots per
prompt-model combination over 11 questions, to the right: heatmap with a refined view on a question level.

generation of concrete actions instead of vague
suggestions (Pa); 4) incorporate sports nutrition
guidelines (short form: Pn, more elaborate: Pn+,
explicitly adding a summary of sports nutrition
guidelines to the context: P<n>); 5) differentiate
between hypo-/hyper-glycemia in responses (Pd).

Based on the expert feedback, we shortlisted
Mistral and Hermes (which uses a previous version
of Mistral as a base model) to conclude our exper-
iments and explore full-insight prompts. Among
these, the best performance was obtained with the
prompt shown in Figure 1. This prompt works well
with the Mistral model, while Hermes produces
more hallucinations (see rightmost part of Table 1).

Quantitative analysis For observable-insight
prompts, we evaluated the semantic similarity
scores between generated and ideal responses using
all-MiniLM-L6-v2 (Reimers and Gurevych, 2019).
The left panel of Figure 2 shows boxplots of simi-
larity scores for each prompt-model combination,
with Mistral demonstrating superior performance

in the majority of cases. To provide a more granular
view, the right panel of Figure 2 presents a heatmap
of similarity scores for each prompt-model combi-
nation and for each question. Notably, for some
questions it is difficult to reach high similarity level
regardless of the model+prompt choice (e.g., ques-
tion 8). Additionally, the superior performance of
Mistral is again evident, as seen, e.g., in the clear
horizontal patterns for questions 4, 6, and 10.

5 Conclusions

This work evaluates the feasibility of generating
high-quality, personalized NLP-based messages
for diabetes management, integrating both domain
expert inputs and data-driven insights, with the
goal of driving behavior change. We tested sev-
eral open-source models, and among them, Mistral
yielded particularly promising results, proving to
be a strong candidate for this task. In contrast,
Starling-LM-7B-beta, gemma-2-2b-it, Llama-3.2-
3B-Instruct, and especially, JSL-MedPhi2-2.7B de-
livered disappointing outcomes.
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Limitations

We acknowledge that the limited size of our dataset
affects the generalizability of our conclusions.
However, we hope our findings offer valuable in-
sights, particularly by encouraging caution when
using models we found less effective for similar
tasks.
Additionally, we attempted to improve the safety
and quality of generated messages, in particu-
lar by introducing prompt refinement strategies
Pm, Pf , Pa, Pn, Pn+, P<n>, Pd. However, we rec-
ognize that further investigation is needed to fully
address this issue.
Moreover, as a proof of concept, our approach con-
sidered only a limited set of actionable variables,
and its scalability to a broader set should be ex-
plored in future work.

Ethical Considerations

We strongly advise against any use of suggested
prompts that breaches ethical standards or facil-
itates harmful activities, such as generating mis-
leading, harmful or malicious content. Our com-
mitment to ethical principles underscores our ded-
ication to fostering a positive impact not only in
the related research community but, even more im-
portantly, in all related fields and domains where
potential real world utility and applicability of this
work exists.
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Abstract
Medication Extraction and Mining of its
related attributes play an important role in
healthcare NLP research due to its practi-
cal applications in hospital settings, such as
their mapping into standard clinical knowl-
edge bases (SNOMED-CT, BNF, etc.). In this
work, we investigate state-of-the-art LLMs in
text mining tasks on medications and their re-
lated attributes such as dosage, route, strength,
and adverse effects. In addition, we explore
different ensemble learning methods (STACK-
ENSEMBLE and VOTING-ENSEMBLE) to aug-
ment the model performances from indi-
vidual LLMs. Our ensemble learning re-
sult demonstrated better performances than
individually fine-tuned base models BERT,
RoBERTa, RoBERTa-L, BioBERT, BioClin-
icalBERT, BioMedRoBERTa, ClinicalBERT,
and PubMedBERT across general and spe-
cific domains, with statistical significance
testing (p=0.048). Finally, we build up
an entity linking function to map extracted
medical terminologies into the SNOMED-
CT codes and the British National Formu-
lary (BNF) codes, which are further mapped
to the Dictionary of Medicines and De-
vices (dm+d), and ICD (Clinical Coding).
We host the fine-tuned models and desk-
top applications at https://github.com/
pabloRom2004/Insight-Buddy-AI-App

1 Introduction

Information Extraction on Medications and their
related attributes plays an important role in nat-
ural language processing (NLP) applications in
the clinical domain to support digital healthcare.
Clinicians and healthcare professionals have been
doing manual clinical coding for quite a long time
to map clinical events such as diseases, drugs, and
treatments into the existing terminology knowledge
base, for instance, ICD and SNOMED. The proce-
dure can be time-consuming yet without a guaran-
tee of total correctness due to human-introduced

errors. With the process of automated informa-
tion extraction on medications, it will be further
possible to automatically map the extracted terms
into the current terminology database, i.e. the au-
tomated clinical coding. Due to the promising fu-
ture of this procedure, different NLP models have
been deployed in medication mining and clinical
coding in recent years. However, they are often
studied separately. In this work, 1) we investigate
text mining of medications and their related at-
tributes (dosage, route, strength, adverse effect, fre-
quency, duration, form, and reason) together with
automated clinical coding into one pipeline. In
addition, 2) we investigate the ensemble learning
mechanisms (Stack and Voting) on a broad range of
NLP models fine-tuned for named entity recogni-
tion (NER) tasks. These models include both gen-
eral domain trained BERT, RoBERTa, RoBERTa-L,
and domain-specific trained BioBERT, BioClini-
calBERT, BioMedRoBERTa, ClinicalBERT, and
PubMedBERT. In this way, users do not have to
worry about which models to choose for clinical
NER. Instead, they can just place the newer mod-
els into the ensemble-learning framework to test
their performances. We offer desktop applications
and web interfaces for the clinical NER, ensemble,
and coding models we are developing upon paper
acceptance.

2 Literature Review and Related Work

2.1 Biomed/Clinical Named Entity
Recognition

Named Entity Recognition (NER) is a critical task
for extracting key information from unstructured
text, like medical letters. The complexity and
context-dependency of medical language pose sig-
nificant challenges for accurate entity extraction.
Traditional approaches to NER, such as rule-based
systems, have shown limited success in capturing
the nuanced contextual information crucial for clin-
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ical NER (Nadeau and Sekine, 2007). The advent
of deep learning methods, particularly Long Short-
Term Memory (LSTM) networks, marked a signif-
icant improvement in NER performance (Graves
and Schmidhuber, 2005), e.g. the ability to cap-
ture long-range dependencies in text. However,
these models still struggled with rare entities and
complex contextual relationships in clinical notes.
The introduction of BERT (Bidirectional Encoder
Representations from Transformers) (Devlin et al.,
2019) revolutionised various NLP tasks, includ-
ing NER. BERT’s self-attention mechanism and
bidirectional training allow it to capture nuanced
contextual information over long pieces of text.
The model’s pre-training on a large corpus using a
masked language modelling objective builds rich
token representations. The model can then be later
fine-tuned by adding a classification layer at the
end of the network to make decisions over each
individual token embedding.

However, BERT’s pre-training on general do-
main corpora (Wikipedia and books) limited its
effectiveness on specialised medical texts. This lim-
itation led to the development of domain-specific
BERT variants. For example, BioBERT (Lee et al.,
2019), pre-trained on large-scale biomedical cor-
pora; ClinicalBERT (Wang et al., 2023), fine-tuned
on EHR data from 3 million patients after pre-
training on 1.2 billion words of diverse diseases,
and other variants like Med-BERT (Rasmy et al.,
2021) have demonstrated enhanced performance
on medical NER tasks due to their specialised train-
ing on the medical domain 1. Despite these im-
provements, single-model approaches still strug-
gle with the inherent complexity and variability of
clinical text, as the comparative studies reported
in (Belkadi et al., 2023) across different models
using BERT, ClinicalBERT, BioBERT, and scratch-
learned Transformers.

2.2 Ensemble Learning for Biomedical NER

Ensemble methods have emerged as a promising
direction to address these challenges, they have
proven useful in other fields, such as computer
vision (Lee et al., 2018). By combining multi-
ple models, ensembles can leverage the strengths
of different models while mitigating their individ-
ual weaknesses. In the context of NER, ensemble

1there have been other versions of Clinical BERTs such
as (Huang et al., 2019) and (Alsentzer et al., 2019) that were
trained on Medical Information Mart for Intensive Care III
(mimiciii) data (Johnson et al., 2016) respectively.

learning has shown performance improvements,
as shown by (Naderi et al., 2021), where an en-
semble is used in a health and life science corpus
for a significant improvement in performance over
single models. (Naderi et al., 2021) conducted
max voting for word-level biology, chemistry, and
medicine data. However, on clinical/medical NER,
they only focused on French using the DEFT bench-
mark dataset; while for the other two domains of
biology and chemistry, they tested on English data.
There are two commonly used ensemble methods,
voting and stacked ensembles: 1) Maximum vot-
ing in ensembles where each model contributes
equally to the final decision as used in the paper
(Naderi et al., 2021) have proved effective. This is
where the most voted label is picked. 2) Training
a network on the outputs of the ensemble aims to
capture more nuanced relationships. This is accom-
plished using a method called stacking introduced
by (Wolpert, 1992). Stacking offers a more sophis-
ticated approach by training a meta-model on the
outputs of the base ensemble; the model is expected
to learn more complex patterns from the ensemble
outputs, leading to better predictions. This has
proven effective in this paper (Saleh et al., 2022)
where they use a stacked ensemble with a support
vector machine (SVM) for sentiment analysis. In-
stead, we will use a simple feed-forward network
from the outputs of the ensemble to the final labels
for our tasks. more examples on stacked ensem-
ble can be found at (Mohammed and Kora, 2022;
Güneş et al., 2017).

Earlier work on ensemble learning for biomed-
ical NER mostly includes older models such as
BiLSTM, CRF, SEARN, and RNNs (Ju et al.,
2020; Kim and Meystre, 2020; Christopoulou et al.,
2020). This work aims to address this gap by
investigating 1) whether stacked and voting en-
sembles can make a difference on NER tasks of
clinical notes, 2) the ensemble performance on
newer Deep Learning models based on BERT from
domain fine-tuning, which are a) general domain
BERT, RoBERTa, and RoBERTa-L, and b) biomed-
ical domain BioBERT, BioClinicalBERT, BioMe-
dRoBERTa, ClinicalBERT, and PubMedBERT.

2.3 Model Quantisation
To make the LLMs more computational friendly
and available for smaller machine users, model
quantisation is a recent topic in deep learning to
reduce the required memory when running the
model mostly by reduce the model size, but with-
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Figure 1: INSIGHTBUDDY Framework Pipeline: individual NER model fine-tuning, ensemble, and entity linking.
Two kinds of base models include the general domain and the biomedical domain with their Huggingface repositories
in Table 3. Pre-preprocessing data: cut the sequence with the first full stop “.” after the 100th word, otherwise, cut
the sequence up to 128 words. Fine-tuning: using the same parameter sets for all eight models. Ensemble: different
strategies will be displayed in Fig 2. Entity Linking: links to clinical KB including BNF and SNOMED.

out much effecting the model performances. There
are quantisation-aware training and post-training
quantisation (PTQ). We use the extreme reduction
to 4-bit (16 values) transformers.js Q4 implemen-
tation in our work for PTQ. Recent work on this
topic can be found at (Lin et al., 2024; Liu et al.,
2023).

3 Methodologies

The Overall framework of INSIGHTBUDDY is
shown in Figure 1, which displays the base mod-
els we included from the general domain 1) BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
and RoBERTa-Large, and 2) biomedical/clinical
domains BioBERT (Lee et al., 2019), BioClinical-
BERT (Alsentzer et al., 2019), BioMedRoBERTa
(Gururangan et al., 2020), ClinicalBERT (Wang
et al., 2023), and PubMedBERT (Gu et al., 2020).
The fine-tuning of eight models uses the same set of
parameters (Section 4 for parameter selections) and
the n2c2-2018 shared task training data with data
pre-processing. The initial evaluation phase using
n2c2-2018 testing set gives an overall idea of each
model’s performance. This is followed by ensem-
ble learning on all the models’ outputs. With the
output from NER models, we add an entity linking
function to map the extracted medical entities into
the standard clinical terminology knowledge base
(KB), using SNOMED-CT and BNF as our initial
KB, which is further mapped to ICD and dm+d.

For data pre-processing, we chunk the sequence
into a maximum of 128 words. If there is a full stop

“.” between the 100th and 128th word, it will be
cut at the full stop. Regarding ensemble-learning
strategy, we draw a InsightBuddy Ensemble figure
(Figure 2) to explain in detail. Firstly the initial
output of eight individual fine-tuned NER models
is tokenised, i.e. at the sub-word level, due to the
model learning strategy, e.g. “Para ##ce ##tam
##ol” instead of “Paracetamol”. What we need to
do at the first step is to group the sub-word tokens
into words for both practical application and vot-
ing purposes. However, each sub-word is labeled
with predefined labels and these labels often do not
agree with each other within the same words. We
designed three group solutions, i.e. first-token
voting/selection, max-token voting, and average
voting. The first-token voting is to assign a word
the same label as its first sub-word piece. For ex-
ample, using this strategy, the word “Paracetamol”
will be labeled as “B-Drug” if its first sub-word
“Para” is labeled as “B-Drug” regardless of other
labels from the subsequent sub-words. The max-
token voting will assign a word the label that has the
highest sub-word logit, this indicates that the model
is more confident in that prediction, the higher the
logit is. The average voting solution calculates the
average logits across all sub-words predictions and
then samples from this to get the label for the entire
word.

Regarding word-level ensemble learning, we
investigate the classical voting strategy with mod-
ifications (two solutions). For the first solution
“>=4 or O”, if there are more than half of the mod-
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Figure 2: INSIGHTBUDDY Voted Ensemble Pipeline: individual NER model fine-tuning outputs are at token/sub-
word level. "Logits are the outputs of a neural network before the activation function is applied" first, we do the
grouping of sub-words into words using three strategies: first token label, max token voting, or average voting (from
our results, the first-token-lable selection gives higher Recall, while other two voting give higher precision, but they
all end with the same F1 score, ref Table 4 ). || We take the best output from the first token label selection as the
solution. For word-level ensemble on eight models, we have two solutions for voting, 1) either majority voting with
>= 4 labels as the same then we pick it, otherwise choose default “O”, or 2) max voting with the most popular label
whatever it is; for max voting, if there is a tie, e.g. (3,3,2), we tested both alphabetical pick-up, or random pick-up
of tied labels. Our results show that “>=4, or O” performs similarly to “max + alphabetical”, while “max + random”
slightly performs lower.

els agree on one label, we pick this label, i.e. >=4
such same labels. Otherwise, we assign the default
“O” label to indicate it as context words, due to the
models’ disagreement. For the second solution, we
use max-voting, i.e. the most agreed label regard-
less of how many models they are, e.g. 2, 3, 4, or
more. In this case, if there are ties, e.g. (3, 3, 2) two
labels are voted both three times from six models,
we need to decide on the tied labels. There are two
solutions for the selection, 1) alphabetical, and 2)
fully randomised.

We also draw the STACKED-ENSEMBLE in Fig-
ure 12 and 13, where the model training and one-
hot encoded model predictions are illustrated. In
the training phase, we cut the real data into 80%
and 20% for the training and testing of the model.
Model exports are conducted only if at least 2 mod-
els are predicting a label that is not “O”; other-
wise “O” is the default option and the output is
ignored and not included in the stacked training
data. For training data collection, output logits for
each model are converted into a one-hot encoded
vector, concatenated and saved along with the real
label for each token. There are 8 one-hot encoded
vectors from 8 individual models and 1 label. So

the model during training will see the value “1”
eight times from the eight models, and the value “0”
for the rest of the vector values. Overall, there are 8
vectors with each length of 19 digits. So there will
be 8 (number of models) × 19 (number of labels) -
8 (eight 1s as there are 8 one hot encoded vectors
so they have a single 1 each) = 144 “0” values for
every training example. We use one-hot encoding
instead of the output logits themselves to avoid the
model overfitting because the model makes more
confident predictions when running on the training
set. As this is the data that it was originally trained
on, it is very confident with it’s predictions. We can
mitigate this by only feeding the one-hot encoded
vectors to the stacked network.

4 Hyper Parameter Optimisations

We used a set of parameters for model fine-tuning
and selected the better parameter set as below using
the validation data. We tried different learning rates
(0.0001, 0.0002, 0.00005) and batch sizes (16, 32).

• learning_rate: 0.00005

• train_batch_size: 32
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Individual models max-logit grouping (word)
Metric P R F1

BERT
accuracy 0.9773
macro avg 0.7942 0.7965 0.7928
weighted avg 0.9784 0.9773 0.9775

RoBERTa
accuracy 0.9780
macro avg 0.8029 0.8201 0.8094
weighted avg 0.9795 0.9780 0.9784

RoBERTa-Large
accuracy 0.9788
macro avg 0.8091 0.8351 0.8202
weighted avg 0.9802 0.9788 0.9792

ClinicalBERT
accuracy 0.9780
macro avg 0.8087 0.7916 0.7964
weighted avg 0.9785 0.9780 0.9779

BioBERT
accuracy 0.9776
macro avg 0.7972 0.8131 0.8027
weighted avg 0.9787 0.9776 0.9779

BioClinicalBERT
accuracy 0.9776
macro avg 0.7999 0.8090 0.8017
weighted avg 0.9788 0.9776 0.9779

BioMedRoBERTa
accuracy 0.9783
macro avg 0.8065 0.8224 0.8122
weighted avg 0.9797 0.9783 0.9786

PubMedBERT
accuracy 0.9784
macro avg 0.8087 0.8292 0.8166
weighted avg 0.9800 0.9784 0.9788

Voting Max logit ensemble word level
accuracy 0.9796
macro avg 0.8261 0.8259 0.8232
weighted avg 0.9807 0.9796 0.9798

Table 1: Word-level individual model (grouping using
max-logit) vs ensemble using max-logit, Eval on n2c2
2018 test data

• eval_batch_size: 32

• seed: 42

• optimizer: Adam with betas=(0.9,0.999) and
epsilon=1e-08

• lr_scheduler_type: linear

• lr_scheduler_warmup_ratio: 0.1

Model Macro P Macro R Macro F Accuracy Tokens
BERT 0.8336 0.8264 0.8283 0.9748 756798
ROBERTa 0.8423 0.8471 0.8434 0.9770 756014
ROBERTa-L 0.8489 0.8606 0.8538 0.9782 756014
PubMedBERT 0.8324 0.8381 0.8339 0.9783 681211
ClinicalBERT 0.8482 0.8245 0.8341 0.9753 796313
BioMedRoBERTa 0.8482 0.8477 0.8468 0.9775 756014
BioClinicalBERT 0.8440 0.8405 0.8406 0.9751 791743
BioBERT 0.8365 0.8444 0.8393 0.9750 791743

Table 2: INSIGHTBUDDY individual sub-word level
model eval on n2c2-2018 test set. The first group: nor-
mal domain PLM; The second group: biomedical PLM.
The different numbers of Support are due to the different
tokenizers they used – ROBERTa and ROBERTa-L use
the same tokenizers, BioClinicalBERT and BioBERT
use the same tokenizers, and other models all use dif-
ferent tokenizers; PubMedBERT generated the least
number of sub-words/tokens 681,211 while Clinical-
BERT generated the largest number of tokens 796,313.

• num_epochs: 4

• mixed_precision_training: Native AMP

5 Experimental Evaluations

We use the n2c2-2018 shared task data on NER of
adverse drug events and related medical attributes
(Henry et al., 2020). The data is labeled with
the following list of labels: ADE, Dosage, Drug,
Duration, Form, Frequency, Reason, Route, and
Strength in BIO format. So, overall, we have 19
labels, 2 (B/I) x 9 + 1 (O). The original training
and testing sets are 303 and 202 letters respectively.
We divided the original training set into two parts
(9:1 ratio) for our model selection purposes: our
new training and validation set, following the data
split from recent work by (Belkadi et al., 2023).

We report Precision, Recall, and F1 score in two
categories “macro” and “weighted”, in addition to
Accuracy. The “macro” category treats each label
class the same weight regardless of their occurrence
rates, while the “weighted” category” assigns each
label class with a weight according to their occur-
rence in the data. We first report the individual
model fine-tuning scores and compare them with
related work (subword level); then we report the
ensemble model evaluation with different ensemble
solutions (word level).

5.1 Individual Models: sub-word level
The performance of individual models after fine-
tuning is reported in Table 2 where it says that
RoBERTa-L performs the best in the macro Pre-
cision (0.8489), Recall (0.8606) and F1 (0.8538)
score across general domain models, also winning
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Table 3: INSIGHTBUDDY integrated individual models
and their Huggingface repositories.

Ensemble List Link
BERT https://huggingface.co/google-bert/bert-base-uncased
BioBERT https://huggingface.co/dmis-lab/biobert-base-cased-v1.2
ClinicalBERT https://huggingface.co/medicalai/ClinicalBERT
BioClinicalBERT https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
PubMedBERT https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
BioMedRoBERTa https://huggingface.co/allenai/biomed_roberta_base
RoBERTa https://huggingface.co/FacebookAI/roberta-base
RoBERTa Large https://huggingface.co/FacebookAI/roberta-large

domain-specific models. BioiMedRoBERTa wins
the domain-specific category models producing
macro Precision, Recall, and F1 scores (0.8482
0.8477 0.8468). In comparison to the NER work
from (Belkadi et al., 2023), who’s macro avg
scores are: 0.842, 0.834, 0.837 from ClinicalBERT-
Apt, our fine-tuned ClinicalBERT has similar per-
formances (0.848, 0.825, 0.834), which shows
our fine-tuning was successful. However, our
best domain-specific model BioMedRoBERTa pro-
duces higher scores: macro P/R/F1 (0.8482 0.8477
0.8468) and weighted P/R/F1 (0.9782 0.9775
0.9776) and Accuracy 0.9775 as in Figure 6.
Furthermore, the fine-tuned RoBERTa-L even
achieved higher scores of (0.8489 0.8606 0.8538)
for macro P/R/F1 and Acc 0.9782 in Figure 13.
Both fine-tuned BioMedRoBERTa and RoBERTa-
Large also win the best models reported by (Belkadi
et al., 2023) which is their ClinicalBERT-CRF
model, macro avg (0.85, 0.829, 0.837), Acc 0.976.
Afterwards, in this paper, we emphasis on word
level instead of sub-word, which was focused on
by (Belkadi et al., 2023).

5.2 Ensemble: word-level grouping (logits)

We tried first logit voting, max voting, and average
voting to group sub-words into words with corre-
sponding labels. Their results are shown in Table
4, in the upper group. First logit voting produced a
higher Recall 0.8260 while Max logit voting pro-
duced a higher Precision 0.8261 resulting in higher
F1 0.8232, i.e. Max logit > First logit > Aver-
age logit with macro F1 (0.8232, 0.8229, 0.8227).
However, overall, their performance scores are very
close, so we chose the first-logit voting output for
the afterward word-level ensemble due to computa-
tional convenience.

5.3 Individual vs Ensemble Models

The word-level performance comparisons from in-
dividual models and voting max-logit ensembles
are presented in Table 1.

Figure 3: ClinicalBERT Eval at Sub-word Level. This
score is similar (slightly winning R/F1) to (Belkadi et al.,
2023) paper on ClinicalBERT-Apt whose macro: (85.3
81.0 82.5) and weighted: (0.974, 0.975, 0.974), which
says our fine-tuning is successful. However, our best
domain-specific model BioMedRoBERTa produces bet-
ter score: macro P/R/F (0.8482 0.8477 0.8468) and
weighted P/R/F (0.9782 0.9775 0.9776) and Accuracy
0.9775 as in Figure 8. Furthermore, the fine-tuned
RoBERTa-L even achieved higher scores of (0.8489
0.8606 0.8538) for P/R/F1 and Acc 0.9782 in Table 1.
Afterwards, in this paper, we emphasis on word level
instead of sub-word, which was focused by Belkadi et al.
(2023).

5.4 Ensemble: Voting vs Stacked (one-hot)
Regarding Stacked Ensemble using one-hot en-
coded vectors, as shown in the middle group in
Table 4, it actually produced higher Precision score
0.8351 in comparisons to the highest Precision
0.8261 from Voting Ensembles. However, the Re-
call score on macro avg is 2 point lower than the
voting ensemble, 0.8065 vs 0.8260, which means
that the Stacked Ensemble reduced the false pos-
itive errors but also increased the false negative
error prediction. This implies that it has stricter
constraint on positive predictions.

5.5 Ensemble Models: BIO-span vs non-strict
word-level

So far, we have been reporting the evaluation scores
on the BIO-strict label categorization, i.e. we dis-
tinguish between the label’s beginning or the inner
part of the label. For instance, a B-Drug will be
different from an I-Drug and it will be marked
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as wrong if they are different from the reference.
However, we think in practice, there are situations
when users do not need the BIO, especially B and
I difference. In Table 4, we can see that, without
considering the label difference of B and I, only
focusing on the 9 label categories, word level en-
semble model produced much higher Macro avg
evaluations cores on Precision (0.8844) and Recall
(0.8830) leading to higher F1 (0.8821), in compari-
son to BI-distinguished Macro F1 0.8232 (voting-
max-logit) and F1 0.8156 (stacked-first-logit).

5.6 Word-level: voting ensembles vs
individual fine-tuned

As in Table 1, BioMedRoBERTa individual
word level max logit grouping scores macro avg
P/R/F1 (0.8065 0.8224 0.8122 563329) vs max
logit ensemble voting P/R/F1 (0.8261 0.8259
0.8232), we can see that ensemble boosted P
(0.8261-0.8065)/0.8065= 2.43%, and F1 (0.8232-
0.8122)/0.8122= 1.35% which says the ensemble
voting is successful. By increasing the Precision
score, the ensembles reduce the false positive la-
bels in the system output, while keeping the Recall
at the same level, i.e. the true positive labels.

5.7 Model Quantisation

To reduce the computational cost, we also carried
out the quantisation on fine-tuned models. The
quantised model can perform similar level of accu-
rate scores in comparison to the original models but
with 25% of the size. For instance, using BioMe-
dRoberTa, the quantised model achieved (0.811,
0.821, 0.814) for macro(P, R, F1), which is very
similar to the original size fine-tuned model scores
(0.8065, 0.8224, 0.8122) as in Table 1, even achiev-
ing slightly higher Precision and F1. The reasons
for this can be that 1) Block-wise Quantization:
The Q4 implementation isn’t just reducing preci-
sion uniformly - it uses sophisticated block-wise
quantisation that preserves important patterns while
simplifying others. 2) Calibrated Discretization:
The extreme reduction to 4-bit (16 values) forces
more decisive classification boundaries, which can
be beneficial for NER tasks where clear token
boundaries are important. 3) Optimisation Benefits:
The transformers.js Q4 implementation includes
specific optimisations for inference beyond sim-
ple precision reduction. Overall, this is fundamen-
tally different from naive quantization - the trans-
formers.js/GGML approach is carefully designed
to maintain model performance while drastically

reducing size. In some cases, this sophisticated
quantisation can improve results by simplifying
decision boundaries in beneficial ways.

The full model size is 497 MB and the 4 Bits
Quantised model is 125 MB. The corresponding
detailed evaluations on each entity type and the
confusion matrix for quantised BioMedRoBERTa
are presented in Figure 6 and 7 on word level with
BIO.

Voting Average Ensemble word level (BIO)
Metric P R F1
accuracy 0.9796
macro avg 0.8253 0.8256 0.8227 ± 0.0037
weighted avg 0.9807 0.9796 0.9798

Voting First logit Ensemble word level (BIO)
Metric P R F1
accuracy 0.9796
macro avg 0.8255 0.8260 0.8229 ± 0.0034
weighted avg 0.9807 0.9796 0.9798

Voting Max logit Ensemble word level (BIO)
Metric P R F1
accuracy 0.9796
macro avg 0.8261 0.8259 0.8232 ± 0.0036
weighted avg 0.9807 0.9796 0.9798

Stacked Ensemble first logit word level (BIO)
Metric P R F1
accuracy 0.9796
macro avg 0.8351 0.8065 0.8156 ± 0.0037
weighted avg 0.9800 0.9796 0.9794

Non-BIO-only-word ensemble
Metric P R F1
accuracy 0.9839
macro avg 0.8844 0.8830 0.8821 ± 0.0025
weighted avg 0.9840 0.9839 0.9838

Table 4: Word-level grouping ensemble voting evalu-
ation with significance test. F1 score: max > first >
average logit voting though they are very close scores.
The stacked ensemble has the highest Precision scores,
but the lowest Recall scores, which lead to lower F1. In
the bottom cluster, it is the word-level evaluation with-
out distinguishing B/I labels, evaluation on n2c2 2018
test data.

5.8 Significance Test

To assess the statistical significance of performance
differences between ensemble methods and the
strongest individual model (RoBERTa-Large with
first token strategy), we conducted bootstrap re-
sampling tests with 500 iterations. Our analysis
revealed that the Non-BIO-only-word ensemble
showed statistically significant improvement (p =
0.048) over the baseline. Interestingly, while the
Stacked Ensemble first logit approach performed
significantly worse in F1 score (p = 0.002), it
achieved the highest precision (0.8351) among all
methods, suggesting potential utility for precision-
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Figure 4: Demonstration of Clinical Events Outputs
using A Synthetic Letter.

Figure 5: Context-awareness Feature using Window
Parameter around the Entity

focused applications. The three Voting ensem-
ble approaches (Average, First logit, and Max
logit) showed slight numerical improvements in
F1 scores but these differences did not reach statis-
tical significance (p > 0.05).

For robust evaluation, we calculated 95% confi-
dence intervals using bootstrap resampling on the
test dataset. This involved randomly sampling 95%
of the sentences with replacement, calculating the
F1 score for each resampled dataset, and repeat-
ing this process 200 times per model. The stan-
dard deviation across these iterations provides a
measure of performance stability across different
subsets of the data. These findings demonstrate
that while some ensemble configurations can offer
consistent improvements, performance gains are
sensitive to both the specific ensemble strategy em-
ployed and the evaluation methodology. Our com-
prehensive comparison provides valuable insights
for researchers applying ensemble approaches to
clinical named entity recognition tasks.

6 Entity Linking: BNF and SNOMED

To map the identified named entities into the clin-
ical knowledge base. We use the existing code
mapping sheet from the British National Formulary

Figure 6: BioMedRoBERTa Quantised Model Eval.

(BNF) web between SNOMED-CT, BNF, dm+d,
and ICD 2. We preprocessed the SNOMED code
from 377,834 to 10,804 to filter repeated examples
between the mapping of SNOMED and BNF. We
looked for non-drug words present in the text, then
we filtered the drugs further by seeing if words like
[’system’, ’ostomy’, ’bag’, ’filter’, ’piece’, ’clo-
sure’] were present in the text, and if so, it was
discarded.

For SNOMED CT mapping, we applied a fuzzy
search to the cleaned mapping list with drug names.
Then the SNOMED CT code will be added to
the searching function on the SNOMED CT web,
whenever there is a match. For BNF mapping, the
linking function uses keyword search to retrieve
the BNF website with corresponding drugs, due to
its different searching features in comparison to the
SNOMED-CT web page. Potential users can select
whichever is suitable to their preferences between
the two clinical knowledge bases (KBs), Figure 11.

7 InsightBuddy-AI Desktop Application

We illustrate the Desktop Applications of
InsightBuddy-AI in Figure 4 and 14, for demonstra-
tion of clinical event recognition using a synthetic
letter via 1) loading our pre-trained model and com-
mon NER categories via 2) loading a Huggingface
NER model. There is also a sliding window fea-
ture called “context length” to allow flexible length
of context around the entities visible to users, as in

2https://www.nhsbsa.nhs.uk/prescription-data/
understanding-our-data/bnf-snomed-mapping
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Figure 7: BioMedRoBERTa Quantised Eval Confusion
Matrix.

Figure 8: BioMedRoBERTa Eval at Sub-word Level on
n2c2 2018 test data.

Figure 5. For Clinical Coding (entity linking) op-
tions, the desktop application can currently directly
link the extracted entities to BNF and SNOMED-
CT. The INSIGHTBUDDY-AI software supports
both Mac and Windows systems.

8 Discussion and Conclusion

In this paper, we investigated Stacked Ensemble
and Voting Ensemble on medical named entity
recognition tasks using eight pretrained LMs from
both general and biomed/clinical domains. Our
experiments show that our fine-tuned best individ-
ual models outperformed the state-of-the-art on
standard shared task data n2c2-2018. The two en-
semble strategies using output logits and one-hot

Figure 9: word-level grouping ensemble, max logit vot-
ing Eval on n2c2 2018 test data.

Figure 10: word-level ensemble max-logit voting Eval
confusion matrix on n2c2 2018 test data.

encoding further improved the model performances.
We carried out model quantisation and again im-
proved the model performances, especially on Pre-
cision scores, while reducing the model size by
75%. We carried out statistical significance test-
ing and the results show that the word-level MER
ensemble significantly improved over the baseline
model (p=0.048). We offer desktop applications
and user interfaces for individual fine-tuned models
where we added the entity linking/normalisation
function to BNF and SNOMED CT clinical knowl-
edge base. We call the package INSIGHTBUDDY-
AI, which is released publicly for free research
use.
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Limitations

The affiliated entity linking / clinical coding part
of our software InsightBuddyAI was manually ver-
ified by ourselves qualitatively with some sampled
medical terms, especially drug names. It would
be more accurate to 1) quantitatively evaluate such
entity linking result, as well as 2) a systematic qual-
itative assessment such as by multiple annotators
(clinical coders) with the measurement of agree-
ment levels. For option 2), it is costly to carry out
such an experiments. For option 1), we are still
looking for any publicly available data set for such
purposes.

At the publication stage, we are informed of
the related software implementation in this do-
main from Johnsnowlabs 3 on Clinical NER. While
this is a commercialised company developing NLP
packages for healthcare, it is worthy in the future
to carry out some comparisons on experimental
performances using the same shared task data. On
the other hand, it is also possible that they already
integrated the shared task data into their system
pre-trainings.

In addition, a more detailed error analysis, par-
ticularly for specific entity types or challenging
cases, would help determine whether improve-
ments are consistent across all medication at-
tributes. The current study does not compare en-
semble models with decoder-only large language
models (LLMs), such as GPT-4 or BioMistral,
demonstrating strong zero-shot and fine-tuned per-
formance. It is useful to integrate such compar-
isons in the future, even though this is already an
extended investigation with more findings based
on our initial software release IndightBuddy-AI
(Romero et al., 2025).
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A Diagrams on System Details

More details on Stacked Ensemble are listed in
Figure 12 and 13 on training strategy and one-hot
encoding. Figure 11 shows the entity linking /
coding diagram.

B Further Analysis on Models and Scores

B.1 Word-level vs Sub-word Level scores
From word-level ensemble result in Figure 9, it
says that the ensembled model can achieve word-
level evaluation scores 0.826, 0.826, and 0.823 for
macro P/R/F1, which is close to sub-word level
best model 0.847 F1. We can see that at word-
level evaluation, there are 563,329 support tokens
in Figure 9, vs sub-word level 756,014 tokens in
Figure 8.

Word-level ensemble voting, max-logit voting
> first-logit > average-logit, as shown in Table 4,
with Macro F1 scores (0.8232, 0.8229, 0.8227)
respectively, which are very close though. They
have the same weighted average F1 and Accuracy
scores (0.9798, 0.9796) respectively.

B.2 Ensemble: Stacked using output logits
(non one-hot)

When we used the ‘output logits’ instead of ‘one-
hot encoding’ for stacked ensemble, as we dis-
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Figure 11: ENTITYLINKING: function illustration for mapping to both BNF and SNOMED-CT

Figure 12: STACKEDENSEMBLE: training strategy.

cussed in the methodology section, it will lead to
overfitting issues. We use the Max logit stacked
ensemble as an example, which shows that the
Stacked Ensemble using output logits produced
much lower evaluation scores macro avg (0.6863,
0.7339, 0.6592) than the voting mechanism macro
avg (0.8261, 0.8259, 0.8232) for (P, R, F1).
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Figure 13: STACKEDENSEMBLE: one-hot encoding data.

Figure 14: Loading Any Huggingface NER model: example outcome with typical (PER, LOC, ORG, MISC) label
set
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Abstract

Medical notes contain a wealth of informa-
tion related to diagnosis, prognosis, and over-
all patient care that can be used to help physi-
cians make informed decisions. However, like
any other data sets consisting of data from di-
verse demographics, they may be biased toward
certain subgroups or subpopulations. Conse-
quently, any bias in the data will be reflected
in the output of the machine learning models
trained on them. In this paper, we investigate
the existence of such biases in Danish medi-
cal notes related to three types of blood cancer,
with the goal of classifying whether the medi-
cal notes indicate severe infection. By employ-
ing a hierarchical architecture that combines
a sequence model (Transformer and LSTM)
with a BERT model to classify long notes, we
uncover biases related to demographics and
cancer types. Furthermore, we observe perfor-
mance differences between hospitals. These
findings underscore the importance of investi-
gating bias in critical settings such as healthcare
and the urgency of monitoring and mitigating
it when developing AI-based systems.

1 Introduction

Electronic Health Records (EHRs) provide diverse
data on diagnoses, medications, and clinical tests,
enabling AI-based applications for various pur-
poses (Wang and Zhang, 2024). While medical
notes contain similar information in an unstruc-
tured format, they offer deeper insights that comple-
ment other EHR data. They help cross-check infor-
mation, retrieve missing details, and capture clini-
cally relevant events like infections, which are of-
ten difficult to extract from structured EHR sources.
Assessing EHRs and medical notes aids physicians
in making informed decisions on treatments, medi-
cations, and patient care. Notably, prior infections
are key predictors of clinical outcomes in blood
cancers (Parviz et al., 2022; Packness et al., 2024).
However, biases in EHR-derived medical data have

Figure 1: Document length distribution for each class
before resampling, and after weighted, and random re-
sampling. The dashed purple line indicates the number
of chunks retained for modeling.

been documented and can lead to performance de-
terioration in subpopulations with smaller sample
sizes (Cobert et al., 2024). In this paper, we clas-
sify medical notes on three common blood cancers
based on infection status and quantify bias related
to sex and cancer type. The cancers studied are
lymphoma (LYFO), multiple myeloma (MM), and
chronic lymphocytic leukemia (CLL). Since medi-
cal notes often exceed model context lengths, we
employ a hierarchical architecture combining a se-
quence model (Transformer and LSTM) with a
BERT model (Pappagari et al., 2019).

2 Method

2.1 Data
We curated a dataset of medical notes from patients
diagnosed with lymphoma, CLL, or MM in East-
ern Denmark, recorded between August 2016 and
November 2023. For each patient, notes recorded
less than two days apart were merged, as they often
related to the same health-related issue. This infor-
mation was extracted from data sources available
through the DALY-CARE database (Brieghel et al.,
2025).
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Figure 2: Schematic of modeling and data splitting strategy. A BERT model (red) is coupled with a transformer or
an LSTM (blue) architecture to capture information in long medical notes.

2.2 Infection definition
While EHRs provide valuable medical information,
identifying severe infections is not always straight-
forward. Therefore, severe infection was defined as
a blood culture draw and intravenous (IV) antimi-
crobial administration occurring within two days.
Clinically, blood cultures are taken when an infec-
tion is suspected, and IV antimicrobials are given in
severe cases. Defining the outcome by both events
enhances labeling precision and the likelihood that
physicians mention severe infections in medical
notes.

2.3 Modeling long medical notes
Due to the limited context of the BERT models, we
divide medical notes into smaller chunks that fit
within the maximum token limit of BERT (512).
Each chunk is then assigned the same label as the
full medical note. We adopt a similar approach to
that of (Pappagari et al., 2019), which is presented
in Figure 2. First, we fine-tune a BERT model
trained on Danish medical data (Pedersen et al.,
2023) to predict chunk labels. Next, we extract
embeddings for each chunk from the last hidden
state of BERT and model the chunk embedding se-
quences using either a Transformer (Vaswani et al.,
2017) or an LSTM architecture (Hochreiter and
Schmidhuber, 1997). We also compare the per-
formance of these stacked methods with simpler
approaches that return the chunk-level majority pre-
diction and any (positive) prediction from BERT,
which we refer to as MAJORITY and ANY.

2.4 Sensitivity to note length
We found a significant discrepancy in medical note
length between classes (Figure 1); notes labeled
as infection were longer than those without infec-
tion. To prevent the model from using length as
a proxy for the outcome, we resample negative-
class notes using a weighted approach to match the
length distribution of the positive class (Figure 1).

We evaluate models using both weighted resam-
pling (Weighted) and random sampling (Random),
which occur in real scenarios where one class has
significantly shorter notes.

2.5 Measuring bias in subgroups

Following (Czarnowska et al., 2021), we assess
potential biases in model predictions related to sex
and cancer type using the false positive rate (FPR)
and false negative rate (FNR). If the models are
biased toward a subgroup, we expect a lower FNR
and/or higher FPR compared to the other group(s).
We perform binomial tests to determine whether
the differences between subgroups and the majority
class (male for the sex factor and lymphoma for
cancer types) are statistically significant. The null
hypothesis assumes that predictions for minority
subgroups follow the same distribution as those for
the majority subgroup.

2.6 Data splitting

To minimize data leakage or biases related to the
memorization of physician-specific information
(e.g., writing style or specialties) and patient history
during data splitting, we ensure that training, vali-
dation, and test sets come from different hospitals.
Specifically, two hospitals are used for training, the
third for validation and testing, and the process is
repeated for all three combinations. Figures 3 and 4
illustrate the distribution of notes across subgroups,
as well as the proportion of notes labeled as infec-
tion in the training, validation, and test splits. To
mitigate dataset imbalance, we resample the train-
ing set to ensure it contains an equal number of
notes across female and male subgroups, cancer
types, and positive and negative classes (Balanced).
Since medical notes are recorded at different time
points, they must be treated as a time series. There-
fore, we use a time-based splitting approach when
dividing the data into training, validation, and test
sets. The models were trained with a learning rate
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of 2× 10−5, a batch size of 32, and for one epoch.
These parameters were selected based on prelimi-
nary experiments on the validation set.

Figure 3: Notes by sex across hospitals (columns) and
sets (rows). Total notes are shown atop each bar, with
infection-positive percentages inside.

3 Results

3.1 Model performances

The results show that, overall, using sequence mod-
eling (Transformer or LSTM) outperforms the sim-
pler MAJORITY and ANY models at the classifier
layer. Additionally, coupling a Transformer with
the base BERT model performs better than cou-
pling BERT with an LSTM (Table 1). All models
tend to overclassify samples as infections, as evi-
denced by higher FPRs than FNRs. The FPRs of
the two sampling strategies indicate that, despite be-
ing trained on artificially longer negative samples,
the models achieve the same performance level on
shorter texts observed in the dataset.

3.2 Variation in error rates by sex

The results in Table 2 show that, on both the Valida-
tion and test sets, FNR values remain at similar lev-
els between males and females across the three hos-
pitals. Without resampling (Observed), both FPRW
and FPRR are significantly lower for females in
two out of three hospitals in the test set. Although
resampling (Balanced) eliminates sex differences
in FPRR, FPRW values remain significantly lower

Figure 4: Notes by cancer type across hospitals
(columns) and sets (rows). Total notes are shown atop
each bar, with infection-positive percentages inside.

for females. This disparity suggests that the lower
FPRs observed for females may be influenced by
their under-representation in the dataset, leading
to biased model predictions (Figure 3). Addition-
ally, other sources of bias, such as differences in
clinical documentation patterns may have further
contributed to these discrepancies.

3.3 Variation in error rates by cancer type

The results on cancer types show higher FPRW and
FPRR on MM compared with LYFO consistently
across the three hospitals (Table 3). In the test set,
MM and CLL both have worse FPRR compared
to LYFO. Resampling based on cancer type has
little effect on reducing the significant differences.
These results highlight that the models are biased
against underrepresented subgroups (Figure 4).

4 Conclusion

Medical notes supplement EHRs with information
not available in structured formats. Unlike other
EHR data, which are automatically compiled, med-
ical notes are written by physicians and nurses,
making them more prone to bias. In this paper,
we explore potential sources of bias within the de-
mographic population and across three types of
blood cancer. The results indicate biases related
to sex and among different cancer types. We also
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Validation Test
Sampling Model HHER HRH HROS HHER HRH HROS

Weighted

ANY 66.1 72.3 69.3
MAJORITY 81.9 76.5 83.4
LSTM 85.5 81.9 82.7
Transformer 86.4 83.9 85.5 78.3 81.2 83.4

Random
ANY 83.3 88.6 89.1
MAJORITY 80.9 78.4 86.7
LSTM 81.8 77.4 84.7
Transformer 84.4 84.8 86.9 84.8 84.1 84.6

Table 1: Infection classification performance of the models, measured using balanced accuracy, on the validation
and test sets constructed with weighted and random sampling across hospitals.

Validation Test
Balance Method Metric Sex HHER HRH HROS HHER HRH HROS

Observed

FNR F 6.8 11.6• 5.9• 5.8 9.0 6.9
M 6.3 8.6 8.1 4.5 8.3 8.1

FPRR
F 25.3 18.7 19.4 25.9 20.2∗ 20.9∗

M 24.2 22.2 18.8 25.1 25.9 25.0

FPRW
F 20.6 21.0 22.3 35.0∗ 25.3∗ 24.0
M 21.0 23.6 21.7 40.8 31.8 26.6

Balanced

FNR F 10.2 21.4 13.3* 5.2 13.5 14.5
M 9.5 19.5 17.6 4.1 15.2 15.3

FPRR
F 25.3 13.6 11.1• 24.6 18.0 15.2
M 23.1 16.7 8.5 22.2 16.5 16.2

FPRW
F 22.6 15.8 17.5 32.6• 20.3* 16.7•

M 22.1 17.5 14.8 36.8 26.4 19.8

Table 2: Infection classification performance of the models in male and female subpopulations, measured using FPR
and FNR, on the validation and test sets constructed via weighted and random sampling across hospitals. P-values
are calculated using binomial test ( · p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001).

Validation Test
Balance Method Metric Cancer HHER HRH HROS HHER HRH HROS

Observed

FNR
CLL 5.4 10.5 5.9 5.2 8.9 8.0
LYFO 6.8 10.1 8.4 4.0 9.1 8.2
MM 6.6 8.4 4.5* 6.5 6.0 6.0•

FPRR

CLL 21.2 20.0 16.2 30.3** 30.6** 27.9*

LYFO 20.8 17.7 15.3 19.1 19.9 20.6
MM 34.0** 29.0** 29.9*** 32.4*** 29.4** 25.8*

FPRW

CLL 19.7 25.0• 20.2 38.9 29.5 24.2
LYFO 18.3 18.5 20.0 36.7 27.9 24.4
MM 26.3* 33.6*** 30.3** 41.6• 33.9• 31.2*

Balanced

FNR
CLL 15.3 23.7 23.8 9.3 16.7 19.9
LYFO 12.3 24.1 21.6 6.8 17.7 21.1
MM 14.1 26.3 19.6 12.2* 13.3 18.9

FPRR

CLL 21.2 16.4 13.1 25.5** 21.1** 27.4*

LYFO 18.2 13.3 18.0 14.6 11.4 21.0
MM 25.5* 14.5 35.7*** 26.7*** 14.4 35.9***

FPRW

CLL 16.4 20.0• 14.1 31.6 20.5 18.6
LYFO 16.2 13.4 13.2 30.9 20.1 15.8
MM 23.1* 23.4** 18.9• 34.2 26.9* 22.8**

Table 3: Infection classification performance of the models across different cancer subpopulations, measured using
FPR and FNR, on the validation and test sets constructed via weighted and random sampling across hospitals.

observe variations in classification performance
across hospitals, highlighting the need for further
investigation into potential differences. These dis-
crepancies may stem from variations in data quality
or differences in how information related to severe
infections is recorded.

5 Limitations

One limitation of this study is the model’s shorter
context than the input documents. Future work
could explore longer-context models like Long-
former for improvement (Beltagy et al., 2020).
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Abstract

Chronic pain affects millions, yet traditional
assessments often fail to capture patients’ lived
experiences comprehensively. In this study, we
used a Motivational Interviewing framework to
conduct semi-structured interviews with eleven
adults experiencing chronic pain and then ap-
plied Natural Language Processing (NLP) to
their narratives. We developed an annotation
schema that integrates the International Classi-
fication of Functioning, Disability, and Health
(ICF) with Aspect-Based Sentiment Analysis
(ABSA) to convert unstructured narratives into
structured representations of key patient ex-
perience dimensions. Furthermore, we eval-
uated whether Large Language Models (LLMs)
can automatically extract information using
this schema. Our findings advance scalable,
patient-centered approaches to chronic pain as-
sessment, paving the way for more effective,
data-driven management strategies.

1 Introduction

Chronic pain affects millions worldwide, dimin-
ishing quality of life and straining healthcare sys-
tems (Goldberg and McGee, 2011). In 2023, an
estimated 24.3% of U.S. adults (~51.6 million in-
dividuals) experienced chronic pain (Lucas and
Sohi, 2024). Beyond physical discomfort, it im-
pacts work productivity, personal relationships, so-
cial interactions, sleep quality, and mental health
(Hadi et al., 2019; Dueñas et al., 2016). Managing
chronic pain remains challenging due to its multidi-
mensional and highly individualized nature. Each
patient’s experience is shaped by genetics, early
life events, psychological state, coexisting medi-
cal conditions, and environmental influences (In-
stitute of Medicine, 2011; Fillingim, 2017). Many
individuals experience debilitating pain without
clear pathology (Fine, 2011; Dueñas et al., 2016).
Over time, the persistent stress of chronic pain con-
tributes to allostatic load—physiological strain that

exacerbates pain severity and accelerates health
decline (McCaffery et al., 2012). Consequently,
understanding chronic pain requires a holistic ap-
proach that extends beyond physical symptoms.

Figure 1: Integration of MI and IE to capture patients’
pain experience, building on Wideman et al. (2019)

Traditional pain assessment methods rely heav-
ily on clinical history and standardized measures,
which often fail to capture the complexity of pain
experience (Wideman et al., 2019; Radnovich et al.,
2014; Gordon, 2015). This limitation stems from
the fragmented conceptualization of pain, as shown
in Figure 1A. Wideman et al. (2019) divide pain
into: 1) pain experience—the subjective, intangible
nature of pain that is difficult to observe; 2) pain ex-
pression—how pain is communicated verbally and
non-verbally; and 3) pain measures—standardized
assessments that translate expressions into numer-
ical or categorical values. While pain measures
provide objective data, they oversimplify patients’
lived experiences, failing to capture the multi-
faceted and interconnected nature of pain. Con-
sequently, critical aspects of pain remain poorly
understood. In contrast, Figure 1B illustrates an
integrated framework that our work aims to real-
ize, where pain experience is central but is more
comprehensively expressed and measured through
a combination of subjective narratives and quan-
tifiable metrics. According to the National Center
for Complementary and Integrative Health (2024),
adopting the “whole person” approach can lead to
more comprehensive, nuanced, and effective pain
assessment and treatment paradigms.
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This study addresses these challenges by inte-
grating Motivational Interviewing (MI), a patient-
centered communication technique emphasizing
empathy and active listening (Miller and Rollnick,
2013), with Natural Language Processing (NLP).
We conducted semi-structured interviews using an
MI protocol specifically developed to elicit nu-
anced, multidimensional patient narratives about
pain experience. We developed a novel annotation
schema to transform these unstructured narratives
into structured representations by combining the
International Classification of Functioning, Dis-
ability, and Health (ICF) framework (World Health
Organization, 2001) with Aspect-Based Sentiment
Analysis (ABSA) (Hua et al., 2024). This schema
captures emotional and contextual dimensions of
patient experiences, providing deeper insight into
the multifaceted impacts of chronic pain. To ad-
dress limitations associated with the small dataset
size, we used Large Language Models (LLMs) to
generate synthetic interview transcripts, supple-
menting real-world data for information extrac-
tion model development. Finally, we explored the
feasibility of using LLMs to automatically extract
the annotation schema dimensions. The contribu-
tions of this work include: 1) developing an in-
terview protocol to elicit comprehensive patient
narratives of lived experiences, 2) creating an anno-
tation schema to systematically characterize these
experiences using established frameworks, and 3)
evaluating the feasibility of automating this schema
using LLMs. The annotation guidelines and code
are publicly available to the research community.1

2 Related Work

Patient narratives are important to chronic pain as-
sessment and management, as traditional quantita-
tive measures often fail to capture pain complexity
(Georgiadis and Johnson, 2023; Robinson-Papp
et al., 2015). van Rysewyk et al. (2023) found
that patient narratives capture the complex inter-
actions between physical symptoms, psychologi-
cal impacts, and social consequences of chronic
pain, which standardized assessments often over-
look. This perspective aligns with the Multimodal
Assessment Model of Pain (Wideman et al., 2019),
which emphasizes moving beyond traditional mea-
sures and advocates for integrating subjective pain
experiences into research and clinical practice. Rec-

1https://github.com/hadeelelyazori/chronic-pain-
narratives

ognizing their value, researchers have examined
patient narratives in various clinical settings. For
example, Aymerich et al. (2022) showed that nar-
ratives in a physiotherapy program informed by
Acceptance and Commitment Therapy reveal both
physical and psychological recovery dimensions.
However, manual analysis of such narratives is
time-consuming and subjective, underscoring the
need for automated methods to extract meaningful
insights at scale.

Early NLP research in chronic pain primarily fo-
cused on extracting and classifying symptoms from
semi-structured clinical text using rule-based and
machine learning methods (Rajwal, 2024). More
recently, transformer-based models have advanced
symptom extraction from clinical notes (Luo et al.,
2022), and sentiment analysis has been used to
quantify emotional distress in patient narratives
(Vandenbussche et al., 2022; Nunes et al., 2023).
For instance, Vandenbussche et al. (2022) system-
atically analyzed large-scale migraine and cluster
headache narratives, identifying diagnostic patterns
with unstructured text. However, the limited avail-
ability of annotated datasets restricts supervised
learning approaches, particularly for analyzing un-
structured patient-generated narratives. To address
this challenge, recent studies have leveraged LLMs
for scalable analysis of pain narratives without
task-specific training. LLMs have been used to
distinguish chronic pain conditions (Venerito and
Iannone, 2024), extract structured insights from
patient narratives (Bouzoubaa et al., 2024), and an-
alyze sentiment in large-scale patient-reported data
(Alkhnbashi et al., 2024).

This work builds on prior research by utilizing
zero-shot prompting with LLMs in conjunction
with a structured annotation framework to analyze
chronic pain narratives. This approach enables au-
tomated pain assessment without relying on exten-
sive labeled datasets. In contrast to previous studies
that primarily focus on symptom identification and
named-entity recognition, this study introduces a
comprehensive annotation schema combining the
ICF and ABSA to comprehensively capture biopsy-
chosocial dimensions of pain experiences.

Even in a prompting paradigm where train-
ing data is not required, limited real-world data
presents challenges in crafting effective prompts
that generalize well. To address this, we gener-
ated synthetic pain narratives using LLMs to sup-
plement real-world data and refine prompts for
improved zero-shot performance. This approach
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aimed to enhance the model’s ability to extract
meaningful patterns without relying on extensive
manual annotation or large labeled datasets.

3 Methods

3.1 Data

Semi-structured interviews (~30-60 minutes) were
conducted with eleven adults reporting chronic pain
(mean age: 29.5 ± 11.52 years), generating tran-
scripts with an average of 5,500 words per inter-
view. These interviews explored participants’ lived
experiences, focusing on the factors shaping pain
expression and management. Eligible participants
were 18 years or older and currently experiencing
chronic pain. Although MI is traditionally used to
facilitate behavior change, it was adapted to focus
on understanding participants’ experiences with-
out influencing their behaviors. To provide some
standardization, an MI protocol that emphasized
engaging and focusing while excluding evoking
and planning was developed. The semi-structured
questions were designed to capture a broad range
of factors and were informed by the National In-
stitute on Minority Health and Health Disparities
(NIMHD) Research Framework (National Institute
on Minority Health and Health Disparities, 2017).
This framework examines how the physical envi-
ronment, behavioral patterns, cultural identity, and
family and peer networks influence health. The
resulting patient narratives provide a detailed, mul-
tifaceted view of chronic pain experiences.

Interviews were conducted by a team of six un-
dergraduate researchers, with two present for each
session—one led the discussion while the other doc-
umented interviewer-interviewee interactions. The
interviewers had diverse academic backgrounds,
including biology, forensic science, kinesiology,
applied statistics, bioengineering, and healthcare
research, providing a multidisciplinary perspective
on patient-provider interactions. Prior to engag-
ing with participants, researchers were trained in
the interview protocol and conducted practice in-
terviews to ensure consistency and quality. Their
expertise in clinical research, physical therapy, pa-
tient communication, and data-driven healthcare
analysis enriched the interview process by ensur-
ing a contextually informed and empathetic ap-
proach. Interviews were audio recorded and tran-
scribed using OpenAI’s Whisper model (OpenAI,
2022), with speaker roles (researcher vs. partic-
ipant) identified using Segmentation-3.0 (Bredin

et al., 2020). Both models were run locally on
a HIPAA-compliant server. The transcripts were
automatically de-identified to remove protected
health information (PHI) using a rule-based sys-
tem (Radhakrishnan et al., 2023). A manual review
was then conducted to correct transcription errors
and remove any remaining PHI. All annotation and
LLM experimentation utilized these de-identified
records, which were securely stored on restricted
servers accessible only to authorized personnel. All
study procedures were approved by the Institutional
Review Board (IRB).

3.2 Annotation
A comprehensive annotation protocol was devel-
oped, drawing on the concept of allostatic load,
which accounts for the cumulative physiological
and psychological stressors experienced by indi-
viduals with chronic pain. Allostatic load helps
explain both the immediate effects of chronic pain
and its long-term health impacts (Liang and Booker,
2024). This protocol was collaboratively designed
by the multidisciplinary research team, whose ex-
pertise spans multiple domains. Key contributors
brought specialized expertise: KL specializes in
NLP annotation protocols for health informatics;
SD, JS, and LHG have extensive clinical expertise
in pain assessment and patient-centered care; and
SS and SA bring experience in biomedical engi-
neering, rehabilitation science, and health informat-
ics. The collective expertise informed the develop-
ment of a structured framework that integrates the
ICF, a biopsychosocial framework from the World
Health Organization that categorizes human func-
tioning across body functions, body structures, ac-
tivities, participation, environmental, and personal
factors (World Health Organization, 2001). Since
ICF does not define subcategories for personal fac-
tors, categories proposed by Geyh et al. (2019)
were adopted. By incorporating both pain-related
impairments and adaptation strategies, the ICF en-
ables nuanced analysis of chronic pain experiences.
To complement the ICF, ABSA was integrated to
characterize implicit or explicit patient sentiments
towards expressed ICF concepts, labeling them as
positive, negative, or neutral. Figure 2 illustrates
this dual-layer approach, enabling a holistic analy-
sis of pain narratives and their perceived impact on
patient experience.

The ICF includes over 1,400 hierarchically ar-
ranged concepts. Table 1 summarizes the ICF con-
cepts used in the annotation schema, with expanded
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Figure 2: Annotation examples

definitions and examples provided in Appendix A.
The annotation guidelines featured synthetic text
examples modeled after real-world patient narra-
tives. After training on the guidelines, four anno-
tators—two undergraduate students (RA, a junior
Biology major; HA, a senior Forensic Science ma-
jor) and two graduate students (HE, a PhD student
in Information Technology specializing in NLP for
healthcare; ZP, a Master’s student in Health In-
formatics)—labeled the transcripts using a local
instance of Doccano2. Each transcript was indepen-
dently annotated by two annotators, and disagree-
ments were adjudicated.

Label Description
Mental Fxn, b1 Memory, attention, emotion, ...
Sensory & Pain, b2 Sensing and pain experience
NMS & Movement, b7 Muscles, joint, ...
Tasks & Demands, d2 Manage tasks & routines, ...
Mobility, d4 Movement, transportation, ....
Self-Care, d5 Personal hygiene, eating, ...
Social Interactions, d7 Engage w/ friends, family, ...
Life Areas, d8 Education, work, & finances
Products & Tech, e1 Assistive tools and systems
Environment, e2 Physical environment
Support, e3 Physical and emotional support
Services & Policies, e5 Systems providing benefits.
Socio-demo, i1 Age, gender, education, ...
Positions, i2 Roles in social networks
History & Bio, i3 Influential life events
Feelings, i4 Emotional states
Thoughts & Beliefs, i5 Attitudes & perceptions
Motives, i6 Goals, needs, or aspirations
Patterns, i7 Habits and behaviors

Table 1: Annotation summary. Abbreviations: Func-
tions (Fxn), Socio-demographics (Socio-demo)

3.3 Information Extraction

We used Meta’s Llama family of LLMs and Ope-
nAI’s GPT-4 in an in-context learning, prompt-
based setting for experimentation (AI@Meta, 2024;
OpenAI, 2023).

3.3.1 Synthetic Data Generation
To supplement the limited dataset and refine infor-
mation extraction prompts, we generated 20 syn-
thetic interview transcripts, each consisting of in-
terviewer questions and patient responses. First,

2https://github.com/doccano/doccano

GPT-4-Turbo was used to create 20 diverse patient
profiles by combining personas from a large-scale
curated dataset with Big Five personality traits (Ge
et al., 2024; McCrae and John, 1992). This ap-
proach enhanced variability in emotional expres-
sion and coping styles. Using these profiles, Llama-
3.1-405B-Instruct simulated doctor-patient inter-
views guided by the MI protocol used in the real
interviews, producing narratives of chronic pain
experiences. To ensure coherence while maintain-
ing variability, decoding was performed with tem-
perature of 0.6 and top-p of 0.8. These synthetic
conversations were designed to mimic the struc-
ture and complexity of real-world patient descrip-
tions. Finally, the synthetic transcripts were auto-
matically labeled with the annotation schema using
Llama-3.1-405B-Instruct, applying a low tempera-
ture of 0.1 for deterministic labeling. The annota-
tion prompt included detailed instructions mirror-
ing the annotation guidelines. An example from a
synthetic transcript is provided in Appendix C.

3.3.2 LLM-Based Annotation of Transcripts

After refining the prompts, Llama-3.3-70B-Instruct
was used in a zero-shot setting to generate ICF and
sentiment label predictions for the 11 real-world
patient transcripts, which comprised the test set.
To ensure deterministic and controlled outputs, in-
ference was conducted with a temperature of 0.1,
top-p of 0.8, and maximum token limit of 4096. To
prevent data leakage and ensure an unbiased evalu-
ation, these real transcripts were excluded from the
synthetic data used in prompt tuning. The prompt
is provided in Appendix B.

3.4 Evaluation

Inter-Annotator Agreement (IAA) was evaluated
using Cohen’s Kappa to measure inter-annotator re-
liability and F1-score to enable direct comparison
with LLM performance. Information extraction per-
formance was assessed using precision, recall, and
F1-score. Rather than evaluating individual text
spans, evaluation was conducted at the conversa-
tional turn level, treating each turn as a multi-label
classification instance. This turn-level evaluation
aligns with the conversational nature of patient nar-
ratives, reducing sensitivity to minor variations in
span selection while ensuring that extracted infor-
mation retains its intended meaning.
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4 Results

4.1 Annotation
Cohen’s Kappa was computed to evaluate IAA,
yielding 0.52 for ICF categories and 0.43 for sen-
timent. To compare with LLM-extracted labels,
the micro-averaged F1-score was also calculated
for IAA, resulting in 0.54 for ICF categories and
0.67 for sentiment. The slightly higher F1-score
compared to Kappa suggests that while there was
some level of agreement on labels, discrepancies
were present, particularly in sentiment annotation,
where unlabeled instances from different annota-
tors contributed to the lower Kappa. The nuanced
and overlapping ICF categories introduced ambi-
guity, contributing to divergence among annotators.
Additionally, the small dataset size limited annota-
tors’ ability to establish common patterns, increas-
ing variability. While these IAA scores highlight
challenges, they reflect the preliminary exploration
of the annotation schema. Planned refinement of
the annotation schema and training processes will
aim to improve consistency and reliability in future
iterations, as described in Section 5.

4.2 Information Extraction
Llama-3.3-70B-Instruct achieved a micro-averaged
score of 0.31 F1 for ICF categories and 0.53 F1
for sentiment labels, as summarized in Table 2.
While the overall performance indicates substantial
room for improvement, the scores align with the
observed IAA variability, reflecting the complexity
of the task. Despite these challenges, the model
successfully extracted some structured elements
from the patient narratives, demonstrating potential
for automating narrative analysis; however, per-
formance gaps need to be addressed if actionable
insights are going to be derived.

5 Discussion and Conclusions

This work presents a novel annotation schema for
capturing chronic pain experiences, integrating the
ICF with well-established NLP techniques, like
ABSA. By structuring patient narratives within a
biopsychosocial framework, this approach extends
beyond traditional pain assessment methods.

Preliminary results reveal challenges in annota-
tion consistency and automated extraction, with
lower IAA suggesting ambiguities in applying ICF
categories. To improve clarity and reproducibility,
the schema is being refined to focus on identify-
ing symptoms and the associated interactions. The

Label P R F1 Sup.
Mental Fxn 0.42 0.20 0.27 25
Sensory & Pain 0.43 0.44 0.43 112
NMS & Movement 0.45 0.51 0.48 57
Tasks & Demands 0.24 0.36 0.29 33
Mobility 0.39 0.32 0.35 41
Self-Care 0.56 0.22 0.31 46
Social Interactions 0.38 0.10 0.16 51
Life Areas 0.15 0.07 0.09 30
Products & Tech 0.33 0.26 0.30 34
Environment 0.00 0.00 0.00 5
Support 0.55 0.45 0.49 94
Services & Policies 0.58 0.18 0.28 82
Socio-demo 0.00 0.00 0.00 8
Positions 0.00 0.00 0.00 2
History & Bio 0.37 0.28 0.32 46
Feelings 0.20 0.11 0.14 120
Thoughts & Beliefs 0.33 0.23 0.27 92
Motives 1.00 0.25 0.40 4
Patterns 0.00 0.00 0.00 19
Micro Averaged ICF 0.39 0.27 0.31 901
Positive 0.62 0.49 0.54 338
Negative 0.77 0.40 0.53 224
Micro Averaged Sentiment 0.69 0.43 0.53 562

Table 2: Llama 3.3 performance across ICF categories
and sentiment labels

hypothesis is that symptoms and their contextual
interactions can be more reliably annotated, provid-
ing a structured basis for integrating ICF concepts
at an appropriate level. Future iterations will refine
the ICF label set, reassess existing data, and expand
data collection to build a more diverse and robust
dataset.

Zero-shot extraction experiments showed lim-
ited performance due to task complexity and anno-
tation inconsistencies. Refining the schema should
improve IAA and extraction performance. Task-
specific fine-tuning may be necessary to achieve
human-level performance. Incorporating realistic
synthetic transcripts into fine-tuning could expand
the training set, enhancing model robustness and
generalization for information extraction in low-
resource settings.

This preliminary study establishes an important
foundation for leveraging NLP to support scalable,
patient-centered chronic pain assessment. Our ap-
proach enables more nuanced and comprehensive
representations of patients’ lived experiences. Fu-
ture work will systematically explore the avenues
mentioned to improve extraction accuracy, ensur-
ing the clinical relevance and actionable nature of
the insights derived. Ultimately, this research aims
to bridge qualitative patient narratives and compu-
tational methodologies, contributing meaningfully
to personalized, data-driven chronic pain manage-
ment and improved patient outcomes.
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6 Limitations

This study has several limitations. The sample size
of eleven participants limits the generalizability
of findings, and the resulting annotation dataset is
small, impacting both IAA and the performance
of information extraction models. Additionally,
the complexity and subjective nature of patient
narratives introduce variability that is difficult to
consistently annotate. The current zero-shot LLM-
based extraction approach, while demonstrating
feasibility, yields performance that may be insuffi-
cient for clinical decision-making without further
refinement. Future work will involve expanding
the dataset, refining annotation guidelines, and ex-
ploring fine-tuning of LLMs to improve extraction
accuracy and reliability.
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A Annotation Guidelines

Label Description Examples
Mental Functions, b1 Brain functions essential for daily

life, including memory, attention,
emotion, sleep disturbances, etc.

(P) “I can concentrate better since I started exercising.”

(N) “I can’t remember things like I used to.”
Sensory & Pain, b2 Sensory abilities and perception of

pain.
(P) “My pain has reduced to a manageable level.”

(N) “The pain is a constant 8 out of 10.”
Neuromusculoskeletal
& Movement, b7

Mobility, muscle strength, reflexes,
and joint stability.

(P) “After months of physical therapy, my muscle
strength has improved.”
(N) “The stiffness in my knees has gotten worse.”

Tasks & Demands, d2 Managing tasks, routines, and psy-
chological stress.

(P) “Deep breathing exercises help me stay calm.”

(N) “I often skip my physical therapy homework.”
Mobility, d4 Movement-related activities such as

walking and climbing stairs.
(P) “I’ve started taking short walks daily.”

(N) “I can’t climb stairs without intense pain.”
Self-Care, d5 Personal hygiene, grooming, and

maintaining health.
(P) “I maintain my hygiene routine despite the pain.”

(N) “I often skip meals due to the pain.”
Social Interactions, d7 Engaging socially in appropriate

ways.
(P) “Joining a support group gave me practical advice.”

(N) “I don’t go out anymore because of the pain.”
Life Areas, d8 Tasks related to education, work,

and economic activities.
(P) “I’m able to afford the best treatments.”

(N) “I worry about losing my job due to pain.”
Products & Tech, e1 Tools designed to improve function-

ing.
(P) “My wheelchair allows me independence.”

(N) “The outdated software at work hinders my tasks.”
Environment, e2 Physical environment impacting

functioning.
(P) “Sunny weather helps reduce my pain.”

(N) “Cold weather makes my pain worse.”
Support & Relation-
ships, e3

Support from people or animals. (P) “My family supports me a lot.”

(N) “I feel isolated because my friends don’t under-
stand.”

Services & Policies, e5 Governance and service systems. (P) “The nearby clinic makes care easier.”
(N) “Long wait times disrupt my therapy schedule.”

Socio-demographics, i1 Observable characteristics like age,
education, etc.

(P) “Being financially secure helps me access health-
care.”
(N) “I can’t afford transportation to appointments.”

Positions, i2 Roles in social and living environ-
ments.

(P) “As the youngest in my family, they all encourage
me to keep up with therapy.”
(N) “Because of all the responsibilities I have as an
chairperson, it all affects my recovery.”

History & Bio, i3 Life events shaping current function-
ing.

(P) “Overcoming past challenges makes me resilient.”

(N) “Childhood trauma makes trusting providers hard.”
Feelings, i4 Emotional states influencing re-

sponses.
(P) “I feel optimistic about managing my pain.”

(N) “I feel anxious about my condition.”
Thoughts & Beliefs, i5 Attitudes about self and environ-

ment.
(P) “I believe therapy is helping me recover.”

(N) “I doubt the effectiveness of my treatment.”
Motives, i6 Goals and aspirations driving behav-

ior.
(P) “My goal to play with my kids motivates me.”

(N) “Progress feels slow, so I’m not motivated to con-
tinue.”

Patterns, i7 Behavioral and cognitive tenden-
cies.

(P) “I follow a structured medication routine.”

(N) “I procrastinate on health goals.”

Table 3: Expanded annotation guidelines with examples. Parentheses indicate sentiment labels, where (P) denotes a
positive sentiment and (N) denotes a negative sentiment
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B Zero-shot Experimentation Prompt

To facilitate structured extraction of patient expe-
riences, we designed a standardized annotation
prompt that guides the LLM through our annotation
schema. The prompt ensures consistency in identi-
fying relevant text spans, assign ICF labels from a
predefined set, and determine sentiment polarity.

It provides strict formatting guidelines, enforc-
ing JSON output to support automation with LLMs.
This structured approach enhances reproducibility
and enables scalable NLP-based analysis of chronic
pain narratives. The annotation prompt used in our
study is presented below.

You are a highly skilled annotator specializing in chronic pain patient
responses, using the **ICF classification system** and **Aspect-Based
Sentiment Analysis**
### Task Overview:
Your goal is to:
1. **Identify** relevant text spans aligning with the provided ICF labels.
2. **Assign** the correct ICF label (**ONLY** from the provided list).
3. **Determine** sentiment:

- Positive
- Negative
- Neutral

---
### **Labeling Rules**
- Use **ONLY** the provided ICF labels (no modifications or new labels).
- Each ICF-labeled span **must** also have a sentiment label.
- A span can be labeled with an ICF label with no sentiment label.
- A span can NOT be labeled with a sentiment label with no ICF label.
- If a span **does not match an ICF label**, exclude it.
---
### **ICF Labels (Use only these – No external labels)**
{json.dumps(icf_labels, indent=2)}
---
### **Output Format**
Return a **valid JSON object**:
{
"id": <text_id>,
"label": [

["<TEXT_SPAN_1>", "ICF_LABEL"],
["<TEXT_SPAN_1>", "SENTIMENT_LABEL"],
["<TEXT_SPAN_2>", "ICF_LABEL"],
["<TEXT_SPAN_2>", "SENTIMENT_LABEL"]

]
}
- **No explanations, no missing labels.**
- **If a span is unlabeled, exclude it.**
---
### **Text to Annotate:**
{transcript}
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C Synthetic Data

To supplement the limited dataset, we generated
20 synthetic patient narratives using a structured
pipeline. The goal was to simulate realistic patient
transcripts, automatically annotate them using an
LLM, and utilize them for prompt tuning. The
pipeline was designed to closely mirror real-world
chronic pain experiences while ensuring diversity
in patient characteristics. The process consisted of
three main steps:: 1) profile generation, 2) conver-
sation simulation, and 3) automatic annotation.

C.1 Profile Generation

Figure 3: Profile synthetic generation example using
Personas (Ge et al., 2024), the Big Five model (McCrae
and John, 1992) and GPT

Figure 4 illustrates the synthetic profile generation
process, which integrates personas, Big Five per-
sonality traits, and text generation. A persona is
used for the demographic attributes it has (e.g., oc-
cupation, interests) and the Big Five model is used
for its psychological traits (e.g., openness, neu-
roticism). These details are then passed through
the GPT4 model, which generates a first-person
narrative. The resulting profile provides a patient
background, ensuring diverse and realistic chronic
pain experiences for the conversation generation.

C.2 Coversation Simulation

Figure 4: Synthetic transcript example
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Abstract

The PerAnsSumm 2025 challenge focuses on
perspective-aware healthcare answer summa-
rization (Agarwal et al., 2025). This work
proposes a few-shot learning framework us-
ing a Snorkel-BART-SVM pipeline for clas-
sifying and summarizing open-ended health-
care community question-answering (CQA).
An SVM model is trained with weak supervi-
sion via Snorkel, enhancing zero-shot learning.
Extractive classification identifies perspective-
relevant sentences, which are then summarized
using a pretrained BART-CNN model. The ap-
proach achieved 12th place among 100 teams in
the shared task, demonstrating computational
efficiency and contextual accuracy. By lever-
aging pretrained summarization models, this
work advances medical CQA research and con-
tributes to clinical decision support systems.1

1 Introduction

Healthcare Community Question-Answering
(CQA) forums have become a vital source of
medical information to seek advice and share
experiences (Jiang, 2024; Zhang et al., 2024).
These platforms generate diverse responses,
ranging from factual knowledge to personal
opinions like PUMA dataset (Naik et al., 2024).
Traditional CQA summarization methods focus on
selecting a single best-voted answer as a reference
summary (Tsatsaronis et al., 2015; Kell et al.,
2024). However, a single answer often fails to
capture the broad range of perspectives available
across multiple responses. To better serve users, it
is essential to generate structured summaries that
represent various viewpoints effectively.

To address this, we introduce a hybrid frame-
work that combines perspective classification and
summarization, as shown in Figure 1. The first step
involves classifying user responses into predefined

1Models Code available: https://github.com/
NadiaSaeed/PerAnsSumm2025/tree/main

perspectives using a multi-step learning pipeline.
This pipeline integrates Snorkel-based weak super-
vision (Ratner et al., 2017), support vector machine
(SVM) classification with sentence embeddings
(Rueping, 2010), and zero-shot learning (ZSL) us-
ing transformer models (Lewis, 2019). The goal is
to enhance classification accuracy, especially when
labeled data is scarce.

Once classified, responses undergo a two-step
summarization process. We employ extractive sum-
marization using BART to select key sentences
from classified perspectives (Lewis, 2019). Then,
we refine these summaries using abstractive sum-
marization with Pegasus to improve fluency and
coherence (Zhang et al., 2020). The composed
model is evaluated on the PerAnsSumm Shared
Task - CL4Health@NAACL 2025, which focuses
on analyzing multi-perspective responses in Com-
munity Question Answering (CQA) (Agarwal et al.,
2025). Given a user-generated question Q and a
set of responses A, the task is divided into two key
objectives:

(1)Perspective Classification, where response
spans are categorized into predefined perspectives
such as cause, suggestion, experience, question,
and information;

(2)Perspective Summarization, which generates
structured summaries that condense key insights
while preserving essential details. Our approach
integrates both tasks into a single pipeline, ensuring
efficient classification and summarization of CQA
responses.

By leveraging weak supervision and fine-tuning
pre-trained models, we balance computational effi-
ciency with adaptability, making the solution prac-
tical for real-world applications. This hybrid ap-
proach ensures that summaries retain critical in-
formation while being concise and easily under-
standable. This study makes the following key
contributions:
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Figure 1: Hybrid workflow for perspective classification and summarization. Perspectives are classified using
heuristic labeling (Snorkel), SVM-based classification, and a zero-shot model fallback. Summarization is performed
in two stages: extractive (BART) and abstractive (Pegasus), integrating the context for a refined output.

1. A hybrid classification framework combin-
ing weak supervision, machine learning, and
deep learning techniques for robust perspec-
tive identification.

2. A rule-based weak supervision method using
Snorkel’s labeling functions to generate high-
quality probabilistic labels.

3. Feature extraction via sentence embeddings,
leveraging transformer-based models to en-
hance classification.

4. A zero-shot learning (ZSL) classifier to handle
unseen data without additional labeled exam-
ples.

5. A two-stage summarization pipeline that inte-
grates extractive (BART) and abstractive (Pe-
gasus) techniques for structured summaries.

6. A thorough evaluation demonstrating the ef-
fectiveness of our approach on real-world
CQA datasets.

By combining classification with summarization,
our method ensures that user-generated responses
are structured, informative, and accessible. This
enhances the usability of healthcare CQA forums
and facilitates better decision-making for users.

2 Methodology

2.1 Task A: Perspective Classification
2.1.1 Problem Definition
Given a dataset of textual responses, our goal is to
classify each response xi into one of the predefined
perspective categories (Naik et al., 2024):

P = {EXPE, INFO,CAUS, SUGG,QUES} (1)

Each response consists of multiple sentences,
and our objective is to determine the category yi by
maximizing the conditional probability:

yi = argmax
p∈P

P (p | xi) (2)

2.1.2 Hybrid Classification Pipeline
To achieve robust classification, we employ a three-
stage hybrid pipeline:

1. Weak Supervision with Snorkel: Rule-based
labeling functions assign probabilistic labels
(Ratner et al., 2017; Fries et al., 2020; Rüh-
ling Cachay et al., 2021).

2. Supervised Learning with SVM: A Support
Vector Machine (SVM) refines classification
using sentence embeddings (Ala’M et al.,
2023).
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3. Zero-Shot Classification: A transformer
model is applied when previous methods yield
uncertain labels (Gera et al., 2022; Schopf
et al., 2022).

2.1.3 Weak Supervision Using Snorkel
Manual annotation is time-intensive, so we use
Snorkel’s labeling functions (LFs) to generate weak
labels based on pattern recognition:

LF (x) =

{
lp, if pattern p is found in x

−1, otherwise
(3)

where lp is the assigned label, and −1 indicates
abstention. To aggregate multiple weak labels,
Snorkel’s Label Model M estimates the true label
distribution:

Ŷ = M(L) (4)

where L represents the label matrix from differ-
ent LFs. To efficiently label textual data, LFs based
on regex patterns extracted from frequent words
in the dataset. Each LF detects specific linguistic
cues for perspective categories like EXPERIENCE
or SUGGESTION. If a match is found, a label is
assigned; otherwise, it abstains (as shown in Figure
1). The PandasLFApplier applies these LFs to gen-
erate a label matrix (Tok et al., 2021), which is then
refined using Snorkel’s Label Model to resolve con-
flicts and improve accuracy. This approach speeds
up annotation while ensuring consistency through
statistical aggregation.

2.1.4 Sentence Embeddings and SVM
Classification

We convert textual responses into sentence embed

E(x) = SentenceTransformer(x) (5)

These embeddings are used by an SVM classifier
to enhance prediction accuracy:

ŷ = SVM(E(x)) (6)

SVM is trained on sentence embeddings from a
labeled dataset to classify text into perspective cat-
egories. Using a linear kernel, it learns decision
boundaries in high-dimensional space. During in-
ference, new sentences are embedded and classi-
fied based on their positions in the learned feature
space.

2.1.5 Few-Shot Learning with Zero-Shot
Classification

If Snorkel and SVM fail to provide a confident
classification, we apply zero-shot learning (ZSL)
using a transformer-based model:

P (p | x) = fZSL(x,P) (7)

where fZSL is a BART-based ZSL classifier, se-
lecting the category with the highest probability.
The ZSL model (facebook/bart-large-mnli) is ap-
plied using Hugging Face’s pipeline (Lewis, 2019).
When a sentence remains unclassified, the ZSL
model evaluates the text without prior training on
specific labeled data by comparing it to predefined
perspective categories (P). It then assigns the most
probable label by ranking all categories based on
their semantic similarity to the input sentence. This
ensures that even unseen or ambiguous responses
can still be categorized effectively.

2.1.6 Final Classification Decision
The classification decision follows a hierarchical
approach (as Shown in Figure 1 A, B and C):

yi =





Ŷi, if Ŷi ̸= −1
SVM(E(xi)), if Snorkel abstains
fZSL(xi,P), otherwise

(8)

2.2 Task B: Hybrid Summarization

2.2.1 Overview
To generate high-quality summaries, we integrate
extractive and abstractive techniques as shown in
Figure 1 and 2:

2.2.2 Extractive Summarization Using BART
We use the facebook/bart-large-cnn model to ex-
tract salient content (Lewis, 2019):

S = BART(X) (9)

where X is the concatenated input text and S
is the generated extractive summary. The process
involve following steps as shown in Figure 1 and
2:

1. Tokenizing input text with BART’s tokenizer.
2. Using a task-specific prefix (summarize:).
3. Truncating text to 1024 tokens.
4. Applying beam search with: max_length =

150, min_length = 50, length_penalty = 2.0,
num_beams = 4
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Figure 2: Training sample utilization for weak supervision. Known text spans from labeled data are used to train an
SVM classifier, construct Snorkel labeling functions, and refine heuristic rules. The zero-shot model is excluded
from direct training and is used as a fallback during classification.

2.2.3 Abstractive Refinement Using Pegasus
The extractive summary is refined with
google/pegasus-xsum (Zhang et al., 2020):

S′ = Pegasus(S) (10)

where S′ is the final abstractive summary. Refine-
ment involves following steps:

1. Tokenizing extractive summaries.
2. Using the summarize: prompt.
3. Truncating input to 512 tokens.
4. Applying beam search with: max_length =

100, min_length = 30, length_penalty = 1.8,
num_beams = 6

For our experiments, we utilize a dataset la-
beled with five perspective categories P in which
EXPE and all others relate to the perspective of
Experience, Information, Cause, Suggestion, and
Question respectively (in Equation 1). Task A
involves hierarchical classification, where unla-
beled responses are processed using a combina-
tion of weak supervision, Support Vector Machines
(SVM), and zero-shot learning (ZSL) (as Equation
8). We employ Snorkel for weak supervision, train-
ing its label model for 500 epochs to aggregate mul-
tiple labeling sources. Sentence embeddings are
generated using SentenceTransformer (all-MiniLM-
L6-v2) (Lewis, 2019), which serves as input to an
SVM classifier trained with a linear kernel and

default hyperparameters. For ZSL, we use Face-
book’s BART-Large-MNLI to directly infer cate-
gory labels from textual descriptions.

Task B focuses on response structuring and re-
finement using transformer-based summarization
models. We employ BART-Large-CNN for extrac-
tive summarization, generating concise representa-
tions of textual responses. To enhance coherence
and fluency, we further refine these summaries us-
ing Pegasus-XSum (Zhang et al., 2020), an abstrac-
tive summarization model designed for extreme
summarization tasks. The dataset for Task B con-
sists of both labeled and unlabeled responses, al-
lowing the models to learn from structured exam-
ples while refining free-text inputs. Our approach
integrates both extractive and abstractive summa-
rization techniques to ensure a well-structured and
contextually rich final output.

3 Results and Discussion

In this study, we evaluated multiple hybrid mod-
els integrating Few-shot learning, weak supervi-
sion (Snorkel), and transformer-based architectures
(BART, PEGASUS, and SVMs) for Span Identifi-
cation & Classification (Task A) and Summariza-
tion (Task B). The primary objective was to assess
the effectiveness of different learning paradigms in
handling biomedical text processing challenges.
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Figure 3: The comparative analysis of MediFact’s submitted models on the PerAnsSumm Shared Task -
CL4Health@NAACL 2025.

Task A (Perspective Classification) is evalu-
ated using Macro-F1, Weighted-F1, Strict Match-
ing (Precision, Recall, Weighted-F1), and Propor-
tional Matching (Precision, Recall, Weighted-F1).
Task B (Perspective Summarization) is assessed
using ROUGE (R1, R2, RL), BLEU, Meteor, and
BERTScore. The bar graph illustrates a compar-
ative analysis of model performance across both
tasks, highlighting strengths and areas for improve-
ment in Figure 3.

3.1 Task A: Span Identification &
Classification

The highest Weighted F1 score of 0.8361 was
achieved by the FewShot-SVM+Snorkel+BART
model, demonstrating its robustness in span identi-
fication and classification. Additionally, FewShot-
LR+Snorkel+Hybrid (BART+PEGASUS) exhib-
ited a competitive performance with an F1 score of
0.7961, while also achieving the best proportional
match score (0.7373), indicating its capability to
identify partially matched spans effectively.

Conversely, models relying on regular ex-
pressions (FewShot-RegEx+Snorkel+BART and
ZeroShot-RegEx+Snorkel+BART) underperformed
in classification, with F1 scores of 0.7316 and
0.7161, respectively. This suggests that rule-based
approaches lack the generalization needed for com-
plex biomedical text extraction tasks.

3.2 Task B: Summarization Performance

The summarization capabilities of the models were
evaluated using ROUGE-1 scores and factuality
assessments. The FewShot-SVM+Snorkel+BART
model achieved the highest ROUGE-1 score of
0.3485, indicating its effectiveness in generating
relevant and concise summaries. Interestingly,
FewShot-LR+Snorkel+Hybrid (BART+PEGASUS)
demonstrated superior factuality (0.2897), suggest-
ing that PEGASUS contributes to improved content
faithfulness in biomedical text summarization.

Models utilizing regular expression-based clas-
sification (FewShot-RegEx and ZeroShot-RegEx
variants) performed significantly lower across all
summarization metrics. This highlights that statis-
tical and deep learning-based models outperform
rule-based approaches in abstractive summariza-
tion tasks.

3.3 Comparative Analysis of Model
Performance

For a comprehensive evaluation, the combined
average score (Task A + Task B performance)
was computed for each model (Figure 3).
FewShot-SVM+Snorkel+BART emerged as the
best-performing approach with a combined score of
0.4077, followed by FewShot-LR+Snorkel+Hybrid
(BART+PEGASUS) with 0.4070. The hybrid mod-
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els demonstrated a balanced trade-off between clas-
sification accuracy and summarization quality, rein-
forcing the effectiveness of weak supervision with
Snorkel and transformer-based architectures. In
contrast, rule-based models (FewShot-RegEx &
ZeroShot-RegEx variants) consistently showed in-
ferior performance, suggesting that deep genera-
tive models are more suitable for biomedical NLP
tasks requiring contextual understanding and con-
tent generation.

The experimental results demonstrate that a
hybrid learning strategy combining weak super-
vision (Snorkel), Few-shot learning, and trans-
former models (BART, PEGASUS) yields opti-
mal performance in biomedical span identification
and summarization tasks. The proposed FewShot-
SVM+Snorkel+BART model outperformed all
other configurations, achieving the highest classifi-
cation accuracy and summarization quality. These
findings emphasize the importance of leveraging
both structured supervision and deep generative
architectures for enhancing biomedical text pro-
cessing.

3.4 MediFact Performance in PerAnsSumm
Shared Task

MediFact secured a position among the top
12 teams in the PerAnsSumm Shared Task -
CL4Health@ NAACL 2025. The final results
were officially reported by the task organizers on
the shared task website.2

In Figure A.1, MediFact’s performance across
various evaluation metrics demonstrates strong
classification capabilities, achieving a competitive
Weighted F1-score of 0.8887. However, the Macro
F1-score (0.8361) suggests room for improvement
in handling class imbalances.

In the matching task, MediFact attains a high
Proportional Matching Recall (0.8493), indicating
effective identification of relevant matches. How-
ever, the Strict Matching Precision (0.1383) and
Strict Matching F1 (0.1921) highlight challenges
in reducing false positives.

For summarization, the model achieves a
BERTScore of 0.8336, reflecting strong seman-
tic alignment. However, lower ROUGE scores
(R1: 0.3485, R2: 0.1475, RL: 0.3212) and BLEU
(0.1078) suggest the need for more accurate and
concise text generation.

2PerAnsSumm Shared Task - CL4Health@ NAACL 2025:
https://peranssumm.github.io/docs/#leaderboard

Factual consistency metrics, such as AlignScore
(0.3121) and Factuality Score (0.2784), indicate
areas for improvement in ensuring reliable summa-
rization. Future work should focus on enhancing
precision in matching, optimizing summarization
coherence, and strengthening factual alignment to
ensure more trustworthy outputs.

4 Conclusion

This research introduces a modular and resource-
efficient approach for perspective-aware classifi-
cation and summarization. We combine weak su-
pervision, machine learning, and pre-trained trans-
formers to balance accuracy and computational
cost (Ratner et al., 2017; Rueping, 2010; Lewis,
2019). Instead of training a model from scratch, we
fine-tune pre-trained models on our dataset. This
approach reduces resource demands and speeds up
adaptation to new tasks.

One major motivation for our method is over-
coming computational limitations. Training large
models from the ground up requires extensive hard-
ware and time (Touvron et al., 2023; Floridi and
Chiriatti, 2020; Lewis, 2019). To handle this, we
use pre-trained models that can be fine-tuned ef-
ficiently. We also apply weak supervision with
heuristic labeling, reducing the need for manual
annotation (as shown in Figure 2). This makes our
approach scalable and practical.

Our study shows that strong results can be
achieved even with limited resources. We propose
a modular and adaptable solution that does not de-
pend entirely on commercial large language mod-
els (LLMs). While proprietary models offer high
performance, they lack flexibility and accessibility
(Team et al., 2023; Lee and Hsiang, 2020). Instead,
we demonstrate how open-source models and tar-
geted fine-tuning provide robust results without
heavy computational costs.

In conclusion, this work highlights the impor-
tance of resource-aware AI research. It proves that
effective NLP solutions can be built without ex-
pensive models. Open-source tools played a key
role in making this study possible (Wolf, 2019;
Lewis, 2019; Zhang et al., 2020). By selecting the
right model and designing a modular workflow, we
achieve high-quality classification and summariza-
tion even with limited resources. This research
encourages future work to focus on scalable, adapt-
able, and cost-effective AI solutions instead of re-
lying solely on commercial LLMs.
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5 Limitations

Weak supervision relies on heuristic rules, which
may introduce bias or inconsistencies. While pre-
trained models reduce the computational burden,
further improvements can be made. Future research
can explore lightweight architectures, efficient fine-
tuning methods (such as LoRA (Hu et al., 2021)
and quantization (Yang et al., 2019)), and retrieval-
augmented generation (RAG) (Notarangelo et al.,
2016) to handle unseen perspectives.
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This section provides additional insights into Medi-
Fact’s performance, complementing the discussion
in Section 3. Figure A.1 presents a detailed break-
down of evaluation metrics across different tasks,
including classification, matching, and summariza-
tion. The results highlight MediFact’s strong clas-
sification capabilities, particularly in achieving a
competitive Weighted F1-score. However, perfor-
mance in strict matching and summarization co-
herence suggests potential areas for improvement.
These findings provide direction for future opti-
mizations, focusing on enhanced precision and fac-
tual consistency.
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Figure A.1: Comparative Performance Analysis of MediFact Among the Top 12 Models in the PerAnsSumm Shared
Task CL4Health@NAACL 2025.
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Abstract

This system report presents an innovative ap-
proach to the PerAnsSumm2025 shared task
at the Workshop CL4Health, addressing the
critical challenges of perspective-aware health-
care answer summarization. Our method, It-
erative Self-Prompting (ISP) with Claude and
o1, introduces a novel framework that lever-
ages large language models’ ability to itera-
tively refine their own instructions, achieving
competitive results without traditional model
training. Despite utilising only API calls rather
than computational-intensive training, our sys-
tem "The Manchester Bees" secured 15th place
among 23 leader board systems overall, while
demonstrating exceptional performance in key
metrics - ranking 6th in Strict-matching-F1
for span identification (Task A) and achiev-
ing the highest Factuality score for summary
generation (Task B). Notably, our approach
achieved state-of-the-art results in specific met-
rics, including the highest Strict-matching pre-
cision (0.2267) for Task A and AlignScore
(0.5888) for Task B. This performance, ac-
complished with minimal computational re-
sources and development time measured in
hours rather than weeks, demonstrates the po-
tential of ISP to democratise access to advanced
NLP capabilities in healthcare applications.
Our complete implementation is available as an
open-source project on https://github.com/
pabloRom2004/-PerAnsSumm-2025

1 Introduction

This system report presents our contribution to
the PerAnsSumm 2025 shared task on perspective-
aware healthcare answer summarization, organized
in conjunction with the second edition of the
CL4Health workshop (computational linguistics
for healthcare) at NAACL 2025. The task addresses
a critical challenge in modern healthcare: the grow-
ing reliance on online health forums where users
seek medical advice from peers with similar ex-
periences. While these forums provide valuable

support, their unstructured nature necessitates ef-
fective methods for organizing and synthesizing
the diverse perspectives they contain.

The PerAnsSumm shared task, based on the
healthcare forum dataset developed by Naik et al.
(2024), focuses on generating perspective-based
summaries across five key categories: information,
cause, suggestion, experience, and question. To
address this challenge, this research proposes Iter-
ative Self-Prompting (ISP), a novel approach util-
ising two decoder-only systems, Claude and o1.
Our method leverages these models’ capabilities
to iteratively refine task-specific prompts through
in-context learning from annotated training data.
Notably, the systems demonstrated sophisticated
analytical abilities, identifying patterns in data qual-
ity and autonomously adjusting prompts to handle
edge cases and inconsistencies. Three versions of
the system were submitted (ISP-claude/o1 v1, v2,
v3), each showing strong performance across both
primary tasks: span detection and classification
(Task A) and summary generation (Task B). In the
official evaluation among 23 top-performing sys-
tems, our approach achieved particularly notable
results using the Strict-matching metric for Task A,
ranking 6th in F1 score. For Task B, measured by
Factuality metrics, our systems showed progressive
improvement, with v1 ranking 6th (0.3545) and
v3 achieving the top position (0.4277), primarily
due to superior performance on the AlignScore sub-
metric. Beyond these technical achievements, our
method offers significant practical advantages in
terms of computational efficiency and development
time, suggesting a promising direction for future
work in healthcare text analysis.

2 Related Work

2.1 Prompting Techniques

The evolution of prompt engineering for large lan-
guage models (LLMs) has increasingly focused
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on developing sophisticated methods that can fully
leverage these models’ inherent reasoning capabil-
ities. Iterative Self-Prompting (ISP) follows natu-
rally from research into various forms of model rea-
soning, including logical, common-sense, and sym-
bolic reasoning, as explored by (Qiao et al., 2023).
While researchers have made significant progress
with techniques such as chain-of-thought (CoTs),
in-context learning, and various prompting strate-
gies (Cui et al., 2023), the field has increasingly
recognized the potential of automated approaches.
Notably, Automatic Prompt Engineering (APE) has
demonstrated competitive performance compared
to human-engineered prompts across several NLP
tasks (Zhou et al., 2023), typically relying on eval-
uation scores for prompt refinement. Our work ex-
tends this paradigm by introducing a more sophis-
ticated iterative framework that integrates multiple
models in the automatic self-prompting process.
This approach, inspired by recent advances in iter-
ative refinement (Madaan et al., 2023), leverages
sample-labeled data and self-feedback mechanisms
to create a more robust and effective prompt engi-
neering methodology.

2.2 Healthcare Data Summarisation

Healthcare data summarisation can be time con-
suming and costly, which has led to the auto-
matic summarisation task in this domain. The data
sources in this task can be electronic health records
(EHRs) (Moen et al., 2016), clinical discharge sum-
maries (Searle et al., 2023), medical papers (Sarker,
2014), and online forums (Naik et al., 2024), etc.
The methodologies used for such tasks include
extractive summarisation, abstractive summarisa-
tion, with/without (w/o) external domain knowl-
edge base usage such as medical concepts. The
models have included traditional training and fine-
tuning paradigms and recent prompt engineering.
The data this method utilizes is from perspective-
aware online forum healthcare text by Naik et al.
(2024).

3 ISP with Claude and o1

3.1 Methodology Overview

Iterative Self-Prompting (ISP) represents an ad-
vancement in approaches to prompt engineering
and model instruction. At its core, the technique
leverages a language model’s ability to analyse, un-
derstand, and improve its own instructions through
a structured feedback loop. This self-improving

mechanism creates a powerful framework for de-
veloping highly effective prompts without the need
for model training or extensive human intervention.

The process begins with a detailed description
of the task provided to a language model. Rather
than directly attempting to solve the problem, we
ask the model to craft a prompt for completing the
task. This meta-level approach allows the model to
step back and think about how best to approach the
problem systematically. The initial prompt gener-
ation phase is crucial, as it sets the foundation for
all subsequent improvements.

Once we have an initial draft of the prompt, we
enter the iterative refinement phase. This involves
testing the prompt with training data and carefully
analysing the results on another instance of the
model with no other context for the task, just the
prompt and the data. The key innovation here lies
in how we use the model’s own analytical capabili-
ties. We present the model with its previous prompt,
the outputs generated from the other model using
that prompt, and the ground truth answer. The
model then engages in a detailed analysis of what
worked well and what needs improvement and re-
fines the base prompt further, adding specific de-
tails to the prompt so that next time, the model does
a little better on the task, this process is then re-
peated until the prompt is very detailed and outputs
from the model are very high quality.

The power of this approach becomes apparent
in how the model discovers and adapts to patterns
in the data. For instance, when analysing outputs,
the model might notice subtle patterns that weren’t
explicitly stated in the original task description. A
concrete example of this meta-cognitive capability
occurred during implementation when the model
recognised the importance of handling empty cat-
egories in data classification tasks. The model ob-
served that some categories naturally remain empty
in certain cases and modified the prompt accord-
ingly, without any human intervention. An example
can be seen in Figure 2.

The theoretical implications of this technique ex-
tend beyond simple prompt engineering. It demon-
strates a form of meta-learning, where the model
learns to create better instructions through experi-
ence. This self-improving capability suggests in-
teresting possibilities for autonomous systems that
can optimise their own behaviour through struc-
tured self-reflection.

What makes ISPs particularly powerful is their
universality. The technique doesn’t depend on spe-
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Figure 1: Iteration Cycle for ISP showing the process of prompt refinement through feedback loops.

cific model architectures or training approaches.
Instead, it relies on the fundamental capabilities
present in modern language models: understand-
ing tasks, generating instructions, and analysing
results. This makes it highly adaptable to different
problems and domains.

3.2 ISP for PerAnsSumm Shared Task

Implementation Timeline:

• Hour 0→ Initial Setup

• Hour 1→ First Iterations

• Hour 2→ Refinement Cycles

• Hour 3→ Final optimisation

• Hour 4→ Submission

The practical effectiveness of Iterative Self-
Prompting was demonstrated conclusively in the
PerAnsSumm Shared Task at the CL4Health Work-
shop NAACL 2025. This implementation provides
a compelling case study of how ISP can achieve
competitive results with minimal resources and de-
velopment time.

The task itself presented significant challenges in
medical text analysis, requiring systems to identify
and classify specific spans of text while generat-
ing comprehensive summaries across multiple cat-
egories. Traditional approaches typically involved

fine-tuning models like BERT or T5, requiring sub-
stantial computational resources and development
time. Instead, ISP was applied to develop a solution
in just 3-4 hours, ultimately achieving a competi-
tive performing system in the leader-board among
top-23 teams.

The implementation began with a detailed task
description provided to the model, including the
specific requirements for span identification and
summary generation. The model was then asked to
create a comprehensive prompt that would guide
another model through the analysis process. This
initial prompt generation phase was crucial, as it
needed to capture all the nuances of the task, from
JSON formatting requirements to specific category
definitions.

As demonstrated in Figure 2, our iteration cy-
cle revealed remarkable self-improvement capabil-
ities in the model’s performance. Through sys-
tematic analysis of outputs against ground truth
data, the model continuously identified specific
areas for enhancement, leading to increasingly so-
phisticated prompt refinements. One particularly
notable breakthrough emerged when the model be-
gan recognizing patterns in category distribution
- specifically, how certain categories naturally re-
mained empty in particular cases. This insight led
to automated prompt adjustments that significantly
improved the handling of these edge cases.

The successful development of these capabil-
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<contemplator> Let me review the prompt and examples more carefully... 

1.​ Checking Empty Categories Hmm... you're right. Looking at the example you provided 
(uri: 1564117), I notice: 

●​ Empty arrays for EXPERIENCE and QUESTION spans 
●​ Empty strings for EXPERIENCE and QUESTION summaries 
●​ This is a crucial pattern I missed 

Let me look through the other examples to understand empty category patterns: 

●​ Some questions naturally have no QUESTION spans 
●​ Some have no personal EXPERIENCE spans 
●​ Others might lack CAUSE categorization 
●​ Even high-quality answers might not cover all categories 

This is an important clarification needed in the prompt. Let me think about where to add it... 

Figure 2: Example of ISP process: reviewing the prompts

ities, however, presented us with an interesting
technical challenge: managing the models’ con-
text window limitations. While our refined prompt
demonstrated strong performance, implementing
it across the full test set required careful consid-
eration of these constraints. This challenge was
addressed by splitting the 50-question test set into
10 manageable groups of 5 questions each. This
segmentation allowed the o1 model to maintain
sufficient context for each question while preserv-
ing the quality of analysis. Through a streamlined
script, these individual results were then aggregated
into the final submission, effectively balancing the
computational and context constraints from the o1
model.

4 Submission to PerAnsSumm2025

Three systems were submitted to both shared tasks
A and B, specifically the ISP-Claude/o1 versions 1,
2, and 3.

4.1 Submission outcomes

There are 155 submitted system outputs in the of-
ficial shared evaluation sheet, however, only 23
systems were listed in the top-performing board
from unique teams (no more than one system from
each team). The system ranked 15th in the top-list
by the ’Task A + B combined Average’ score us-
ing Version 1 (out of three), scoring 0.3994 (as in
Figure 7) (Agarwal et al., 2025). Using the official
leaderboard scores from PerAnsSumm 2025, the
advantages of the claude/o1 system are listed below

for Task-A and B respectively.
For Task-A (span identification and classifi-

cation) score, it is the average of classifica-
tion weighted-F1, strict-matching-F1, and propor-
tional matching F1. The system ranked 12th on
Task-A using this overall average; however, the
claude/o1 model performed much better on the
Strict-matching category than the Proportional-
matching. As shown in Figure 3, the system ranks
6th in the top-list of 23 systems for Strict-matching
F1 (0.2092). Additionally, the system ranks 1st
out of 23 top systems on the Strict-matching Pre-
cision (0.2267). Interestingly, the highest Strict-
matching Recall was achieved by the 10th system
in this rank, the MediFact team, with score 0.3143
(bolded). For Task-B (summarisation), there are
two aspect evaluations, Relevance and Factual-
ity. Relevance score is averaged from automatic
metrics of ROUGE, BERTscore, METEOR, and
BLEU, which are originally machine translation
(MT) evaluation metrics. For Factuality, there are
the AlignScore and SummaC scores. Our system
performed much better on the Factuality aspect in
this task, espacially, in the AlignScore where we
ranked the second with 0.4775 out of all top sys-
tems, and resulted as the 6th with overall Factuality
score 0.3545 among the top 10, as in Figure 4.

4.2 Cost-Effectiveness Comparisons

Interestingly, the competition revealed some unex-
pected insights about the nature of the task itself.
The baseline model, based on the Flan-T5 archi-
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Final 
Ranking Team Submission Name 

STRICT_MATCHING
_P 

STRICT_MATCHING
_R 

STRICT_MATCHING
_F1 

3 yxyx sonnet 0.2205 0.2781 0.2460 

5 KHU_LDI 0204_3 0.1868 0.3010 0.2305 

13 NU-WAVE k16 0.2048 0.2286 0.2160 

14 Roux-lette aa_version_3 0.2048 0.2286 0.2160 

4 AICOE submission_7 0.1765 0.2743 0.2148 

15 The Manchester Bees claude/o1 0.2267 0.1943 0.2092 

6 LTRC@PerAnsSumm2025 submission-6 0.1915 0.2229 0.2060 

2 YALENLP 250202_v3 0.1571 0.2857 0.2027 

1 WisPerMed WisPerMed-Finale 0.1726 0.2305 0.1974 

12 MediFact 3 0.1383 0.3143 0.1921 

 

Figure 3: Strict Matching Ranking on Task-A (Span Identification and Classification): the top 10 systems (highest
score bolded, ours underlined)

 

Final Ranking team Submission Name AlignScore SummaC 
TASK_B_FACTUALI

TY 

11 HSE NLP 4o Mini NER 0.5150 0.2578 0.3864 

8 Team Airi Mistral + Lora 0.4728 0.2872 0.3800 

3 yxyx sonnet 0.4601 0.2834 0.3717 

9 DataHacks better_256 0.4427 0.2899 0.3663 

10 UTSA-NLP TrailNo6COT 0.4503 0.2620 0.3562 

15 The Manchester Bees claude/o1 0.4775 0.2316 0.3545 

1 WisPerMed WisPerMed-Finale 0.4085 0.2958 0.3521 

20 TrofimovaMC s_03 0.4679 0.2304 0.3491 

4 AICOE submission_7 0.4260 0.2701 0.3480 

6 LTRC@PerAnsSumm2025 submission-6 0.4184 0.2701 0.3442 

 

Figure 4: Task-B (Summarisation) Factuality Ranking: the top 10 systems (highest score bolded, second highest
italic, ours underlined). This approach ranked are the 2nd highest in AlignScore.

tecture, established a foundation for comparison,
though with performance metrics that left consider-
able room for improvement in this specialized task
(Naik et al., 2024; Chung et al., 2024). This cre-
ated an unusual situation where our model actually
needed to "calibrate down" its responses to better
match the expected output quality. This observa-
tion raises important questions about evaluation
metrics and the balance between output quality and
adherence to training data patterns.

The final results demonstrated the power of ISP:
achieving top 15 placement out of 23 systems in the
leaderboard (155 submissions overall) without any
model training, using only prompt engineering and
clever problem decomposition. This success chal-

lenges traditional assumptions about the necessity
of model fine-tuning for competitive performance
in specialized tasks. The entire process, from ini-
tial prompt generation to final submission, required
only 3-4 hours of development time, showcasing
the efficiency of the approach.

The implications of this success extend beyond
the specific competition. It demonstrates that with
well-crafted prompts and strategic task decompo-
sition, existing language models can achieve com-
petitive performance on specialized tasks without
the need for additional training or fine-tuning. This
suggests a promising direction for rapid develop-
ment of AI solutions, particularly in domains where
development time and computational resources are
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Metric Traditional Approach ISP

Model Training Hours/Days None
Compute Resources High Minimal
Development Time Days 3-4 Hours

Table 1: Comparison Between Traditional Approach and ISP Methods for Healthcare Summarization Tasks.

limited.

5 Discussion and Examples

5.1 On the dataset
There are some responses/questions that are just as
funny or strange, which might affect the quality of
the training data, but also may be true in the style of
the online community forum as where the original
data were extracted. Here are some examples:

• Unconventional medical category: "question":
"Do women in the same house get period at
the same time?"

• Not-really healthcare: "question": "Is there a
way to make my voice deeper?"⇒ "answers":
["You can modify your technique of speaking
to include a deeper tone. Most people speak
from the front of their mouth, ... "]

• Spelling and grammar: "txt": "nd, but
these herbal remedies on the extremely rare
occaission that they do work to help your bust,
the results are only temporary."

• Not-meaningful: "question": "How thin is
too thin?"⇒ "SUGGESTION_SUMMARY":
"To determine if your weight is too low,
use the BMI chart. It is also advised to
release not all guys want skin and bones."

5.2 On system rankings and metrics
It is interesting to see so many metrics reported in
the overall categories and subcategories for Task
A and B in the official evaluation (Agarwal et al.,
2025). However, observations reveal that the met-
rics and ranking results do not always agree with
each other, spacially, between tasks (A vs B). For
instances, among our three submissions (v1, v2,
v3), even though our system-v1 achieved the high-
est Task A + B combined average score (0.3993)
in comparison to the other two systems (0.3928
and 0.3496), system-v2 and v3 have produced bet-
ter scores for individual metrics and tasks, respec-
tively.

As in Figure 5, for Task A (span identification
and classification), our system 2 produced better
scores on macro F1, weighted F1, and strict
matching precision, in comparison to the version
1 system. However, it lost to the strict matching
recall value, leading to a lower strict matching F1.

For Task B (summarisation) Factuality ranking,
our system 3 boosted both AlignScore and Sum-
maC scores, leading to the highest Factuality
score (0.4277) among the top 10 systems in the
leader board as in Figure 6, referring to Figure 4
for the top 10 (highest Factuality score 0.3864).

6 Conclusions and Future Work

In conclusion, we submitted three system outputs
using the method Iterative Self-Prompting (ISP)
with Calude and o1, ISP-claude/o1, to perspective-
aware healthcare answer summarisation shared
task (PerAnsSumm2025). The vesion 1 output
of ISP-claude/o1 is officially ranked 15th in the
leaderboard of top 23 teams, using the combined
average scores of Task A and B. Task specifi-
cally, the ISP-claude/o1 performs better on Strict-
matching for Task A (the 6th in Figure 3), span-
identification and classification, versus proportial-
matching. For Task B summarisation, it performs
better on AlignScore for Factuality (the 1st via ISP-
claude/o1-system3, 0.4277 in Figure 6), instead of
Relevance (ROUGE, BERTscore, METEOR, and
BLEU, much lower scores). In the future work, it
is worthy to explore the reasons on such contradic-
tion scores across metrics, i.e., Strict-matching vs
Proportional-matching, and Relevance vs Factual-
ity. Our complete implementation is available as
an open-source project on https://github.com/
pabloRom2004/-PerAnsSumm-2025

Limitations

The present study faced several constraints that sug-
gest directions for future research. Due to time lim-
itations, only decoder models employing prompt-
ing techniques were evaluated in this shared task.
For a more comprehensive analysis, future work
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claude/o1 
macro 

F1 CLASSIFICATION_Weighted_F1 STRICT_MATCHING_P STRICT_MATCHING_R STRICT_MATCHING_F1 

v1 0.8268 0.8769 0.2267 0.1943 0.2092 

v2 0.8664 0.9031 0.2327 0.1733 0.1987 

v3 0.6760 0.7581 0.1526 0.0724 0.0982 

 

Figure 5: The Manchester Bees 3 systems comparisons on Task A

 

Team Submission Name AlignScore SummaC 
TASK_B_FACT

UALITY 

HSE NLP 4o Mini NER 0.5150 0.2578 0.3864 

DataHacks better_256 0.4427 0.2899 0.3663 

The Manchester Bees claude/o1-v1 0.4775 0.2316 0.3545 

The Manchester Bees claude/o1-v2 0.4119 0.2291 0.3205 

The Manchester Bees claude/o1-v3 0.5888 0.2666 0.4277 

WisPerMed WisPerMed-Finale 0.4085 0.2958 0.3521 

 

Figure 6: Task-B (Summarisation) Factuality Ranking: including three systems of our submissions, keeping the
highest and the 2nd highest scores in the top-10 list (highest score bolded, second highest italic, ours underlined).
Our system 3 (claude/o1-v3) gets the highest in AlignScore and Factuality.

should include comparisons with traditional fine-
tuned approaches, particularly encoder-decoder ar-
chitectures such as T5-variants for span detection
tasks. Such comparisons would provide valuable
benchmarks against established methodologies in
the literature (Belkadi et al., 2023; Cui et al., 2023).

A significant technical challenge encountered
during the ISP-claude/o1 implementation involved
context window limitations of the models. This
necessitated dividing the test dataset into smaller
chunks for processing. Further research could ex-
plore efficient solutions to these context constraints,
potentially through advanced chunking strategies
or more context-efficient prompting techniques.

While fine-tuning smaller models represents a
potentially more cost-effective approach for pro-
duction deployment, the ISP method demonstrated
distinct advantages in rapid development scenarios.
The implementation required only 3-4 hours with-
out GPU training resources, model optimization,
or hyperparameter tuning. This approach priori-
tized development efficiency and exploration of
state-of-the-art models’ few-shot learning capabili-
ties, though future work could investigate quantized
versions of fine-tuned models for production envi-
ronments with comparable performance at reduced

computational cost.

Ethical Statement

While the ISP method demonstrates its effective-
ness in the summary task of healthcare with per-
spectives, there are many concerns about the use
of commercial chatbots, for example ChatGPT,
Claude, etc. for personal data (Ray, 2023; Ren
et al., 2024). It is still challenging on how to safe-
guard private health information with the usage of
AI models. For the current shared task, the organis-
ers have prepared annonymised online forum data
for system development purposes.
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Final 
Ranking Team Name Submission Name 

Task A + B 
Combined 
Average 

1 WisPerMed WisPerMed-Finale 0.4571 

2 YALENLP 250202_v3 0.4548 

3 yxyx sonnet 0.4526 

4 AICOE submission_7 0.4495 

5 KHU_LDI 0204_3 0.4492 

6 LTRC@PerAnsSumm2025 submission-6 0.4395 

7 MNLP v3_4 0.4321 

8 Team Airi Mistral + Lora 0.4238 

9 DataHacks better_256 0.4203 

10 UTSA-NLP TrailNo6COT 0.4112 

11 HSE NLP 4o Mini NER 0.4081 

12 MediFact 3 0.4077 

13 NU-WAVE k16 0.4046 

14 Roux-lette 
aa_version_3_20250204_0042
05 0.3996 

15 The Manchester Bees claude/o1 0.3994 

16 Abdelmalak sub2 0.3907 

17 umb umba 0.3824 

18 massU 1 0.3815 

19 RVK_Med Run_1 0.3750 

20 TrofimovaMC s_03 0.3698 

21 TeamENSAK@PerAnsSumm2025 Azzedine 0.3641 

22 CaresAI submission_1 0.3405 

23 LMU llama 70b_8b 0.1726 

 

Figure 7: Official Ranking Task A+B from Top 23 Sys-
tems (Agarwal et al., 2025)

A The Official Ranking

B The original prompt

Here is the original prompt describing the task:
(Examples from the test set here in-context)
“ Could you write me a prompt that takes a

test set answer and provides the format that is ex-
pected in the output, could you look very carefully
at how the spans are structured and what the labels
are/what they represent in this specific database
and be able to detect spans and create reasonable
spans and summarization. Make sure to look very
closely at the data I have provided and come up
with a good prompt that captures the essence of
each label and how to pick it up accordingly, this
prompt will be used for another model with no pre-
vious knowledge about the task so you will need to
make sure you explain it all thoroughly

Before completing the task, just talk out loud
about the task and how you will complete it, and
ask me any questions you may have before writing
this prompt, this prompt will just be the first version,
I will give you more examples so you are able to
refine it more and I will test it with the model and
bring back the results so you can tweak the prompt
to see better behaviour, I will give you the original

input with the prompt you will create, then give you
the model output along with the ground truth so
you are able to tweak it.”

Detailed ISP used for this task is shared on our
open-source project page https://github.com/
pabloRom2004/-PerAnsSumm-2025
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Abstract

Community question-answering (CQA) plat-
forms provide a crucial space for users to
share experiences, seek medical advice, and
exchange health-related information. How-
ever, these platforms, by nature of their user-
generated content as well as the complexity
and subjectivity of natural language, remain
a significant challenge for tasks related to the
automatic classification of diverse perspectives.
The PerAnsSumm shared task involves extract-
ing perspective spans from community users’
answers, classifying them into specific perspec-
tive categories (Task A), and then using these
perspectives and spans to generate structured
summaries (Task B). Our focus is on Task
A. To address this challenge, we propose a
Classifier-Refiner Architecture (CRA), a two-
stage framework designed to enhance classi-
fication accuracy. The first stage employs a
Classifier to segment user responses into self-
contained snippets and assign initial perspec-
tive labels along with a binary confidence value.
If the classifier is not confident, a secondary Re-
finer stage is triggered, incorporating retrieval-
augmented generation to enhance classification
through contextual examples. Our methodol-
ogy integrates instruction-driven classification,
tone definitions, and Chain-of-Thought (CoT)
prompting, leading to improved F1 scores com-
pared to single-pass approaches. Experimental
evaluations on the Perspective Summarization
Dataset (PUMA) demonstrate that our frame-
work improves classification performance by
leveraging multi-stage decision-making. Our
submission ranked among the top-performing
teams, achieving an overall score of 0.6090,
with high precision and recall in perspective
classification.

1 Introduction

Community question-answering (CQA) forums
have emerged as a pivotal medium for individu-
als seeking diverse perspectives on health-related

issues, encompassing personal anecdotes, medical
suggestions, factual information, and experiential
insights. While these platforms offer a wealth of
user-generated knowledge, extracting structured,
perspective-specific content from such discussions
remains a complex challenge due to linguistic vari-
ability and overlapping semantic cues. Traditional
single-pass classification systems often misclassify
or overlook nuanced snippets, leading to incom-
plete or misleading results. These limitations are
especially consequential in the healthcare domain,
where accurate categorization of user responses
can influence subsequent experiences, diagnosis,
and/or recommendations (Agarwal et al., 2025).

Our approach, tested on the PUMA (Naik et al.,
2024) dataset, demonstrates robust performance
across macro-F1, weighted-F1, strict, and propor-
tional evaluation metrics. In particular, we high-
light the effectiveness of tone definition and CoT
prompting, which bolster classification reliability
and interpretability. Moreover, we compare leading
large language models (LLMs), specifically GPT-
4o, Claude 3, and o1-preview, under various exper-
imental configurations, showing that multi-stage
decision-making strategies can streamline complex
classification tasks in CQA settings across a variety
of LLMs.

2 Related Work

Research in multi-stage classification has demon-
strated that iterative refinement can improve the
accuracy and reliability of NLP models (Zhang
et al., 2020). In the context of few-shot or low-
resource scenarios, Zhao et al. introduced calibra-
tion strategies to bolster classification robustness,
while Lewis et al. showed that multi-step prompt-
ing methods significantly enhance model perfor-
mance. Moreover, the concept of CoT prompting
has been explored by Wei et al. to elicit more trans-
parent reasoning processes in LLMs. CoT is also re-
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Figure 1: Classifier-Refiner Architecture. Yellow highlight denotes input values extracted from the dataset,
including the Question (Q), Context (C), and User Responses (A). Blue text represents the Classifier’s output, which
subsequently serves as input for the Refiner. Pink highlight indicates the output of Example Retrieval with RAG,
which is later incorporated into the Refiner’s input.

ceiving attention from Consumer Health Question
Answering (CHQA) domain research (Lee et al.,
2024).

Recent advances in retrieval-based classifica-
tion have leveraged the idea of combining external
knowledge with model predictions for better han-
dling of uncertain cases (Lewis et al., 2020). Gao
et al. demonstrated that retrieval-based prompt-
ing can provide relevant context from a structured
dataset, thereby improving model understanding.
Our method follows these trends by integrating a
retrieval-augmented classification and refinement
mechanism, in which the system references train-
ing data to refine ambiguous labels. This com-
bination of iterative refinement and retrieval aug-
mentation offers a robust alternative to single-pass
classification pipelines (Izacard and Grave, 2020).

3 Methodology

3.1 Task Definition

Given a user’s question and a corresponding user-
generated health response, we segment the re-
sponse into self-contained snippets. Each snippet
must be assigned one of the following categories
(corresponding to the PUMA annotated categories),
which are defined by Agarwal et al.:

1. EXPERIENCE (<tone: Personal, Narrative>): Individ-
ual experiences or firsthand insights.

2. INFORMATION (<tone: Informative, Educational>):
Factual statements or knowledge about health condi-
tions.

3. CAUSE (<tone: Explanatory, Causal>): Explanations
of why a condition or symptom might occur.

4. SUGGESTION (<tone: Advisory, Recommending>):
Advice or recommendations for resolving or improving
a health-related issue.

5. QUESTION (<tone: Seeking Understanding>): Direct
inquiries seeking information or clarity.

3.2 Dataset
The dataset used in this study is the PUMA dataset,
created by independent researchers for the Per-
AnsSumm shared task (Naik et al., 2024). PUMA
was derived from the L6 - Yahoo! Answers Com-
prehensive Questions and Answers version 1.0
(multi-part) corpus 1 which contains data up to
October 2007, consisting of 3,167 CQA threads.
Specifically, Naik et al. filtered Yahoo! Answers
for healthcare-related content, randomly selecting
10,000 questions each with up to 10 answers. These
records covered a variety of medical topics, includ-
ing Diabetes, Dental, and Cancer, ensuring broad
coverage of health-related discussions.

From this curated set, the authors further refined
and annotated specifically for the PerAnsSumm
task. The final version of PUMA was then split

1https://webscope.sandbox.yahoo.com/catalog.
php?datatype=l&did=11&guccounter=1
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into three subsets for this shared task: a training
set of 2,236 question-answer pairs, a validation
set of 959 pairs, and a test set of 50 pairs. The
annotations were performed by three fluent En-
glish speakers (one master’s student, one research
assistant, and one native English-speaking volun-
teer) who identified perspective-specific spans in
each answer. These spans were categorized into
five distinct labels: Cause, Suggestion, Experience,
Question, and Information. Multiple annotators
cross-validated the labels to ensure reliability and
consistency.

3.3 Classifier-Refiner Framework

Classifier In the first stage, we use a prompt-
ing technique with a language model (e.g., a GPT-
based or other LLM) to process each user response
and produce potential snippet boundaries, as well
as initial category labels. This Classifier is in-
structed to highlight text segments that can mean-
ingfully stand alone. The output of the prompt
follows the JSON format:

[
{

"text": "<Extracted Snippet>",
"confidence": "CONFIDENT",
"reason not confident": "",
"category": "INFORMATION"

},
...

]

In cases where the LLM is uncertain about
the correct category, "confidence" is set to
“NOT_CONFIDENT", and an additional “rea-
son_not_confident" field is provided.

Refiner The Refiner operates by leveraging a
retrieval-augmented generation (RAG) mechanism,
which enhances classification accuracy by incor-
porating contextual examples from the training set.
Specifically, when triggered, the Refiner first re-
trieves the two most similar sentences from the
training set using a sentence similarity model (all-
MiniLM-L6-v2) (Wang et al., 2020). This allows
us to use different examples from the Classifier,
thus we expect different results from the Classifier
output. The all-MiniLM-L6-v2 model was used
in an unsupervised approach in this task. It is a
lightweight transformer-based model for semantic
similarity comparison, optimized for model size
and faster inference. The model has 66 million
parameters, compressed in a Student-Mimicking

Teacher network relationship. By utilizing self-
attention distribution, the training of the student
model is guided using the teacher’s last layer, ensur-
ing effective and flexible results across 12 different
languages.

These retrieved examples are then inserted into
the Refiner prompt as few-shot examples, allowing
the model to refine the classification by compar-
ing the uncertain snippet with previously labeled
cases. This iterative approach ensures that the clas-
sification process incorporates relevant training in-
stances, thereby improving overall classification re-
liability and mitigating ambiguity in nuanced cases.
The Refiner finally returns JSON format result:

{
"previous_category":

"<category from previous step>",
"confidence":

"<CONFIDENT or NOT_CONFIDENT>",
"refinement_reasoning": "<brief explanation>",
"refined_category": "<final label>"

}

By incorporating the different context and ref-
erencing prior examples, this step significantly re-
duces misclassification in borderline scenarios.

3.4 Language Models
We experimented with multiple language models to
evaluate the effectiveness of different architectures
in classification refinement:

GPT-4o An omni-modal autoregressive model
capable of processing text, audio, image, and video
inputs while generating text, audio, and image out-
puts. GPT-4o demonstrates exceptional multilin-
gual proficiency and enhanced computational ef-
ficiency, making it significantly faster and more
cost-effective compared to GPT-4 Turbo. Its ad-
vanced speech-to-text capabilities and safety align-
ment mechanisms enhance reliability in consumer
health discussions by reducing misinformation and
bias. This model was evaluated in multiple prompt-
ing setups, including single-prompt classification,
instruction-based CRA, and CoT refinement. (Ope-
nAI et al., 2024).

Claude 3 Developed by Anthropic, Claude 3
(Opus, Sonnet, and Haiku) represents a family of
LLMs optimized for cognitive reasoning, nuanced
contextual understanding, and expansive token pro-
cessing (up to 1 million tokens in specialized tasks).
Claude 3 Opus demonstrated self-awareness in con-
trolled testing environments, particularly in needle-
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Module Feature Example

Classifier Extracted Text If you took the prescribed antibiotics as recommended you are no longer conta-
gious.

Perspective CAUSE

confidence NOT CONFIDENT

reason not con-
fident

Could be either information or suggestion, as it implies both diagnosis and
recommendation to investigate further

Refiner refinement rea-
soning

After reviewing the full context and similar examples, this statement is clearly
providing factual information about contagiousness in relation to antibiotic treat-
ment, similar to example 4 ’For the first 24 to 48 hours after you start taking an
antibiotic, you are still contagious.’ The statement is not explaining why some-
thing happens (CAUSE), but rather stating a medical fact about contagiousness
after antibiotic treatment.

Refined cate-
gory INFORMATION

Table 1: Example Output.

in-a-haystack tasks, making it an ideal candidate
for refining ambiguous classifications in CQA set-
tings. This model was primarily used in CRA with
tone definitions, providing insights into subjective
aspects of user responses (Anthropic, 2024).

o1-preview A state-of-the-art language model de-
veloped by OpenAI, extensively tested on complex
reasoning tasks spanning multiple domains, includ-
ing computer science, mathematics, medicine, lin-
guistics, and social sciences. The model exhibits
superior performance in competitive programming,
high school-level mathematical reasoning, and radi-
ology report generation. Additionally, o1-preview
excels in natural language inference tasks, senti-
ment analysis, and financial modeling. This model
was particularly effective in CQA classification due
to its ability to integrate contextual cues across di-
verse perspectives (Zhong et al., 2024).

4 Results

We adopted macro-F1 (C-MF1), weighted-F1 (C-
WF1), Strict Precision/Recall/F1 (S-P, S-R, S-F1),
and Proportional Precision/Recall/F1 (P-P, P-R, P-
F1) - which are the official metrics used for the Per-
AnsSumm shared task - to capture a range of per-
formance aspects. C-MF1 and C-WF1 are Macro-
averaged and weighted F1 scores for the classifica-
tion task, focusing on how well the system balances
performance across categories. S-P, S-R, S-F1 are
Strict metrics to gauge performance under the as-
sumption that each snippet clearly belongs to one
category. P-P, P-R, P-F1 are proportional metrics to
evaluate partially correct classifications, recogniz-
ing that user-generated health content often spans

multiple categories or perspectives.

4.1 Evaluation

Single-Prompt vs. CRA: The single-pass methods
(rows 1-2) show lower C-MF1 and C-WF1 scores.
Once the CRA approach is introduced (rows 3-6),
the metrics consistently improve, indicating the ef-
fectiveness of a multi-stage classification pipeline.

Tone Definition Impact: Including explicit tone
definitions tends to increase both strict and propor-
tional F1 scores by helping the model distinguish
subtle differences (e.g., between EXPERIENCE vs.
INFORMATION or SUGGESTION vs. INFOR-
MATION).

CoT Influence: CoT reasoning further refines
the model’s decision-making, especially in com-
plex or overlapping perspectives. This is reflected
in higher macro-F1 scores for the CRA + CoT con-
figurations.

o1-preview (MNLP Final Submission) achieves
the best overall score of 0.6090, setting a strong
benchmark. Notably, its P-R (0.8406) and P-F1
(0.7382) values are significantly higher than the
other configurations.

In the broader context of the PerAnsSumm
shared task, our team (MNLP) ranks among the top
five, as shown in Table 3. Although not topping ev-
ery sub-metric, MNLP’s approach demonstrates a
balanced performance across multiple dimensions,
showcasing the strength of the CRA pipeline.

5 Discussion

The results underscore several key insights.
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Idx Model Method Descrip-
tion

C-
MF1

C-
WF1 S-P S-R S-F1 P-P P-R P-F1 Overall

1 GPT 4o Single Prompt 0.7985 0.8651 0.1459 0.1448 0.1453 0.4773 0.6013 0.5322 0.5142

2 GPT 4o
Single prompt+
Removed Ques-
tion

0.6991 0.8101 0.1438 0.0800 0.1028 0.4508 0.5775 0.5064 0.4731

3 GPT 4o CRA+Instr+tone
def 0.8126 0.8771 0.1852 0.1429 0.1613 0.5874 0.6342 0.6099 0.5494

4 GPT 4o CRA+ CoT 0.8292 0.8879 0.1896 0.1524 0.1690 0.5963 0.5942 0.5953 0.5507

5 GPT 4o CRA+ CoT+ tone
def 0.8387 0.8948 0.1809 0.1371 0.1560 0.5925 0.6005 0.5965 0.5491

6 Claude 3 CRA+Instr+tone
def 0.7963 0.8718 0.1168 0.0914 0.1026 0.6113 0.3847 0.4722 0.4822

7 o1-
preview

CRA+Instr+tone
def 0.8524 0.9061 0.1376 0.2724 0.1829 0.6580 0.8406 0.7382 0.6090

Table 2: Task A Results.

Team
Name C-MF1 C-WF1 S-P S-R S-F1 P-P P-R P-F1 Overall

yxyx 0.8697 0.9173 0.2205 0.2781 0.2460 0.6215 0.8029 0.7006 0.6213

MNLP 0.8524 0.9061 0.1376 0.2724 0.1829 0.6580 0.8406 0.7382 0.6090
AICOE 0.8656 0.9140 0.1765 0.2743 0.2148 0.6597 0.7159 0.6866 0.6052

YALENLP 0.8439 0.8902 0.1571 0.2857 0.2027 0.6372 0.8218 0.7178 0.6036

LTRC 0.9033 0.9239 0.1915 0.2229 0.2060 0.6774 0.6833 0.6803 0.6034

Table 3: Top 5 Team Results for Task A

5.1 Two-Stage Decision-Making Improves
Reliability

Incorporating a secondary Refiner model signifi-
cantly reduces classification uncertainty. In single-
pass systems, difficult or ambiguous snippets often
receive incorrect labels. The Refiner leverages ad-
ditional context (e.g., new examples, reason not
confident) to resolve ambiguities.

5.2 Role of Tone Definitions

Empirical evidence suggests that explicitly in-
cluding tone information—such as labeling
a snippet as ‘personal/narrative’ or ‘informa-
tive/educational’—guides the model to distinguish
subtle semantic differences between EXPERI-
ENCE and INFORMATION categories. This ad-
ditional guidance appears to yield more consistent
performance.

5.3 Impact of CoT

CoT prompts give the language model intermediate
reasoning steps, leading to more thorough snippet
analysis. While adding CoT marginally increases
computational cost, it provides a measurable boost
in precision, particularly for borderline cases where

multiple categories overlap. These findings align
with prior research on the benefits of explicitly
prompting large models to articulate their reason-
ing steps (Wei et al., 2022; OpenAI et al., 2024).

5.4 Model Comparison

As outlined in the Methodology section, three mod-
els (GPT-4o, Claude 3, and o1-preview) were eval-
uated under configurations tailored to multi-stage
classification in healthcare QA. Below, we high-
light the core empirical findings and discuss how
each model responded to different prompt designs.

5.4.1 Prompting Strategies and Performance
GPT-4o. GPT-4o’s best performance emerged
from a “CRA + CoT” setup, yielding an overall
score of 0.5507. Removing the explicit CoT steps
and instead relying on “Instruction + Tone Defini-
tion” resulted in only a marginal decrease (0.5494).
This near-parity suggests that GPT-4o effectively
processes step-by-step reasoning, even without di-
rect user guidance, provided instructions remain
sufficiently structured and detailed.

Claude 3. For consistency with o1-preview,
Claude 3 was primarily tested under “CRA + Tone

353



Definition.” The model’s performance varied more
substantially than GPT-4o, likely reflecting Claude
3’s sensitivity to domain-specific nuances and ques-
tion complexity. Despite such fluctuations, Claude
3 did exhibit strong alignment with user instruc-
tions, consistent with its “Constitutional AI” train-
ing paradigm—and demonstrated robust compre-
hension in tasks demanding nuanced responses. Fu-
ture refinements or domain-specific tuning may fur-
ther enhance its stability.

o1-preview. Unlike GPT-4o, o1-preview inter-
nally implements COT reasoning and prohibits ex-
ternal user-directed CoT prompts. Consequently,
we restricted prompts to “CRA + Tone Definition”
for a fair comparison. Under these conditions, o1-
preview achieved the highest performance across
our evaluation metrics. Its internally generated rea-
soning appears mature enough to parse complex
instructions, enforce safety considerations, and in-
corporate tonal guidelines, without requiring ex-
plicit step-by-step instructions from the user.

5.4.2 Observations and Implications
Internal vs. User-Supplied CoT GPT-4o ben-
efits from explicit CoT prompts, whereas o1-
preview inherently manages its own CoT. The
near-equivalence of GPT-4o’s “CRA + CoT”
(0.5507) and “CRA + Instruction + Tone Defi-
nition” (0.5494) underscores that well-crafted in-
structions can closely approximate explicit CoT.
By contrast, o1-preview excels through its inter-
nalized reasoning approach, obviating the need for
user-provided CoT altogether. This design choice
can be seen as advantageous for developers seek-
ing a lower cognitive overhead when engineering
prompts, although it also reduces direct user con-
trol over the model’s reasoning process.

Tone Definition and Stylistic Constraints
“Tonal” or “stylistic” labels did not show signif-
icant improvement with GPT-4o. However, these
could be mitigated through additional fine-tuning
or domain adaptation.

Practical Considerations for Multi-stage Health-
care QA Real-world healthcare QA systems de-
mand predictable model behavior and ease of
prompt design. While GPT-4o may need user-
defined CoT to reach peak performance, o1-
preview’s autonomous internal reasoning stream-
lines the developer experience. Choices between
these models must weigh the trade-off between di-

rect CoT control (GPT-4o) and fully internalized
reasoning (o1-preview) against the complexity of
the tasks at hand.

In summary, GPT-4o demonstrated strong capa-
bility with user-supplied CoT prompts, whereas
o1-preview’s internally managed reasoning and re-
fined alignment led to consistently higher perfor-
mance without explicit CoT instructions. Claude
3, meanwhile, remained competitive but was more
sensitive to prompt variations. These findings un-
derscore the importance of prompt engineering,
built-in CoT, and alignment strategies in deploy-
ing LLMs for complex tasks such as multi-stage
classification in healthcare QA.

5.4.3 Potential Explanations for o1-preview’s
Superior Results

o1-preview’s top performance may stem from both
architectural refinements and advanced alignment
protocols. First, o1-preview likely benefits from
curated training data tailored to tasks requiring fine-
grained reasoning and tone management. Second,
improved alignment techniques (building on GPT-
4o’s foundation) may enhance the balance between
correctness, recall, and user-centric instructions.
Notably, o1-preview’s resilience to prompt alter-
ations, including variations such as “CRA + CoT
+ tone def,” suggests that it integrates complex in-
structions and stylistic requirements without sacri-
ficing coherence.

Taken together, the differing performances of
GPT-4o, Claude 3, and o1-preview highlight the
interplay between model architectures, alignment
strategies, and prompt design. While both GPT-
4o and Claude 3 demonstrate robust capabilities
under certain configurations, o1-preview’s refined
integration of reasoning and tone guidance appears
to yield superior classification outcomes.

5.5 Error Analysis

Although the two-stage classification approach
proved effective overall, a closer inspection of the
21 instances where the Refiner was triggered (out
of 1039 total snippets) offers valuable insights into
recurring error patterns and the advantages of itera-
tive refinement. Table 4 presents representative ex-
amples where the Classifier’s initial label differed
from the Refiner’s final judgment, along with cor-
responding reasoning (“thought”) from both stages.
Three principal themes emerged:
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Figure 2: Sankey diagram illustrating the flow of snip-
pet labels from the Classifier to the Refiner. Each node
represents a classification label, with left-side nodes
corresponding to the Classifier’s initial labels and right-
side nodes representing the Refiner’s final labels. The
thickness of each link is proportional to the number
of snippets that transitioned between categories. No-
tably, the Refiner frequently corrected INFORMATION
to SUGGESTION and reclassified certain QUESTION
and EXPERIENCE snippets, indicating that these cate-
gories were more prone to initial misclassification. This
visualization highlights the value of iterative refinement
in improving classification accuracy.

5.5.1 Reclassification of Short or Polite
Snippets

In multiple cases, polite expressions or brief well-
wishes (e.g., “Be well,” “good luck”) were initially
labeled as INFORMATION or left as Uncatego-
rized by the Classifier. The Refiner, however, rec-
ognized these statements as advisory or encourag-
ing in nature, as aligning with training set (e.g., I
hope that you keep on going, and that you realize
how important you are to our world.: SUGGES-
TION) thereby reassigning them to SUGGESTION.
This suggests the Classifier’s tendency to default
to INFORMATION when textual clues are mini-
mal, whereas the Refiner incorporates context (e.g.,
prior labeled examples) to identify the statement’s
tone and intent.

5.5.2 Distinguishing Rhetorical Questions
from Genuine Questions

Several snippets contained rhetorical or illustrative
“questions” (e.g., “Is it because of the antibiotics?”)
that the Classifier labeled as QUESTION. Upon re-
finement, these snippets were deemed INFORMA-
TION once the system determined they functioned
more as explanatory remarks rather than genuine
queries. This underscores the importance of dis-
course context in discerning the pragmatic function
of a statement.

5.5.3 Personal Commentary and Narrative
Content

Certain snippets expressing personal opinions or
narrative remarks were originally labeled as IN-
FORMATION or EXPERIENCE. The Refiner iden-
tified that these statements often warrant EXPE-
RIENCE, particularly when they reflect an in-
dividual’s personal viewpoint or emotive stance
rather than a factual claim. For instance, “What
a great question.” was recognized as more per-
sonal/relational than purely informational, leading
to reclassification from INFORMATION to EXPE-
RIENCE.

5.5.4 Implications for Multi-stage
Classification

These illustrative examples highlight how the Re-
finer adds a crucial layer of context-awareness,
correcting labels when the Classifier defaults to
INFORMATION or encounters snippets with am-
biguous linguistic cues. Notably, the number of
triggers (21) is small relative to the overall dataset
(N=1039), yet it plays a disproportionate role in
improving the accuracy of borderline or confusing
snippets.

5.5.5 Practical Outcomes
Practical outcomes of this CRA include:

• Reduced Misclassification: The second stage captures
subtle differences (e.g., well-wishes vs. factual state-
ments) that single-pass models often overlook.

• Context Utilization: By referencing the full user re-
sponse or previously labeled snippets, the Refiner more
accurately infers intent behind brevity, politeness, or
indirect language.

• Efficiency Consideration: Triggering the Refiner only
for ambiguous or contradictory Classifier outputs miti-
gates computational overhead compared to always run-
ning two stages.

In summary, this error analysis underscores that
ambiguous linguistic cues, limited context in short
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Classifier Result Refiner Result Error Case Examples

EXPERIENCE SUGGESTION
A snippet initially labeled EXPERIENCE was reclassified after the Refiner noted
its advisory content (“. . . a personal request aiming to persuade selection. . . ”),
fitting better in SUGGESTION.

INFORMATION SUGGESTION
The statement “Best of good luck from Italy” was interpreted as INFORMATION
until the Refiner interpreted it as a supportive or advisory comment, upgrading it
to SUGGESTION.

QUESTION INFORMATION
Rhetorical questions (e.g., “can you picture a fish out of the water?”) were
reframed as INFORMATION once the Refiner deduced they conveyed illustrative
content rather than genuinely seeking an answer.

UNCATEGORIZED SUGGESTION
Extremely short snippets like “Geez! How terrible for her!!! Good luck to her &
you.” lacked a Classifier label. ’good luck’ serves as a supportive and advisory
statement, the Refiner assigned it to SUGGESTION.

Table 4: Example cases of Refiner modifying the classification label.

snippets, and the pragmatic function of rhetorical
questions remain primary sources of error. How-
ever, iterative refinement significantly alleviates
these issues, resulting in higher fidelity categoriza-
tions. Future enhancements might include more
explicit discourse modeling or leveraging external
knowledge bases for context augmentation, partic-
ularly for healthcare-related queries, where subtle
nuances can have significant implications for the
quality of advice or information provided.

6 Conclusion

In this paper, we presented a CRA that ad-
dresses the intrinsic complexity of health-related
user-generated content by employing a two-stage
decision-making pipeline. Our experiments on
the PUMA dataset, curated for the PerAnsSumm
shared task (Task A: span extraction and perspec-
tive classification), underscored how iterative re-
finement, retrieval-augmented generation, and CoT
prompting collectively enhance classification con-
fidence and accuracy. Comparative analyses across
leading LLMs (GPT-4o, Claude 3, and o1-preview)
revealed that multi-stage approaches deliver more
robust handling of ambiguous or overlapping cat-
egories. While our findings highlight significant
gains in classification metrics such as macro-F1
and weighted-F1, improvements are likely possi-
ble with key future directions include model in-
terpretability enhancements, domain-specific fine-
tuning for nuanced medical conditions, and cross-
lingual adaptations that can scale to diverse user
populations. Furthermore, integrating external
medical knowledge bases or discourse-level con-
text could refine the Refiner’s decision bound-
aries, especially for borderline snippets that require
deeper inference. By unifying advanced prompting

techniques with context-driven refinement, the pro-
posed CRA framework can be extended to broader,
multi-turn QA and summarization tasks in health-
care, ultimately improving the reliability of au-
tomated systems designed to navigate the ever-
evolving landscape of health information exchange.

Limitations

Although our CRA significantly improves classifi-
cation accuracy for user-generated health content,
there are notable limitations that warrant attention.
First, the approach relies heavily on the availabil-
ity of high-quality labeled data in the training set.
If the training set lacks examples that closely re-
semble an ambiguous snippet, the Refiner may fail
to retrieve contextually relevant instances, leading
to suboptimal classification. Second, while the
inclusion of CoT prompting and tone definitions
enhances interpretability, it does not fully guar-
antee factual correctness, particularly critical in
healthcare scenarios. Our system is not designed to
validate medical claims or detect misinformation,
so erroneous or potentially harmful suggestions
could persist if they align with patterns seen in the
training data. Additionally, the current pipeline has
been tested on a single domain-specific dataset and
language, limiting its generalizability to other lan-
guages or more specialized medical domains. Fu-
ture research could explore cross-lingual implemen-
tations or adapt the method to incorporate external
medical knowledge bases for deeper validation. Fi-
nally, despite demonstrating improvements in com-
putational efficiency by triggering the Refiner only
when the Classifier is uncertain, the iterative nature
of our approach incurs additional inference time
for borderline cases, which might not be desirable
for large-scale, real-time applications.
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Abstract

Healthcare community question-answering
(CQA) forums provide multi-perspective in-
sights into patient experiences and medical ad-
vice. Summarizations of these threads must ac-
count for these perspectives, rather than relying
on a single “best” answer. This paper presents
the participation of the WisPerMed team in
the PerAnsSumm shared task 2025, which
consists of two sub-tasks: (A) span identifi-
cation and classification, and (B) perspective-
based summarization. For Task A, encoder
models, decoder-based LLMs, and reasoning-
focused models are evaluated under fine-
tuning, instruction-tuning, and prompt-based
paradigms. The experimental evaluations em-
ploying automatic metrics demonstrate that
DeepSeek-R1 attains a high proportional re-
call (0.738) and F1-Score (0.676) in zero-shot
settings, though strict boundary alignment re-
mains challenging (F1-Score: 0.196). For
Task B, filtering answers by labeling them
with perspectives prior to summarization with
Mistral-7B-v0.3 enhances summarization. This
approach ensures that the model is trained ex-
clusively on relevant data, while discarding
non-essential information, leading to enhanced
relevance (ROUGE-1: 0.452) and balanced fac-
tuality (SummaC: 0.296). The analysis uncov-
ers two key limitations: data imbalance and
hallucinations of decoder-based LLMs, with
underrepresented perspectives exhibiting sub-
optimal performance. The WisPerMed team’s
approach secured the highest overall ranking in
the shared task.

1 Introduction

Healthcare community question-answering (CQA)
forums have become a vital resource for individu-
als seeking medical advice and shared experiences
(Rueger et al., 2021). Unlike traditional clinical
consultations, these online platforms allow users
to post health-related questions and receive a wide

*These authors contributed equally to this work.

range of answers from peers or experienced com-
munity members. Such forums often present di-
verse content that can address multiple aspects of a
medical query. Some answers focus on personal ex-
periences, whereas others might center on medical
information or offer direct suggestions. Moreover,
responses may highlight causes for a condition or
pose follow-up questions to the original poster.

Despite this wealth of information, most sum-
marization approaches for healthcare CQA threads
relied on a single best-voted answer (Chowdhury
and Chakraborty, 2019), which overlooks the multi-
perspective nature of the discussion. A single
“best” answer cannot fully encapsulate such a vari-
ety of viewpoints, highlighting the need for more
perspective-aware summarization, where different
types of information are distinguished rather than
merged into one overarching summary.

Building on this motivation, the PerAnsSumm
shared task (Agarwal et al., 2025), aims to foster
research in perspective-aware healthcare answer
summarization and comprises two sub-tasks:

(A) Span Identification and Classification:
Given a question and user answers the task is
to label spans in the answers that correspond
to one of the five perspectives: cause, sugges-
tion, experience, question, or information.

(B) Perspective-Based Summarization: For
each perspective category, the task is to gen-
erate a concise summary that represents the
content found across all answers in the thread.

This paper describes the approaches of team Wis-
PerMed to tackle both sub-tasks. The following
sections provide an overview of related work (Sec-
tion 2) and describe the dataset in detail (Section 3).
Then, the approaches for both tasks (Section 4) and
the corresponding evaluation procedure (Section 5)
are presented and their results are discussed (Sec-
tion 6). Finally, the conclusion (Section 7) offers a
summary of the findings.
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2 Related Work

Datasets derived from healthcare CQA forums pro-
vide insights into patient experiences (Rueger et al.,
2021) and informal medical language (Chaturvedi
et al., 2024). Specialized datasets (Naik et al., 2024;
Chaturvedi et al., 2024; Savery et al., 2020) have
been created to capture this type of content, fa-
cilitating research in patient-centered healthcare
natural language processing (NLP).

Large Language Models (LLMs) demonstrate re-
markable capabilities in various domains, including
healthcare (Thirunavukarasu et al., 2023). BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019) and its variants
have formed the landscape of NLP in medicine
(Thirunavukarasu et al., 2023). As encoder mod-
els, they process entire input sequences at once,
leveraging attention mechanisms to build contex-
tual representations. This ability makes them partic-
ularly well-suited for extracting structured informa-
tion. Decoder-only LLMs, such as GPT (Genera-
tive Pre-trained Transformer) (Brown et al., 2020a)
models, have shown impressive performance in
various NLP tasks. These models process text
sequentially, predicting the next token based on
previous tokens. Research has explored adapting
decoder-only LLMs for span labeling tasks (Dagde-
len et al., 2024), leveraging their strong semantic
understanding capabilities. While decoder-only
LLMs excel at generating text, they face challenges
in producing structured outputs. One major is-
sue is “hallucination” (Sun et al., 2024), where
models generate plausible but incorrect informa-
tion. Recent advancements in LLMs have led to
improved reasoning capabilities through enhanced
training strategies (Pan et al., 2024) and chain-of-
thought prompting (Wei et al., 2022). Models like
DeepSeek-R1 (DeepSeek-AI et al., 2025) exhibit
strong reasoning abilities, which are particularly
valuable in healthcare applications where nuanced
understanding and logical inference are crucial.

Summarization has emerged as a highly stud-
ied application of NLP in healthcare. Vari-
ous approaches have been developed, including
extraction- and abstraction-based techniques using
LLMs (Xu et al., 2024). Perspective or aspect-
based summarization (Chaturvedi et al., 2024) rep-
resents an evolving area in NLP, aiming to summa-
rize different viewpoints or aspects within a text.
This is valuable when dealing with diverse experi-
ences and opinions expressed in online forums.

3 Dataset

The dataset used is derived from the L6 Yahoo!
Answers CQA repository1, filtered to only include
health-related content. It contains 3,245 question
threads with a maximum of 10 answers, totaling
10,288 individual answers. The final dataset is
split into 2,236 training threads, 959 validation
threads, and 50 test threads. Table 1 shows span
counts, along with the number of corresponding
perspective-based summaries in the training and
validation sets. The raw dataset consists of a uid,
user question, context to the question provided by
the user, answers from other users, and raw_text
which combines all information into a single string.

Perspective Train Val

Information 4,388 / 1,742 1,805 / 733
Cause 579 / 305 266 / 138
Suggestion 3,613 / 1,363 1,635 / 595
Question 284 / 213 131 / 101
Experience 1,245 / 745 565 / 315

Table 1: Perspective-based dataset statistics. Each cell
shows the number of spans / the number of summaries.

The annotation of this dataset follows the schema
described by Naik et al. (2024).

Perspective and Span Annotation. Each answer
is manually reviewed to detect text spans corre-
sponding to five perspectives: cause, suggestion,
experience, question, and information. Annotators
label these spans at the character level, conveying
any of the aforementioned perspectives. As a re-
sult, a single answer can contain multiple types of
perspectives. The level of granularity allows for
the annotation of whitespaces and sub-words.

Perspective-Based Summarization. For each
thread, a concise summary is written for every
perspective observed in the answers. These sum-
maries aim to capture the core content associated
with that perspective across all answers in the
thread.

4 Methods

As the sub-tasks are distinct, it is necessary to im-
plement different approaches for each. The follow-
ing sections detail the approaches employed.

1https://webscope.sandbox.yahoo.com/catalog.
php?datatype=l&did=11, Last Accessed: 19. February
2025.
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4.1 Task A: Span Identification and
Classification

The experiments carried out for Task A used a
variety of models and tuning techniques.

Models. DeBERTa-v3-large (He et al., 2021a),
developed by Microsoft, builds upon the encoder
model DeBERTa (He et al., 2021b). It comprises 24
layers with a hidden size of 1024, totaling approx-
imately 418 million parameters, and is designed
to enhance natural language understanding tasks.
Llama-3.1-8B-Instruct was developed by Meta AI
as part of the Llama series (Dubey et al., 2024) of
LLMs. It contains 8 billion parameters, offering a
balance between performance and computational
efficiency. Llama-3.3-70B-Instruct is a 70-billion-
parameter model from a newer variant of the Llama
series. Both Llama models are fine-tuned with
instruction-based data, enhancing their capability
to follow complex directives and generate contextu-
ally relevant outputs. DeepSeek-R1 (DeepSeek-AI
et al., 2025) is developed for reasoning tasks across
domains such as mathematics, programming, and
language. It employs a Mixture of Experts (Jacobs
et al., 1991) architecture, comprising a total of 671
billion parameters. DeepSeek-R1-Distill-Llama-
70B (DeepSeek-AI et al., 2025) involves distill-
ing the DeepSeek-R1 model into a more compact
form based on the Llama-3.3-70B-Instruct archi-
tecture. This involves training the smaller model
(the student) to replicate the behavior of the larger
DeepSeek-R1 model (the teacher) by learning from
its outputs.

Fine-Tuning of Encoder Models. For the en-
coder approach, a DeBERTa-v3-large model was
fine-tuned. The five perspective category spans
were cast as NER labels in a BIO scheme
(Ramshaw and Marcus, 1995; Tjong Kim Sang,
2002). During training, a maximum sequence
length of 512 was set, a batch size of 16 was
used, and a warmup ratio of 0.1. Model check-
points were saved at each epoch, and the best state
was chosen based on F1-Scores from the valida-
tion set. Early stopping was only applied to the
DeBERTareconstr.-early model. For inference, the
raw_text style representation was available for the
training and validation data only, but not for the
test set. Therefore, two inference approaches were
explored. DeBERTa: Each individual answer was
provided to the model as a separate input, and the
resulting token-level predictions were stored on a

per-answer basis. DeBERTareconstr.: Each test sam-
ple was reconstructed into a single sequence by in-
serting the same markers (uri: <ID>, question:
<text>, and answer_0: <text>) to obtain a for-
mat that is consistent with the training data. The
entire thread was then passed to the model at once,
enabling it to capture cross-answer context. Af-
ter token-level predictions were generated for both
approaches, a chunk-merging step was applied to
merge consecutive tokens that shared the same per-
spective class. Single-word spans were removed
to improve precision. The final labeled segments
were then saved in the submission format.

Instruction-Tuning of Llama-3.1-8B-Instruct.
In order to optimize Llama-3.1-8B-Instruct for
perspective-aware span extraction, the train split of
the dataset was structured into a format suitable for
instruction-tuning (Wei et al., 2021). Instruction-
tuning refers to the process of training LLMs on
data formatted as instructions. Input and output
are transformed in a conversation-style format con-
taining a system and user prompt as well as the
structured assistant output. In this work the sys-
tem prompt outlines the task, classification guide-
lines, and output format. To ensure the consistency
and successful parsing of outputs, the model is
instructed to return its response as a TypeScript
object. The user prompt contains the answers
from forum users and the assistant output contains
the spans structured as a TypeScript object. All
prompts can be found in the Appendix A.5.1.

To maintain computational efficiency Parameter-
Efficient Fine-Tuning (PEFT) (Ding et al., 2023)
via LoRA (Low-Rank Adaptation) (Hu et al., 2022)
was employed. More details on the implementation
can be found in the Appendix A.2.

During inference, the instruction-tuned model
utilizes the same prompts as in training. The infer-
ence parameter are available in Appendix A.3.1.

Prompt-Based Techniques. To complement
fine- and instruction-tuning, zero-shot and few-shot
prompting strategies (Brown et al., 2020b) were
employed. These methods instruct LLMs to extract
relevant spans and classify them into the correct
perspective category without the need for parame-
ter updates.

In the zero-shot setting, the model is directly
prompted using the system prompt that outlines
the task, classification guidelines, and output for-
mat, combined with the user prompt that contains
the answers from forum users. This method tests
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the model’s ability to generalize its understanding
of text span classification based solely on its pre-
trained knowledge.

To enhance performance, few-shot learning was
introduced by showing the model examples of
gold-standard output in a conversational style.
These examples demonstrate how the spans should
be extracted and categorized, helping the model
learn through analogy. Two variations of few-
shot prompting were explored: Standard few-shot
prompting, where gold-standard examples were
provided as part of the same interaction and few-
shot prompting with system message resets, where
each example was treated as an independent in-
stance with repeated system prompts to reinforce
adherence to the task and the output format.

In both few-shot and zero-shot settings the same
system and user prompts are used as for instruction-
tuning (see Appendix A.5.1).

4.2 Task B: Perspective-Based Summarization

Early experiments on the validation set indicated
that fine-tuning models solely with span data for
the summarization task led to suboptimal results.
Relying solely on span annotations failed to cap-
ture the broader contextual and query-specific nu-
ances necessary for generating high-quality sum-
maries. Furthermore, when using spans as input,
performance on Task B is dependent on Task A
performance. Consequently, a more comprehen-
sive instruct-tuning strategy was adopted that lever-
ages all available information, including the con-
text, question, and answers. In this revised ap-
proach, models are exposed to a richer set of inputs
during the training process, enabling improved un-
derstanding and synthesis of relevant information
for summarization. The instruct-tuning was tested
on the following four models. The prompts for the
instruction-tuning can be seen in Appendix A.5.2.

Models. Mistral-Small-24B-Instruct2 is a pre-
trained, instruction-tuned model that achieves
performance comparable to larger models such
as Llama 3.3 70B while offering faster infer-
ence. Mistral-7B-Instruct-v0.3 (Jiang et al., 2023).
BioMistral-7B-DARE (Labrak et al., 2024) adapts
Mistral-7B-Instruct-v0.1 (Jiang et al., 2023) for the
biomedical domain through additional pre-training
on PubMed Central, achieving strong results on
medical question-answering benchmarks and ef-

2https://mistral.ai/news/mistral-small-3, Last
Accessed: 23. February 2025.

I agree. Some diseases are a result of vitamin
deficiencies so if you take vitamins that are normally

lacking you could end up with a misdiagnosis.

Some diseases are a result of vitamin deficiencies so if
you take vitamins that are normally lacking you could end

up with a misdiagnosis

: Depends on the doses. It can mask symptoms of deficiency

as well as give false-positives on other test

Seriously, don't do it

Answers

Spans

[INFORMATION]

[SUGGESTION]

[INFORMATION], [SUGGESTION]

[INFORMATION]

Depends on the doses. It can mask symptoms of deficiency
as well as give false-positives on other tests. Seriously,

don't do it.

[INFORMATION]

Figure 1: Workflow Diagram of the Answer Labeling
Pipeline for Task B pre-classification. The process be-
gins by extracting answer boundaries from raw_text.
Next, labeled spans are assigned to their corresponding
answers based on their starting index. Finally, the origi-
nal answer texts are assigned the perspective labels of
contained spans.

fective multilingual generalization. DeepSeek-R1-
Distill-Qwen-32B (DeepSeek-AI et al., 2025) is a
distilled dense model that replicates the reasoning
patterns of the larger DeepSeek-R1 (DeepSeek-AI
et al., 2025) in a compact form.

4.2.1 Pre-classification Methodology
Instead of using all answers to generate a summary
for a given perspective, multi-label perspective clas-
sifiers were trained using DeBERTaV3 and Mistral-
7B-v0.3. To create a labeled answer dataset, an-
swer spans were extracted and the corresponding
answers determined via regular expressions (see
Figure 1). In some instances, a more complex regex
was needed to fix annotation errors; for example,
the second span in Figure 1 mistakenly included a
leading colon and whitespace from raw_text that
were not present in the original answer.

The trained classifiers were then applied to the
test set to label answers and generate summaries, as
illustrated in Figure 2. For model instruct-tuning,
only answers labeled with the same perspective as
the requested summary (e.g., information) were
used. If no answers were labeled with the desired
perspective, the model used all available answers
instead. This strategy ensures that every thread
receives one summary per perspective, regardless
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Train Multilabel
Answer

Classifier Train Summaries

Labeled Answer
Train Dataset

DeBERTa
Mistral-7B-v0.3 

Labeled Answer
Test Dataset

Predict Testset
 Answers

Inference

Mistral-7B-v0.3
DeepS-Qwen-32B

Mistral-Small-3-24B
BioMistral-7B DARE

Results

Figure 2: The labeled answer train dataset was used to
train multi-label classifiers and instruction-tune models
for Task B. The test dataset, with predicted answer per-
spectives, was then used to generate summarizations.

of the distribution of labeled answers. Addition-
ally, an alternative approach involves training five
separate models (Mistral-7B-v0.35x), one for each
perspective.

5 Evaluation

A range of evaluation metrics are used to evalu-
ate different aspects of the results, with scores in
Table 3 and Table 6 provided by the shared task
organizers (Agarwal et al., 2025).

5.1 Task A: Span Identification and
Classification

The evaluation methodology for Task A comprises
assessment of classification performance and span
identification accuracy. The former is measured
using a macro-averaged F1-Score (Macro F1) and
a weighted F1-Score (Weight F1). The latter is
evaluated using Strict and Proportional Matching
(Agarwal et al., 2025). Strict Matching involves the
evaluation of the exact match between predicted
and gold standard spans, with precision (P), recall
(R), and F1-Scores being computed from the num-
ber of exact matches. Proportional Matching al-
lows for partial correctness by evaluating the token-
level overlap between predicted and gold-standard
spans. The number of overlapping tokens in each
predicted span is measured against the most similar
gold span, and the results are then used to compute
precision, recall, and F1-Scores. This approach
makes it more flexible than strict matching.

To evaluate hallucinated spans in LLM-
generated outputs, it is checked whether the out-
put spans appear verbatim in the original answers.
This analysis reports the proportion of correctly
extracted spans, providing a quantitative measure
of the model’s tendency to introduce extraneous
content. This analysis is reported in this work in
addition to the shared task results, and is not used
for ranking.

5.2 Task B: Perspective-Based Summarization

In Task B the evaluation methodology employs
multiple automatic metrics to assess the quality of
generated summaries across the aspects relevance
and factuality.

5.2.1 Relevance
Recall-Oriented Understudy for Gisting Evalu-
ation (ROUGE) (Lin, 2004) measures the F1-
Score of overlap of unigrams (ROUGE-1), bi-
grams (ROUGE-2), and longest common subse-
quences (ROUGE-L) between the generated and
reference summaries. Bilingual Evaluation Un-
derstudy (BLEU) (Papineni et al., 2002) is a met-
ric that evaluates the precision of n-gram overlap.
Metric for Evaluation of Translation with Explicit
ORdering (METEOR) (Banerjee and Lavie, 2005)
considers both synonymy and stemming to provide
a more flexible assessment of lexical similarity. It
also calculates the degree to which the matched
words are ordered in the same way in the summary
as in the reference. BERTScore (Zhang et al., 2020)
leverages contextualized embeddings from BERT
to compute semantic similarity between generated
and reference summaries.

5.2.2 Factuality
The AlignScore (Kryscinski et al., 2020) quanti-
fies the degree of alignment between the facts in
the summary and the reference. SummaC-Conv
(Laban et al., 2022) (SummaC) detects inconsisten-
cies by segmenting documents into sentence-level
pairs and using a convolutional layer to aggregate
entailment scores for the factuality assessment.

6 Results and Discussion

The final rankings of the top five participating
teams in the shared task are summarized in Table 2.
The WisPerMed team achieved the highest overall
ranking (0.457) in the shared task, narrowly outper-
forming the other teams. The ranking is based on
both sub-tasks. In Task A WisPerMed obtained a
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Ovr. Task A Task B

# Team x̄ x̄ Rel. Fact.

1 WisPerMed 0.457 0.598 0.421 0.352
2 YALENLP 0.455 0.604 0.436 0.325
3 yxyx 0.453 0.621 0.365 0.372
4 AICOE 0.45 0.605 0.395 0.348
5 KHU_LDI 0.449 0.589 0.417 0.343

Table 2: Final results of the top five teams in the shared
task. Columns show team rank (#) and average scores
(x̄) for overall (Ovr.) and Task A. Task B scores are
reported separately for relevance (Rel.) and factuality
(Fact.). Bold values indicate the highest score, and
underlined values mark the second-highest.

score of 0.598 using DeepSeek-R1 in the zero-shot
setting (DeepS-R1zs in Table 3). Task B is further
divided into relevance and factuality categories,
where WisPerMed ranked first in both categories
combined using the instruction-tuned Mistral-7B-
v0.3, with the labeled answer test dataset (Mistral-
7B-v0.3pre-class.).

6.1 Task A: Span Identification and
Classification

Table 3 summarizes the performance of various
experimental setups for Task A. Evaluation metrics
include Macro F1-Score, Weighted F1-Score, and
precision (P), recall (R), and F1-Scores under both
Strict and Proportional span matching.

DeepSeek-R1 in the zero-shot setting (DeepS-
R1zs) achieved the best scores in Macro F1-Score
(0.878), Weighted F1-Score (0.921), and several
span matching metrics (Strict Recall (0.229), Strict
F1-Score (0.196), Proportional Recall (0.738), and
Proportional F1-Score (0.676)). Its high recall val-
ues under both matching criteria indicate robust
retrieval capabilities. Moreover, its overall average
score of 0.598 reinforces its superior performance
across the evaluation metrics.

DeBERTa achieves an overall score of 0.539,
yet it does not exhibit any particular advantage in
individual sub-metrics. The DeBERTa-based vari-
ants DeBERTareconstr.-early and DeBERTareconstr. ex-
hibit improved performance. The former attained
the second-best Macro F1-Score (0.875), while
the latter secured the second-best Weighted F1-
Score (0.909) and the highest Proportional Pre-
cision (0.627). This observation indicates that
smaller transformer-based models, specifically opti-
mized for sequence labeling tasks, can demonstrate
comparable performance to larger general-purpose
LLMs in perspective-aware span extraction, despite

their smaller size. Making them a considerable
choice to reduce resource cost (computational and
environmental).

The Llama-based models show a clear depen-
dence on model size and training paradigm. The
instruction-tuned Llama-3.1-8B-Instruct (Llama-
3.1-8Bit) underperforms, with a Macro F1-Score
of 0.602 and a Strict F1-Score of 0.023, indicating
the limitations of smaller decoder-only models for
this task. This performance discrepancy could also
indicate that the instruction-tuning process was not
sufficiently rigorous or tailored for this specific
task. In contrast, the larger Llama-3.3-70B-Instruct
variants show enhanced performance. Llama-3.3-
70Bfs-sys. variant achieved the highest Strict Pre-
cision (0.182) as well as competitive Strict Recall
(0.192) and Strict F1-Score (0.187), suggesting that
repeated system message enhance the model’s abil-
ity to precisely identify spans. Its overall average
performance of 0.580 places Llama-3.3-70Bfs-sys
in second place among WisPerMed’s approaches.

The enhanced reasoning capabilities in DeepS-
R1 and it’s much larger size might have contributed
to its superior overall performance. The notable im-
proved overall score of the distilled version (DeepS-
Llama-3.3-70Bfs) compared to the original Llama-
3.3-70B-Instruct (Llama-3.3-70Bfs) in the few-shot
setting underscore this hypothesis about the impact
of reasoning on span labeling performance.

All models exhibited lower scores under Strict
span matching, with the highest Strict F1-Score
reaching only 0.196. This consistent difference in-
dicates that precise boundary prediction remains a
difficult aspect of span extraction. This may be at-
tributed to boundary misalignments in span extrac-
tion, where models correctly identify relevant con-
tent but fail to precisely match the annotated span
boundaries. It may also stem from inconsistencies
in the annotated dataset (see Section 4.2.1), where
spans include partial words, trailing or preceding
whitespaces. The DeepS-R1zs model’s superior
performance in Strict metrics confirms its ability to
accurately retrieve relevant spans, even under ex-
acting conditions. Proportional F1-Scores ranged
from 0.420 (Llama-3.1-8Bit) to 0.676 (DeepS-
R1zs). The overall higher scores for proportional
matching suggests that many of the errors in strict
matching are due to minor boundary misalignments
rather than completely incorrect span predictions.
Even with the best approaches among the top five
teams in the shared task, performance remains sub-
optimal, underscoring the inherent complexity and
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Experiment Macro F1 Weight F1 Str. P Str. R Str. F1 Prop. P Prop. R Prop. F1 x̄

DeBERTa 0.855 0.906 0.103 0.126 0.113 0.600 0.593 0.596 0.539
DeBERTareconstr.-early 0.875 0.907 0.170 0.152 0.161 0.619 0.621 0.620 0.563
DeBERTareconstr. 0.871 0.909 0.115 0.116 0.115 0.627 0.584 0.605 0.543
Llama-3.1-8Bit 0.602 0.733 0.028 0.019 0.023 0.319 0.616 0.420 0.392
Llama-3.3-70Bfs 0.828 0.887 0.065 0.048 0.055 0.561 0.604 0.582 0.508
Llama-3.3-70Bfs-sys. 0.866 0.907 0.182 0.192 0.187 0.606 0.689 0.645 0.580
DeepS-Llama-70Bfs 0.839 0.882 0.174 0.162 0.168 0.516 0.647 0.574 0.541
DeepS-R1zs 0.878 0.921 0.171 0.229 0.196 0.623 0.738 0.676 0.598

Table 3: Results for Task A. Columns show Macro F1-Score (Macro F1) and Weighted F1-Score (Weight F1), along
with precision (P), recall (R), and F1-Scores under Strict (Str.) and Proportional (Prop.) span matching for all
experiments. The final column (x̄) represents the overall average score. The best values are highlighted in bold,
while the second-best values are underlined. Abbreviations: it - instruction-tuned, fs - few-shot, fs-sys. - few-shot
with repeated system messages, zs - zero-shot.

Experiment Found Spans (%)

Llama-3.1-8Bit 90.70
Llama-3.3-70Bfs 96.60
Llama-3.3-70Bfs-sys. 97.65
DeepS-Llama-3.3-70Bfs 80.82
DeepS-R1zs 92.02

Table 4: Percentage of generated spans that match ver-
batim spans in the original answers. Abbreviations:
it - instruction-tuned, fs - few-shot, fs-sys. - few-shot
with repeated system messages, zs - zero-shot.

challenges of perspective-based span labeling.
In addition to the shared task evaluation metrics,

an analysis was conducted to quantify hallucinated
content in LLM-generated outputs (see Table 4).
For instance, Llama-3.1-8Bit achieved an overall
percentage of 90.70%, indicating that a notable
fraction of its output spans deviated from the source
text. In contrast, the Llama-3.3-70B variants ex-
hibited a higher match percentage of 96.60% and
97.65%, suggesting improved fidelity to the input
text. However, the DeepSeek-R1-Distill-Llama-
70B variant showed a considerably lower match
percentage (80.82%), underscoring a higher ten-
dency to generate hallucinated or extraneous spans.
The DeepS-R1zs model yielded 92.02%, indicating,
that reasoning may lead to a higher tendency to
introduce extraneous content.

6.2 Task B: Perspective-Based Summarization

Results of Task B are discussed using metrics for
factuality (AlignScore and SummaC) and relevancy
(ROUGE, BERTScore, METEOR, and BLEU).

Answer Pre-classification Table 5 presents the
classification performance of trained Mistral-7B-
v0.3 and DeBERTaV3 on the validation set.
Mistral-7B-v0.3 achieves a higher Macro F1-Score

Perspective P R F1 S

Mistral-7B-v0.3

experience 0.735 0.683 0.708 419
suggestion 0.718 0.749 0.733 1,142
cause 0.571 0.124 0.204 193
question 0.851 0.381 0.526 105
information 0.704 0.722 0.713 1,210

Macro 0.716 0.532 0.577 3,069
Weighted 0.710 0.677 0.681 3,069

DeBERTaV3

experience 0.671 0.780 0.722 419
suggestion 0.732 0.762 0.746 1,142
cause 0.300 0.016 0.030 193
question 0.778 0.200 0.318 105
information 0.689 0.786 0.734 1,210

Macro 0.634 0.509 0.510 3,069
Weighted 0.681 0.708 0.679 3,069

Table 5: Comparison of classification performance on
the validation set for Mistral-7B-v0.3 and DeBERTa. In
the overall Macro and Weighted rows, the best score
(between models) for each metric is shown in bold.
Precision (P), recall (R), F1-Score (F1), and Support (S)
are reported.

(0.577) compared to DeBERTaV3 (0.510). Both
models perform well on perspectives with ample
training data, such as experience and suggestion.
However, the cause perspective, which has lim-
ited training examples, shows a very low F1-Score
of 0.030 for DeBERTaV3. This contrast reveals
the impact of training data scarcity on classifi-
cation performance. Overall, while both models
effectively classify well-represented perspectives,
Mistral-7B-v0.3 exhibits a more balanced perfor-
mance across classes, highlighting the challenge of
underrepresentation in certain categories. There-
fore Mistral-7B-v0.3 was chosen to classify the test
dataset answers.
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Experiment R1 R2 RL BERT MET BLEU Rel. Align SC Fact.

BioMistral-7B 0.344 0.151 0.308 0.753 0.286 0.108 0.325 0.449 0.276 0.363
Mistral-7B-v0.3 1E 0.408 0.182 0.371 0.891 0.378 0.091 0.387 0.369 0.260 0.314
Mistral-7B-v0.35x 0.445 0.222 0.406 0.899 0.406 0.127 0.418 0.421 0.306 0.364
Mistral-7B-v0.3pre-class. 1E 0.437 0.211 0.397 0.897 0.397 0.123 0.410 0.441 0.297 0.369
Mistral-7B-v0.3pre-class. 2E 0.452 0.221 0.410 0.899 0.410 0.135 0.421 0.409 0.296 0.352
Mistral-Small-3-24B 0.291 0.088 0.255 0.877 0.251 0.048 0.302 0.393 0.238 0.316
DeepS-Qwen-32B 0.299 0.097 0.264 0.862 0.249 0.067 0.306 0.372 0.241 0.306

Table 6: Results for Task B. This table reports ROUGE-1 (R1), ROUGE-2 (R2), ROUGE-L (RL), BERTScore
(BERT), METEOR (MET), BLEU, Relevance average (Rel.), AlignScore (Align), SummaC-Conv (SC), and
Factuality average (Fact.). The best values are highlighted in bold, while the second-best values are underlined.
Abbreviations: pre-class. - pre-classified answers, E - epoch.

Labeled Test Dataset The test dataset consists
of 231 answers in total. Among these, the predicted
perspectives are distributed as follows: 85 answers
were labeled as experience, 112 as suggestion, 15
as cause, 12 as question, and 93 as information.
This distribution mirrors the one in the validation
set. Labels such as suggestion and information are
common, while the cause and question perspec-
tives are notably underrepresented. This suggests
that the prediction of answers is robust and the
proportions of predicted labels are consistent with
expectations. The threshold of the classifier for
each perspective was determined by using the val-
idation set. Detailed information on the classifier
(F1-Score, P, R) can be found in Appendix A.4.

Summarization Results The results in Table 6
illustrate the performance of various models on
Task B. Notably, Mistral-7B-Instruct-v0.3 with pre-
classification (Mistral-7B-v0.3pre-class.) trained for
two epochs achieved the best overall performance,
with the highest ROUGE-1 (0.452) and ROUGE-L
(0.410) scores, as well as top scores in BERTScore
(0.899), METEOR (0.410), and BLEU (0.135).
This indicates that the approach of pre-classifying
answers prior to instruct-tuning notably enhanced
the quality of the generated summaries by improv-
ing relevance. The five-model approach (Mistral-
7B-v0.35x), where a separate model was trained for
each perspective, also performed very well. It ranks
first in ROUGE-2 (0.222) and SummaC (0.306)
and second in multiple other metrics. In contrast,
Mistral-Small-24B-Instruct (Mistral-Small-3-25B)
and the distilled Qwen model (DeepS-Qwen-32B)
yielded lower scores, while BioMistral-7B per-
formed moderately but did not match the perfor-
mance of the pre-classification approaches. Further-
more, the relevancy and factuality averages provide
additional insight. Higher relevancy scores suggest
that the summaries are closely aligned with the

intended perspectives, and better factuality scores
indicate fewer factual errors. In particular, the pre-
classification approach achieved a robust relevancy
average (0.421) and acceptable factuality (0.352),
underscoring its ability to capture and synthesize
perspective-specific content effectively. Overall,
these findings confirm that integrating an answer
pre-classification step leads to superior summariza-
tion performance, making it the best overall strat-
egy for Task B.

7 Conclusion

In conclusion, the study presents an investigation
into perspective-aware summarization for health-
care CQA forums through two interrelated tasks:
(A) span identification and classification, and (B)
perspective-based summarization. The experimen-
tal results demonstrate that while fine-tuned en-
coder models such as DeBERTaV3 yield compet-
itive performance in precise span extraction, the
integration of enhanced reasoning capabilities, as
seen in DeepSeek-R1, leads to superior overall per-
formance in capturing complex contextual cues.
The analysis of hallucinated content reveals that
model fidelity to the source text remains a critical
challenge, particularly for larger decoder-only mod-
els employing reasoning mechanisms. The findings
from the summarization experiments underscore
the efficacy of an answer pre-classification strat-
egy, which improves both relevancy and factuality
of generated summaries by effectively leveraging
perspective-specific information.

Limitations

This work has several limitations that should be
addressed in future research.

One limitation is the data imbalance inherent
in the dataset. The underrepresentation of certain
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classes in the dataset negatively impacts the clas-
sifier’s performance as well as robustness of the
evaluation. It highlights a broader challenge in ob-
taining balanced annotations in perspective-based
datasets.

Another limitation concerns the generation of
summaries for each perspective regardless of the
presence of corresponding spans. Since there was
no penalty for generating summaries for perspec-
tives without supporting evidence, the system pro-
duced what may be considered “useless” sum-
maries. Future evaluations should consider incorpo-
rating a penalty for such outputs to better reflect the
accuracy and utility of the generated summaries.

Automatic evaluation metrics may not capture
all aspects of healthcare summarization, such as
clinical relevance and interpretability, potentially
leading to an incomplete assessment of model per-
formance.
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A Appendix

The appendix provides additional details on the
frameworks and models used in this work, includ-
ing their licensing terms, the setup for instruction-
tuning, decoding parameters, and the specific
prompting strategies employed in the experiments.

A.1 Licences

The frameworks and models used in this work are
governed by different open-source licenses, as
detailed in Table 7.

Framework/Model License

unsloth3 Apache-2.0

deberta-v3-large4 MIT
Llama-3.1-8B-Instruct5 Llama 3.1 Comm.
Llama-3.3-70B-Instruct6 Llama 3.3 Comm.
DeepSeek-R1-Distill-Llama-70B7 MIT
DeepSeek-R18 MIT

Mistral-7B-Instruct-v0.39 Apache-2.0
Mistral-Small-24B-Instruct-250110 Apache-2.0
BioMistral-7B-DARE11 Apache-2.0
DeepSeek-R1-Distill-Qwen-32B12 MIT

Table 7: Licensing terms for each framework and
model used in this work, including various Apache-2.0
(Apache License 2.0), MIT (Massachusetts Institute of
Technology License), and Comm. (Llama Community
License).

A.2 Training Setup

This section outlines the configurations, including
parameter-efficient tuning, and optimization meth-
ods used for training the models.

A.2.1 Task A: Span Identification and
Classification

For the span identification and classification task,
the Llama-3.1-8B-Instruct model was fine-tuned us-
ing PEFT techniques via LoRA. The unsloth frame-
work was used to optimize training. The training
examples were structured as shown in Figure 3.
The training utilized AdamW 8-bit optimization,
with a learning rate of 2e− 5, batch size of 1, and
gradient accumulation steps of 64. The model was
trained for two epochs.

A.2.2 Task B: Perspective-Based
Summarization

The instruction-tuning parameters can be seen in
Table 8.

The answer classifier based on Mistral-7B-v0.3
was trained for two epochs using FP16, with a
batch size of 1 and gradient accumulation over
4 steps. It employed a learning rate of 2e-5, a
maximum sequence length of 4096, and utilized
LoRA with a rank of 8 and an alpha of 16. In
contrast, the DeBERTaV3-base model was trained
for two epochs with a learning rate of 2e-5, a batch
size of 16, and a maximum sequence length of
1024.

3https://unsloth.ai/, Last Accessed: 24 February
2025.

4https://huggingface.co/microsoft/
deberta-v3-large, Last Accessed: 24. February 2025.

5https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct, Last Accessed: 24. February 2025.

6https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct, Last Accessed: 24. February 2025.

7https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Llama-70B, Last Accessed:
24. February 2025.

8https://huggingface.co/deepseek-ai/
DeepSeek-R1, Last Accessed: 24. February 2025.

9https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3, Last Accessed: 24. February
2025.

10https://huggingface.co/mistralai/
Mistral-Small-24B-Instruct-2501, Last Accessed:
24. February 2025.

11https://huggingface.co/BioMistral/
BioMistral-7B-DARE, Last Accessed: 24. February
2025.

12https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-32B, Last Accessed: 24.
February 2025.
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Model E FP16 lr Batch GA LR LA DO MSL TM

Mistral-7B-v0.3 1/2 True 2e-5 6 – 16 32 0.1 4096 All linear
Mistral-Small-24B-Instruct-2501 2 True 2e-5 1 4 4 8 0.1 1400 All linear
DeepSeek-R1-Distill-Qwen-32B 2 True 2e-5 1 – 8 16 0.1 2024 All linear
BioMistral-7B-DARE 2 True 2e-4 6 – 32 64 0.1 4096 All linear

Table 8: Instruction-tuning hyperparameters for the models. Abbreviations: E - epochs; FP16 - FP16 training;
lr - learning rate; Batch - batch size; GA - gradient accumulation steps; LR - LoRA rank; LA - LoRA alpha;
DO - dropout; MSL - maximum sequence length; TM - targeted modules. Note that Biomistral Dare and Mistral
v03 instruct share the same hyperparameters as Mistral-7B-v0.3.

A.3 Decoding Setup

This section outlines the inference procedures used
to generate spans and summarization.

A.3.1 Task A: Span Identification and
Classification

Llama-3.3-70B-Instruct was deployed using vLLM
(Kwon et al., 2023), an inference framework de-
signed for efficient text generation. The model
was accessed via the OpenAI python package13

version 1.60.0, with default sampling parameters14

except for max_tokens, which was set to 2000. For
the instruction-tuned model Llama-3.1-8B-Instruct,
inference was performed using the unsloth frame-
work. Outputs were generated with default config-
uration15 but max_new_tokens set to 5000 and a
1.2 repetition penalty.

A.3.2 Task B: Perspective-Based
Summarization

For inference, all models were configured with
a maximum sequence length of 4.096 tokens, up
to 1.024 new tokens, deterministic decoding (do
sample set to false), and a temperature of 0.7. The
only exception is DeepSeek-R1-Distill-Qwen-32B,
which was run with a temperature of 0.6 while all
other inference parameters remained the same.

A.4 Classifier

Table 9 details the threshold tuning experiments
for the Mistral-7B-v0.3 model on the validation
set. For each perspective, the optimal threshold
is reported alongside the corresponding precision,
recall, and F1-Scores for both class 0 and class 1.

13https://github.com/openai/openai-python, Last
Accessed: 24. February 2025.

14https://docs.vllm.ai/en/latest/api/inference_
params.html, Last Accessed: 24. February 2025.

15https://huggingface.co/docs/transformers/
v4.49.0/en/main_classes/text_generation#
transformers.GenerationConfig, Last Accessed: 24.
February 2025.

Perspective T Class P R F1

experience 0.25 0 0.971 0.945 0.958
1 0.700 0.819 0.755

suggestion 0.25 0 0.903 0.747 0.818
1 0.666 0.863 0.751

cause 0.15 0 0.971 0.936 0.953
1 0.375 0.580 0.455

question 0.15 0 0.990 0.988 0.989
1 0.673 0.705 0.688

information 0.40 0 0.849 0.752 0.797
1 0.671 0.790 0.726

Table 9: Threshold (T) tuning results on the validation
set for the Mistral-7B-v0.3 model. For each perspective,
the optimal threshold and the corresponding precision,
recall, and F1-Scores for class 0 and class 1 are reported.

For instance, for the experience perspective, a
threshold of 0.25 yields excellent performance for
class 0 (P = 0.971, R = 0.945, F1 = 0.958) and
solid results for class 1 (P = 0.700, R = 0.819,
F1 = 0.755). In contrast, the cause perspective
exhibits a very low F1-Score of 0.455 for class 1
despite high performance for class 0. These re-
sults demonstrate that while well-supported classes
achieve high scores, those with fewer examples
remain difficult to classify accurately.

A.5 Prompting

This section details the design of system and user
prompts, including formatting strategies for both
sub-tasks.

A.5.1 Task A: Span Identification and
Classification

The prompting setup is designed to ensure struc-
tured, consistent, and accurate extraction of
perspective-based spans. The motivation be-
hind this approach was to align the model’s pre-
training with the task requirements, leveraging the
instruction-following capabilities of LLMs that
have undergone instruction-tuning. Since such
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System:

You are an advanced AI model specializing in perspective-aware span extraction. Your objective is to analyze health-
related community question-answering forums, where users ask health-related questions and receive multiple answers
containing different perspectives.
# Task
Identify relevant spans (text segments) within user-provided answers that correspond to one or more of the five perspective
categories:

CAUSE: It underlines the potential cause of a medical phenomenon or a symptom. It answers the “Why” regarding
a specific observation, offering insights to identify the root cause.

SUGGESTION: It encapsulates strategies, recommendations, or potential courses of action towards management or
resolution of a health condition.

EXPERIENCE: It covers first-hand experiences, observations, insights, or opinions derived from treatment or
medication related to a particular problem.

QUESTION: It consists of interrogative phrases, follow-up questions and rhetorical questions that are sought to
better understand the context. They typically start with phrases like Why, What, Do, How, and Did etc, and end in a
question mark.

INFORMATION: It encompasses segments that offer factual knowledge or information considering the given query.
These segments provide comprehensive details on diagnoses, symptoms, or general information on a medical condition.
Classify each identified span into the correct perspective category based on its meaning and intent.
## Guidelines for Identifying and Classifying Spans:

Select complete spans. Avoid excessively short spans that lack context.
Only include spans that align with a perspective category.
Never change the wording or formatting of the spans. EXTRACT and not rewrite.

# Output Format
Your response must always be one valid PerspectiveSpans object:
“‘typescript
interface PerspectiveSpans {

EXPERIENCE: string[],
INFORMATION: string[],
CAUSE: string[],
SUGGESTION: string[],
QUESTION: string[]

}
“‘
Each perspective category should contain a list of spans extracted from the answers. If no span belongs to a category,
leave an empty list. Do not add additional perspectives.
# Example
## User Input:
"answers": [

<answer1>,
...
<answern>

]
## Assistant output
“‘typescript
const spans: PerspectiveSpans = {

"CAUSE": [<cause_span1>, <cause_span2>],
"SUGGESTION": [<suggestion_span1>, ..., <suggestion_spann>],
"EXPERIENCE": [],
"QUESTION":[],
"INFORMATION": [<information_span1>]

}
“‘

Figure 3: System prompt for Task A defining the task, perspective categories, and extraction guidelines for structured
span identification.

models are trained to interpret and execute user
instructions, framing the task in a conversational
format was a natural way to enhance compliance
with task constraints.

The system prompt (see Figure 3) was designed
to provide precise definitions and distinguishing
criteria for each of the five perspectives. These

explicit definitions help the model differentiate be-
tween similar categories and prevent incorrect or
overly broad span selections. Furthermore, the sys-
tem prompt reinforces extraction constraints, en-
suring that the model preserves the wording and
formatting of the original text in the user prompt
(see Figure 4) rather than generating new or para-
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User:

"answers": [
<answer1>,
...
<answern>

]

Figure 4: User prompt for Task A providing the input format with a list of answers from a the discussion thread.

Assistant:

“‘typescript
const spans: PerspectiveSpans = {

"CAUSE": [<cause_span1>, <cause_span2>],
"SUGGESTION": [<suggestion_span1>, ..., <suggestion_spann>],
"EXPERIENCE": [],
"QUESTION":[],
"INFORMATION": [<information_span1>]

}
“‘

Figure 5: Assistant response for Task A demonstrating the structured TypeScript-like format for extracted spans.

phrased spans. The example used in the system
prompt to demonstrate the formats is the training
example with uri 1504599.

Another critical consideration was the need for
structured outputs to facilitate automatic evalua-
tion. Since LLMs generate open-ended text by
default, responses can vary notably in format if not
explicitly constrained. To address this, the output
structure was formatted as a TypeScript-like ob-
ject (see Figure 5), enforcing a predefined schema
where extracted spans are categorized under their
respective perspective labels.

Beyond instruction-tuned training, the prompt-
ing framework was also applied to zero-shot and
few-shot inference settings to assess the model’s
ability to generalize its span extraction capabilities
without direct fine-tuning. The zero-shot setting
tested whether the model could infer the extrac-
tion rules solely from the system prompt, while the
few-shot setting provided additional gold-standard
examples. In the standard few-shot setting, multi-
ple examples were included in the same conversa-
tion, allowing the model to learn span extraction
through analogy. In contrast, the few-shot with re-
peated system message reinforced consistency by
repeating the system prompt before each example.

A.5.2 Task B: Perspective-Based
Summarization

Figure 6 shows the prompt for the instruction-
tuning of the summarization task, on the example of

the information perspective. For other perspectives,
only the "Perspective Instruction" was changed:

• Information Perspective: For information
purposes, generate a concise summary.

• Suggestion Perspective: It is suggested, gen-
erate a concise summary with suggestions.

• Experience Perspective: One user shared his
experience, generate a concise summary.

• Cause Perspective: Some of the causes, gen-
erate a concise summary.

• Question Perspective: It is inquired, generate
a concise summary addressing the questioner.
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System:

Task: In recent years, healthcare community question-answering (CQA) forums have allowed users to seek advice
and share experiences. Answers may contain diverse perspectives, such as factual information, suggestions, personal
experiences, potential causes, or follow-up questions. The goal is to generate a concise, perspective-specific summary
that accurately reflects the essence of the relevant content from the discussion.

Writing Guidelines:

1. Analyze the provided information to capture essential ideas and significant medical details.
2. Generate a concise summary that reflects the core essence of the annotated perspective.
3. Frame the summary as follows:

• For Information summaries, begin with phrases like “For information purposes.”
• For Suggestion summaries, begin with phrases such as “It is suggested,” “It is advised,” or “Consider.”
• For Experience summaries, begin with phrases like “One user shared his experience” or “In user’s experience.”
• For Cause summaries, begin with phrases like “Some of the causes.”
• For Question summaries, begin with phrases such as “It is inquired.”

4. Do not add any information beyond what is provided.

Perspective Instruction: {e.g., “For information purposes, generate a concise summary.”}

Question: <QUESTION>

Context: <CONTEXT>

Answers:
- <answer1>
- <...>
- <answern>

Information Summary:

User:

<Summary>

Figure 6: Example prompt used for generating perspective-specific summaries. The System box details the task,
guidelines, and input information, while the User box specifies the required output.
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Abstract

This paper presents the approach of the Data-
Hacks team in the PerAnsSumm Shared Task at
CL4Health 2025, which focuses on perspective-
aware summarization of healthcare community
question-answering (CQA) forums. Unlike tra-
ditional CQA summarization, which relies on
the best-voted answer, this task captures diverse
perspectives, including ‘cause,’ ‘suggestion,’
‘experience,’ ‘question,’ and ‘information.’ The
task is divided into two subtasks: (1) identify-
ing and classifying perspective-specific spans,
and (2) generating perspective-specific sum-
maries. We addressed these tasks using Large
Language Models (LLM), fine-tuning it with
different low-rank adaptation (LoRA) config-
urations to balance performance and computa-
tional efficiency under resource constraints. In
addition, we experimented with various prompt
strategies and analyzed their impact on perfor-
mance. Our approach achieved a combined av-
erage score of 0.42, demonstrating the effective-
ness of fine-tuned LLMs with adaptive LoRA
configurations for perspective-aware summa-
rization.

1 Introduction

Community Question Answering (CQA) forums
for healthcare care serve as valuable resources for
individuals seeking information on illnesses, treat-
ments, therapies, personal experiences, and medi-
cal advice. These communities include a number
of varied viewpoints, such as factual information,
expert advice, personal anecdotes, causal justifica-
tions, recommendations, and follow-up questions.
Although these platforms provide diverse perspec-
tives, the large number of responses, often contain-
ing conflicting points of view, makes it difficult for
users to extract clear and reliable information.

A well-structured summary is crucial for en-
abling users to quickly access relevant information
within this complex content. However, traditional

summarization models, like RNN-based encoder-
decoder architectures, often fail to handle the com-
plexity of CQA discussions. They struggle with
capturing multiple viewpoints, handling contradic-
tions, and preserving key information which is
present in CQA threads. (Chowdhury et al., 2020).

Recent advancements in summarization tech-
niques have attempted to address these challenges.
Perspective-aware summarization models ensure
that critical viewpoints are retained (Naik et al.,
2024), while inconsistency detection methods such
as SummaC use NLI-based approaches to improve
factual reliability and coherence in summaries (La-
ban et al., 2022). Furthermore, CQA-specific
summarization corpora have provided high-quality
reference summaries to better adapt models to
the unique nature of CQA data (Chowdhury and
Chakraborty, 2019). Despite these developments,
existing methods still struggle to effectively capture
the nuanced and sometimes contradictory perspec-
tives present in CQA discussions.

Large Language Models (LLMs) have emerged
as powerful tools for text summarization, excelling
at processing lengthy contexts and generating co-
herent summaries (Minaee et al., 2024). However,
adapting these models to domain-specific tasks like
healthcare CQA remains a challenge due to the
high computational costs associated with full fine-
tuning. To overcome this limitation, Low-Rank
Adaptation (LoRA) (Hu et al., 2022) has gained
prominence as an efficient fine-tuning technique
that enables LLMs to specialize in specific tasks
with minimal parameter updates. By leveraging
LoRA, LLMs can be adapted for perspective-aware
summarization while significantly reducing com-
putational costs.

The PerAnsSumm Shared Task at CL4Health
2025 (Agarwal et al., 2025) is designed to advance
the development of perspective-aware summariza-
tion systems for healthcare CQA forums, focusing
on two subtasks: (A) Span Identification and Classi-
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fication and (B) Perspective-Aware Summary Gen-
eration. This problem highlights the necessity for
sophisticated methods that can summarize and dis-
tinguish between various points of view while pre-
serving the content’s cohesion and factual integrity.
In our work, we fine-tuned Mistral-7B(Jiang et al.,
2023) and analyzed the impact of LoRA ranks and
prompting strategies on the performance of both
tasks.

2 Dataset

The task included PUMA dataset (Naik et al.,
2024), a perspective-aware corpus specifically an-
notated for medical question-answer pairs. The
dataset consists of 3,167 CQA threads with approx-
imately 10,000 answers sourced from Yahoo! L6
corpus. Each answer is annotated with perspective-
specific spans across five categories: experience,
information, cause, suggestion and question. Each
data instance has several key components- Ques-
tion, Context, Answers, Labelled Answers Spans,
Labelled summaries.

The Question represents the user’s inquiry re-
lated to a healthcare topic. The Context provides
additional background information, which may be
empty or contain relevant details to aid in under-
standing the question. The Answers consist of a
list of user-provided responses related to the ques-
tion. These answers are further enriched with La-
belled Answer Spans, which are annotated text
segments categorized under the perspective labels.
Each span includes the text itself along with its
character-level position, enabling precise identifi-
cation of the perspective within the answer. Addi-
tionally, the dataset includes Labelled Summaries,
which are perspective-specific summaries that ag-
gregate relevant spans across all answers in a thread.
These summaries serve as concise representations
of the underlying perspectives, facilitating a com-
prehensive understanding of the various viewpoints
expressed in the data set.

3 Methodology

Our goal was to enhance perspective-aware answer
summarization by fine-tuning Mistral-7B using
Low-Rank Adaptation (LoRA).We experimented
with different LoRA ranks and prompting strategies
to assess their impact on performance. Mistral-7B
was chosen for its strong language understanding
capabilities, efficiency, and ability to generate co-
herent and contextually rich summaries. Instead

of full fine-tuning, we opted for LoRA to preserve
model generalization while optimizing computa-
tional efficiency making it feasible under resource
constraints.

3.1 Data Preprocessing
The dataset provided contained perspective-specific
spans and summaries annotated across five cate-
gories: experience, information, cause, suggestion,
and question. To prepare the data for training, we
systematically extracted these segments from the
original JSON annotations and reformatted them
into a structured format.

Each instance in the dataset was converted into a
standardized dictionary structure where every cate-
gory was explicitly represented. For example, even
if a response contained only information spans,
the format ensured that placeholders for other per-
spectives were included like: {information:[.....],
suggestion:[ ], experience:[ ], cause:[ ], question:[
]}. This transformation allowed uniform process-
ing across all data instances and ensured that the
model learned to differentiate between perspectives
effectively.

3.2 Prompt engineering
We experimented with various prompt strategies
and documented the results of two key variations.
For Task A, the model was instructed to generate
spans for each perspective label. For Task B, the
same prompt structure was used, but the model
was asked to generate summaries instead of ex-
tracting spans. In the first approach, the prompt
presented the question, context, and answer as a
single block of text without explicitly differentiat-
ing them. While this approach produced reasonable
outputs, it often resulted in vague or incomplete
summaries, as the model struggled to clearly distin-
guish between different components. Additionally,
the absence of clear section markers sometimes led
to misclassification in span extraction and inconsis-
tencies in summaries.

To address these issues, we refined the prompt
by explicitly separating the question, context, and
answer into distinct sections. This structured ap-
proach improved the model’s ability to identify
relationships between different components, lead-
ing to more accurate perspective classification. It
also minimized errors caused by misinterpretation
and ensured greater consistency in the generated
outputs. A comparative analysis of both strategies
revealed that the structured prompt method signifi-
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cantly improved both the accuracy and coherence
of the summaries, making it the preferred choice
for our experiments. The prompts are detailed in
the Appendix section.

3.3 Evaluation Metrics

The submissions were evaluated across different
metrics for each task. Task A (span identification
and classification) was evaluated across 3 main
metrics F1 score (Macro F1, Weighted F1), Strict
Matching, Proportional Matching. Macro and
weighted F1 scores can assess the classification per-
formance, ensuring a balanced evaluation across all
the classes including minority ones. Strict Match-
ing and Proportional Matching metrics for preci-
sion, recall and F1 score were used to evaluate span
identification accuracy. Strict Matching checks if
the span boundaries match exactly, while Propor-
tional Matching allows for partial overlaps, making
the evaluation more flexible.

Task B (Perspective-Specific Summarization)
was evaluated across two metrics- Relevance and
Factuality. Relevance was assessed using ROUGE
(ROUGE-1, ROUGE-2, ROUGE-L) (Lin, 2004),
BERTScore (Zhang et al., 2020), METEOR (Baner-
jee and Lavie, 2005), and BLEU (Papineni et al.,
2002). ROUGE measures lexical overlap by com-
paring n-grams between the generated and refer-
ence summaries. BERTScore goes beyond surface-
level overlap by using contextual embeddings to
evaluate semantic similarity. METEOR considers
synonymy and stemming to better capture mean-
ing, while BLEU focuses on matching n-grams but
is more sensitive to exact word choice. Factuality
was assessed using AlignScore(Zha et al., 2023),
SummaC ensuring that summaries remained fac-
tually consistent and aligned with source content.
This multifaceted evaluation approach allowed us
to thoroughly analyze the effectiveness and reliabil-
ity of our models in capturing diverse perspectives
and generating high-quality summaries.

4 Experiments and Results

4.1 Experimental Setup

We fine-tuned the Mistral-7B model using Low-
Rank Adaptation (LoRA) to optimize computa-
tional efficiency while preserving model general-
ization. LoRA enables efficient adaptation by in-
jecting low-rank matrices into key transformer lay-
ers, significantly reducing the number of trainable
parameters while maintaining model performance.

To systematically analyze the impact of LoRA con-
figurations, we experimented with different LoRA
ranks—64, 128, and 256—while keeping the LoRA
scaling factor (lora_alpha) fixed at 128.

The model was fine-tuned for five epochs, with
a per-device batch size of four and gradient ac-
cumulation set to two, resulting in an effective
batch size of eight. We used the AdamW opti-
mizer with fused updates, a learning rate of 2e-4,
and a linear scheduler without warm-up. Mixed
precision training was enabled, utilizing FP16 or
BF16 (based on hardware support) to further opti-
mize memory usage and training speed. Training
was monitored using epoch-wise evaluation, with
key metrics tracked via Weights & Biases (W&B).
The best-performing model was selected based on
evaluation results, with a checkpoint limit of six to
manage storage efficiently.

4.2 Results
Table 1(a) presents the performance metrics for
Task A. Among the different LoRA configurations,
the refined prompt (RP) with a LoRA rank of 256
achieved the highest overall performance, with
a Task A score of 0.5441, outperforming initial
prompt (IP) configurations with a small margin.
The RP (256) setting also led to the best Strict F1
and Proposition F1, indicating improved precision
and recall in structured prediction. Among the IP
configurations, LoRA rank 256 performed best, fol-
lowed by rank 128 and the lowest performance was
observed in IP (64).

Table 1(b) reports the evaluation metrics for Task
B. Similar to Task A, RP (256) achieved the highest
scores, particularly in TASK B Factuality (0.3663)
and TASK B Relevance (0.3504). While IP (256)
demonstrated competitive performance (Factuality
= 0.3521), RP (256) still outperformed all other
configurations. The improvements in factuality and
relevance suggest that refined prompts help gen-
erate more accurate and contextually appropriate
responses, making them particularly effective for
knowledge-based tasks like summarization.

Table 2 consolidates the performance across both
tasks. The highest combined average score of
0.4203 was obtained using RP (256). The results
indicate that increasing the LoRA rank improves
performance by a small margin, with LoRA rank
256 yielding the best results. The refined prompt
(RP) strategy outperformed initial prompts (IP) for
the combined average. However, their effect across
individual metrics was not consistent.
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(a) Performance Metrics for Task A

LoRA rank Macro F1 Weighted F1 Strict P Strict R Strict F1 Prop P Prop R Prop F1 Task_A

IP (64) 0.8382 0.8778 0.1148 0.0857 0.0981 0.4542 0.6318 0.5285 0.5015
IP (128) 0.8787 0.9181 0.0156 0.0495 0.0238 0.5422 0.6301 0.5829 0.5082
IP (256) 0.8689 0.9009 0.131 0.1048 0.1164 0.4546 0.6659 0.5403 0.5192
RP (256) 0.8635 0.9044 0.1599 0.1352 0.1465 0.5149 0.6678 0.5815 0.5441

(b) Performance Metrics for Task B

LoRA rank ROUGE1 ROUGE2 ROUGEL BERT METEOR BLEU TASK B Relevance Align SummaC TASK B Factuality

IP (64) 0.3671 0.1607 0.3345 0.7849 0.3386 0.1052 0.3485 0.4002 0.2661 0.3331
IP (128) 0.3787 0.1679 0.3428 0.8041 0.3406 0.1072 0.3569 0.2846 0.4302 0.3574
IP (256) 0.3778 0.1747 0.343 0.7927 0.3452 0.1092 0.3571 0.4211 0.2831 0.3521
RP (256) 0.3708 0.1683 0.3365 0.7762 0.3391 0.1116 0.3504 0.4427 0.2899 0.3663

Table 1: Performance Metrics with different LoRA ranks (in bracket) and IP - Initial Prompt, RP - Refined Prompt

LoRA rank Combined Average

IP (64) 0.3944
IP (128) 0.4075
IP (256) 0.4095
RP (256) 0.4203

Table 2: Task A + B Combined Average Scores

5 Conclusion

This study shows that combining Low-Rank Adap-
tation (LoRA) with well-structured prompts can
significantly improve perspective-aware summa-
rization in healthcare Q&A forums. By fine-tuning
the Mistral-7B model, we captured different per-
spectives—cause, suggestion, experience, question,
and information—while keeping the approach ef-
ficient. LoRA rank played a key role, with higher
ranks generally improving precision and recall,
though the gains leveled off at a certain point. The
refined prompt strategy also boosted classification
accuracy, proving that clear guidance helps mod-
els generate better responses. These results high-
light the importance of both efficient fine-tuning
and good prompt design in building accurate and
context-aware summarization systems for health-
care applications.

6 Limitations

While RP (256) achieves the highest combined
score, no single configuration is best across all
metrics. For instance, IP (128) performs better in
factuality compared to RP(256) (SummaC: 0.4302
vs. 0.2899), indicating trade-offs between factu-
ality and summarization quality. Although higher
ranks (256) generally yield better combined results,

IP (128) achieves comparable or better results in
some areas (e.g., ROUGE1, SummaC, BERT), in-
dicating that simply increasing LoRA rank does
not guarantee uniform improvement.Despite using
LoRA to reduce computational costs, fine-tuning
large models like Mistral-7B is still computation-
ally intensive, which may not be accessible to all
researchers. Since the model is fine-tuned specifi-
cally on healthcare CQA data, this might limit its
generalizability to other domains or even differ-
ent types of healthcare texts outside the utilized
dataset.

7 Future Work

Using Mistral with prompt variations and LoRA
ranks for the tasks shows promised results. Fu-
ture research could focus on creating more robust
prompt templates that generalize across tasks and
developing adaptive methods to adjust LoRA ranks
based on task complexity.Further, ablation studies
comparing different fine-tuning methods, includ-
ing other parameter-efficient techniques, could pro-
vide deeper insights. Expanding prompt strategies
for diverse domains, integrating multi-modal data,
and analyzing the trade-offs between prompt refine-
ment and model performance are also promising
directions. Analyzing the model through a mecha-
nistic interpretability lens might provide more in-
sights into its decision-making process, clarifying
things that remain unclear in our analysis.
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Appendix

Prompts
The prompts used in our experiments are shown in
Figures 1,2,3,4

Initial Prompt for Spans
Below is the given input text. Extract
the spans for each of the following labels:
EXPERIENCE, INFORMATION, CAUSE,
SUGGESTION, QUESTION.
Input:
{input_text}
Response:
{{"EXPERIENCE": [], "INFORMATION":
[], "CAUSE": [], "SUGGESTION": [],
"QUESTION": []}}

Figure 1: The initial prompt used for extracting spans
from input text for different categories.

Initial Prompt for Summary
Below is the given input text. Summarize
the input text for each of the following
labels: EXPERIENCE, INFORMATION,
CAUSE, SUGGESTION, QUESTION.
Input:
{input_text}
Response:
{{"EXPERIENCE": "", "INFORMATION":
"", "CAUSE": "", "SUGGESTION": "",
"QUESTION": ""}}

Figure 2: The initial prompt used for generating sum-
maries from input text for different categories.

Refined Prompt for Spans
Below is the given Question, Context, and
Answer. Identify the spans in the user an-
swers that reflect a particular perspective
and classify each span to the correct per-
spective among: EXPERIENCE, INFOR-
MATION, CAUSE, SUGGESTION, QUES-
TION. Output the results in JSON format.
Question:
{question}
Context:
{context}
Answer:
{answer}
Spans:
{{"EXPERIENCE": [], "INFORMATION":
[], "CAUSE": [], "SUGGESTION": [],
"QUESTION": []}}

Figure 3: The refined prompt used for identifying and
classifying perspective spans in user answers.

Refined Prompt for Summary
Below is the given Question, Context, and
Answer. Generate a summary that repre-
sents the underlying perspective for each of
the following perspectives: EXPERIENCE,
INFORMATION, CAUSE, SUGGESTION,
QUESTION. Output the results in JSON for-
mat.
Question:
{question}
Context:
{context}
Answer:
{answer}
Summaries:
{{"EXPERIENCE": "", "INFORMATION":
"", "CAUSE": "", "SUGGESTION": "",
"QUESTION": ""}}

Figure 4: The refined prompt used for generating
perspective-based summaries from user answers.
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Abstract

In this paper, we describe our submission for
the shared task on Perspective-aware Health-
care Answer Summarization. Our system con-
sists of two quantized models of the LlaMA
family, applied across fine-tuning and few-
shot settings. Additionally, we adopt the Sum-
CoT prompting technique to improve the fac-
tual correctness of the generated summaries.
We show that SumCoT yields more factu-
ally accurate summaries, even though this im-
provement comes at the expense of lower
performance on lexical overlap and seman-
tic similarity metrics such as ROUGE and
BERTScore. Our work highlights an impor-
tant trade-off when evaluating summarization
models.

1 Introduction

In this paper, we present our submission for
the shared task on Perspective-aware Healthcare
Answer Summarization (PerAnsSumm) (Agarwal
et al., 2025). PerAnsSumm comprises two tasks:
span identification and summarization. Given a
medical question-answer pair as input, the system
must identify spans within the answer and classify
them into five distinct perspectives: ‘cause,’ ‘sug-
gestion,’ ‘experience,’ ‘question,’ and ‘informa-
tion.’ In Task 2, the system utilizes these extracted
perspective categories to generate summaries cor-
responding to the same five perspectives. The final
summaries encompass all perspectives present in
the given answer within the QA pair.

The shared task leverages the PUMA dataset
(Naik et al., 2024), a perspective-aware annotated
corpus of QA pairs and their respective summaries
extracted from Yahoo!’s L6 corpus. Participants
are provided with annotated spans and summaries
in the training and development sets, while the test
set contains only QA pairs. The first task, span
identification, is evaluated at the lexical level us-

ing strict and proportional matching metrics1. The
second task, summarization, is assessed using rel-
evance metrics, ROUGE (Lin, 2004), BERTScore
(Zhang et al., 2019), METEOR (Banerjee and
Lavie, 2005) and BLEU (Papineni et al., 2002)
at both lexical and semantic levels. Additionally,
the organizers introduce two metrics, AlignScore
(Zha et al., 2023) and SummaC (Laban et al.,
2022), to evaluate the factuality of generated sum-
maries. We participate in Task 2.2 (Factuality)
of the shared task, where we approach the prob-
lem by leveraging two quantized models from the
LLaMA family (Grattafiori et al., 2024) in fine-
tuning, few-shot and chain-of-thought (CoT) (Wei
et al., 2023) prompting settings. Depending on the
approach, we either generate summaries directly
or first identify spans and then incorporate them
into the summarization process.

2 Related Work

The prominence of Large Language Models
(LLMs) in the medical domain has been well doc-
umented through surveys and evaluation bench-
marks in recent years. Integrating them with var-
ious prompting strategies, such as zero-shot, few-
shot, CoT, and Analogical Reasoning (Yasunaga
et al., 2024), has yielded promising results (Vatsal
and Singh, 2024; Liévin et al., 2023; Jullien et al.,
2023). Their ability to handle long contexts in
medical domain and leverage intermediate reason-
ing steps make them suitable candidates not only
for text summarization but also for information ex-
traction tasks such as named entity recognition or
event extraction (Xu et al., 2024; Bian et al., 2023;
Yuan et al., 2023).

The effectiveness of LLMs in these tasks, how-
ever, is closely tied to their scale. Kaplan et al.
(2020) introduced the concept of sample efficiency
as part of their scaling laws, showing that larger

1https://github.com/PerAnsSumm/Evaluation/
blob/main/eval.py
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neural language models require fewer optimiza-
tion steps and are more sample efficient than their
smaller counterparts. This suggests that, even
with a small to moderate-sized datasets, opting
for a larger model can be advantageous. How-
ever, a key limitation of LLMs is their compu-
tational cost, which restricts their deployment in
resource-constrained environments. To address
this, low-rank adaptation (LoRA) method has been
proposed (Hu et al., 2021). LoRA freezes the pre-
trained model weights and updates only low-rank
approximations of the weight matrices. This dras-
tically reduces the number of trainable parame-
ters, thereby significantly lowering computational
overhead. QLoRA (Dettmers et al., 2023) further
optimizes this approach by quantizing the model
weights typically to 4-bit precision while utilizing
paged optimizers to efficiently manage memory,
avoiding spikes by dynamically offloading data
between GPU and CPU memory.

In our work, we employ quantized versions of
LLaMA-70B and LLaMA-8B from the Unsloth li-
brary2 and explore few-shot as well as fine-tuning
settings. Additionally, we incorporate a varia-
tion of CoT prompting called Summary Chain-
of-Thought (SumCoT) (Wang et al., 2023), which
is inspired by Lasswell’s Communication Model
(Laswell, 1948) and designed for element extrac-
tion and text summarization tasks in an end-to-end
manner.

3 Methods

We evaluate a set of prompting strategies to
generate factually correct summaries. Our ap-
proaches include fine-tuning, few-shot, and Sum-
CoT prompting. As a baseline, we use LLaMA-8B
with fine-tuning.

3.1 Fine-Tuning

For fine-tuning, we use the training dataset pro-
vided by the organizers and employ the 4-bit quan-
tized LLaMA-8B model with a learning rate of 2e-
4 and train it for 3.5 epochs. Additionally, we con-
figure all applicable modules with a rank of 16 and
an alpha value of 16.

3.2 Few-Shot

For few-shot prompting, we use a quantized
LLaMA-8B model in a 1-shot setting, where in-
context examples are randomly selected for each

2https://huggingface.co/unsloth

Dataset Statistics Dev Set Train Set

Total Instances 959 2236

Total Tokens 239,486 555,249

Avg Tokens per Instance 249.72 248.32

Avg Words per Instance 216.02 214.78

Avg Answers per Instance 3.23 3.11

Avg Perspectives per Instance (Answers) 1.97 1.97

Avg Perspectives per Instance (Summaries) 1.96 1.95

Perspective Distribution (Answers)
EXPERIENCE 316 747

INFORMATION 735 1767

CAUSE 139 308

SUGGESTION 595 1360

QUESTION 102 215

Perspective Distribution (Summaries)
EXPERIENCE 315 745

INFORMATION 733 1742

CAUSE 138 305

SUGGESTION 595 1363

QUESTION 101 213

Table 1: PUMA Dataset Statistics for Development
and Training Sets. Test Set consists of 50 instances
and only includes QA pairs with a context information
without providing any perspective spans or summaries.

inference to prevent the model from overfitting to a
fixed set of examples. Each example includes both
labeled spans and their corresponding summaries,
and the model is instructed to generate only the
summary. The model used in this setting has al-
ready been fine-tuned on the provided training set.

3.3 Summary Chain-of-Thought (SumCoT)

We incorporate a variant of CoT prompting called
SumCoT, which is designed for element extrac-
tion and text summarization tasks in an end-to-
end manner. This approach is inspired by Lass-
well’s Communication Model, which later found
itself application in journalism as the 5W frame-
work (Who, What, When, Where, Why). Follow-
ing prior work by Wang et al. (2023) that sug-
gests that performance gains become evident only
at scale, we employ a 4-bit quantized version of
LLaMA-70B. In line with their findings, we for-
mulate our questions using only a single type of
W-question, specifically "What", as it can encap-
sulate the essence of all other questions.3 We later
append the five distinct perspectives found in our
dataset to the questions. As we observe the stabi-

3https://github.com/Alsace08/SumCoT/blob/
master/prompts/cot_element_extraction.txt
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Prompt Template
You are provided with a text containing community-based questions and an-
swers from the medical domain. Your task is to analyze the answers by iden-
tifying and considering different perspectives such as ‘Information’, ‘Cause’,
‘Suggestion’, ‘Experience’, and ‘Question’ as in the provided examples below
and then summarize the text into a coherent summary. Only output the sum-
maries and nothing else.
In-Context Examples:
Example:
Question: Do I have lupus?
Context: I had a fever and fatigue. I looked at the symptoms on the internet.
My doctor disagrees with me. [...]
Answers: What other symptoms did you have? It’s usually never lupus. Listen
to your doctor. Lupus is an autoimmune disorder [...]
EXPERIENCE_GROUP: My teacher used to say this. It turns out it was just
a flu.
INFORMATION_GROUP: Lupus is an autoimmune disorder [...]
CAUSE_GROUP: I had a fever and fatigue. [...]
SUGGESTION_GROUP: Listen to your doctor. [...]
QUESTION_GROUP: What other symptoms did you have? [...]
EXPERIENCE_SUMMARY: In users experience, [...]
INFORMATION_SUMMARY: For information purposes [...]
CAUSE_SUMMARY: Some of the causes are [...]
SUGGESTION_SUMMARY: It’s suggested that [...]
QUESTION_SUMMMARY: It’s inquired [...]
Text: {text}
Answer: {answer}

Table 2: Prompt Template for Few-Shot Method. Sum-
mary examples are given with common start phrases
found in the PUMA dataset.

lizing effect of it during generations, we addition-
ally prefix the phrase "Let’s think step by step."
(Kojima et al., 2023) before the model extracts the
relevant perspectives. After eliciting information
about spans from the model, we then provide the
fine-tuned 8B model with the output generations
of the 70B variant and let it generate summaries
based on the extracted perspectives.

Prompt Template
You are provided with a text containing community-based questions and an-
swers from the medical domain. Your task is to analyze the answers by iden-
tifying and considering different perspectives such as ‘Information’, ‘Cause’,
‘Suggestion’, ‘Experience’, and ‘Question’. Show your reasoning steps while
extracting.
Questions:
What are the important suggestions in these answers?
What are the important causes in these answers?
What are the important informations in these answers?
What are the important questions in these answers?
What are the important experiences in these answers?
Please answer the above questions.
Text: {text}
Answer: Let’s think step by step. {answer}

Table 3: Prompt Template for SumCoT Method

4 Evaluation Protocol

The PerAnsSumm shared task evaluates submis-
sions across three axes. Task 1 focuses on lex-
ical overlap, using both proportional and strict
matching metrics to assess the accuracy of ex-
tracted label spans from answers as well as the
generated summaries. Task 2 is further divided

into two subcategories: Task 2.1 evaluates lexical
and semantic similarity using relevance metrics,
ROUGE, BERTScore, METEOR and BLEU. Task
2.2 assesses the factual consistency of the gener-
ated spans and summaries using AlignScore and
SummaC.

AlignScore is a reference based metric, for-
mally:

AlignScore(x, y) =
1

|x|

|x|∑

i=1

max
j

s(xi, yj) (1)

where x is the generation, y is the reference and
|x| is the number of sentences in the generation,
and maxj s(xi, yj) selects the maximum align-
ment score for each sentence of the generation
across all chunks of the reference (split into ap-
proximately 350-token chunks for RoBERTa (Liu
et al., 2019)) using an unified alignment function
trained on a diverse set of NLP tasks (e.g., natural
language inference, question answering, seman-
tic similarity, fact verification) with a combined
dataset of 4.7 million examples.

SummaC follows a similar chunking approach,
but adds an additional layer by using an NLI
model to scan sentence pairs. These entailment
scores are aggregated into histogram bins, which
are then processed through a convolutional neu-
ral network (CNN) (LeCun and Bengio, 1998) to
produce scalar values for each summary sentence.
These scalar values are averaged to compute the
final consistency score.

Despite the significant drawbacks of frequent
test set evaluation (van der Goot, 2021), we eval-
uated our approaches on the test set due to time
constraints, as the hyperparameters for AlignScore
and SummaC were not known until a later stage of
the shared task.

5 Results

The results presented in Table 4 provide insights
into the impact of different methods on improv-
ing factuality and help address our research ques-
tion: Can we improve the factuality of generated
summaries with in-context-learning and chain-of-
thought prompting?

Table 4 shows that there is no clear win-
ner across all metrics. The standard fine-tuning
method achieves the best results in relevance met-
rics, with the exception of the few-shot approach,
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Name ROUGE-1 ROUGE-2 ROUGE-L BERTScore METEOR BLEU Rel. Avg. AlignScore SummaC Fact. Avg.

Fine-Tuning 0.2550 0.0991 0.2288 0.6448 0.2349 0.0643 0.2545 0.3235 0.2398 0.2817

Few-Shot 0.1912 0.0573 0.1701 0.6512 0.1636 0.0489 0.2137 0.2263 0.2262 0.2263

8B-Labels 0.2226 0.0896 0.2044 0.5413 0.2045 0.0704 0.2221 0.3246 0.2274 0.2760

70B-Labels (SumCoT) 0.2148 0.0905 0.1942 0.5351 0.2032 0.0595 0.2162 0.3564 0.2471 0.3017

Table 4: PerAnsSumm 2025 test set results for all evaluated approaches. All approaches use the same fine-tuned
model for summary generation. Few-Shot used in a 1-shot setting. In the 8B-Labels, spans are identified by the
fine-tuned 8B model and the output passed to the same 8B fine-tuned model for summary generation. In the 70B-
Labels (SumCoT), spans are identified by 70B model without fine-tuning and the output passed to the same 8B fine-
tuned model for summary generation. ROUGE scores measure n-gram overlap, BERTScore evaluates semantic
similarity, METEOR compares unigrams, synonyms and stemming with penalties for word order differences,
BLEU compares n-gram precision between the generated summary and the ground truth, applying a brevity penalty
for shorter generations. AlignScore and SummaC measure factual consistency. Rel. Avg shows the average of
ROUGE, BERTScore, METEOR and BLEU, and Fact. Avg. shows the average of AlignScore and SummaC.

which surpasses fine-tuning in semantic similar-
ity when evaluated using contextual BERT (Devlin
et al., 2019) embeddings. However, the few-shot
approach exhibits relatively low ROUGE scores
(especially ROUGE-2) alongside lower METEOR
and BLEU scores. This results in a higher av-
erage relevance score for fine-tuning, suggesting
that the model may have prioritized the in-context
examples while being penalized for differences in
word order and shorter generations by METEOR
and BLEU during few-shot generations. A sim-
ilar pattern is observed in ROUGE-L, where the
longest common subsequence between the gen-
erated and reference summaries is less aligned.
When it comes to factuality, surprisingly, the few-
shot approach does not lead to any improvements
and performs significantly worse than the standard
fine-tuning method. Additionally, we observe a
slight decline in SummaC and average factuality
with the 8B label extraction method, along with
a notable drop in BERTScore. It appears that in
both approaches, the model was biased toward the
in-context examples and the extracted spans, re-
spectively. Moreover, the extracted spans from the
fine-tuned model may be incorrect, as the model
was trained solely for the summary generation
task. This suggests that it may be heavily relying
on its memorized knowledge of training set labels
acquired during parameter updates, which could
have skewed the metrics.

On the other hand, even without any fine-tuning,
the SumCoT approach with the 70B label extrac-
tion method shows a noticeable impact. Despite a
significant drop in BERTScore and ROUGE (sim-
ilar to the 8B label extraction) the final summaries
are the most factually accurate. This also high-

lights the important trade-off between relevance
and factuality metrics when evaluating summa-
rization models. Lexical and semantic alignment
does not always guarantee hallucination-free, fac-
tually correct summaries.

The challenge of identifying the optimal sum-
mary is a complex and nuanced issue. As proven
by Schluter (2017), performing a ROUGE evalu-
ation of a summarization model for optimal sum-
maries is an NP-hard task and relying solely on
relevance metrics does not capture the full capa-
bilities of the implemented system. As demon-
strated in this shared task, it makes sense to in-
troduce multiple perspectives into the evaluation
by incorporating additional metrics and averaging
them to mitigate the shortcomings of any single
metric.

6 Conclusion

In our submission, we explored several ap-
proaches to improve the factuality of generated
summaries. Our best-performing method, Sum-
CoT, involved extracting spans using a 4-bit quan-
tized LLaMA 70B model with W-Questions, and
feeding the output into a fine-tuned 8B model to
generate summaries. This approach led to im-
provements in the factuality of the generated sum-
maries compared to standard fine-tuning and few-
shot methods. However, these improvements are
not always reflected in relevance metrics such as
ROUGE and BERTScore. Our final submission
ranks 15th in AlignScore, 16th in SummaC, and
15th in average factuality on the official leader-
board4.

4https://docs.google.com/spreadsheets/d/
1faysHdA7YQ-xELztsm7jA5RPTMh7lP7tycsjd8ANLGE/
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7 Limitations

In this section, we highlight some shortcomings
of our implemented system and outline potential
directions for future work.

One notable limitation in our approach is the
choice of random sampling for the few-shot ex-
amples, which was intended to prevent bias toward
the same examples. However, Gema et al. (2024)
demonstrates the effectiveness of the BM25 re-
triever over naive random sampling. BM25 al-
lows for the selection of only the most relevant
in-context examples, which could improve perfor-
mance in future iterations of the shared task.

Another limitation is our use of quantization
due to computational constraints, which may
have affected our findings. As highlighted by
Pochinkov (2024), performance degradation is of-
ten inevitable in quantized LLaMA models.

Our final submission, SumCoT, showed im-
provements in factuality metrics. However, as
noted by Wang et al. (2023), the success of the
proposed approach is often correlated with the
model’s parameter count. We expect that using
larger models, including closed-source ones like
GPT (OpenAI et al., 2024), would likely amplify
these results. An important consideration, how-
ever, when transitioning to closed-source mod-
els, is the memorization ability of neural language
models (Carlini et al., 2023) and the issue of data
leakage. Balloccu et al. (2024) identified poten-
tially leaked datasets within the training data of
ChatGPT and GPT-4 by systematically reviewing
255 research papers. In our case, as the PUMA
dataset and Yahoo’s L6 Corpus are not publicly
available and primarily cover texts from the early
2000s to early 2010s, data leakage is unlikely to
be a significant concern. However, taking ba-
sic measures and implementing simple n-gram
matching metrics to detect potential data leakage
in model completions of any given data instance
(Gema et al., 2024) or adopting the Contamination
Detection via Output Distribution (CDD) frame-
work proposed by Dong et al. (2024) could fur-
ther strengthen the reliability of the obtained re-
sults and would align well with the broader goal
of trustworthy AI.
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Abstract

The PerAnsSumm Shared Task at
CL4Health@NAACL 2025 focused on
Perspective-Aware Summarization of Health-
care Q/A forums, requiring participants to
extract and summarize spans based on prede-
fined perspective categories. Our approach
leveraged LLM-based zero-shot prompting
enhanced by semantically-similar In-Context
Learning (ICL) examples. Using Qwen-Turbo
with 20 exemplar samples retrieved through
NV-Embed-v2 embeddings, we achieved
a mean score of 0.58 on Task A (span
identification) and Task B (summarization)
mean scores of 0.36 in Relevance and 0.28
in Factuality, finishing 12th on the final
leaderboard. Notably, our system achieved
higher precision in strict matching (0.20) than
the top-performing system, demonstrating the
effectiveness of our post-processing techniques.
In this paper, we detail our ICL approach
for adapting Large Language Models to
Perspective-Aware Medical Summarization,
analyze the improvements across development
iterations, and finally discuss both the limita-
tions of the current evaluation framework and
future challenges in modeling this task. We
release our code for reproducibility.1

1 Background

Healthcare community question-answering (CQA)
forums serve as information resources for patients
seeking accessible explanations outside clinical
settings, caregivers navigating medical decisions,
and curious individuals performing health research
whilst avoiding stigma or costs tied to formal con-
sultations (Beloborodov et al., 2013). However, the
unstructured discussions typical of online forums
often bury actionable insights under noise such as
anecdotal claims, off-topic debates, or incorrect
advice (Naik et al., 2024).

1https://github.com/petervickers/
Roux-PerAnsSumm

Perspective-aware summarization addresses this
by categorizing forum responses into domains
like suggestions (“ERCP procedures minimize
scarring”) or experiences (“Phantom pain per-
sisted post-surgery”)—enabling users to contrast
evidence-based options with peer-endorsed narra-
tives. Perspective-Aware Summarization [PAS]
addresses this challenge by identifying and cate-
gorizing diverse viewpoints within healthcare fo-
rum responses. Unlike traditional summariza-
tion into a single version, PAS structures informa-
tion into distinct perspective categories: ’Cause’
(explanations of medical conditions), ’Sugges-
tion’ (recommended treatments or actions), ’Ex-
perience’ (personal accounts), ’Question’ (follow-
up inquiries), and ’Information’ (factual medical
knowledge). The PerAnsSumm Shared Task at
CL4Health@NAACL 2025 split this approach into
two subtasks: Span Identification: Tagging text seg-
ments in answers aligning with five perspectives
(Cause, Suggestion, Experience, Question, and In-
formation). Summarization: Generating concise
summaries for each of the five perspectives.

Building on the Perspective sUMmarization
dAtaset (PUMA) dataset, a corpus of 3,167 an-
notated CQA threads annotated with 10K Human-
authored Perspective-Aware Summarizations, the
task encouraged models to move beyond single-
view summaries common in traditional methods
(Agarwal et al., 2025).

Our approach used the few-shot capabilities of
Large Language Models to learn novel tasks with
minimal exposure to labeled examples, including
in the Medical Domain. Using just 20 exemplar
samples from the training set, we are able to ob-
tain a mean score of 0.58 on task A and 0.36 in
Relevance and 0.29 in Factuality on Task B.

In this paper, we detail our approach, including
releasing the code for all of our attempts. We then
outline further approaches to improve performance.
Finally, we discuss the difficulties of the task it-
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self, including bias and ambiguity in community
question-answer forums.

2 Related Work

Healthcare community question-answering (CQA)
forums serve as information resources for pa-
tients seeking medical information outside clini-
cal settings, though unstructured discussions often
bury actionable insights beneath anecdotal claims
and incorrect advice (Beloborodov et al., 2013;
Naik et al., 2024). Traditional summarization ap-
proaches typically condense information into a sin-
gle narrative, whereas perspective-aware summa-
rization (PAS) addresses this limitation by catego-
rizing content into distinct perspective types (cause,
suggestion, experience, question, and information)
(Agarwal et al., 2025).

Large Language Models (LLMs) have demon-
strated strong performance on healthcare tasks
in few-shot settings without domain-specific fine-
tuning (Brown et al., 2020; Liu et al., 2023).
Notably, Nori et al. (2023) showed that general-
purpose models like GPT-4, when enhanced with
appropriate prompting techniques (termed “Med-
Prompt”), can match or exceed specialized medical
models. MedPrompt combines dynamic few-shot
selection using k-nearest neighbors, self-generated
chain-of-thought reasoning, and choice shuffling
ensembles.

For span identification tasks similar to our work,
named entity recognition (NER) approaches have
been adapted for more complex extraction tasks.
Tools like Spacy-LLM (Honnibal et al., 2020; Ex-
plosion AI, 2025) provide structured templates for
guiding LLMs in entity extraction, which we adapt
for perspective categories. However, perspective
identification presents unique challenges compared
to traditional NER: perspective spans often cross
sentence boundaries, have ambiguous boundaries,
and require subjective interpretation based on an-
notator guidelines.

Current limitations in perspective-aware systems
include reliance on domain-specific training that
limits generalization, handcrafted prompts requir-
ing medical expertise, difficulties identifying per-
spective boundaries in conversational text, and chal-
lenges maintaining factual accuracy while generat-
ing perspective-specific summaries.

3 Methodology

Building on recent advances in LLM-based medi-
cal text processing, we introduce a novel approach
to the PerAnsSumm Shared Task, which requires
a two-stage cascaded pipeline: (1) Perspective-
Aware Span Extraction followed by (2) Perspective-
Aware Span Summarization (Agarwal et al., 2025).
Our system addresses the key limitations identified
in the related work through a specialized adaptation
of the MedPrompt framework (Nori et al., 2023)
for perspective-based tasks.

3.1 Overview of Our Approach
While MedPrompt has demonstrated state-of-the-
art performance on medical multiple-choice ques-
tions (Nori et al., 2023), adapting it to open-ended
perspective identification and summarization tasks
presents several unique challenges. We preserve
MedPrompt’s core strength—dynamic few-shot se-
lection—while modifying its architecture to accom-
modate span extraction rather than option selection.
We term this MedPrompt Adaptation for Perspec-
tive Tasks.

Our system leverages semantic similarity to
identify relevant examples from the training data.
This addresses the scalability limitations of expert-
dependent systems while maintaining the flexibility
to adapt to diverse healthcare topics.

For both tasks (A) and (B), our system imple-
ments a four-component architecture:

1. Dynamic In-Context Learning Sampling:
We extend MedPrompt’s k-nearest neighbors
approach to perspective-specific content by
encoding samples using NVEmbed-v2. Our
ICL strategy differs between the two subtasks:

• For Task A (span extraction), we gener-
ate embeddings with the input question
as the query and all questions in the train-
ing dataset as documents. For each test
instance, we compute cosine similarity
between its question embedding and all
training question embeddings.

• For Task B (summary generation), we
generate embeddings at the perspective
level, using the input spans as the query
and retrieving training examples where
the spans share the same perspective
category. This focuses similarity com-
putation on perspective-specific content
rather than general question context.
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Answer-based
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Insensitive/Fuzzy Matching
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Span Extraction
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Aware Summary
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Task A: Perspective Aware Span Extraction

Task B: Perspective Aware Summarization

Per Sample

Per Perspective, Per Sample

All Five Perspective-Aware
Summaries

Figure 1: Data Flow Diagram of our Span Extraction and Summarization System

In both cases, we select the k=16 most similar
examples based on these similarity scores to
serve as in-context examples.

2. Task-Specific Prompt Engineering: We
adapt Spacy-LLM’s NER templates (Honni-
bal et al., 2020; Explosion AI, 2025) to the
more complex task of perspective identifica-
tion. Where traditional NER identifies con-
crete entities with clear boundaries, perspec-
tive identification requires identifying abstract
categories that may span multiple sentences.

3. Annotator Bias Replication: We include ex-
plicit instructions directing the model to mir-
ror the subjective biases present in the In Con-
text Learning annotations.

4. Span Post-Processing: We implement a
three-stage cascading alignment strategy to
overcome LLMs’ known limitations in return-
ing precise character indices (Wu et al., 2023).
This approach significantly improves upon the
exact matching typically used in NER sys-
tems, which fails to account for the flexibility
needed in perspective boundary identification.

To ensure consistent output formatting across
both subsystems, we enforce JSON output struc-
ture by constraining the first token of the model’s
response to be ‘{’, effectively force-decoding the
beginning of a JSON object.

As Figure 1 shows, our system consists of three
high-level components: Perspective Aware Span
Extraction, Perspective Aware Summarization, and
In-Context Learning. In-Context Learning (left)
leverages the PUMA training dataset through dual
NV-Embed-v2 encoding pathways—one optimized
for Task A using answer-based text encoding and
another for Task B using span-based encoding.
This creates semantic indices for efficient retrieval

of relevant examples during inference. Task A (up-
per right) performs perspective-aware span extrac-
tion through a three-stage cascading alignment pro-
cess (exact, case-insensitive, and fuzzy matching),
followed by a span merging step to produce co-
hesive perspective-specific text segments. These
extracted spans then feed into Task B (lower right),
which generates perspective-aware summaries or-
ganized across the five predefined categories (cause,
suggestion, experience, question, and information).

For Task A, we found no advantage in
perspective-level span extraction. For Task B, per-
formance improved with perspective-specific sum-
marization, so we generate summaries separately
for each perspective and merge the results.

This modular design allowed us to conduct con-
trolled experiments, isolating the impact of differ-
ent embedding models and varying quantities of
in-context examples on system performance.

3.2 Evaluation Metrics
The PerAnsSumm Shared Task evaluation frame-
work comprises distinct metrics for both span iden-
tification (Task A) and perspective-aware summa-
rization (Task B). Of note, the perspective-aware
summarization was dependent on the output of the
span identification model. Gold standard span in-
puts were not provided for Task B. Metrics com-
pared between the generated outputs and the max-
voted labels from the test split of the PerAnsSum-
m/PUMA dataset.

Task A: Span Identification Metrics

1. Macro-averaged F1 score: Evaluates perfor-
mance across all five perspective categories
(cause, suggestion, experience, question, and
information), mitigating class imbalance ef-
fects.

2. Strict Matching: Measures exact correspon-
dence between predicted and ground-truth
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spans, considering both boundaries and classi-
fication labels.

3. Proportional Matching: Allows partial credit
for spans that overlap with the ground truth,
accounting for minor discrepancies in extrac-
tion.

"Ground-truth" reference spans were from the
task/PUMA dataset annotations, which were man-
ually labeled for each perspective and reflected
annotation bias discussed elsewhere.

Task B: Perspective-aware Summarization
Metrics

1. ROUGE (R-1, R-2, R-L) (Lin, 2004): Mea-
sures unigram overlap (R-1), bigram overlap
(R-2), and longest common subsequence (R-
L) between generated summaries and refer-
ence summaries.

2. BLEU (Papineni et al., 2002): Computes n-
gram precision against reference summaries,
commonly used in machine translation but
adapted here for summarization.

3. METEOR (Banerjee and Lavie, 2005): Ex-
tends BLEU by incorporating synonymy and
stemming, better capturing semantic equiva-
lence.

4. BERTScore (Zhang et al., 2020): Uses contex-
tualized BERT embeddings to compare gener-
ated and reference summaries at the semantic
level, overcoming limitations of n-gram-based
metrics.

Additionally, "factuality" assessments were in-
cluded to evaluate the alignment of generated sum-
maries with the source content:

1. AlignScore (Zha et al., 2023): attempts to
measures factual consistency using a unified
alignment function to compare source text and
generated summaries.

2. SummaC (Laban et al., 2022): attempts to
detect contradictions and hallucinations in
summarization by leveraging natural language
inference (NLI) models and sentence-level
document-summary pairs.

Reference summaries were the annotator-
provided summaries from the task/PUMA dataset,
which were written post-hoc based on extracted

spans. As with Task A, these summaries inherit the
dataset’s biases and limitations, influencing how
models were evaluated.

4 Experimental Setup

We developed our approach over four system vari-
ants (summarized in Table 1), each representing
incremental improvements to our initial baseline
implementation. All systems were evaluated on the
PerAnsSumm Shared Task.

4.1 System Implementation Details

Our implementation leveraged the core Med-
Prompt architecture with targeted adaptations for
perspective-aware tasks:

Model Selection: We initially employed Ope-
nAI’s GPT-4o-mini model (et al., 2024) (versions
v1-v2) before transitioning to Qwen/Qwen-turbo
(Qwen et al., 2025) (versions v3-v4) based on pre-
liminary performance evaluations.

Dynamic In-Context Learning: For version v1,
we used zero-shot prompting without in-context
learning examples. Version v2 incorporated 5 in-
context examples selected using OpenAI’s text-
embedding-3-small model to match samples, while
versions v3-v4 employed NVIDIA’s NV-Embed-v2
(Lee et al., 2025) with retrieval sets of 5 and 20
examples, respectively. This progression allowed
us to evaluate the impact of both example quantity
and embedding quality on performance.

Post-processing Pipeline: All systems em-
ployed our three-stage cascading alignment strat-
egy for span reconciliation, with refinements in
later versions to address edge cases identified dur-
ing development:

1. Exact substring matching: First attempt-
ing verbatim matches using Python’s native
string.find() function, with extension to word
boundaries for cleaner spans

2. Case-insensitive matching: If exact match-
ing failed, converting both source and target
texts to lowercase before applying the find()
function again

3. Sentence-level fuzzy matching: For spans
still unmatched, breaking the text into sen-
tences and applying thefuzz library’s ratio()
algorithm to find the best matching sentence,
with early termination at 95% similarity
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System Model K Embedder Prompts Scores

Task A (Span Extraction) Task B (Summarization) A B

v1 openai/gpt-4o-mini None None Span-Prompt-V1 Summ-Prompt-V1 0.58 0.30
v2 openai/gpt-4o-mini 5 OpenAI text-embedding-3-small Span-Prompt-V2 Summ-Prompt-V2 0.58 0.33
v3 qwen/qwen-turbo 5 NVIDIA NV-Embed-v2 Span-Prompt-V3 Summ-Prompt-V3 0.58 0.35
v4 qwen/qwen-turbo 20 NVIDIA NV-Embed-v2 Span-Prompt-V4 Summ-Prompt-V4 0.58 0.36

Table 1: System configurations and performance comparison. K indicates the number of in-context learning
examples, Embedder refers to the model used for retrieving similar examples. Scores represent macro-averaged
metrics: Task A scores show span alignment accuracy (Avg. column from Table 2), Task B scores show relevance
performance (Relevance Avg. from Table 3).

The fuzzy matching threshold (θ = 0.7) served
as a quality filter, with spans scoring below this
threshold being discarded. Our implementation
also included specialized handling for overlapping
spans through the, which merged spans of the same
perspective category that were within 5 characters
of each other.

4.2 Experimental Configurations
Table 1 summarizes our four experimental configu-
rations. The progression from v1 to v4 represents
an evolution from simple baseline approaches to
sophisticated in-context learning with optimized
similarity matching:

Key experimental parameters were:

• Similar Example Selection: For ICL-based
systems (v2-v4), we selected examples from
the training corpus based on cosine similar-
ity between embedding vectors. Version v4’s
expanded number of ICL samples (K=20) al-
lowed for more diverse exemplars.

• Fuzzy Matching Threshold: We empirically
determined a similarity threshold of θ = 0.7
for accepting predicted spans, with scores be-
low this threshold triggering rejection during
post-processing.

4.3 Evaluation Process
Systems were evaluated using the official Per-
AnsSumm metrics as described in Section 3.2. We
submitted all versions, v1-v4, to the shared task
evaluation server, with v4 representing our best-
performing configuration. The detailed prompt
specifications for all system variants are provided
in Appendix A.

5 Results

Tables 2 and 3 present the performance of our four
system variants on Tasks A and B, respectively.
Our final system (v4) achieved an average score of

0.58 on Task A (span identification) and 0.36 on
Task B’s relevance metrics with 0.28 on factuality
metrics, placing our team 13th out of 23 teams
overall in the shared task.

For Task A, all four of our system variants
achieved consistent performance with a macro F1
classification score of 0.81, strict matching F1 of
0.22, and proportional matching F1 of 0.64. Our
overall Task A average of 0.58 placed us within
3.4% of the top-performing system’s score of 0.60.

For Task B, we observed progressive improve-
ments across our system versions. The relevance
metrics improved from 0.30 in v1 to 0.36 in v4
(+20%), while factuality scores declined slightly
from 0.29 to 0.28. The gap between our system and
the top-performing system was more pronounced
in Task B, with our relevance average trailing the
leader by 14% relative.

Each system iteration brought incremental im-
provements: v1 (zero-shot GPT-4o-mini) achieved
0.30 on Task B relevance, v2 (GPT-4o-mini with
ICL) improved to 0.33 (+10%), v3 (Qwen-Turbo
with NV-Embed-v2) reached 0.35 (+6%), and v4
(expanded to 20 examples) achieved our best score
of 0.36 (+3%).

Analysis of the overall leaderboard reveals that
the top 13 teams were tightly clustered, with scores
ranging from 0.457 to 0.400, indicating that minor
implementation differences had significant impact
on final rankings.

6 Discussion

6.1 Task A Performance Analysis

Despite transitions from GPT-4o-mini (v1-v2) to
Qwen-Turbo (v3-v4) as our base LLM, our Task
A performance remained remarkably consistent.
This stability suggests that our model effectively
learned to distinguish between the five perspective
categories regardless of the specific implementa-
tion details or embedding model used for in-context
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CLASSIFICATION STRICT MATCHING PROPORTIONAL MATCHING

Submission Macro F1 Weighted F1 P R F1 P R F1 Avg.

Roux-lette 1 0.81 0.87 0.20 0.22 0.21 0.59 0.73 0.64 0.58
Roux-lette 2 0.81 0.87 0.20 0.23 0.22 0.57 0.72 0.64 0.58
Roux-lette 3 0.81 0.87 0.20 0.23 0.22 0.57 0.72 0.64 0.58
Roux-lette 4 0.81 0.87 0.20 0.23 0.22 0.57 0.72 0.64 0.58

Mean Gradient 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Overall Improvement 0.00 0.00 0.00 0.00 0.00 -0.02 -0.01 0.00 0.00

Leader (WisPerMed) 0.88 0.92 0.17 0.23 0.20 0.62 0.74 0.68 0.60
delta (Roux - WisPerMed) -0.07 -0.05 0.03 0.00 0.02 -0.05 -0.02 -0.04 -0.02

Table 2: Task A Results

RELEVANCE FACTUALITY

Submission ROUGE1 ROUGE2 ROUGEL BERTScore METEOR BLEU Avg. AlignScore SummaC Avg.

Roux-lette 1 0.31 0.09 0.27 0.80 0.27 0.07 0.30 0.37 0.22 0.29
Roux-lette 2 0.34 0.12 0.30 0.82 0.31 0.08 0.33 0.36 0.22 0.29
Roux-lette 3 0.37 0.15 0.33 0.83 0.33 0.11 0.35 0.31 0.23 0.27
Roux-lette 4 0.38 0.17 0.34 0.83 0.33 0.12 0.36 0.32 0.23 0.28

Mean Gradient 0.02 0.03 0.02 0.01 0.02 0.02 0.02 -0.02 0.00 -0.01
Overall Improvement 0.07 0.07 0.07 0.03 0.06 0.06 0.06 -0.05 0.01 -0.02

Leader (WisPerMed) 0.45 0.22 0.41 0.90 0.41 0.13 0.42 0.41 0.30 0.35
delta (Roux - WisPerMed) -0.07 -0.05 -0.07 -0.07 -0.08 -0.01 -0.06 -0.09 -0.07 -0.08

Table 3: Task B Results

example retrieval.
Notably, our precision in strict matching (0.20)

exceeded the top-performing system (WisPerMed’s
0.17), indicating that our cascading alignment strat-
egy with fuzzy matching was particularly effec-
tive at identifying precise span boundaries. While
our recall matched the leader (0.23), our overall
strict matching F1 (0.22) slightly outperformed the
leader’s 0.20, demonstrating the effectiveness of
our three-stage cascading alignment strategy with
fuzzy matching threshold (θ = 0.7).

The small performance gap between participat-
ing teams in Task A is striking, with the top 13
systems achieving scores within a narrow range
(0.58-0.62). This clustering suggests that the task
may have reached a performance ceiling with cur-
rent LLM-based methods, possibly due to inherent
ambiguities in perspective boundary identification.

6.2 Task B Performance Analysis

The clear progression in our Task B performance
correlates directly with improvements in our LLM
and embedding models. The significant gains in
ROUGE-2 (0.09 to 0.17, +89%) and BLEU (0.07
to 0.12, +71%) indicate better capture of n-gram
sequences and improved alignment with reference
summaries as we enhanced our embedding model
quality and expanded ICL example counts.

The inverse relationship between relevance and
factuality scores raises important questions about
evaluation metrics in perspective-aware summa-
rization. As our systems better matched reference
summaries (higher relevance), they simultaneously
drifted from factual alignment with source con-
tent (lower factuality). This trade-off, particularly
evident in the drop in AlignScore (0.37 to 0.32,
-13.5%), suggests that human annotators may have
introduced interpretations or simplifications in their
summaries that deviated from the original forum
content.

The leaderboard reveals a significant gap in Task
B performance between the top 5 teams (relevance
scores of 0.40-0.42) and the remainder of the field
(scores below 0.39), suggesting that certain archi-
tectural approaches may have offered substantial
advantages in summarization quality.

6.3 Effectiveness of In-Context Learning
Approaches

The most substantial improvements in our sys-
tems came from the transition from zero-shot to
in-context learning with semantically similar exam-
ples. The progression from v1 to v4 underscores
the importance of both the quality of embedding
models for finding related samples and the quan-
tity of in-context examples in achieving optimal
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performance for perspective-aware summarization.
The diminishing returns observed when increas-

ing from 5 to 20 examples (+6% vs. +3% improve-
ment) suggests that example quality may be more
important than quantity beyond a certain thresh-
old. This finding aligns with recent research show-
ing that carefully selected few-shot examples often
outperform larger random samples in in-context
learning scenarios.

6.4 Bias Learning vs. Medical Understanding

We speculate that the structure of Task A encour-
aged models to imitate annotator biases rather than
developing genuine understanding of medical dis-
course. Our experiment with explicit bias instruc-
tion did not significantly improve results, suggest-
ing that the bias patterns were either inconsistent
or difficult for the model to internalize.

This observation is supported by our Task A per-
formance remaining stable across different LLMs
and embedding models, indicating that the task
primarily measures how effectively systems can ap-
proximate existing annotation patterns rather than
demonstrating true innovation in perspective identi-
fication. The tight clustering of team performances
on the leaderboard further supports this hypothesis.

Examining the leaderboard, we observe that the
top-performing systems achieved their advantage
primarily through Task B (summarization) rather
than Task A (span identification), where scores
were more tightly clustered. This suggests that
while span identification may have reached a per-
formance ceiling, summarization quality remains
an area where significant improvements are possi-
ble.

7 Conclusion

In this work, we explored an LLM-driven approach
to perspective-aware summarization in the Per-
AnsSumm shared task, leveraging a lightweight,
zero-shot ICL methodology that requires no fine-
tuning and can be readily applied to any LLM.
Our approach used semantic similarity-guided in-
context learning with minimal example retrieval,
demonstrating the efficacy of model-agnostic tech-
niques for structured medical text understanding.

For Task A, we used Qwen-Turbo guided by
20 semantically similar training samples retrieved
using NV-Embed-v2 embeddings, achieving a
mean score of 0.58 and notably exceeding the
top-performing system in strict matching precision

(0.20 vs. 0.17). Our three-stage cascading align-
ment strategy (exact, case-insensitive, and fuzzy
matching with θ = 0.7) proved effective for cap-
turing perspective boundaries without the need for
task-specific training.

For Task B, we extended this model-agnostic
methodology to summarization, incrementally im-
proving relevance metrics from 0.30 (zero-shot)
to 0.36 (20 examples), while maintaining factual-
ity scores around 0.28. Our experimental progres-
sion showed embeddings quality and example se-
lection significantly impact performance, with the
transition from zero-shot to ICL (v1→v2: +10%)
yielding greater improvements than embedding up-
grades (v2→v3: +6%) or increasing example count
(v3→v4: +3%).

Our results suggest potential limitations in the
current task framework. The narrow performance
range across teams in Task A (0.58-0.62) may indi-
cate a ceiling effect possibly attributable to inherent
ambiguities in perspective boundary identification.
The observed inverse relationship between rele-
vance and factuality metrics raises questions about
potential annotation biases or simplifications in ref-
erence summaries. Additionally, the patterns we
observed suggest the task design may encourage
models to replicate annotation patterns rather than
develop genuine medical understanding.

The primary advantage of our approach lies in
its simplicity and transferability across mod-
els, requiring only basic API access to any ca-
pable LLM rather than expensive fine-tuning or
domain-specific architectures. Future perspective-
aware summarization tasks would benefit from
more clinically relevant, open-ended evaluation
frameworks that foster methodological innovation
with real-world impact rather than alignment with
pre-existing annotation patterns.

8 Limitations

Our approach faces several limitations.
First, our models learn to replicate annotator

biases rather than develop true medical understand-
ing, evidenced by the tight clustering of Task A
scores (0.58-0.62) across teams. Second, the di-
minishing returns when scaling from 5 to 20 exam-
ples (10% → 6% → 3% improvement) suggests
fundamental constraints in example-based learn-
ing without domain-specific training. Third, the
inverse relationship between relevance and factu-
ality scores indicates that optimizing for reference
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similarity may reduce source content faithfulness.
Due to time and computational constraints, we

were unable to exhaustively test all possible val-
ues for the fuzzy matching threshold (θ), optimal
number of ICL samples, or evaluate across a broad
spectrum of available LLM models.

Finally, and most importantly, our system lacks
mechanisms to verify medical accuracy or distin-
guish between credible and non-credible informa-
tion in healthcare forums. We highlight broader
concerns about using AI for medical applications,
which carries documented risks and should never
replace physician guidance.

Future work should focus on integrating domain-
specific medical knowledge, developing evaluation
frameworks better aligned with clinical utility, and
establishing robust fact-verification mechanisms
for healthcare content.
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A Appendix A: Prompts

A.1 Task A: Span Extraction Prompts

• Baseline Prompt (v1):

– Core instruction: Analyze text and iden-
tify spans expressing different perspec-
tives (CAUSE, SUGGESTION, EXPERI-
ENCE, QUESTION, INFORMATION)

– Added sliding window matching in v2
for phrase boundary detection

– Integrated overlap handling in v3 with
span merging logic

– JSON structure requirements:

* Extract complete phrases (under 100
characters)

* Prefer full sentences where possible

* Mandatory "text" field in JSON ob-
jects

• In-Context Learning Prompt (v2): En-
hanced version with example-based guidance:

– Detailed perspective definitions:

* EXPERIENCE: First-hand accounts

* INFORMATION: Factual data

* CAUSE: Explanatory reasoning

* SUGGESTION: Recommendations

* QUESTION: Information requests
– Example JSON format:

{
"EXPERIENCE": [{"text": "..."}],
"INFORMATION": [{"text": "..."}]

}

– Includes 5 retrieved examples using Ope-
nAI embeddings

• NV-Embed-v2 Prompt (v3): Optimized ver-
sion with:

– NVIDIA NV-Embed-v2 for example re-
trieval

– OpenRouter API integration
– Upgraded LLM backend
– Maintains 5-example context (K=5)

• Scaled ICL Prompt (v4): Enhanced capacity
version:

– Expands context window to 20 examples
(K=20)

– Retains NV-Embed-v2 retrieval system
– Optimized for long-context processing

A.2 Task B: Summarization Prompts
• Merged Baseline Prompt (v1):

– Core template: Summarize {perspective}
points about "question"

– Requirements:

* 2-3 sentence summaries

* Maintain factual accuracy

* Direct answer alignment

• ICL Summarization (v2): Example-
enhanced version:

– Incorporates retrieved examples
– Structured template: "Analyze text and

extract perspective summaries for {per-
spective}"

– Processes span inputs:

* {span 1 text}

* {span 2 text}

• NV-Embed-v2 Summarization (v3): Opti-
mized architecture:

– NV-Embed-v2 retrieval system
– Human-aligned prompt structure
– Maintains K=5 examples

• Scaled Summarization (v4): Expanded con-
text version:

– Processes 20 examples (K=20)
– Enhanced coherence through extended

context
– Maintains NV-Embed-v2 retrieval
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Abstract

The PerAnsSumm 2024 shared task at the
CL4Health workshop focuses on generating
structured, perspective-specific summaries to
enhance the accessibility of health-related in-
formation. Given a Healthcare community
QA dataset containing a question, context, and
multiple user-answers, the task involves iden-
tifying relevant perspective categories, extract-
ing spans from these perspectives, and gen-
erating concise summaries for the extracted
spans. We fine-tuned open-source models such
as Llama-3.2 3B, Llama-3.1 8B, and Gemma-
2 9B, while also experimenting with propri-
etary models including GPT-4o, o1, Gemini-
1.5 Pro, and Gemini-2 Flash Experimental us-
ing few-shot prompting. Our best-performing
approach leveraged an ensemble strategy, com-
bining span outputs from o1 (CoT) and Gemini-
2 Flash Experimental. For overlapping perspec-
tives, we prioritized Gemini. The final spans
were summarized using Gemini, preserving
the higher classification accuracy of o1 while
leveraging Gemini’s superior span extraction
and summarization capabilities. This hybrid
method secured fourth place on the final leader-
board among 100 participants and 206 submis-
sions.

1 Introduction

In recent years the widespread adoption of social
media has sprung up various community question
answer forums especially in the medical domain.
Users often rely on others experience or sugges-
tions. They post a query along with information
as context and multiple users can answer them.
The answers vary in multiple aspects depending on
the user’s question, the experience of the person
replying etc. Hence traditional summarization tech-
niques are not particularly useful since they com-
bine everything. User’s answers include multiple
perspectives and the aim of this shared task (Agar-
wal et al., 2025) is to identify them and form more

meaningful summaries for users to make more in-
formed healthcare decisions. The perspectives are
‘Cause’, ‘Suggestion’, ‘Experience’, ‘Question’,
and ‘Information’. An example is displayed in Fig-
ure 1. The recent rise of Large Language Models
enable much more accurate perspective identifica-
tion and summarization than traditional transform-
ers. We leverage these LLM’s both proprietary and
open source for the task. We finetune open-source
smaller models like Llama 3b, 8b (Grattafiori et al.,
2024) and Gemma 9b (Team et al., 2024) for the
task. We observe that finetuning significantly im-
proves the base models performance on the task
and even outperforms models like GPT 4o (8 shot
prompt) (OpenAI et al., 2024).

2 Related Work

Span prediction and Abstractive Summarization
are popular tasks in the ML domain for a long
time. Transformer models have been used ever
since the Transformer paper (Vaswani et al., 2023).
Models like BERT (Devlin et al., 2019), Roberta
(Liu et al., 2019) and it’s variants were the best
performing models of their time. This was soon
followed by pre-trained language models (PLMs)
like BART (Lewis et al., 2019), T5 (Raffel et al.,
2023), PEGASUS (Zhang et al., 2020) etc.which
achieved state of the art results in their time.

In the medical domain these models were trained
on biomedical corpora like PubMed and MIMIC-
III giving to rise of domain specific pre-trained
language models (PLMs) like BioBERT (Lee et al.,
2019), BioBART (Yuan et al., 2022), and clini-
calBERT (Huang et al., 2020) which did much
better in medical domain tasks. There are efforts
in summarizing diverse types of content, includ-
ing biomedical literature using these models like
(Soleimani et al., 2022), consumer healthcare ques-
tions ((Yadav et al., 2022); (Yadav and Caragea,
2022); (Yadav et al., 2023); (Savery et al., 2020)),
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Figure 1: Task A: Span Prediction (highlighted spans), Task B: Summary Generation. (Source - (Agarwal et al.,
2025))

and medical notes (Hsu et al., 2020).

(Fabbri et al., 2021) work on a QA dataset
with sentence-level spans with query-focused multi-
perspective abstractive summarization. (Joshi et al.,
2020a) and (Michalopoulos et al., 2022) accom-
plish the same by exploiting local and global fea-
tures of the text. CTRLsum (He et al., 2020) in-
troduces a novel framework for controllable sum-
marization that allows interaction during inference
through textual input. CQASumm (Chowdhury
and Chakraborty, 2018) highlight the issues with
high-variance, opinion-based CQA data often hav-
ing contradicting opinion and the challenges of
applying Multi document summarization (MDS)
on it.

In AnswerSumm (Fabbri et al., 2022), they use
a model to extract sentences similar to the query.
SpanBERT (Joshi et al., 2020b) extends BERT with
a pre-training method, to better represent and pre-
dict spans of text. (Abaho et al., 2021) use both
word-level and sentence-level attention to jointly
perform span detection and outcome classification
in the medical domain.

In this task the spans need not be complete sen-
tences but rather can be phrases as well. The orga-
nizers of this task have annotated the dataset and
proposed a prompt-driven control-label summariza-

tion model for the same.

3 Dataset

The dataset (Naik et al., 2024) used for the Per-
AnsSumm 2025 shared task consists of health-
related questions and user-generated answers anno-
tated with perspective categories. Each sample is a
community Question-Answer thread (CQA) which
includes a health-related question, an optional con-
text providing additional background information,
and a set of user answers. Specific spans within the
answers are labeled according to one of five per-
spectives: Cause, Suggestion, Experience, Ques-
tion, and Information. Additionally, each sample
includes summaries that concisely represent the
extracted spans for each perspective.

3.1 Dataset Statistics

The dataset is divided into training and valida-
tion sets, comprising 2,236 and 959 samples, re-
spectively. During our Exploratory Data Analysis
(EDA), we found that 4 samples in the training
set and 3 samples in the validation set were incor-
rectly annotated. The spans in these samples were
selected from the user context instead of the user
answers, which goes against the task instructions.
As a result, we discarded these samples, leaving us
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with 2,232 training samples and 956 validation sam-
ples. Among the validation samples, we randomly
selected 300 samples as a test set to evaluate both
open-source LLMs and proprietary models. The
remaining 656 samples were used as a validation
set for fine-tuning open-source LLMs.

Context availability varies, with 821 training
samples containing context and 1,415 without it,
while in the validation set, 350 samples include
context and 606 do not include context.

The distribution of perspective categories reveals
that Information and Suggestion are the most preva-
lent, whereas Cause and Question are less frequent.
The complete label distribution across training and
validation sets is illustrated in Figure 2.

A similar trend is observed in span counts, where
Information spans appear most frequently, followed
by Suggestion, Experience, Cause, and Question.
The full span distribution can be seen in Figure 3.

4 Experimentations

4.1 Span Prediction

Span prediction involves identifying and classi-
fying relevant spans within user responses based
on predefined perspective categories. The models
were evaluated using multiple performance met-
rics such as Classification Macro F1, Classifica-
tion Weighted F1, Strict Matching Precision, Strict
Matching Recall, Strict Matching F1, Proportional
Matching Precision, Proportional Matching Recall,
and Proportional Matching F1, ensuring a compre-
hensive assessment of both classification accuracy
and span alignment.

4.1.1 LLM Fine-tuning
To effectively predict spans corresponding to dif-
ferent perspectives, we fine-tuned multiple open-
source large language models, including Llama-3.1
8B (base model), Llama-3.2 3B (base model), and
Gemma-2 9B (4-bit quantized model). The mod-
els were trained on the training set with Unsloth
(Daniel Han and team, 2023) using zero-shot fine-
tuning for 3 epochs with a learning rate of 2e-4 and
validated on the validation set. The models were
evaluated on the test set.

Among all models, the Llama-3.1 8B (base
model) achieved the highest scores in classifica-
tion, with a Classification Macro F1 of 0.7890,
Classification Weighted F1 of 0.8360, and Strict
Matching F1 of 0.2421. Meanwhile, the Gemma-2
9B (4-bit quantized model) outperformed others in

proportional matching, achieving the highest Pro-
portional Matching F1 score of 0.6652. A detailed
comparison of these results is presented in Table 1.

Figure 2: This figure shows the distribution of perspec-
tive categories in the training and validation datasets.

Figure 3: This figure shows the distribution of spans
across perspective categories in the training and valida-
tion datasets. Each perspective category may contain
one or more spans.

4.1.2 Proprietary Models
In addition to fine-tuning open-source models, we
experimented with proprietary models, including
GPT-4o, o1, Gemini-1.5 Pro, and Gemini-2 Flash
Experimental. These models were evaluated us-
ing few-shot prompting, where we provided eight
examples as context. We carefully selected these
eight examples to mirror the label distribution in
the training set. Two examples contained only one
perspective, while one example included all five
perspectives. The remaining examples featured
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Metric L3.1-8B L3.2-3B G2-9B (4b) o1 o1 (50) FL FL (50) o1 (CoT) 4o Pro
C M F1 0.7890 0.6759 0.7102 0.7624 0.7601 0.7317 0.7102 0.7760 0.6770 0.7279
C W F1 0.8360 0.7545 0.8135 0.8404 0.8315 0.8305 0.8213 0.8464 0.7443 0.8258
S M P 0.2734 0.0958 0.0972 0.0611 0.0553 0.0627 0.0616 0.0432 0.0506 0.0618
S M R 0.2172 0.0758 0.0961 0.1114 0.0657 0.1118 0.1097 0.0568 0.0613 0.1089
S M F1 0.2421 0.0846 0.0967 0.0789 0.0601 0.0804 0.0789 0.0491 0.0554 0.0789
P M P 0.7384 0.6623 0.6479 0.6150 0.5903 0.6856 0.6759 0.6030 0.6615 0.6856
P M R 0.5436 0.5012 0.6833 0.6582 0.5358 0.6405 0.6674 0.5117 0.4474 0.6727
P M F1 0.6262 0.5706 0.6652 0.6359 0.5617 0.6623 0.6716 0.5536 0.5338 0.6791

Table 1: Performance comparison of various open-sourced and proprietary large language models for the span
prediction task on the 300-sample holdout test set. C M F1 and C W F1 correspond to Classification Macro F1
and Classification Weighted F1. S M P, S M R, and S M F1 correspond to Strict Matching Precision, Strict
Matching Recall, and Strict Matching F1-score. P M P, P M R, and P M F1 correspond to Proportional
Matching Precision, Proportional Matching Recall, and Proportional Matching F1-score. L3.1-8B, L3.2-3B,
G2-9B (4b), o1 (50), FL (50), o1 (CoT), 4o, and Pro represent Llama-3.1 8B, Llama-3.2 3B, Gemma-2 9B
(4-bit), o1 (50-shot), Gemini-2 Flash Experimental (50-shot), o1 (Chain-of-Thought Prompting), GPT-4o, and
Gemini-1.5 Pro respectively.

Metric G2-9B (4b) L3.1-8 4o o1 o1 (CoT) Pro FL
Rouge-1 0.5457 0.4812 0.4911 0.4976 0.3380 0.5020 0.5323
Rouge-2 0.2861 0.2218 0.2337 0.2292 0.1160 0.2339 0.2713
Rouge-L 0.4909 0.4187 0.4211 0.4239 0.2810 0.4424 0.4765
BERTScore 0.9099 0.8611 0.8714 0.8972 0.8230 0.9064 0.9103
METEOR 0.4754 0.4529 0.4227 0.4176 0.2530 0.4154 0.4494
BLEU 0.2137 0.1923 0.1691 0.1992 0.0570 0.1792 0.2018

Table 2: Performance comparison of various open-sourced and proprietary large language models for the
summarization task on the 300-sample holdout test set.

two, three, or four perspectives. The evaluation
was conducted on the test set.

Among all proprietary models, o1 with Chain-
of-Thought (CoT) prompting gave us the best clas-
sification results among all proprietary models.
Gemini-2 Flash Experimental performed best in
Strict Matching F1, while Gemini-1.5 Pro achieved
the highest Proportional Matching F1.

To assess the impact of increasing the number
of examples in few-shot prompting, we conducted
an additional experiment by increasing the number
of examples from 8 to 50, selected using random
sampling for o1 and Gemini-2 Flash Experimental.
The results showed that providing more examples
did not improve performance. In fact, for o1, the
Strict Matching F1 decreased from 0.0921 (8 exam-
ples) to 0.0601 (50 examples), and the Proportional
Matching F1 dropped from 0.6359 to 0.5617. Sim-
ilarly, for Gemini-2 Flash Experimental, the Classi-

fication Macro F1 declined from 0.7317 to 0.7102,
and the Classification Weighted F1 decreased from
0.8305 to 0.8213. Although Strict Matching F1
and Proportional Matching F1 showed slight im-
provements, the gains were marginal. A detailed
comparison of all the experiments is presented in
Table 1.

4.2 Summarization

Once the relevant spans were identified for each
perspective category, the next step was to gener-
ate a summary that effectively captured the key
information from those spans. The models were
evaluated using standard metrics such as ROUGE-
1, ROUGE-2, ROUGE-L, BERTScore, METEOR,
and BLEU.

4.2.1 LLM Fine-tuning
We fine-tuned Gemma-2 9B (4-bit quantized
model) and Llama-3.1 8B (base model) to generate
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Metric S1 S2 S3 S4 S5 S6 S7 S8 S9
A + B 0.3964 0.4427 0.3940 0.4440 0.4083 0.4495 0.3833 0.4467 0.4407
C M F1 0.8628 0.7933 0.8656 0.8509 0.8581 0.8656 0.7849 0.8656 0.8656
C W F1 0.9092 0.8634 0.9140 0.8992 0.8900 0.9140 0.8396 0.9140 0.9140
S M P 0.1352 0.1768 0.1491 0.1775 0.1748 0.1765 0.1552 0.1765 0.1765
S M R 0.1257 0.2667 0.1562 0.2705 0.1162 0.2743 0.1200 0.2743 0.2743
S M F1 0.1303 0.2126 0.1526 0.2143 0.1396 0.2148 0.1353 0.2148 0.2148
P M P 0.5189 0.6793 0.5892 0.6641 0.5275 0.6597 0.4420 0.6597 0.6597
P M R 0.6857 0.7396 0.5648 0.7076 0.6350 0.7159 0.6145 0.7159 0.7159
P M F1 0.5907 0.7081 0.5767 0.6852 0.5763 0.6866 0.5142 0.6866 0.6866
A 0.5434 0.5947 0.5478 0.5996 0.5353 0.6052 0.4964 0.6052 0.6052
ROUGE-1 0.3580 0.4129 0.3407 0.4201 0.3533 0.4345 0.3318 0.4243 0.4048
ROUGE-2 0.1432 0.1818 0.1058 0.1812 0.1574 0.1869 0.1434 0.1753 0.1542
ROUGE-L 0.3210 0.3714 0.2881 0.3763 0.3184 0.3878 0.3017 0.3765 0.3510
BERTScore 0.8038 0.8048 0.8531 0.8318 0.7385 0.8658 0.7220 0.8621 0.8584
METEOR 0.3226 0.3713 0.2572 0.3719 0.3190 0.3844 0.3041 0.3509 0.3474
BLEU 0.0971 0.1189 0.0602 0.1127 0.1088 0.1124 0.0959 0.1134 0.1047
B_Relevance 0.3409 0.3768 0.3175 0.3823 0.3326 0.3953 0.3165 0.3838 0.3701
AlignScore 0.3665 0.4458 0.4043 0.4307 0.4359 0.4260 0.3991 0.4308 0.4369
SummaC 0.2433 0.2671 0.2291 0.2696 0.2785 0.2701 0.2750 0.2715 0.2570
B_Factuality 0.3049 0.3565 0.3167 0.3502 0.3572 0.3480 0.3370 0.3512 0.3470

Table 3: Performance comparison across all submissions evaluated on the provided 50 samples.

summaries from the predicted spans. Both mod-
els were trained on the training set with Unsloth
(Daniel Han and team, 2023) using zero-shot fine-
tuning for 3 epochs with a learning rate of 2e-4,
validated on the validation set, and evaluated on
the test set.

Among these two, Gemma-2 9B (4-bit quantized
model) consistently outperformed the Llama-3.1
8B model across all evaluation metrics. A detailed
comparison of the results is presented in Table 2.

4.2.2 Proprietary Models

In addition to fine-tuned models, we explored pro-
prietary models, including GPT-4o, o1, Gemini-
1.5 Pro, and Gemini-2 Flash Experimental, using
a few-shot prompting approach with 8 examples.
We used the same examples which were used the
span prediction task. These models were evaluated
on the test set. Among these models, Gemini-2
Flash Experimental consistently achieved the high-
est scores across all evaluation metrics. A detailed
comparison of the results is presented in Table 2.

5 Submissions

During the competition’s evaluation phase, we
were given 50 test samples and made a total of
nine submissions, each exploring different model
configurations and techniques.

In our first submission, we fine-tuned the
Gemma-2 9B (4-bit quantized) model on the train-
ing data and validated it on the validation data
for span prediction and summarization. The sec-
ond submission (S2) used Gemini-2 Flash Exper-
imental, a proprietary model, for both tasks. The
third submission (S3) introduced o1 with Chain-
of-Thought (CoT) prompting to enhance reasoning
capabilities.

In the fourth submission (S4), we used o1 (CoT)
for classification and Gemini-2 Flash Experimental
for span extraction and summarization. However,
Gemini-2 Flash Experimental did not always ad-
here to the class predictions from o1, leading to
inconsistencies in output. For the fifth submission
(S5), we fine-tuned Gemma-2 9B (4-bit quantized)
using a combined training and validation set.

Our sixth submission (S6) achieved the best over-
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Figure 4: This figure illustrates the workflow of our best submission.

all performance. Here, we used o1 and Gemini-2
Flash Experimental for span extraction, ensuring
that all classes predicted by o1 had corresponding
spans. We noticed that Gemini’s perspective classi-
fication was a proper subset of o1’s. If Gemini-2
Flash Experimental did not generate spans for a
perspective category but o1 did, we retained those
from o1. When both models provided spans for a
particular perspective, we used those from Gemini-
2 Flash Experimental and discarded o1’s. The final
set of spans was then passed to Gemini-2 Flash
Experimental for summarization. This submission
achieved the highest Task A+B average score of
0.4495. The complete workflow is illustrated in
Figure 4.

While evaluating the test data, we observed that
all 50 samples included context, whereas two-thirds
of the training data lacked it. To account for this,
our seventh submission (S7) fine-tuned Gemma-
2 9B using only samples that contained context.
In the eigth submission (S8), we used o1 for clas-
sification, Gemini-2 Flash Experimental for span
extraction, and increased the few-shot prompting
examples from 8 to 16 to enhance summarization
performance.

For our final submission (S9), o1 was used for
span extraction, and Gemini-1.5 Pro was used for
summarization. A detailed breakdown of the scores
for all submissions is provided in Table 3.

In Table 3, the metric (A+B) denotes the com-
bined average score of Task A and B, and (A)

represents the score for Task A. The metrics
(B_Relevance) and (B_Factuality) correspond to
the relevance and factuality scores for Task B, re-
spectively. AlignScore (Zha et al., 2023) and Sum-
maC (Laban et al., 2022) are factual consistency
evaluation metrics, designed to assess the align-
ment of generated summaries with the source text.

6 Discussion

In the final submissions we notice that o1 CoT
performs well on the classification task (to predict
perspectives present in user answers) as seen in Ta-
ble 3. This is in line with our evaluations on the test
set as well, where the classification weighted F1 of
o1 CoT was the best as seen in Table 1. For the
span extraction task, finetuned open-source models
were performing on par with proprietary ones like
Gemini-2 Flash Experimental and 1.5 Pro as seen
in Table 1. For summarization Gemma-2 9B (4 bit)
beats all other models as seen in Table 2. This
demonstrates the efficiency of finetuning Large
Language Models on downsteam tasks where even
smaller models (less than 10 B parameters) can
compete with and beat larger models like GPT 4o
etc.

However, in the final submissions we see a large
gap between open-sourced models like Gemma-2
9B (4-bit) (Submision 1) and proprietary models
like Gemini-2 Flash Experimental (Submission 2)
as seen in Table 3. The reason for such discrepancy
can be due to difference in data distribution of the
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training and validation set released earlier and the
final evaluation set of 50 samples on which the sub-
missions were scored. One difference highlighted
earlier was that the final evaluation set had the op-
tional context section for all samples whereas, the
training and validation set had approximately two-
thirds of the samples without the context section.
Another reason could be an inherent bias due to a
small set of just 50 samples.

7 Conclusion

We test multiple open-source and proprietary
LLM’s for the task. Finetuning open-source
smaller models like Llama 8b, 3b and Gemma
9b models yielded significant improvements from
their base variants and even outperformed GPT
4o. This is likely because learning is significantly
higher from finetuning when compared to in- con-
text Learning with few shot examples. It is also
difficult to capture all the details of the data in the
few shot examples which is another reason why
finetuning performs better. In our experiments, we
observed that increasing the number of few-shot
examples did not enhance performance. Hence
finetuning is the better alternative.

Regardless, few proprietary LLM’s particularly
Gemini-2 Flash Experimental was able to beat the
finetuned smaller models like Llama and Gemma
on the final evaluation set of 50 samples on which
submissions were scored. Possible reasons for a
significant drop in performance during the final
evaluation is discussed in the Discussions section.
We also try a CoT prompt with o1 to accomplish
both tasks in one go. We notice that the classifica-
tion (perspective prediction) of o1 CoT is the best
of all submissions (Table 3) which is largely in line
with our experimentations (Table 1), but the spans
and summaries of Gemini-2 Flash Experimental is
better. Hence, we merge the spans of both mod-
els and choose Gemini’s spans wherever possible.
For perspectives where Gemini does not generate
any spans but o1 does, we go ahead with the spans
from o1. This ensures we utilize the better classi-
fication performance of o1 and use Gemini’s span
and summarization.

8 Limitations

The experiments carried out were mainly on a few
selected open source and proprietary models. There
are a number of open-sourced larger models which
could have been finetuned for better performance.

However, due to insufficient resources and time
constraints we keep it as a possible future work. As
for the proprietary models, more effort can be put
in the prompting of these models. Things like a
greater number of few shot prompts, different few
shot examples can be tried. An ensemble approach
using o1 and Gemini-2 Flash Experimental for span
prediction, combined with the Gemma-2 9B model
for summarization, could also be explored for im-
proved performance.

9 Ethical Consideratons

Given that our dataset is from the medical and
healthcare domain we take additional effort to com-
ply with all ethical guidelines. As per the shared
tasks instructions we use this dataset strictly for the
task experiments and have not leaked this data to
any third party. Since the data contains answers
from multiple users there are some personal identi-
fication information like email addresses, website
links etc. We make no effort to make contact or
connect to these users on their social media han-
dles. Also, we have cited all intellectual artifacts
and resources to the best of our knowledge, en-
suring proper attribution and adherence to ethical
research practices.
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Abstract
Healthcare community question-answering
(CQA) forums have become popular for users
seeking medical advice, offering answers that
range from personal experiences to factual in-
formation. Traditionally, CQA summariza-
tion relies on the best-voted answer as a ref-
erence summary. However, this approach
overlooks the diverse perspectives across mul-
tiple responses. Structuring summaries by
perspective could better meet users’ infor-
mational needs. The PerAnsSumm shared
task addresses this by identifying and clas-
sifying perspective-specific spans (Task_A)
and generating perspective-specific summaries
from question-answer threads (Task_B). In
this paper, we present our work on the Per-
AnsSumm shared task 2025 at the CL4Health
Workshop, NAACL 2025. Our system lever-
ages the RoBERTa-large model for identify-
ing perspective-specific spans and the BART-
large model for summarization. We achieved a
Macro-F1 score of 0.9 (90%) and a Weighted-
F1 score of 0.92 (92%) for classification. For
span matching, our strict matching F1 score
was 0.21 (21%), while proportional match-
ing reached 0.68 (68%), resulting in an aver-
age Task A score of 0.6 (60%). For Task B,
we achieved a ROUGE-1 score of 0.4 (40%),
ROUGE-2 of 0.18 (18%), and ROUGE-L of
0.36 (36%). Additionally, we obtained a
BERTScore of 0.84 (84%), METEOR of 0.37
(37%), BLEU of 0.13 (13%), resulting in an
average Task B score of 0.38 (38%). Combin-
ing both tasks, our system achieved an overall
average score of 49% and ranked 6th on the
official leaderboard for the shared task.

1 Introduction

In PerAnsSumm shared task 2025 at the CL4Health
Workshop, NAACL 2025 (Agarwal et al., 2025),
the goal is to identify and classify perspective-
specific spans (Task_A) and generate summaries
tailored to specific perspectives from question-
answer threads (Task_B) (Naik et al., 2024).

Span identification is the task of identifying and
extracting a continuous range of words from a
given text that correspond to a specific piece of
information (Fu et al., 2021). This span is a subset
of text, usually defined by its starting and ending
positions within a sentence. Perspective-specific
span identification is the task of finding parts of the
text that are relevant to a particular perspective in a
given context (Xu et al., 2023). TASK_A involves
identifying the specific spans in user answers that
reflect distinct perspectives and classifying each
span into the appropriate perspective.

For TASK_A, we fine-tuned BERT-large (De-
vlin et al., 2018) and RoBERTa-large (Liu et al.,
2019) models to identify relevant spans within the
text. Initially, BERT-large achieved an accuracy
of 45%, while RoBERTa-large performed slightly
better at 47%. To improve their performance, we
first pre-trained both models using Masked Lan-
guage Modeling (MLM) for better domain adapta-
tion before fine-tuning them for span identification.
This additional pre-training helped—BERT-large
improved to 50%, and RoBERTa-large improved
to 51%. Further, we optimized the RoBERTa-large
model by implementing gradual training, where
we fine-tuned the model while keeping some layers
frozen for a few epochs. Then, we froze the already
fine-tuned layers, unfroze the remaining layers, and
fine-tuned them separately. Finally, we fine-tuned
the entire model. This step-by-step strategy signifi-
cantly improved performance, raising accuracy to
60%.

Summarization is the task of generating a con-
cise and meaningful summary of a longer text while
preserving its key information. It helps in reducing
large amounts of text into a shorter version while
retaining its core meaning (Allahyari et al., 2017).
Perspective-specific summarization is a technique
that generates summaries focused on a particular
aspect of a topic, highlighting information relevant
to that perspective instead of providing a general
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summary (Tan et al., 2020). TASK_B involves
generating a concise summary that captures the un-
derlying perspective present across all identified
spans in the user answers.

For Task_B, we fine-tuned the BART-large
(Lewis et al., 2019) and Pegasus-large (Zhang
et al., 2019) models to summarize the perspective
spans identified and extracted in Task_A. Initially,
Pegasus-large achieved TASK_B relevance score
of 29%, while BART-large performed slightly bet-
ter at 31%. To enhance their performance, we
pre-trained both models using Masked Language
Modeling (MLM) for better domain adaptation be-
fore fine-tuning them for summarization. This ad-
ditional pre-training boosted BART-large to 38%
and Pegasus-large to 35%.

In our proposed solution, we use RoBERTa-
large for perspective-specific span identifica-
tion (TASK_A) and BART-large for perspective-
specific summarization (TASK_B).

2 Related Work

Several approaches have been proposed for span
identification tasks, focusing on detecting mean-
ingful spans and classifying them into predefined
categories. Early works (Chiu and Nichols, 2016)
framed SpanID as a sequence tagging problem,
where spans were identified token by token us-
ing contextual embeddings. Recent research has
shifted towards Machine Reading Comprehension
(MRC)-based methods (Li et al., 2020), that make
use of category-specific queries to extract relevant
spans. To address challenges like overfitting and
data scarcity, PeerDA (Xu et al., 2023) introduces a
peer relation (PR) along with the subordinate rela-
tion (SUB), enriching training data and improving
generalization. The contrastive learning (Gunel
et al., 2021) strategy further enhances the model’s
ability to distinguish spans across different cate-
gories, making PeerDA a promising approach for
perspective-based SpanID tasks.

Recent research on fine-grained text analysis
has explored span extraction as an alternative to
clause-level classification for more precise iden-
tification of relevant information. Emotion-cause
span extraction (ECSE) (Li et al., 2021) refines
emotion cause identification (ECI) by focusing on
extracting targeted cause spans rather than entire
clauses, improving interpretability and usability.
Multi-attention mechanisms have been used to en-
hance cause-span extraction by leveraging context-

sensitive representations, a method that could be
adapted for perspective identification (Bi and Liu,
2020). Additionally, position-aware learning has
been found to enhance token-level representations,
improving the ability to capture key spans within
longer texts (Xia and Ding, 2019).

Recent advancements in text summarization
have explored span-based extraction and con-
trastive learning (CL) to improve content selection
and representation. In medical question summariza-
tion (MQS), CL-enhanced methods have been used
to capture key focus words, making sure that the
summaries accurately reflect the core intent of the
input text (Ma et al., 2022). Similarly, perspective-
based summarization benefits from identifying and
preserving essential spans that convey underlying
viewpoints. Studies on Seq2Seq-based models and
reinforcement learning (RL)-enhanced approaches
demonstrate the importance of maintaining both
syntactic accuracy and semantic coherence in sum-
maries (Keneshloo et al., 2019).

3 Dataset

The dataset (Naik et al., 2024) provided for the
shared task is the PUMA dataset, a perspective-
aware summary annotated corpus of medical
question-answer pairs. It consists of 3,167 CQA
threads with approximately 10,000 answers filtered
from the Yahoo! L6 corpus. Each answer in the
dataset is annotated with five perspective spans:
‘cause’, ‘suggestion’, ‘experience’, ‘question’, and
‘information’. These annotations create concise
summaries for each identified perspective, which
captures the core idea reflected in the spans across
all answers. Each CQA thread may contain up to
five perspective-specific summaries.

The data is provided in JSON format. Each en-
try in the training and validation datasets includes
fields such as uri 1, question, context, answers,
labelled_answer_spans, labelled_summaries, and
raw_text. The labelled_answer_spans contains the
span text and the index positions indicating where
the span starts and ends within the raw_text. The la-
belled_summaries provide concise summaries cor-
responding to each identified perspective.

In the test dataset, only the fields uri, question,
context, and answers are available, with no annota-
tions for answer spans or summaries. The dataset
was split into 2,236 instances for training, 959 for
validation, and 50 for testing.

1Unique resource identifier
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Dataset Size
Train 2236
Valid 959
Test 50

Table 1: Dataset Splits

4 System Description

Our system is made of fine-tuned RoBERTa and
BART models, where RoBERTa is used for pre-
cise token classification tasks, efficiently identify-
ing and labeling specific information within the
text. BART, on the other hand, is fine-tuned for
summarization, enabling it to generate coherent,
contextually relevant summaries by compressing
complex input into concise representations.

4.1 Data Pre-Processing

In the pre-processing step, for span iden-
tification, we focus on the "answers" and
"labelled_answer_spans" fields. The "la-
belled_answer_spans" field provides perspective
spans, where each span contains indices referring
to the "raw_text" field. To handle this, we
merged all the answers and compared each
perspective span to the merged answer, labeling
the corresponding tokens as perspective spans
(e.g., "I-INFORMATION", "I-SUGGESTION",
"I-CAUSE", "I-QUESTION", "I-EXPERIENCE",
"O") and marking the rest as "O". We ex-
perimented with three token classification
formats: BIO (Beginning-Inside-Outside), IO
(Inside-Outside), and BIOES (Beginning-Inside-
Outside-End-Single). For summarization, we
treated the merged spans as context and the
"labelled_summaries" as the corresponding
summaries.

4.2 Fine-Tuning

We fine-tuned BERT-large and RoBERTa-large
models for span identification.

With the BERT-large model, we achieved a
Macro-F1 score of 0.83 (83%) and a Weighted-
F1 score of 0.86 (86%) for classification. However,
for span matching, the strict matching F1 score
was 0.0 (0%), while proportional matching reached
0.47 (47%), resulting in an average Task A score
of 0.45 (45%). For the RoBERTa-large model, we
obtained a Macro-F1 score of 0.84 (84%) and a
Weighted-F1 score of 0.88 (88%) for classification.
Similarly, in span matching, the strict matching F1

score was 0.0 (0%), while proportional matching
achieved 0.54 (54%), yielding an average Task A
score of 0.47 (47%).

The results indicate that the RoBERTa-large
model outperforms the BERT-large model. To fur-
ther improve performance, we fine-tuned both mod-
els for domain adaptation using Masked Language
Modeling (MLM) and then retrained them for span
identification. After domain adaptation, both mod-
els showed improvement.

For the domain-adapted BERT-large model, we
achieved a Macro-F1 score of 0.87 (87%) and a
Weighted-F1 score of 0.9 (90%) for classification.
In span matching, the strict matching F1 score was
0.0 (0%), while proportional matching reached
0.59 (59%), resulting in an average Task A score
of 0.5 (50%).

With the domain-adapted RoBERTa-large model,
we achieved a Macro-F1 score of 0.88 (88%) and a
Weighted-F1 score of 0.92 (92%) for classification.
For span matching, the strict matching F1 score was
0.01 (1%), while proportional matching reached
0.62 (62%), yielding an average Task A score of
0.51 (51%).

The results now show that the domain-adapted
RoBERTa-large model outperforms the domain-
adapted BERT-large model. To further enhance per-
formance, we applied a gradual training approach
over 10 epochs to both domain-adapted models,
each consisting of 24 layers. Initially, during the
first 2 epochs, we froze all layers except for the
first 4. In the next 2 epochs, we unfroze the sub-
sequent 4 layers while keeping the earlier layers
frozen. Over the following 2 epochs, we continued
to unfreeze 4 additional layers, leaving the previ-
ously trained ones frozen. Finally, during the last 4
epochs, we unfroze all remaining layers and trained
the entire model.

Despite using this gradual training method,
BERT-large did not show any significant improve-
ment. In contrast, the domain-adapted and gradu-
ally trained RoBERTa-large model achieved better
results. For classification, we obtained a Macro-F1
score of 0.9 (90%) and a Weighted-F1 score of
0.92 (92%. For span matching, the strict matching
F1 score was 0.21 (21%), while the proportional
matching F1 score reached 0.68 (68%), yielding
an average Task A score of 0.6 (60%).

We fine-tuned both BART-large and Pegasus-
large models for summarization. Using the
Pegasus-large model, we achieved a Rouge-1 score
of 0.3 (30%), Rouge-2 score of 0.12 (12%), Rouge-
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Pre GT Model Macro-
F1

Weighted-
F1

strict match-
ing F1

proportional
matching F1

Average

✗ ✗ BERT-large 0.83 0.86 0.0 0.47 0.45
✗ ✗ RoBERTa-large 0.84 0.88 0.0 0.54 0.47
✓ ✗ BERT-large 0.87 0.9 0.0 0.59 0.5
✓ ✗ RoBERTa-large 0.88 0.92 0.01 0.62 0.51
✓ ✓ RoBERTa-large 0.9 0.92 0.21 0.68 0.6

Table 2: Performance comparison of BERT-large and RoBERTa-large models with and without pre-training (Pre)
and gradual training (GT) across different evaluation metrics. The table presents Macro-F1, Weighted-F1, strict
matching F1, and proportional matching F1 scores, along with their average performance.

Pre Model Rouge-1 Rouge-2 Rouge-L BERTScore Meteor BLEU Average
✗ Pegasus-large 0.3 0.12 0.27 0.73 0.26 0.1 0.29
✗ BART-large 0.33 0.12 0.29 0.77 0.28 0.09 0.31
✓ Pegasus-large 0.37 0.16 0.33 0.81 0.33 0.12 0.35
✓ BART-large 0.4 0.18 0.36 0.84 0.37 0.13 0.38

Table 3: Performance comparison of Pegasus-large and BART-large models for summarization, with and without
pre-training (Pre). The table presents performance across various metrics, including Rouge-1, Rouge-2, Rouge-L,
BERTScore, METEOR, BLEU, and the overall average score.

L score of 0.27 (27%), BERTScore score of 0.73
(73%), METEOR score of 0.26 (26%), and BLEU
score of 0.1 (10%). This resulted in an average
Task B score of 0.29 (29%). For the BART-large
model, we achieved a Rouge-1 score of 0.33 (33%),
Rouge-2 score of 0.12 (12%), Rouge-L score of
0.29 (29%), BERTScore score of 0.77 (77%), ME-
TEOR score of 0.28 (28%), and BLEU score 0.09
(9%), giving an average Task B score of 0.31
(31%).

The results indicate that the BART-large model
outperformed the Pegasus-large model. To boost
performance even further, we fine-tuned both mod-
els for domain adaptation using Masked Language
Modeling (MLM) and retrained them for span iden-
tification. Following domain adaptation, both mod-
els showed noticeable improvements.

For the pre-trained Pegasus-large model after
domain adaptation, we achieved a Rouge-1 score of
0.37 (37%), Rouge-2 score of 0.16 (16%), Rouge-
L score of 0.33 (33%), BERTScore of 0.81 (81%),
METEOR score of 0.33 (33%), and BLEU score
of 0.12 (12%), resulting in an average Task B score
of 0.35 (35%).

Similarly, the pre-trained BART-large model
showed improved results, we obtained a Rouge-
1 score of 0.4 (40%), Rouge-2 score of 0.18 (18%),
Rouge-L score of 0.36 (36%), BERTScore of 0.84
(84%), METEOR score of 0.37 (37%), and BLEU
score of 0.13 (13%), resulting in an average Task

B score of 0.38 (38%).
After domain adaptation, both models improved,

with BART-large still outperforming Pegasus-large.

4.3 Inference

4.3.1 Span Identification Module
To identify spans, we process the dataset
by extracting the "uri," "answers," and "la-
belled_answer_spans" fields. The model is then
applied to predict spans based on the "answers"
field. The predicted spans are stored in a JSON
format, where each "uri" is associated with a dic-
tionary containing the identified spans. If no spans
are predicted for a given category, an empty array
is used for that category. For example, if a dataset
entry discusses newborn care, a recommendation
such as "So you might want to check your baby
in daylight in a sunny room" would be classified
under "SUGGESTION," while a factual statement
like "Jaundice is an illness that can occur within the
first few days of a baby’s life" would be categorized
under "INFORMATION."

4.3.2 Summarization Module
We use the BART-large model to generate sum-
maries based on the predicted spans. The gen-
erated summaries are then stored in the "sum-
maries" dictionary, corresponding to each perspec-
tive span, such as "EXPERIENCE," "INFORMA-
TION," "CAUSE," "SUGGESTION," and "QUES-
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Figure 1: System Workflow

TION." Each category holds a relevant summary
derived from the respective spans.

5 Evaluation Metrics

For Task A (Span Identification and Classification),
performance is assessed using a macro-averaged
F1 score for classification, which ensures balanced
evaluation across all classes. For span identifica-
tion, two matching strategies are employed: Strict
matching, which requires an exact span match,
and proportional matching, which allows partial
matches to account for variability in span bound-
aries.

For Task B (Summarization), a comprehensive
set of evaluation metrics is utilized to measure the
quality of generated summaries. These include
ROUGE (R1, R2, and RL), which captures the over-
lap between generated and reference summaries,
BLEU, which evaluates n-gram precision, Meteor,
which accounts for synonymy and stemming, and
BERTScore, which leverages contextual embed-
dings to assess semantic similarity. These metrics
collectively provide a robust evaluation framework
for summarization performance.

6 Results

The evaluation results for the different experiments
are presented in Table 2 and Table 3. For Task A
(Span Identification and Classification), we submit-
ted the RoBERTa-large model, while for Task B
(Summarization), we used the BART-large model.
Our system achieved an average score of 60% for
TASK_A and 38% for TASK_B, leading to an over-
all average score of 49%. Based on these scores,
we secured 6th place on the leaderboard.

7 Conclusion

Our study demonstrates the effectiveness of fine-
tuning large language models for perspective-
specific span identification and summarization. By

leveraging domain-adaptive pre-training and opti-
mization techniques such as gradual training, we
significantly improved performance in both tasks.
For TASK_A, RoBERTa-large proved to be the
most effective model, achieving a final accuracy of
60% through gradual fine-tuning. For TASK_B,
BART-large outperformed Pegasus-large, reaching
38% accuracy after additional pre-training. These
results highlight the importance of targeted pre-
training and optimization strategies in enhancing
model performance for specialized NLP tasks. Our
approach provides a reliable method for identifying
and summarizing perspective-specific information,
contributing to more advanced and context-aware
text processing applications.

Limitations

While our approach improves performance, it still
depends on manually annotated training data for
TASK_A and TASK_B. We used a gradual train-
ing method, but exploring alternative approaches
could further enhance results. Moreover, our
method requires extensive high-quality annotated
data, making scalability challenging, especially in
new domains where annotation is costly and time-
consuming. Another challenge is handling over-
lapping or implicit perspectives, where multiple
viewpoints exist within the same span or are only
implied rather than explicitly stated. This makes
it harder for the model to extract distinct perspec-
tives, potentially leading to incomplete or biased
summaries. Additionally, while our approach effec-
tively extracts and summarizes perspective-specific
information, it does not verify factual accuracy or
neutrality, which may impact real-world use. Fu-
ture improvements could optimize training, better
handle ambiguous perspectives and integrate fact-
checking mechanisms.
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Abstract
Automated summarization of healthcare com-
munity question-answering forums is chal-
lenging due to diverse perspectives presented
across multiple user responses to each ques-
tion. The PerAnsSumm Shared Task was
therefore proposed to tackle this challenge
by identifying perspectives from different an-
swers and then generating a comprehensive
answer to the question. In this study, we
address the PerAnsSumm Shared Task using
two complementary paradigms: (i) a training-
based approach through QLoRA fine-tuning
of LLaMA-3.3-70B-Instruct, and (ii) agen-
tic approaches including zero- and few-shot
prompting with frontier LLMs (LLaMA-3.3-
70B-Instruct and GPT-4o) and a Mixture-of-
Agents (MoA) framework that leverages a di-
verse set of LLMs by combining outputs from
multi-layer feedback aggregation. For perspec-
tive span identification/classification, GPT-4o
zero-shot achieves an overall score of 0.57, sub-
stantially outperforming the 0.40 score of the
LLaMA baseline. With a 2-layer MoA config-
uration, we were able to improve LLaMA per-
formance up by 28% to 0.51. For perspective-
based summarization, GPT-4o zero-shot attains
an overall score of 0.42 compared to 0.28 for
the best LLaMA zero-shot, and our 2-layer
MoA approach boosts LLaMA performance by
32% to 0.37. Furthermore, in few-shot setting,
our results show that the sentence-transformer
embedding-based exemplar selection provides
more gain than manually selected exemplars on
LLaMA models, although the few-shot prompt-
ing is not always helpful for GPT-4o. The
YaleNLP team’s approach ranked the overall
second place in the shared task.

1 Introduction

Healthcare Community Question Answering
(CQA) forums are rapidly growing as accessible

1Figure adapted from Agarwal et al. https://
peranssumm.github.io/docs/

platforms for individuals to seek medical advice,
share personal experiences, or request simplified
explanations of health conditions. Unlike expert-
oriented medical sites, user-driven forums incorpo-
rate a broad range of viewpoints, from anecdotal
evidence to speculative reasoning. Although the
diversity can enrich the discussion, it also leads to
information overload and frequent off-topic com-
ments, making it difficult for newcomers to iden-
tify critical insights. Traditionally, the CQA an-
swer summarization task focuses on a single best-
voted answer (Chowdhury and Chakraborty, 2018;
Chowdhury et al., 2020) as a reference summary.
However, a single answer often fails to capture
the diverse perspectives presented across multi-
ple answers. Providing the answers in structured,
perspective-specific summaries could better serve
the information needs of end users.

In response to this challenge, the PerAnsSumm
Shared Task at the CL4Health@NAACL 2025
Workshop (Agarwal et al., 2025) introduces a
perspective-specific summarization benchmark, en-
couraging researchers to design systems that explic-
itly recognize and integrate various user viewpoints
into their outputs. The task is comprised of two
phases. Given a medical related query and a set of
answers from CQA forums, the system is required
to (i) identify the specific perspective in each of
the answer and (ii) generate a summarization for
each of these perspectives across different answers.
Detailed task setup will be introduced in Section 3.

Our main contributions and findings are as fol-
lows:

• We show that GPT-4o (OpenAI et al., 2024)
generally outperforms 70B-level open-source
models (the largest models we have access to)
in both the span identification/classification
and perspective-based summarization tasks.
Providing few-shot examples do not consis-
tently yield higher performance.
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Figure 1: PerAnsSumm Shared Task overview.1

• In few-shot setting, example selection by clus-
tering on candidate example embeddings yield
consistent improvements over manual exam-
ple selection.

• Implementing a MoA (Wang et al., 2024) ap-
proach with multiple open-source LLMs sig-
nificantly improves performance over individ-
ual models, demonstrating the potential of this
ensemble strategy.

• QLoRA (Dettmers et al., 2023) fine-tuning
with generic limited training data does not
provide performance gains under our exper-
imental conditions; in fact, it degrades per-
formance. Due to the time constraints of the
challenge, we were unable to explore addi-
tional fine-tuning configurations. We leave
fine-tuning recipe exploration to future work.

We reimplemented2 the relevant techniques to align
2https://github.com/JamesJang26/

YALENLP-PerAnsSumm-2025

with the PerAnsSumm Shared Task. Through these
experiments, our objective is to provide insight
into the strengths and limitations of LLM-based
approaches for perspective-aware summarization
in medical CQA.

2 Related Work

Early abstractive summarization largely relied on
pre-trained models such as BART (Lewis et al.,
2020), T5 (Raffel et al., 2023), and PEGASUS
(Zhang et al., 2020a), demonstrating strong perfor-
mance on news benchmarks like CNN/DailyMail
(Hermann et al., 2015) or XSum (Narayan et al.,
2018). Yet, these approaches are typically opti-
mized for well-structured, professionally written
content. In contrast, healthcare forums contain per-
sonal opinions, anecdotal evidence, and multiple
viewpoints that can hinder purely data-driven sum-
marizers (Chaturvedi et al., 2024).

Recent works in aspect- or perspective-oriented
summarization highlight the value of parsing out
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different user viewpoints. Naik et al. (2024) em-
phasize splitting content into categories like cause,
suggestion, experience, while AnswerSumm (Fab-
bri et al., 2022) extracts sentence-level spans for
query-focused summaries, though it does not fully
address overlapping perspectives common in com-
munity Q&A. At the same time, multi-document
techniques for high-variance domains (Liu et al.,
2018) suggest strategies for aggregating and recon-
ciling disparate user responses.

Moreover, the rise of large language models has
fueled interest in zero-/few-shot prompting, with
studies showing that manually curated exemplars
can be fragile or insufficiently general. Embedding-
based selection methods like FsPONER (Tang et al.,
2024) and adaptive few-shot prompting (Tang et al.,
2025; Chang et al., 2021) propose retrieving exem-
plars via similarity or clustering, offering more
stable and domain-sensitive prompts. Such tech-
niques are well-suited to healthcare Q&A, where a
single misaligned exemplar can skew the summary
toward incorrect or irrelevant details.

While prompt-based approaches can reduce re-
liance on large labeled datasets, certain tasks still
benefit from specialized model tuning. To this end,
LoRA (Hu et al., 2021) introduced a low-rank adap-
tation mechanism that updates only a small frac-
tion of model parameters, and QLoRA (Dettmers
et al., 2023) extends this concept by quantizing
weights for further efficiency. These methods en-
able domain-focused tuning without the prohibitive
resource costs typically associated with training
massive LLMs from scratch.

3 PerAnsSumm

PerAnsSumm Shared Task is comprised of two sub-
tasks sequentially, as shown in . Given a question
Q, a set of answers A, and perspective categories
{cause, suggestion, experience, information,
question}, we are assigned the following two
tasks:

3.1 Task A: Span Identification and
Classification

For each answer in A, identify all text spans that
convey any of the five perspectives.

Following the task guidelines, systems must out-
put a list of labeled spans. For example:

span: “<extracted span>", label:
“<perspective>"

Any text not relevant to a predefined perspective is
omitted.

Evaluation Metrics PerAnsSumm evaluates
Task A under two main criteria:

• Classification: Whether the model correctly
assigns a perspective label to an answer if
it contains that perspective. Macro-F1 and
Weighted-F1 are reported.

• Span Matching: Compares predicted spans
with gold-standard spans via strict matching
and proportional matching.

An overall macro-average of these measures is used
for final ranking.

3.2 Task B: Perspective-Based Summaries
Building on Task A, after identifying and labeling
spans in a Q&A thread, the system must produce a
short, coherent summary for each perspective that
appears.

Systems typically generate summaries in a struc-
tured format, for example:

EXPERIENCE Summary: <text>
INFORMATION Summary: <text>
CAUSE Summary: <text>
SUGGESTION Summary: <text>
QUESTION Summary: <text>

If a perspective is deemed absent by the model, no
summary is produced for that label.

Evaluation Metrics To assess each perspective-
specific summary, PerAnsSumm combines mea-
sures of relevance and factuality,

• Relevance: ROUGE (Lin, 2004), BLEU (Pa-
pineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), and BERTScore (Zhang et al.,
2020b) quantify how well the generated sum-
mary aligns with the reference.

• Factuality: AlignScore (Zha et al., 2023) and
SummaC (Laban et al., 2022) confirm that the
summary is consistent with the original source
text (i.e., it does not hallucinate or contradict).

These sub-metrics are aggregated into a final
Task B score.

4 Methods

This section details the various modeling strategies
we explore, including zero-/few-shot prompting,
the MoA framework, and QLoRA supervised fine-
tuning.
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4.1 Zero-/Few-Shot Prompting

Zero-Shot Setup. We first experiment with
prompting large language models using a instruc-
tion that specifies the task (either span identifica-
tion/classification or perspective-based summariza-
tion). For instance, we provide definitions of the
five perspectives (cause, suggestion, experience, in-
formation, question) and ask the model to extract or
summarize accordingly (best prompt for each tasks
are detailed in Appendix C). This approach requires
no additional training or fine-tuning, leveraging the
general knowledge embedded in instruction-tuned
LLMs.

Few-Shot Setup. We provide 3–5 exemplars to
the model via the prompt. We investigate two dis-
tinct methods for exemplar selection:

Manually Curated: We pick representative CQA
threads that cover multiple perspectives and
exhibit typical corner cases.

Embedding-Based Selection: We embed all
potential demonstration samples from train-
ing set with a sentence-transformer (e.g.,
all-MiniLM-L6-v2 in our case), cluster them
using k-means, and then pick top-k samples
based on proximity to the test query.

4.2 Mixture-of-Agents

Medical content requires both domain knowledge
and nuanced understanding of different viewpoints.
To overcome these limitations, we implement a
Mixture-of-Agents (MoA) framework that lever-
ages the complementary strengths of multiple lan-
guage models working in concert. MoA is a
framework for ensembling multiple sub-models
(or agents) and integrating their outputs via an ag-
gregator. We adapt and extend this method for our
tasks. Specifically, we consider different numbers
of layers (1, 2, or 3) in the MoA pipeline:

• 1-Layer MoA: Each agent generates a par-
tial response (e.g., predicted spans or short
perspective-based summaries). An aggregator
model then fuses these responses into a final
output in a single step.

• 2-Layer MoA: After collecting agent outputs,
we employ an intermediate "verification" layer
to refine or check consistency before pass-
ing the refined results to the final aggregator
model.

• 3-Layer MoA: We add an additional "hallu-
cination detection" layer, which aims to filter
out or correct unsupported statements before
the final aggregation.

For our agent selection, we incorporate diverse
models including open-source LLMs (LLaMA-3.3-
70B-Instruct, Qwen-2.5-72B-Instruct, Deepseek-
R1-Distill-LLaMA-70B) and closed-source models
(GPT-4o, GPT-4o-mini). This diversity is inten-
tional—each model brings different strengths in
medical reasoning, language understanding, and
factual recall. By combining them, we aim to cre-
ate a system that outperforms any individual model,
especially for complex medical content where per-
spectives might be subtle or require domain exper-
tise.

We test various configurations to understand
the optimal MoA architecture for each subtask.
These configurations include combinations of open-
source models only, GPT-4o only, and hybrid ap-
proaches where different model types handle dif-
ferent stages of the pipeline. For example, one
effective arrangement uses GPT-4o for span iden-
tification/classification and a MoA ensemble for
perspective-wise summarization based on those
identified spans. We also explore the reverse con-
figuration, as well as using MoA for both tasks.
Through these experiments, we can measure the
synergistic effects gained from mixing diverse
LLMs and identify which models perform best at
each stage of the process.

The multi-layer verification approach is particu-
larly valuable for healthcare content, where accu-
racy is paramount. By adding verification and hal-
lucination detection layers, we create checkpoints
where potentially incorrect or unsupported informa-
tion can be filtered or corrected before final aggre-
gation, improving the reliability of the generated
summaries.

4.3 QLoRA Supervised Fine-Tuning

While zero-/few-shot prompting relies on the gener-
alization capabilities of LLMs, we also investigate
QLoRA, a parameter-efficient fine-tuning approach.
Through QLoRA, we can update a small set of
low-rank adaptation parameters while keeping the
majority of model weights frozen. This reduces
both the computational overhead and memory us-
age compared to full fine-tuning.
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Model Setting M-F1 W-F1 St-P St-R St-F1 Pr-P Pr-R Pr-F1 Overall

LLaMA-3.3-70B-Instruct

Zero-shot 0.5381 0.7299 0.0320 0.1218 0.0507 0.4530 0.6991 0.5498 0.3968
3-shot w/ H 0.5390 0.7265 0.0339 0.1240 0.0513 0.4665 0.7163 0.5673 0.4031
3-shot w/ C 0.5697 0.7676 0.0385 0.1311 0.0565 0.4954 0.7404 0.5974 0.4246
QLoRA SFT 0.4788 0.6584 0.0256 0.1158 0.0447 0.4216 0.6681 0.5184 0.3664

GPT-4o
Zero-shot 0.8949 0.9190 0.1756 0.2641 0.2110 0.6578 0.7392 0.6961 0.5697
3-shot w/ H 0.8176 0.8479 0.1552 0.2193 0.1818 0.6145 0.7124 0.6599 0.5261
3-shot w/ C 0.8553 0.8723 0.1468 0.2546 0.1862 0.6810 0.7525 0.7150 0.5580

MoA
Best 1 0.8129 0.8478 0.1491 0.2072 0.1734 0.5512 0.6942 0.6145 0.5063
Best 2 0.7682 0.7809 0.1443 0.1697 0.1560 0.5412 0.6512 0.5912 0.4753

Table 1: Task A(span identification/classification) results . “3-shot w/ H(uman)” means three manually curated
examples were used for few-shot prompting; “3-shot w/ C(lustering)” means three exemplars were automatically
selected via sentence-transformer embeddings. Metrics include Macro-F1 (M-F1), Weighted-F1 (W-F1), Strict
Precision/Recall/F1 (St-P, St-R, St-F1), Proportional Precision/Recall/F1 (Pr-P, Pr-R, Pr-F1), and an Overall average.

5 Experiments

We employ a diverse set of open-source models
(LLaMA-3.3-70B-Instruct (AI, 2024), Qwen-2.5-
72B-Instruct (Qwen et al., 2025), and Deepseek-
R1-Distill-LLaMA-70B (DeepSeek-AI et al.,
2025)) and closed frontier model (GPT-4o and GPT-
4o-mini (OpenAI et al., 2024)).

5.1 Experimental Data

We employ the PUMA3 (Naik et al., 2024) cor-
pus provided by PerAnsSumm shared task. It
contains 3,245 Q&A threads, each with up to
five perspective annotations (cause, suggestion,
experience, information, question) and ref-
erence summaries per perspective. We follow of-
ficial splits: 2,236 threads for training, 959 for
validation, and 50 withheld for testing, while for
the paper, we tested on the last 400 cases from valid
set.

5.2 QLoRA Finetuning Implementation

We used llama-factory (Zheng et al., 2024)
toolkit to simply fine-tune LLaMA-3.3-70B-
Instruct under various hyperparameter settings. For
additional fine-tuning details, see Appendix A.

6 Results

We evaluate our approaches on two tasks: Task A
(span identification/classification) and Task B
(perspective-based summarization), using the
macro-averaged metrics described in Section 3.1
and 3.2.

3Perspective sUMmarization dAtaset

6.1 Task A: Span Identification and
Classification

Table 1 presents the classification and span-
matching results.

GPT-4o Zero-Shot remains the best overall
single-model approach, scoring 0.5697 in Over-
all average, which notably outperforms all other
models or methods. Detailed span identification
results is described in Appendix B.

Few-Shot Prompting For both LLaMA-3.3-70B-
Instruct and GPT-4o, embedding-based selection
(0.4246 and 0.5580 overall) outperforms manually
curated exemplars (0.4031 and 0.5261), showing
better generalizability than human-chosen exam-
ples.

QLoRA Supervised Fine-tuning For Task A,
our QLoRA-based fine-tuning of the LLaMA-3.3-
70B-Instruct model (see Table 1) obtains an overall
score of 0.3664, which is below the best zero- or
few-shot baselines.

MoA Details. Best 1 is a 2-layer MoA with four
open-source models in Layer 1 (two LLaMA-3.3-
70B-Instruct + two Qwen-2.5-72B-Instrcut), one
LLaMA-3.3-70B-Instruct in Layer 2, and an ag-
gregator also based on LLaMA-3.3-70B-Instruct.
As illustrated in Figure 2, a 2-layer configura-
tion strikes the best balance between thoroughness
and retaining valid outputs, outperforming both
1-layer and 3-layer variants. Best 2 uses a simi-
lar 2-layer pipeline but swaps the sub-model com-
position to four temperature variants of LLaMA-
3.3-70B-Instruct for Layer 1. Both surpass single
LLaMA setups, underscoring MoA’s ability to fuse
multiple perspectives effectively.
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Model Setting R-1 R-2 R-L BLEU MET BS AS SC Overall

LLaMA-3.3-70B-Instruct

Zero-shot 0.2476 0.0886 0.2156 0.0471 0.2777 0.8182 0.3096 0.2247 0.2786
3-shot w/ H 0.2583 0.0968 0.2241 0.0487 0.2891 0.7612 0.2864 0.2345 0.2749
3-shot w/ C 0.2733 0.0994 0.2398 0.0817 0.3055 0.8295 0.3151 0.2498 0.2993
QLoRA SFT 0.2165 0.0778 0.1947 0.0315 0.2460 0.7960 0.2486 0.2033 0.2518

GPT-4o
Zero-shot 0.4704 0.2340 0.4038 0.1307 0.4289 0.9116 0.4615 0.3031 0.4180
3-shot w/ H 0.4519 0.2291 0.3825 0.1193 0.3701 0.8821 0.4212 0.2543 0.3888
3-shot w/ C 0.4515 0.2524 0.4057 0.1212 0.3987 0.8901 0.4552 0.2812 0.4070

MoA
Best 1 0.4372 0.2103 0.3611 0.1025 0.3305 0.8558 0.3913 0.2614 0.3688
Best 2 0.4192 0.2055 0.3502 0.1096 0.3206 0.8512 0.3608 0.2853 0.3628

Table 2: Task B(perspective-based summarization) results. “3-shot w/ H(uman)” vs. “3-shot w/ C(lustering)”
follows the same few-shot definitions as Table 1. Metrics include ROUGE (R-1, R-2, R-L), BLEU, METEOR
(MET), BERTScore (BS), AlignScore (AS), SummaC (SC), and an Overall average.

Figure 2: Performance comparison across different MoA layer counts.

MoA Best 1 at 0.5063, Best 2 at 0.4753 show
strong improvements over single LLaMA-3.3-70B-
Instruct baselines, though they still trail GPT-4o
zero-shot. Nonetheless, MoA outperforms any sin-
gle open-source LLM setting by a noticeable mar-
gin, 8% over LLaMA’s best.

6.2 Task B: Perspective-Based Summaries
Table 2 shows the summarization performance,
which is derived based on the best result spans
from Task A, obtained using the optimal prompt
detailed in Table 5 of Appendix C. Once again, the
zero-shot GPT-4o approach leads with a general
average of 0.4180, exceeding its 3-shot variants
and aligning with the trends observed in Task A.

Few-shot Prompting For LLaMA-3.3-70B-
Instruct, “3-shot w/ Clustering” yields 0.2993
overall vs 0.2749 with human-chosen examples
and 0.2786 in zero-shot. Similarly for GPT-4o,
sentence-transformer embedding based selection
attains 0.4070, surpassing the human-chosen
3-shot (0.3888) while still slightly lower than
the zero-shot GPT-4o (0.4180). Hence, while
GPT-4o with zero-shot remains the single best,
sentence-transformer embedding based few-shot
tends to outperform manually curated exemplars.

MoA Best 1 achieves 0.3688, while Best 2 gets
0.3628, each notably exceeding LLaMA-3.3-70B-
Instruct’s best (0.2993). Although not rivaling GPT-
4o, they confirm MoA’s capacity to reduce halluci-
nations and unify multiple sub-model outputs.

QLoRA Supervised Fine-tuning For Task B,
QLoRA fine-tuning yields an overall score of
0.2518 (Table 2), again lower than the correspond-
ing zero- and few-shot results.

6.3 Ablation on Aggregators and Layering
Aggregator Comparison. Table 3 compares four
aggregator models—LLaMA-3.3-70B-Instruct,
Qwen-2.5-72B-Instruct, DeepSeek-R1-LLaMA-
70B, GPT-4o-mini for the same MoA sub-model
outputs (Best 1). LLaMA-3.3-70B-Instruct yields
the highest Task A/B scores (0.5063 / 0.3688),
while the GPT-4o mini aggregator drops to (0.4027
/ 0.2981), showing that the aggregator choice is
crucial.

Layering Comparison. Figure 2 illustrates how
adding layers impacts MoA performance under two
configurations:

• Single Proposer: Only LLaMA-3.3-70B-
Instruct models are used to produce output
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Aggregator Task A Task B
LLaMA-3.3-70B-Instruct 0.5063 0.3688
Qwen2.5-72B-Instruct 0.4719 0.3456
DeepSeek-R1-LLaMA-70B 0.4671 0.3411
GPT-4o-mini 0.4027 0.2981

Table 3: Performance comparison of different aggre-
gators on Task A and Task B, holding the same MoA
sub-model outputs as in “Best 1”.

in each layer.

• Multi Proposer: LLaMA-3.3-70B-Instruct
and Qwen-2.5-72B-Instrcut are combined to
generate more diverse proposals.

In both cases, LLaMA-3.3-70B-Instruct is used as
the aggregator, and the dashed lines indicate the
zero-shot baselines (LLaMA: 0.3377 overall; GPT-
4o: 0.4938 overall).

In the Single Proposer setting, the 1-layer model
obtains an overall score of 0.3559, which increases
to 0.4025 with 2 layers (a gain of 0.0466 points) but
then drops to 0.3799 when using 3 layers. Similarly,
in the Multi Proposer setting, the overall score
rises from 0.3590 for 1 layer to 0.4376 for 2 layers
(an improvement of 0.0786 points), before falling
to 0.4050 with 3 layers.

These results indicate that adding a second layer
consistently improves performance—yielding an
improvement of roughly 14% over the LLaMA
zero-shot baseline—while the third layer tends to
over-correction, resulting in a performance drop.
Thus, the 2-layer multi proposer configuration of-
fers the best trade-off between enhancing overall
accuracy and retaining valid outputs.

7 Conclusion

In this work, we addressed the challenge of
perspective-aware summarization for healthcare
Q&A. Our experiments show the recipe we tried
and the final solution submitted for the challenge.
With a bit disappointment, although MoA and
embedding-based few-shot example selection im-
proves the performance of open-source solution,
the closed model, specifically GPT-4o in our case,
still outperforms our best open-source solution by a
large margin. Overall, our results highlight promis-
ing directions in leveraging large language models
for multi-perspective healthcare Q&A, particularly
when curated resources are scarce.

8 Limitations

Data size and quality could be one of major con-
straints. The generic training set might be too small
to conduct effective finetuning. In our observation,
Text span identification/classification annotations
contain overlaps and ambiguities (e.g. extracted
span starts with an incomplete word or punctu-
ation), complicating the accuracy of perspective
labels and gold summaries.

To apply an encoder-based model for span identi-
fication, we experimented with weighted NER fine-
tuning (Appendix D). This approach assigns higher
weights to underrepresented perspective categories
to mitigate class imbalance. However, our results
did not yield improvements, likely due to the in-
herent complexity and variability of user-generated
content in the dataset. This suggests that alterna-
tive techniques, such as data augmentation or more
robust fine-tuning strategies, may be necessary for
handling imbalanced annotations effectively.

While MoA framework brings performance im-
provement, MoA configurations demand additional
computational resources, especially in multi-layer
or multi-agent setups.

Addressing these limitations, for example,
through larger, more balanced datasets and more
efficient aggregator layers, could further enhance
perspective-aware summarization in real-world
healthcare scenarios.

9 Future Work

To overcome current constraints, future endeavors
could involve extracting more healthcare-related
queries from broader corpora such as Natural Ques-
tions, followed by data augmentation via LLMs
to create synthetic examples for underrepresented
perspectives. A refined Mixture-of-Agents design
could then integrate these enriched training sets
for both classification and summarization tasks,
thereby mitigating data scarcity, enhancing perspec-
tive coverage, and improving model generalizabil-
ity across diverse healthcare topics.

Although our preliminary exploration shows that
embedding-based selection boosts performance
over manually curated exemplars, further studies on
prompting construction techniques, like dynamic
prompt construction (Gonen et al., 2022), retrieval-
augmented prompting (Tang et al., 2025), or syn-
thetic prompts (Kong et al., 2024), may lead to
additional gains. We leave these investigations to
future work, anticipating that such refinements will
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further enhance the robustness and scalability of
perspective-aware summarization in the healthcare
domain.
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A Llama 3.3 70B QLoRA Supervised
Fine-tuning Configs

As shown in Table 4, the following configuration
was used for supervised fine-tuning using QLoRA
for both Task A and Task B. The model was fine-
tuned with 4 NVIDIA RTX A6000 GPUs. The only
difference between the two tasks is the composition
of the training dataset. This ensures that both tasks
were fine-tuned under the same training environ-
ment, leveraging QLoRA to efficiently adapt the
LLaMA-3.3-70B-Instruct model while maintaining
computational efficiency.

B Confusion Matrix for GPT-4o
Zero-Shot

Figure 3: Confusion Matrix for GPT-4o Zero-Shot on
Task A. Each cell indicates the number of samples in
the corresponding gold-predicted label pair.

Figure 3 shows the confusion matrix (as a PNG
image) for GPT-4o zero-shot on Task A (span clas-
sification). Rows correspond to the gold labels, and
columns correspond to the predicted labels. Diago-
nal entries represent correctly classified samples for
each perspective category, whereas off-diagonal en-
tries indicate misclassifications (e.g., gold-labeled
EXPERIENCE predicted as INFORMATION).

As illustrated in the confusion matrix, GPT-4o
zero-shot achieves strong diagonal counts for each
perspective label (EXPERIENCE, INFORMATION,
CAUSE, SUGGESTION, QUESTION), indicating accu-
rate predictions in most cases. The off-diagonal
cells reflect scenarios where one perspective is mis-
taken for another, highlighting specific patterns
of confusion (e.g., EXPERIENCE vs. INFORMATION).
This strong performance aligns with our earlier

Parameter Value

bf16 true
cutoff_len 3000
dataset peranssumm_task
dataset_dir data
ddp_timeout 180000000
do_train true
double_quantization true
eval_steps 5000
eval_strategy steps
finetuning_type lora
flash_attn auto
gradient_accumulation_steps 2
learning_rate 5.0e-05
logging_steps 5
lora_alpha 16
lora_dropout 0.05
lora_rank 8
lora_target all
lr_scheduler_type cosine
max_grad_norm 1.0
max_samples 100000
model_name_or_path {model_name}
num_train_epochs 3.0
optim adamw_torch
output_dir /path/to/output
packing false
per_device_eval_batch_size 1
per_device_train_batch_size 1
plot_loss true
preprocessing_num_workers 16
quantization_bit 4
quantization_method bitsandbytes
report_to none
save_steps 5000
stage sft
template llama3
train_on_prompt true
trust_remote_code true
val_size 0.3
warmup_steps 100

Table 4: QLoRA Supervised Fine-Tuning Configuration
for LLaMA-3.3-70B-Instruct

quantitative results showing that GPT-4o zero-shot
outperforms other baselines on span classification.

C Prompt Example

In Table 5, we present an example of the best
prompt format for GPT-4o in zero-shot for both
span identification/classification and perspective-
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based summarization.

D NER Fine-tuning for Task A

In an exploratory experiment, we implemented
a token-level BIO tagging(Ramshaw and Mar-
cus, 1995) approach to perform span identifica-
tion for Task A. In this method, each perspective
is treated as a named entity with BIO labels (e.g.,
B-INFORMATION, I-INFORMATION, etc.), and the re-
maining tokens are tagged as O.

Data Preparation and Tagging. We first com-
bined the question and answer texts and then tok-
enized the resulting sequence. Using the provided
span annotations, we aligned token boundaries with
the annotated spans to produce BIO tags. For in-
stance, if an annotated span for the "CAUSE" per-
spective starts at character position s and ends at e,
tokens falling entirely within this span are labeled
as B-CAUSE for the first token and I-CAUSE for the
subsequent tokens.

Class Weighting for Imbalance. To address
class imbalance, we computed class weights as:

wc =
T

nc
, with T =

C∑

c=1

nc

where nc denotes the total number of tokens belong-
ing to class c, and T represents the total number of
tokens across all classes. These weights were then
incorporated into the cross-entropy loss function:

L = − 1

N

N∑

i=1

wyi log

(
exp(zi,yi)∑C
c=1 exp(zi,c)

)

where zi,c is the logit for token i and class c, and
yi is the ground-truth label.

Observations. Despite applying class weighting,
our NER fine-tuning did not yield significant im-
provements. We attribute this to the small dataset
size and the inherent challenge of labeling ex-
tended, overlapping spans—conditions that dif-
fer substantially from typical NER tasks involv-
ing shorter entity mentions. Consequently, while
promising in principle, further investigation with
larger or more targeted datasets is required.
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Task Span Identification and Classification Perspective-Based Summarization
System Prompt You are a helpful assistant.
User Prompt You are an expert annotator specialized in

perspective-aware Healthcare Answer Summa-
rization.
First, validate that the document’s content is
aligned with the medical domain—ensure that
it pertains to prevention, diagnosis, manage-
ment, treatment of diseases, understanding of
bodily functions, the effects of medications
or medical interventions, or queries regarding
wellness practices.
Next, for each text span in the ’Answers’ sec-
tion, carefully assess and assign the most rele-
vant perspective(s) from the following defini-
tions:

• INFORMATION: Knowledge about
diseases, disorders, and health-related
facts.

• CAUSE: Reasons responsible for the oc-
currence of a medical condition.

• SUGGESTION: Advice or recommen-
dations to assist in making informed de-
cisions.

• EXPERIENCE: Individual experiences
or anecdotes related to healthcare.

• QUESTION: Inquiries for deeper under-
standing.

Follow these instructions:

• Only annotate spans from the ’Answers’
section.

• Ensure the document is medically rele-
vant.

• Multi-perspective labeling is allowed.

• If a span explicitly mentions quantitative
details, include that in your annotation.

• Avoid personal bias and exclude links or
personal identifiers.

• Review your annotations to cover all un-
derlying perspectives.

Format your response as: span:
"<extracted text>", label:
"<perspective>".

While writing summaries, ensure that every
essential idea and medical detail is captured
from the extracted spans.
Each summary should:

• Be factually supported by the extracted
spans.

• Preserve all relevant insights and details.

• Align clearly with the assigned perspec-
tive.

• Avoid hallucinations, bias, or unverifi-
able content.

Strictly adhere to the extracted spans to ensure
factual consistency.
Use the following structure for each perspec-
tive:

• INFORMATION: "For information pur-
poses, [summary]..."

• CAUSE: "Some of the causes include
[summary]..."

• SUGGESTION: "It is suggested that
[summary]..."

• EXPERIENCE: "In user’s experience,
[summary]..."

• QUESTION: "It is inquired whether
[summary]..."

Format your final summary as: Summary:
"<generated summary>".

Example Input {Question} + {Context} + {Answers} +
{User Prompt}

{Question} + {Context} + {Spans} +
{User Prompt}

Table 5: Final prompt structure for Task A and Task B.
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Abstract

The PerAnsSumm Shared Task -
CL4Health@NAACL 2025 aims to enhance
healthcare community question-answering
(CQA) by summarizing diverse user perspec-
tives. It consists of two tasks: identifying and
classifying perspective-specific spans (Task A)
and generating structured, perspective-specific
summaries from question-answer threads (Task
B). The dataset used for this task is the PUMA
dataset. For Task A, a COVID-Twitter-BERT
model pre-trained on COVID-related text
from Twitter was employed, improving the
model’s understanding of relevant vocabulary
and context. For Task B, LLaMA was utilized
in a prompt-based fashion. The proposed
approach achieved 9th place in Task A and
16th place overall, with the best proportional
classification F1-score of 0.74.

1 Introduction

Perspective-aware summarization of multiple text
sources has recently been studied and used in
different applications. One application is the re-
views summarization on online shopping websites,
where the summarization model can generate a
summary that reflects the different perspectives
of the reviewers or summarization of different
news articles based on the news domain (Liu et al.,
2021). Another application is the summarization
of question-answering threads in healthcare com-
munities, where the summarization model should
be able to generate a summary that reflects the dif-
ferent perspectives of the users. The PerAnsSumm
Shared Task - CL4Health@ NAACL 2025 (Agar-
wal et al., 2025) aims to improve healthcare com-
munity question-answering (CQA) by summariz-
ing diverse user perspectives. The goal is to trans-
form the enormous amount of knowledge that is
available on these forums into structured informa-
tion that could be beneficial to others.

The shared task is structured into multiple

subtasks to systematically process community
question-answering (CQA) threads. The first sub-
task involves identifying relevant answers and ex-
tracting specific spans that convey meaningful in-
formation. The second subtask focuses on catego-
rizing these spans into the appropriate perspective
classes. Finally, the third subtask entails generat-
ing concise summaries for each perspective class,
ensuring that the diverse viewpoints present in
the discussions are effectively captured. Task A
emphasizes the identification and classification of
perspective-specific spans, while Task B is dedi-
cated to generating structured summaries. For fur-
ther details and examples of the dataset, refer to the
Appendix A.

The dataset used for this task is PUMA (Naik
et al., 2024). It comprises 3,167 CQA threads with
around 10,000 answers filtered from the Yahoo! L6
corpus. Each answer in PUMA is annotated with
five perspective spans: ’cause’, ’suggestion’, ’ex-
perience’, ’question’, and ’information’. Based on
these perspective and span annotations, summaries
are crafted for each identified perspective. These
summaries provide concise representations of the
underlying perspectives contained within the spans
across all answers. Each CQA thread includes up
to five perspective-specific summaries.

2 Methodology

The proposed approach frames the first task as a
sequence classification problem, where each sen-
tence within an answer is assigned to one of the
five predefined perspective classes. For the sec-
ond task, a summary is generated for each perspec-
tive class, utilizing relevant information from the
classified sentences. A pre-trained BERT model
(Devlin et al., 2019) was fine-tuned on the train-
ing dataset to accurately classify sentences based
on their perspective labels. For summarization,
the LLaMA model (Dubey et al., 2024) was em-
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ployed in a zero-shot manner, generating concise
summaries for each perspective class without addi-
tional fine-tuning.

2.1 Dataset Preparation
The challenge organizers divided the dataset into
training, validation, and testing sets. The train-
ing and development datasets included additional
fields, such as ground truth perspective spans and
perspective-specific summaries. However, these
fields were not present in the testing dataset.

The training dataset was used to fine-tune the
models for Task A. To accomplish this, answers
needed to be broken into sub-sequences (sentences)
before being fed into the BERT model. A compari-
son between the spans in the dataset and the actual
text revealed inconsistencies. Some spans were
incomplete, often missing letters at the beginning
or end. This happened because the dataset was
annotated based on the exact locations where the
perspective appeared in the text. Therefore, Spacy
(Honnibal et al., 2020) was not only used to split the
text into sentences but the text was also tokenized
using the Spacy tokenizer and the tokens were then
compared with the tokens in the spans. Out of
22361 sentences, 15027 were found exactly in the
labeled spans and 7334 were partially found (par-
tially means that 45% of the larger span matches
with the span in question) This criterion was used
to filter the sentences that were used in the fine-
tuning of the BERT model. Any sentences that
didn’t match were labeled as negative non-relevant
sentences. The reason to restructure the training
data is to make sure that the model is trained on the
right data that will be used in the testing phase.

For more information on the data set, refer to the
original paper by Naik et al. (2024).

2.2 Task A: Sentence Classification
This task is approached as two subtasks: elimi-
nating non-relevant sentences and assigning rele-
vant sentences to their corresponding perspectives.
These tasks are modeled as a sequence classifica-
tion problem, specifically, sentence pair classifica-
tion, where the model takes the question and sen-
tence as input, separated by the special token [SEP],
and the first token [CLS] is used for classification.
A set of experiments was conducted using only
sentences without the question, resulting in lower
training and validation F1-scores. Previous work
by Chaturvedi et al. (2024) demonstrated through
experimentation that encoder-based models (e.g.,

BERT, RoBERTa (Liu et al., 2019)) perform better
in identifying the relationship between two sen-
tences (in this case, the question and sentence). As
a result, the basic BERT model with single sen-
tences as input was used as a baseline.

Considering the nature of the dataset and the tar-
get of the models, the first choice model is COVID-
Twitter-BERT (Müller et al., 2023) which is pub-
lished on the Hugging Face model hub (Wolf et al.,
2020). The model was originally pre-trained on
COVID-related text from Twitter, which matches
the same language used in the question-answering
forums where people use informal language and
also matches the use of health-related symptoms
in that case which means it should have a richer
dictionary of tokens.

2.2.1 Irrelevant sentences elimination
To achieve this, a COVID-Twitter-BERT model
was fine-tuned on both question-sentence pairs and
single sentences to classify sentences as relevant
or not. The model was fine-tuned on the training
dataset, with a sample of relevant sentences se-
lected to balance the dataset (50%). The dataset
only contained 2 labels (relevant and irrelevant). It
was fine-tuned for 5 epochs with a batch size of 16
and a learning rate of 2e-5. The model was then
tested on question-sentence pairs and single sen-
tences, predicting the relevance of sentences in the
validation dataset. Table 1 shows that the model
achieved an F1-score of 0.74 in the development
dataset.

2.2.2 Perspective Classification
A new instance of COVID-Twitter-BERT model
was employed for classifying relevant sentences
into their corresponding perspective classes. The
model was fine-tuned on the training dataset for
5 epochs, using a batch size of 16 and a learning
rate of 2e-5. Table 4 showed that it achieved an
F1-score of 0.68 on the validation dataset. Addi-
tionally, Table 5 shows the performance of the best
model on the different classes. Table 2 shows that
the distribution of sentences across the perspective
categories is imbalanced, which is a common is-
sue in many datasets. To address this, a weighted
cross-entropy loss function was utilized to assign
more weight to the minority classes, helping to
balance the model’s sensitivity to different perspec-
tives. The class weights were calculated based on
the number of sentences in each class. The weights
were calculated using inverse frequency as shown
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Model Precision Recall F1 (Macro)
COVID-Twitter-BERT (Single sentences) 0.74 0.73 0.74
BERT-base (Single sentences) 0.74 0.72 0.73
COVID-Twitter-BERT (Pairs) 0.75 0.73 0.74
BERT-base (Pairs) 0.75 0.72 0.73

Table 1: Performance comparison of models on precision, recall, and F1-score for identification of relevant
sentences on the validation set to identify irrelevant sentences.

Perspective No. Sentences
EXPERIENCE 2933
QUESTION 311
CAUSE 677
SUGGESTION 6695
INFORMATION 10723
O 4916

Table 2: Sentence count for each perspective category
in the training set after using Spacy’s en_core_web_sm
model to tokenize each answer into sentences

Class Weight
EXPERIENCE 7.28
QUESTION 68.61
CAUSE 31.52
SUGGESTION 3.19
INFORMATION 1.99

Table 3: Computed class weights for cross-entropy loss.

in Table 3.

2.3 Task B: Perspective-specific
Summarization

The summarization process utilizes the Meta-
LLaMA-3.1-8B-Instruct (Dubey et al., 2024)
model to generate concise, perspective-specific
summaries. The model runs with bfloat16 preci-
sion and a maximum of 500 new tokens using the
transformers pipeline.

A structured prompt ensures that the summary
answers a given question while adhering to a pre-
defined category and writing style. The model is
instructed to avoid repeating the question or con-
text and to generate a clear, one-line summary that
explicitly references the subject. Each category fol-
lows a distinct tone: EXPERIENCE and QUES-
TION use a third-person perspective, CAUSE em-
phasizes causal reasoning, SUGGESTION adopts
an advisory tone, and INFORMATION maintains
a scientific style. The prompt structure ensures
high-quality, structured outputs suitable for down-

stream analysis. A sample prompt can be found in
the Appendix A.

The structure of the prompt is as follows:

• Text Input: The relevant text and the guiding
question are provided to the model.

• Category: The prompt specifies the category
under which the summary should fall (e.g.,
EXPERIENCE, QUESTION, CAUSE, SUG-
GESTION, or INFORMATION).

• Writing Style: The summary is generated ac-
cording to the tone associated with the chosen
category:

– EXPERIENCE and QUESTION: Use
third-person perspective and discuss the
subject as users.

– CAUSE: Focuses on causal reasoning
and logical connections between events.

– SUGGESTION: Uses an advisory tone,
often starting with "It is suggested" when
applicable.

– INFORMATION: Presents information
in a scientific and informative style.

• Constraints: The model is instructed to pro-
vide a clear, concise, one-line summary that
explicitly references the subject of the ques-
tion. The summary must not repeat the ques-
tion or context and should follow the specified
writing style.

2.4 Experimental Setup
For fine-tuning the BERT-based models, 2 A40
GPUs and AMD EPYC "Milan" 64-core/128-
thread 2.00GHz CPUs were used. More details
about it can be found in Appendix A. For the use
of the LLaMA model in inference mode, 2 Nvidia
A40 48GB GPUs were used.

For each of the BERT-based models, different
settings and different datasets were experimented
as follows:
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Model Precision Recall F1 (Macro)
COVID-Twitter-BERT (Single) 0.63 0.67 0.65
COVID-Twitter-BERT (Pairs) 0.67 0.69 0.68

Table 4: Performance of COVID-Twitter-BERT on precision, recall, and F1-score on the validation set to identify
the different perspectives (EXPERIENCE and QUESTION, CAUSE, SUGGESTION and INFORMATION).

Class F1-Score Instances
CAUSE 0.42 274
EXPERIENCE 0.70 1248
SUGGESTION 0.76 3044
QUESTION 0.72 175
INFORMATION 0.79 4581
Macro Avg 0.68 9322

Table 5: F1-scores and instance count for each class,
along with the macro average F1-score for the best-
performing model on the validation set.

1. BERT-base (Single sentences): BERT base-
uncased fine-tuned on only the sentences from
the answers.

2. COVID-Twitter-BERT (Single sentences):
COVID-Twitter-BERT fine-tuned on just the
sentences from the answers.

3. BERT-base (Pairs): BERT-base-uncased fine-
tuned on the question-sentence pairs.

4. COVID-Twitter-BERT (Pairs): COVID-
Twitter-BERT fine-tuned on the question-
sentence pairs.

This was applied to the irrelevant and rele-
vant models and then was applied to the test data
through the evaluation platform. For the model
selection criteria and the model loss functions, the
macro F1-score was used as the main evaluation
metric. The models were fine-tuned using the
Adam optimizer with a learning rate of 2e-5 and
a batch size of 16. The models were trained for 5
epochs.

There were different data representations used
for the fine-tuning as seen from the model names
and also for the sentence processing after the classi-
fication. The consecutive sentences that were from
the same class were merged to form a single sen-
tence. This was done to see if it affects the exact
matching results or not. Also, one experiment dis-
carded the part where the sentences were classified
as relevant or not to see if it affected the results or
not. The results of the experiments are shown in

Table 4. For the summarization part, the LLaMA
model was used in inference mode. The model
was run on the labeled sentences to generate the
summaries for each perspective class.

3 Results and Discussion

This section presents the results of the experiments
conducted on the PUMA dataset. The results are
presented in two parts: the first part is the results
of the sentence classification task and the second
part is the results of the summarization task.

3.1 Evaluation

The BERT-based models were evaluated on the val-
idation dataset after each epoch. The model with
the highest F1-score was selected as the final model.
For the sentence classification task, to get over the
low classification scores for the minority classes,
the weighted cross entropy loss function was used.
The weights were calculated based on the number
of sentences in each class. The weights were cal-
culated using inverse frequency as shown in Table
3. The test phase For Task A (Span Identification
and Classification), evaluation is conducted using
the macro-averaged F1-score for classification. Ad-
ditionally, span identification is assessed through
Strict-matching and Proportional-matching meth-
ods to measure the accuracy of detected spans.

The evaluation of the summarization component
focused on two key aspects: relevance and fac-
tuality. Relevance was assessed using Recall-
Oriented Understudy for Gisting Evaluation
(ROUGE) (R1, R2, RL) (Lin, 2004), Bilingual
Evaluation Understudy (BLEU) (Papineni et al.,
2002), Metric for Evaluation of Translation with
Explicit Ordering (METEOR) (Banerjee and
Lavie, 2005), and BERTScore (Zhang et al., 2020),
measuring lexical and semantic overlap with ref-
erence summaries. Factuality was evaluated using
AlignScore (Zha et al., 2023) and Summary Con-
sistency (SummaC) (Laban et al., 2022), ensuring
the generated summaries remained faithful to the
original content.
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Model Macro F1 Strict F1 Prop. F1 Task A
Covid-Twitter-BERT 0.8859 0.1108 0.7554 0.5931
BERT 0.8584 0.1068 0.7518 0.5861
Covid-Twitter-BERT + Bingfire1 0.8859 0.1108 0.7554 0.5931
Covid-Twitter-BERT + Merge Sentences 0.8859 0.1118 0.7368 0.5872
Skip Irrelevance Step + Covid-Twitter-BERT + Merge Sentences 0.8931 0.1081 0.7437 0.5898

Table 6: F1-scores for classification, span matching, and Task A performance. The best values are in bold, and the
second-best values are underlined.

Model Task B Relevance Task B Factuality
Covid-Twitter-BERT 0.2963 0.2827
BERT 0.2909 0.2691
Covid-Twitter-BERT + Bingfire 0.2774 0.2403
Covid-Twitter-BERT + Merge Consecutive Sentences 0.2963 0.2827
Skip Irrelevance Step + Covid-Twitter-BERT + Merge Consecutive Sentences 0.3019 0.2508

Table 7: Evaluation results for Task B: Relevance and Factuality. The best values are in bold, and the second-best
values are underlined.

3.2 Results

This section reports the results from the challenge’s
evaluation platform. The results are presented in
two parts: the first part is the results of the sentence
classification task and the second part is the results
of the summarization task.

Table 6 presents the F1-scores for classification,
span matching, and Task A performance across sev-
eral model configurations. The classification macro
F1-score evaluates the overall classification perfor-
mance across all classes, while the strict matching
F1 and proportional matching F1 assess the model’s
ability to correctly identify and match spans at dif-
ferent levels of granularity. The Task A score pro-
vides an overall evaluation of the model’s perfor-
mance on the span identification and classification
task. In the table, the best values are highlighted in
bold, and the second-best values are underlined for
easy reference.

The results indicate that the model pre-trained on
data more similar to the task’s dataset achieved the
best overall performance. Additionally, switching
the sentence tokenizer from Spacy did not impact
the results, as it was only used during testing, not in
the fine-tuning phase. Merging sentences did not af-
fect the classification task but slightly improved the
overall classification performance. Finally, skip-
ping the relevance task did not enhance the results;
in fact, it led to worse overall performance in the
test phase.

While only one model and a single prompt were
used in the summary generation task, the input
text that comes from the first task was the factor

that affected the results. The results show that a
better classification contributed to a better result
overall as shown in Table 7. While adding more
sentences through skipping the irrelevance step did
not affect the relevance of the summary, it affected
the factuality of the summary.

4 Conclusions

The approach presented in this paper, as part of the
PerAnsSumm Shared Task - CL4Health@NAACL
2025, aimed to enhance healthcare community
question-answering (CQA) by summarizing di-
verse user perspectives.

A key aspect of the approach was the focus on
accurately classifying sentences (parts of answers)
into the correct perspectives while eliminating ir-
relevant text. To achieve this, a specialized BERT
model (COVID-Twitter-BERT) was fine-tuned on
the training data for each subtask separately. The
results demonstrated that the model pre-trained on
data more similar to the task’s dataset achieved the
best overall performance in Task A. The classifi-
cation model achieved the best results in terms of
proportional matching across the challenge, indi-
cating that the data preprocessing for fine-tuning
the model to classify the correct perspectives was
highly effective. However, the identification of the
correct spans was less accurate, even when merging
sentences. This suggests that identifying the right
sentence boundaries, in line with the dataset’s stan-
dards, is notably different from the default bound-
aries applied in common libraries (e.g., SpaCy and
Bingfire).
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For the second task, which involves using sen-
tences to generate summaries, only one model was
tested in inference mode without any fine-tuning.
The results demonstrated how the quality of the
data from the first task can impact the results of
the second. Specifically, better classification con-
tributed to overall better performance in summary
generation.

5 Limitations

In this work, the focus was on the classification
of the sentences to the correct perspective classes.
The results showed that the identification of the
correct spans is low which can be highlighted as
a limitation of this work. Additionally, due to
time and human resources limitations, only one
model (LLaMA) was used to generate the sum-
mary with few tweaks in the prompt and limited
post-processing of the output text.

6 Future work

For future works, it is recommended to add more
rules to identify the spans of the text. Or to only
fine-tune a model to identify irrelevant parts of the
text as a Named-Entity-Recognition task because
in some cases it is only one or two words that are
discarded which makes it costly in terms of the ex-
act matching. Also, it is recommended to use more
models to generate the summaries and to use more
prompts to generate the summaries. Additionally,
evaluating how fine-tuned summarization models
can affect the results.
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A Appendix

A.1 Dataset Insights

Here are some statistics of the dataset taken from
the dataset publication (Naik et al., 2024). Figure 1
shows the examples from the dataset. While Table
8 shows the distribution of the dataset over the
different perspectives.

Table 8: Statistics of the original dataset (Naik et al.,
2024)

A.2 Experiments of the different models
combinations

There were different model combinations for Task
A that were used but were not worth mentioning in
the main body of the paper:

• Single step for Task A: The first experiments
used one single model to identify all perspec-
tives and also the irrelevant sentences as an ex-
tra class. However, this approach faced many
issues due to the imbalance in data. The mod-
els are:

– BERT model to identify all classes and
irrelevant classes on pairs of questions
and sentences

– COVID-Twitter-BERT to identify all
classes and irrelevant classes on pairs of
questions and sentences

• 2-steps for Task A: The adopted approach in
this paper was to approach the problem in
2 steps (identifying irrelevant sentences and
then classifying the relevant ones from the
correct perspectives) For that different formats
of the dataset were used:

– Pairs: The input data instances consist of
pairs of questions and sentences.

– Singles: The input data is only the sen-
tences that should be classified.

Different instances and models were tested:

– BERT-base model.
– COVID-Twitter-BERT
– Biomed RoBERTa (Gururangan et al.,

2020)

Where the COVID Twitter BERT proved to
be superior in terms of results.

A.2.1 Training Parameters
The models were fine-tuned on the training dataset
for 5 epochs, using a batch size of 16 and a learning
rate of 2e-5.

A.2.2 Hardware
The fine-tuning process was conducted using two
Nvidia A40 GPUs and AMD EPYC "Milan" 64-
core/128-thread 2.00GHz CPUs. Two Nvidia A40
48GB GPUs were utilized for inference with the
LLaMA model.

1https://github.com/microsoft/BlingFire
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Figure 1: Example from the dataset to show how the different perspectives are identified (Naik et al., 2024)

A.3 LLaMa Prompt

Figure 3 shows the prompt that was used to gen-
erate the perspective-oriented summaries. The
prompt follows a structured format, where differ-
ent placeholders represent key components of the
input. Specifically:

• text: This refers to the list of sentences as-
sociated with a particular perspective. These
sentences serve as the content from which the
summary is generated.

• question: This represents the question that
the summary is expected to address. It guides
the summarization process by ensuring the
generated output remains relevant to the in-
tended query.

• key: This corresponds to the perspective class
name, which helps differentiate between dif-
ferent viewpoints present in the dataset. By
explicitly defining the perspective, the sum-
marization model can tailor its output accord-
ingly.

• catch_phrase: This is a perspective-specific
command designed to shape the style or focus
of the summary. It acts as a guiding phrase
that reinforces the perspective’s stance or em-
phasis. Figure 2 shows the different com-
mands according to the corresponding key.

By structuring the prompt in this manner, the
model is provided with clear instructions on how
to generate summaries that are not only coherent
but also aligned with the given perspective. This

approach ensures that the summarization process
remains consistent and interpretable across differ-
ent perspectives, ultimately improving the quality
of the generated outputs.

{" EXPERIENCE ": "Use third -person
perspective and talk about the
people as users",

"QUESTION" :"Use third -person
perspective and talk about the
people as users",

"CAUSE" :"Use causality and chain of
thoughts",

"SUGGESTION" :"Use Advisory ,
Recommending tone and start by
**It is suggested ** when possible",

"INFORMATION" :"Use scientific and
informative tone"}

Figure 2: Custom commands to be entered in the sum-
marization generation prompt to adapt the style to the
required perspective
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You are an expert in text analysis. Your task is to summarize the following text
according to the given category.

### Text:
{text}

### Constraints:
The summary should answer a question regarding: {question }.

### Important: Do NOT repeat the question or the context. Only generate the summary.

### Category:
The summary should follow the {key} category.
### Writing Style:
{catch_phrase }.

### Instructions:
- Ensure that the summary is **one line**
- The summary **must explicitly reference the subject of the question **.
- The summary must not include the question.
- Follow the writing style specified for the given category.
- Ensure the summary is clear , concise , and relevant.
- Generate the summary as a ** continuous paragraph ** without bullet points.

### Summary:

Figure 3: The prompt used to generate perspective-oriented summaries where {text} refers to the list of sentences
of one perspective, {question} is the question that the summary should answer, {key} is the perspective class
name, and {catch_phrase} is a perspective-specific command.
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Abstract
We present our approach to the PerAnsSumm
Shared Task, which involves perspective span
identification and perspective-aware summa-
rization in community question-answering
(CQA) threads. For span identification, we
adopt ensemble learning that integrates three
transformer models through averaging to ex-
ploit individual model strengths, achieving an
82.91% F1-score on test data. For summariza-
tion, we design a suite of Chain-of-Thought
(CoT) prompting strategies that incorporate
keyphrases and guide information to structure
summary generation into manageable steps. To
further enhance summary quality, we apply
prompt optimization using the DSPy frame-
work and supervised fine-tuning (SFT) on
Llama-3 to adapt the model to domain-specific
data. Experimental results on validation and
test sets show that structured prompts with
keyphrases and guidance improve summaries
aligned with references, while the combina-
tion of prompt optimization and fine-tuning to-
gether yields significant improvement in both
relevance and factuality evaluation metrics.

1 Introduction

Community question-answering (CQA) platforms
have transformed how medical information is ex-
changed, allowing users to seek and provide an-
swers that reflect different perspectives. These
responses often include general medical knowl-
edge, personal experiences, treatment suggestions,
and insights from others with similar health con-
cerns. However, given the large volume and differ-
ent viewpoints of responses presented at different
locations in the answers, it is difficult to extract
accurate information efficiently. Perspective-aware
summarization addresses this challenge by organiz-
ing responses based on their perspectives, helping

users access relevant information more effectively
(Naik et al., 2024).

Recent developments in large language mod-
els (LLMs) have shown strong performance in
summarization tasks. LLM-generated summaries
have demonstrated comparable or superior quality
to reference summaries (Zhang et al., 2024; Liu
et al., 2023). LLMs trained on medical informa-
tion have enhanced their knowledge and reason-
ing capabilities for tackling complex problems in
the healthcare domain. However, applying LLMs
to perspective-aware summarization for medical
CQA presents challenges: LLMs can struggle with
accurately capturing distinct perspectives and ef-
fectively summarizing multiple viewpoints within
long medical contexts. These challenges make it
necessary to develop strategies for structuring sum-
maries with improved accuracy.

In this work, we participate in the PerAnsSumm
shared task (Agarwal et al., 2025), which focuses
on developing methods for perspective span iden-
tification and perspective-aware summarization
(Naik et al., 2024). Figure 1 presents an overview
of our proposed approach. For perspective span
identification, we employ the ensemble learning ap-
proach that integrates three transformer-based mod-
els (BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and DeBERTa (He et al., 2020)) with
averaging to exploit individual model strengths and
improve accuracy. For perspective-aware summa-
rization, we leverage a pretrained LLM (Llama-3)
(Dubey et al., 2024) and develop a suite of Chain-
of-Thought (CoT) prompting strategies that incor-
porate keyphrases and additional guide information
to enhance summary generation. To further im-
prove the model performance in both relevance and
factuality metrics, we apply prompt optimization
using the DSPy framework (Khattab et al., 2023)
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"Include extracted keyphrases when you generate
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Keyphrases Extraction
"Extract keyphrases from the identified perspective

spans"

Figure 1: Detailed illustration of each component in our proposed approach for both tasks.

for automatic prompt refinement. We implement
the 0-shot MIPRO optimizer within DSPy (Opsahl-
Ong et al., 2024) for iterative prompt refinement.
Additionally, we perform supervised fine-tuning
(SFT) on Llama-3 (Prottasha et al., 2022) to adapt
the model to the domain-specific data and context-
aware requirements.

Our contributions are threefold:

• We integrate multiple transformer models
through averaging prediction as our ensemble
model. It exploits individual model strengths
to achieve 82.9% F1-score on the test set and
83.9% on the validation set for perspective
span identification.

• We design a suite of CoT prompting ap-
proaches incorporating keyphrases and guide
information to break down summarization
tasks into manageable steps. To enhance
summary quality, we apply DSPy automatic
prompt optimization. We also implement SFT
to adapt the LLM to the domain-specific data.

• We conduct experiments that demonstrate the
benefits of combining these approaches to-
gether. Particularly, the integration of DSPy-
based prompt optimization with SFT signif-
icantly improves performance in both rele-
vance and factuality evaluation metrics.

2 Related Work

Designing and optimizing prompts have become
a crucial technique for guiding LLMs to gener-
ate more accurate and relevant responses for spe-
cific tasks. Recent techniques in prompt optimiza-

tion have introduced various automated strategies
that are better than manual prompt engineering.
These approaches leverage different techniques, in-
cluding gradient-based optimization (Pryzant et al.,
2023), reinforcement learning (Zhang et al., 2022),
and targeted word- or phrase-level edits (Fernando
et al., 2023) to automatically search for optimal
prompts. The DSPy framework (Opsahl-Ong et al.,
2024) represents an development in this direction,
yielding a modular approach that enables automatic
prompt refinement.

DSPy is a programming framework that allows
for chaining of LLM calls through composable
modules. This technique facilitates the creation
of dynamic and flexible systems that can automat-
ically optimize both prompts and weights across
multiple components. DSPy enables self-refine
prompts to enhance performance during inference.

The DSPy framework includes several optimizer
methods specifically designed to enhance perfor-
mance on downstream tasks, such as OPRO and
MIPRO optimizers (Opsahl-Ong et al., 2024). The
OPRO optimizer leverages a stochastic mini-batch
evaluation function to learn a surrogate model
of the objective and refine instructions over mul-
tiple iterations. MIPRO optimizer employs a
meta-optimization procedure to iteratively improve
prompt construction.

Our approach applies the 0-shot MIPRO opti-
mizer within DSPy framework to iteratively opti-
mize instructions for generating perspective-aware
summaries.
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3 Dataset and Evaluation Metrics

3.1 Shared Task Description

The PerAnsSumm shared task comprises two main
components that build upon each other, each ad-
dressing a different aspect of CQA.
Perspective Span Identification: Detecting and
labeling text spans in answers that represent each
of the perspectives, including Information, Cause,
Suggestion, Experience, and Question. This task
requires identification of specific perspective types
that appear within response texts.
Perspective-aware Summarization: Generating
summaries that preserve and reflect the identified
perspectives and their span texts. This task creates
summaries that are perspective-aware.

3.2 Dataset

The task dataset consists of CQA threads from
medical forums (Naik et al., 2024). For each
thread, responses contain multiple perspectives and
summaries annotated for medical question-answer
pairs. The dataset is divided into three parts: train,
validation, and test. The training and validation
sets are provided for model development, while the
test set remains hidden. The training set contains
labeled CQA threads with annotated perspective
spans and reference summaries, while the valida-
tion set provides additional labeled data for hyper-
parameter tuning.

The training set contains 2236 samples, and the
validation set contains 959 samples. Figure 2 il-
lustrates the distribution of each perspective type
percentage in training and validation sets. Train
and validation sets have a consistent percentage
distribution of each perspective.

3.3 Evaluation Metrics

Perspective-specific metrics include the macro-
averaged F1-score to evaluate classification accu-
racy. Strict-matching and proportional matching
scores assess the similarity between predicted and
reference spans.
Summarization metrics include two aspects:
relevance and factuality. Relevance evalua-
tion metrics include ROUGE scores (ROUGE-1,
ROUGE-2, ROUGE-L) to measure n-gram over-
lap, BERTScore to measure semantic similarity
through embeddings, and BLEU and Meteor to

Figure 2: Percentage distribution of each perspective
type in the training and validation sets. The values
displayed on top of each bar represent the actual counts.

evaluate precision and recall of generated sum-
maries against references. The factuality evalua-
tion metrics use AlignScore and SummaC. Align-
Score checks whether all information in the sum-
mary is in the reference. SummaC measures factual
consistency between the generated and reference
summaries.

4 Method

This section describes details of our approach to
addressing the shared task: ensemble learning for
span identification and prompting strategies for
summarization generation, including CoT, DSPy
framework, and SFT.

4.1 Span Prediction with Ensemble Learning

We implement an ensemble learning framework
that integrates multiple transformer models. Rather
than relying on a single model’s prediction, ensem-
ble learning combines predictions from multiple
models to achieve better results than any single
model that could attain independently.

Our ensemble model implements three pre-
trained transformer models, and we use their
base models: BERT1, RoBERTa2, and DeBERTa3.
These models have demonstrated strong perfor-
mance in various language-related tasks. During

1https://huggingface.co/bert-base-uncased
2https://huggingface.co/FacebookAI/

roberta-base
3https://huggingface.co/microsoft/

deberta-base
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inference, the ensemble model computes predic-
tions through averaging that accounts for individ-
ual model predictions. Ensemble model is formally
defined as:

Pensemble(y | x) =
1

k

k∑

i=1

Pi(y | x) (1)

where Pi(y | x) represents the prediction prob-
ability of the i-th model, and the final ensemble
prediction is obtained by averaging the predictions
of all k models.

5 CoT for Summarization

We leverage CoT prompting to enhance the rea-
soning and problem-solving capabilities of LLMs
through breaking down the summarization task
into smaller sequences of manageable steps. This
approach guides the model to maintain high per-
spective alignment and summarization accuracy.

Our CoT prompting suite incorporates a struc-
tured four-step process:

1. Keyphrase extraction: We first prompt the
LLM to identify and extract keyphrases from
the identified perspective spans. This step elic-
its intermediate reasoning steps in the CoT.

2. Keyphrase integration: We prompt LLM to
incorporate these extracted keyphrases when
generating summaries. This step ensures that
LLM preserves key information from the per-
spective span context.

3. Guide information integration: Our prompt
incorporates a set of guide information re-
ferred to as the “guide” in our experiments.
Following the prompt design templates estab-
lished in PLASMA (Naik et al., 2024), our guide
consists of three parts:

• Tone: Perspective-specific tone in-
structions (e.g., informative tone for
“Information”, understanding-seeking
tone for “Question”).

• Anchor text: Common start phrases
found in reference summaries (e.g.,

“For information purposes...” for “In-
formation” and “It is inquired...” for

“Question”).

• Perspective definition: Concise descrip-
tions of each perspective’s purpose and
characteristic features.

The model is prompted to integrate guide in-
formation using the format: “Start with <an-
chor> texts. Use the <tone> tone of this per-
spective. Consider the following definition
when generating the summary: <perspective
definition>.”

4. Summary generation: Finally, we prompt
the LLM to generate a coherent, concise,
and perspective-aware summary: “Focus on
<perspective>-specific aspects in your sum-
mary. Now generate a concise and coherent
summary.”

The prompt template details are shown in Ap-
pendix A. The above generation process is for-
malized as:

PCoT(S | x,K, p) =
T∏

t=1

P (st | x, s<t,K, p) (2)

where x is the input text, K represents extracted
keyphrases. p is the guide set for each perspec-
tive type. S = {s1, s2, . . . , sT } represents the
sequence of reasoning steps.

5.1 Prompt Optimization with DSPy
To further enhance summarization quality, we
implement prompt optimization using the DSPy
framework, which enables iterative refinement of
prompts based on the context of each step. In each
iteration, the DSPy compiler automatically gener-
ates multiple prompt variants (3-5) and selects opti-
mal candidates through Bayesian optimization over
the joint metric space. The challenge is defining a
downstream metric that can enhance performance
without having access to module-level labels or
gradients.

Our downstream metric aims to balance each
of the relevance evaluation metrics. Specifically,
we define a composite metric that assigns equal
weight (0.25) to each of four sub-metrics in the
relevance category: ROUGE-L, BLEU, Meteor,
and BERTScore. This process dynamically syn-
thesizes prompts conditioned on the current step’s
context. The selection of the weights is based on
the assumption that each sub-metric contribution
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is equal. The optimization objective is written as
follows:

L(T ) = 0.25× ROUGE-L + 0.25× BLEU

+ 0.25×Meteor + 0.25× BERTScore
(3)

The objective function of optimization can be
formulated as:

L(T ) = 0.25 ·
n∑

j=1

logP (cj | x, c<j ,M(T )) (4)

where L(T ) is the optimization objective to be
maximized. cj is the generated summaries at step
j,M(T ) represents the LLM conditioned on opti-
mized prompt T , and P (cj | x, c<j ,M(T )) is the
probability of generating the next component cj
based on prior knowledge.
Optimizer: We select 0-Shot MIPRO, which
provides a straightforward approach for optimizing
instructions based on our balanced metric while
remaining cost-effective within our computational
budget constraints.

5.2 Supervised Fine-Tuning

SFT on LLMs has demonstrated its success in im-
proving performance in various domains. We im-
plement SFT on the Llama-3-8B-Instruct model4

(Llama-3) using the Low-Rank Adaption (LoRA)
technique (Hu et al., 2022). We fine-tune the model
for two epochs on the training set. We report the
results of summarization on both validation and
test sets.
Implementation Details: All experiments were
conducted on an NVIDIA A100 GPU with 40GB
memory. We used a learning rate of 1e−4 with the
AdamW optimizer and a batch size of 32. Token
size was set to 256, temperature was at 0.1, and
seed was at 42.

6 Results

We conduct all experiments using the Llama-3
model. Table 1 presents the results for span iden-
tification, while Table 2 presents the results for
summarization.

4https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

7 Performance of Ensemble Models on
Span Identification

We evaluate the performance of three individual
transformer models (BERT, RoBERTa, DeBERTa)
and their ensemble integration. Ensemble model
exploits the strengths of individual models on dif-
ferent evaluation metrics. Table 1 presents compar-
isons on the validation set using three evaluation
metrics: macro F1-score, strict match F1-score,
and proportional match F1-score. The results on
the test set are our final submission.

The ensemble model achieves an F1-score of
82.9% on the test set and 83.9% on the validation
set. These results are between the best-performing
(RoBERTa) and worst-performing (BERT) models.
Additionally, we observe that different models out-
perform in different aspects of metrics: RoBERTa
achieves the highest strict match F1-score, while
DeBERTa performs better in proportional match.
These results indicate how individual models can
outperform in an evaluation while underperforming
in others, which supports the ensemble methods
that could combine strengths from multiple mod-
els. Our results could be further improved through
advanced ensemble techniques, such as weighted
combination strategies or hierarchical model struc-
tures.

Model F1 Strict Match F1 Prop. Match F1

Validation Set

BERT 0.813 0.096 0.514
RoBERTa 0.858 0.154 0.546
DeBERTa 0.845 0.110 0.559
Ensemble 0.839 0.120 0.540

Test Set Submission

Ensemble 0.829 0.120 0.505

Table 1: Comparison of span identification performance
on the validation and test sets. Bold values indicate the
best scores, while underscored values show results from
the ensemble model.

8 Summarization Performance

We experiment with multiple prompting strategies,
including vanilla prompting, CoT, DSPy-based
prompt optimization, and SFT. Table 2 presents the
comparison across eight evaluation metrics. The
test set performance is our final submission.
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Category R-1 R-2 R-L BLEU Meteor BERTScore AlignScore SummaC

Baseline

Vanilla Prompting 0.229 0.078 0.290 0.068 0.250 0.782 0.280 0.225

Chain-of-Thought (CoT) Prompting (Validation Set)

CoT_keyphrase 0.310 0.110 0.315 0.074 0.268 0.797 0.300 0.238
CoT_guide 0.318 0.108 0.328 0.081 0.290 0.805 0.315 0.247

Prompt Optimization (DSPy)

CoT_guide+DSPy 0.390 0.212 0.346 0.091 0.328 0.830 0.370 0.291

Supervised Fine-Tuning (SFT)

SFT+CoT_guide+DSPy 0.390 0.165 0.420 0.096 0.351 0.839 0.366 0.251

Test Set Submission Results

SFT+CoT_guide+DSPy 0.360 0.155 0.328 0.096 0.339 0.823 0.333 0.256

Table 2: Performance comparison of different strategies for summarization on the validation and test sets. NOTE:
CoT_guide indicates CoT+keyphrases+guide information.

Our baseline uses vanilla prompting, where we
directly prompt the LLM to generate concise and
coherent summaries. Building on this, CoT ap-
proach with integration of keyphrases and guide
information increases ROUGE-1 by +8.1% and
BERTScore by +1.5%. These results indicate that
structured reasoning and providing task-relevant
external context can better guide LLM toward gen-
erating summaries with improved accuracy.
DSPy Optimization Impact: The application of
DSPy optimization to the CoT+keyphrases+guide
(CoT_guide) prompt strategy significantly im-
proves performance. The DSPy framework iter-
atively refines prompts, leading to an additional
increase across all relevance metrics (R-1, R-2,
R-L, BLEU, Meteor, BERTScore), with average
improvements of +25.6% on validation set and
+9.1% on test set. Factuality metrics also show
substantial improvements, with AlignScore and
SummaC increasing by +17.0% and +4.7%, re-
spectively. These results demonstrate that auto-
mated prompt optimization builds effectively on
manual CoT design, and it scales summary quality
through refinement of prompt precision and con-
textual awareness.
SFT impacts: Fine-tuning Llama-3 using domain-
specific data further enhances the model’s per-
formance when combined with DSPy optimiza-
tion. On the validation set, the SFT+DSPy com-
bination improves performance over DSPy alone,
with ROUGE-L improving by +21.4%, Meteor by
+7.0%, and BLEU by +8.8%. Test set results re-

veal increases of +3.4% for Meteor and +5.5%
for BLEU. While SFT substantially improves rel-
evance metrics, its impact on factuality metrics is
less effective, suggesting that fine-tuning primarily
enhances the model’s ability to generate content
that aligns with reference summaries rather than
improving factuality scores.
Findings: We observe that combining DSPy op-
timization with SFT demonstrates the benefits of
integrating both approaches. Fine-tuning helps
the Llama-3 model adapt to domain-specific fea-
tures in medical CQAs, while DSPy optimization
refines the prompt structure to better guide the
model’s summarization. This combination particu-
larly achieves a better performance in relevance.

9 Conclusions

In this paper, we present our approach to the Per-
AnsSumm Shared Task. Our approach adopts en-
semble learning with averaging individual model
predictions for span identification, achieving an
82.9% F1-score on test data. For summary gen-
eration, we develop structured Chain-of-Thought
(CoT) prompting with keyphrases and guide infor-
mation and combine it with DSPy-based prompt
optimization and supervised fine-tuning (SFT) of
the Llama-3 model to improve summary quality.

Our experimental results demonstrate that the
integration of keyphrases and guide information
within CoT improves the alignment between gen-
erated summaries and references. Notably, au-
tomated prompt optimization through the DSPy
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framework substantially improves both relevance
and factuality evaluation metrics, with average im-
provements of +25.6% on validation set. This re-
veals the effectiveness of iterative prompt refine-
ment. Furthermore, combining DSPy optimiza-
tion with SFT further enhances model performance,
with particularly improvements in relevance met-
rics (ROUGE-L: +21.4%, Meteor: +7.0%, BLEU:
+8.8%). Future work will compare our approach
with other LLMs such as GPT-4 to identify factors
that impact summarization quality. Moreover, we
will explore designs for metric-based optimization
strategies to improve alignments with references.

10 Limitations

Our approach reveals several limitations. First,
we use Llama-3 as our LLM without benchmark-
ing against API-based models such as GPT-4 or
Claude-3. Compared with other teams’ submis-
sions, it indicates that Llama-3 underperforms rel-
ative to GPT-4 and Claude-3. Second, our imple-
mentation of MIPRO optimizer within the DSPy
framework relies on the balanced metric formu-
lation derived from empirical assumptions. This
equal-weight approach may oversimplify the rela-
tionships between different evaluation metrics and
potentially reduce accuracy. The generalizability
of our prompt optimization strategy also remains
an open question. Alternative optimizers, such
as MIPRO with bootstrapped demonstrations or
OPRO may yield further improvements. Lastly,
our prompt design is tailored to the medical CQA.
The prompt templates do not account for potential
variability within summaries. These suggest room
for future research.
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A Prompt Template

 Prompt Template for the Chain of Thought  (CoT)

You are a specialized medical summarizer trained to create perspective-aware
summaries from community question-answering (CQA) content. Your task is to
generate a concise, coherent summary that accurately reflects the {PERSPECTIVE}
perspective from the provided context.

[Guidance Information]
Perspective: {PERSPECTIVE}
Definition: {DEFINITION}
Tone: {TONE}
Begin with: "{ANCHOR_TEXT}"

[Instructions]
1. Carefully read the perspective-based span texts below.
2. Extract keyphrases from the {PERSPECTIVE} perspective span.
3. Incorporate your extracted keyphrases when you generate the summary:
{KEYPHRASES}
4. Generate a coherent, concise summary that:
   - Start with "{ANCHOR_TEXT}" texts
   - Use the {TONE} tone of this perspective
   - Consider the following definition when generating the summary:
{DEFINITION}
   - Focus on {PERSPECTIVE}-specific aspects in your summary. Now generate a
concise and coherent summary.

[Input Content]
Question: {QUESTION}
Context: {CONTEXT}
{PERSPECTIVE} Span texts:
{PERSPECTIVE_SPANS}

Follow the steps above to generate a perspective-aware summary that captures the
essential {PERSPECTIVE} information from span texts. Let's think step by step. 

Figure 3: Prompt template used in our approach.
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Abstract

This paper presents an overview of the
Perspective-aware Answer Summarization
(PerAnsSumm) Shared Task on summarizing
healthcare answers in Community Question
Answering forums hosted at the CL4Health
Workshop at NAACL 2025. In this shared task,
we approach healthcare answer summarization
with two subtasks: (a) perspective span identi-
fication and classification and (b) perspective-
based answer summarization (summaries fo-
cused on one of the perspective classes). We
defined a benchmarking setup for the compre-
hensive evaluation of predicted spans and gen-
erated summaries. We encouraged participants
to explore novel solutions to the proposed prob-
lem and received high interest in the task with
23 participating teams and 155 submissions.
This paper describes the task objectives, the
dataset, the evaluation metrics and our findings.
We share the results of the novel approaches
adopted by task participants, especially em-
phasizing the applicability of Large Language
Models in this perspective-based answer sum-
marization task.

1 Introduction

Community Question Answering (CQA) forums
such as Yahoo! Answers, Reddit, and Quora have
transformed how people access information, espe-
cially with the rise of the internet. These sources
facilitate the spread of information and knowledge
across geographical boundaries and connect people
with wide-ranging expertise and experiences. It
is therefore no surprise that users of these forums
discuss a broad range of topics, including health-
care concerns. However, within these forums, users
often struggle to find relevant and reliable informa-
tion given the plethora of answers. Further, these
forums contain answers from users with a multitude
of perspectives, such as their personal experiences
or subject knowledge, which may or may not be
relevant to what another user seeks. To this end,

Naik et al. (2024) proposed the perspective-aware
healthcare answer summarization task for CQA
forums.

As seen in Figure 1, users’ questions often re-
ceive answers from other users of CQA forums that
contain a multitude of perspectives. For example, a
user provides both a suggestion (“try a diet with low
fat and very low saturated fats”) and their personal
experience (“I’ve had the surgery and it really isn’t
a big deal”) in their answer. While such diverse
insights can be valuable, they can also be over-
whelming for users seeking specific information.
Therefore, it is important to identify such perspec-
tive spans and provide a concise perspective-based
summary of all answers (as shown in Figure 1).
This allows users to obtain information relevant to
their situation and assists them in making informed
decisions.

The investigation of novel approaches for the
task of CQA forum answer summarization has been
limited with recent works being primarily reliant
on Pre-trained Language Models (Naik et al., 2024)
such as Flan-T5, leaving the utility of Large Lan-
guage Models unexplored for the most part. Fur-
ther, the majority of previous work has been limited
by small dataset sizes (Bhattacharya et al., 2022;
Chaturvedi et al., 2024) and the lack of a uniform
benchmark. This work aims to fill this research gap
by providing an accessible resource to researchers
for developing and comparing novel techniques for
perspective-aware healthcare answer summariza-
tion.

The PerAnsSumm 2025 Shared Task focuses
on investigating novel solutions in the perspective-
aware summarization of healthcare answers in
CQA forums. This work aims to be a meaning-
ful step forward in spearheading research in this
direction and investigating the utility of recent ad-
vances in Natural Language Processing, such as the
rise of Large Language Models (LLMs) in their ap-
plication to the biomedical summarization domain.
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I was just diagnosed with gallstones in my gallblatter I really dont want to have surgery and have been told that there are other
ways to get rid of the stones so if anyone knows how im open for suggestions

Most gallstones are made of pure
cholesterol.  You might try a diet with
low fat and very low saturated fats. 

I've had the surgery and it really isn't a
big deal. If you leave the gallstones
there, they can get large enough to

damage ...

The best remedy is surgury. I had
surgery to have kidney stones

removed. The surgery isn't as bad as
you think it may be.

Have you seen a gastroenterologist? 
They can do a minimally invasive

procedure called an ERCP... freely. I
had the surgery myself about 10 years
ago... after it's over. A diet high in fat

will make gallbladder disease worse, ...
with an ERCP.

Information
Reducing saturated fats may shrink gallstones as they’re mostly made of cholesterol. Gallstone pain occurs when

the gallbladder squeezes to aid digestion on fat consumption. An ERCP procedure by a gastroenterologist can
remove stones stuck in the duct leading to the intestine.

Cause Gallstones left untreated can harm the gallbladder, causing severe infection and potentially death.

Suggestion
To eliminate gallstones without surgery, a low-fat diet, particularly low in saturated fats, as it may help reduce

pain associated with gallbladder disease. Ultimately, surgical or medical intervention like ERCP may be
necessary for complete removal if stones don’t pass naturally.

Experience
Multiple people shared their experience of undergoing surgery to remove kidney stones, assuring that the

procedure wasn’t as daunting as expected. Despite the possibility of post-operative discomfort, the relief from
the original pain was significant.

Question It was asked if the person had seen a gastroenterologist.

Question

Answers

Perspective-based Summaries

Figure 1: A description of the PerAnsSumm task with inputs and expected output. Colored spans in answers
correspond to spans of different perspectives. The spans are utilized to generate a perspective-based summary for
each class.

In this work, we present the findings of the
PerAnsSumm 2025 Shared Task, hosted by the
CL4Health Workshop at NAACL 2025. The shared
task garnered significant interest, with 100 reg-
istered participants on the CodaBench1 platform,
with 23 teams participating and submitting a to-
tal of 155 valid submissions. The remainder of
this paper describes key details of the shared task
along with our findings and brief descriptions of
the participating systems.

2 Task Description

The shared task involved two sub-tasks, (A) Span-
Identification and Classification and (B) Summary
Generation. These two sub-tasks aimed to capture
the different ways in which a user may interact with
a Community Question-Answering Forum when
filtering based on the five defined perspectives –

1Available for continued access at: https://www.
codabench.org/competitions/4312/

‘Information’, ‘Cause’, ‘Suggestion’, ‘Experience’
and ‘Question’.

TASK A – Perspective Span Identification and
Classification. In this task, the participants were
required to identify and accurately classify spans
of text in the community answers of CQA threads
according to the relevant perspective. For example,
as shown in Figure 1: Information - ‘gallstones
are made of pure cholesterol’, Experience - ‘I had
the surgery myself about 10 years ago’, Question
- ‘Have you seen a gastroenterologist’.

TASK B – Perspective-based Summarization.
In this task, participants were required to provide
a summary of all texts pertaining to the relevant
perspective class. This may be looked at as a sum-
mary of the identified perspective-based spans or
as a perspective-based summary of the answers in
the CQA thread. For example, as shown in Figure
1: Cause - ‘Gallstones left untreated can harm the
gallbladder, causing severe infection and poten-
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Size Information Cause Suggestion Question Experience

Train 2533 4823/1961 646/342 646/342 325/249 1439/845
Validation 317 643/246 108/49 549/208 42/32 170/108
Test (Seen) 317 631/242 81/45 499/188 44/31 181/100
Test (Unseen) 50 153/43 47/14 198/47 35/18 92/37

Table 1: Dataset Statistics describing the perspective-
specific span count/summaries count in the split

tially death.’

Both tasks combined to address the underlying
challenge of providing users with relevant content
that is specific to their needs, and hence, allowing
them to make informed decisions. We proposed
these tasks as complementary, as identifying rel-
evant perspective-specific spans allowed for im-
provements in the summarization task. However,
the participating teams were given the option to par-
ticipate in each task individually if they preferred.

3 Dataset

For this task, we utilized the PUMA dataset (Naik
et al., 2024), containing 3167 total questions and
9987 answers. The dataset is divided into training,
validation, and testing sets with detailed class-wise
statistics given in Table 1. The PUMA dataset was
developed using samples from the L6 - Yahoo!
Answers CQA dataset 2 filtered on the Healthcare
category. These samples were annotated by ana-
lyzing all answers for potential perspective labels
and manually writing a perspective-based summary
that is a concise representation of all perspective
spans. As a result of this annotation, the dataset
contained text spans in each answer, along with a
perspective-based answer summary for each identi-
fied perspective class label for a question sample.

Naik et al. (2024) identified five perspective
classes that correspond to the different ways in
which users respond to questions on CQA forums.
These perspectives were given as follows:

1. Cause: It underlines the potential cause of
a medical phenomenon or a symptom. It
answers the Why regarding a specific obser-
vation, offering insights to identify the root
cause.

2. Suggestion: It encapsulates strategies, rec-
ommendations, or potential courses of action
towards management or resolution of a health
condition.

2https://webscope.sandbox.yahoo.com/catalog.
php?datatype=l&did=11

3. Experience: It covers first-hand experiences,
observations, insights, or opinions derived
from treatment or medication related to a par-
ticular problem.

4. Question: It consists of interrogative phrases,
follow-up questions and rhetorical questions
that are sought to better understand the con-
text. They typically start with phrases like
Why, What, Do, How, and Did etc, and end in
a question mark.

5. Information: It encompasses segments that
offer factual knowledge or information consid-
ering the given query. These segments provide
comprehensive details on diagnoses, symp-
toms, or general information on a medical
condition.

Through our utilization of this dataset, we hope
to enable researchers to develop models which
are capable of generating perspective-guided sum-
maries for CQA answer forums. This would in
turn enable users to make informed decisions when
accessing CQA forums.

Since the original PUMA dataset was available
to researchers upon request, we further annotated
50 samples as a new test set for the PerAnsSumm
shared task. We followed the annotation guidelines
as laid out by Naik et al. (2024) to identify relevant
spans for each perspective class and manually cre-
ated summaries for the identified perspectives. Sub-
missions by the participants to the PerAnsSumm
2025 Shared Task were evaluated on this set of 50
newly annotated and unreleased samples.

4 Evaluation

In this section, we provide details about the evalua-
tion metrics used for each of the two sub-tasks in
the PerAnsSumm 2025 shared task.

Task A We evaluated submissions on 3 criteria -
Classification (Macro F1 and Weighted F-1), Strict-
matching (Precision, Recall and F-1), Proportional-
matching (Precision, Recall and F-1). The overall
score for task A combined these 3 criteria as it is
the average of the classification-weighted F-1 score,
the Strict-matching F-1 score and the Proportional-
matching F-1 score. Classification metrics were
based on framing the problem as a sample-level
multi-label classification problem. Strict matching
was defined as follows:

P =
|CorrectSpans|
|PredictedSpans| ,
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R =
|CorrectSpans|
|GoldSpans| ,

F1 =
2× P ×R

P +R
,

Proportional-matching was defined as follows:

P =

∑
len(MaximumOverlappingSpan)∑

len(PredictedSpan)
,

R =

∑
len(MaximumOverlappingSpan)∑

len(GoldSpan)
,

F1 =
2× P ×R

P +R
,

where MaximumOverlappingSpan refers to the sub-
span of a predicted span that had the maximum
overlap with each of the gold spans.

Task B Submissions were evaluated based on
two criteria using multiple automatic metrics to
assess both the relevance and the factuality of the
generated summaries. These criteria were as fol-
lows:

1. Relevance - ROUGE-1,2 and L (Lin, 2004),
BertScore (Zhang et al., 2020b), METEOR
(Banerjee and Lavie, 2005) and BLEU (Pap-
ineni et al., 2002).

2. Factuality - AlignScore (Zha et al., 2023) and
SummaC (Laban et al., 2022).

The overall score across both tasks was computed
as an average of the Task A scores, the Task B Rele-
vance scores, and the Task B Factuality scores. This
was used in computing the final leaderboard posi-
tions. Implementation and hyperparameters used
for all automatic evaluations were made available
3 to the participants before the evaluation stage.

5 Task Results

Table 2 presents the final leaderboard for the shared
task based on the best performing submission of
each team, according to the defined evaluation met-
rics. Task-wise results are given in Table 3 and
4.

In this section, we describe our findings and key
results from the submissions.

3Made available through a GitHub repository: https://
github.com/PerAnsSumm/Evaluation

⋆ Team LLMs? Score

1 WisPerMed ✓ 45.71
2 YALENLP ✓ 45.48
3 Team_ABC ✓ 45.26
4 AICOE ✓ 44.95
5 KHU_LDI ✓ 44.92
6 LTRC-IIITH ✓ 43.95
7 MNLP ✓ 43.21
8 Team Airi ✓ 42.38
9 DataHacks ✓ 42.03
10 UTSA-NLP ✗ 41.12
11 HSE NLP ✓ 40.81
12 MediFact ✓ 40.77
13 NU-WAVE ✓ 40.46
14 Roux-lette ✓ 39.96
15 Manchester Bees ✓ 39.94
16 Abdelmalak ✓ 39.07
17 Team_UMB ✗ 38.24
18 massU ✗ 38.15
19 RVK_Med ✗ 37.50
20 TrofimovaMC ✗ 36.98
21 TeamENSAK ✓ 36.41
22 CaresAI ✓ 34.05
23 LMU* ✓ 17.26

Table 2: Final leaderboard for the PerAnsSumm 2025
Shared Task in order of average performance over the
two sub-tasks. ⋆ denotes the rank column. Combined
Average is the average of the average Task A and aver-
age Task B scores. * denotes the team participates in
Task B only.

LLM usage As a part of the submission process,
we asked participants to self-disclose the use of
LLMs in their modeling approaches. Out of 23
participating teams, 18 teams disclose the use of
LLMs in some capacity, with all of the top 10 teams
utilizing LLMs. This highlights the growing preva-
lence and importance of LLMs in summarization
and other NLP tasks. The growing trend of LLM
utilization is highlighted further when compared
to a similar task related to summarization in the
biomedical domain, BioLaySumm 2024 (Goldsack
et al., 2024), where only 18 of the 52 participating
teams utilized LLMs. The rapidly evolving land-
scape of LLM research and its applications in the
biomedical domain need careful evaluation, espe-
cially given the sensitivity of biomedical data and
the related real-life implications. At the same time,
we find this usage of LLMs as a positive signal of
participants exploring novel techniques.
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∗ ⋆ Team Classification Strict-matching Proportional-matching Avg
macro weigh. Prec. Recall F1 Prec. Recall F1

1 3 Team_ABC 86.97 91.73 22.05 27.81 24.60 62.15 80.29 70.06 62.13
2 7 MNLP 85.24 90.61 13.76 27.24 18.29 65.80 84.06 73.82 60.90
3 4 AICOE 86.56 91.40 17.65 27.43 21.48 65.97 71.59 68.66 60.52
4 2 YALENLP 84.39 89.02 15.71 28.57 20.27 63.72 82.18 71.78 60.36
5 6 LTRC-IIITH 90.33 92.39 19.15 22.29 20.60 67.74 68.33 68.03 60.34
6 12 MediFact 83.61 88.87 13.83 31.43 19.21 62.22 84.93 71.82 59.97
7 1 WisPerMed 87.75 92.11 17.26 23.05 19.74 62.36 73.80 67.60 59.82
8 16 Abdelmalak 88.59 91.30 8.53 15.81 11.08 70.21 81.74 75.54 59.31
9 5 KHU_LDI 79.09 86.18 18.68 30.10 23.05 57.16 81.84 67.31 58.85
10 13 NU-WAVE 81.24 87.19 20.48 22.86 21.60 57.02 72.26 63.74 57.51
11 14 Roux-lette 81.24 87.19 20.48 22.86 21.60 57.02 72.26 63.74 57.51
12 15 Manchester Bees 82.68 87.69 22.67 19.43 20.92 55.03 70.36 61.76 56.79
13 10 UTSA-NLP 73.59 84.26 16.87 18.67 17.72 59.66 67.64 63.40 55.13
14 11 HSE NLP 80.73 87.86 14.75 18.86 16.56 66.66 54.21 59.79 54.74
15 9 DataHacks 86.35 90.44 15.99 13.52 14.65 51.49 66.78 58.15 54.41
16 8 Team Airi 84.67 88.67 19.94 12.76 15.56 49.13 61.67 54.69 52.98
17 19 RVK_Med 89.84 92.07 0.19 0.19 0.19 58.01 72.05 64.27 52.18
18 18 massU 83.16 88.54 14.29 11.43 12.70 50.85 48.30 49.54 50.26
19 17 Team_UMB 82.91 88.26 12.66 11.43 12.01 52.32 48.77 50.48 50.25
20 20 TrofimovaMC 77.00 85.79 7.28 9.52 8.25 58.14 46.30 51.55 48.53
21 21 TeamENSAK 80.69 84.94 1.69 2.10 1.87 58.23 46.02 51.41 46.08
22 22 CaresAI 74.64 83.02 7.37 8.00 7.67 47.54 36.51 41.31 44.00

Table 3: Leaderboard for Task A of the PerAnsSumm 2025 Shared Task in order of average performance. ⋆ denotes
the overall shared task rank column. ∗ denotes Task A rank column. Classification scores are F1 scores. Average for
Task A is calculated as the average of classification-weighted F1, Strict-matching F1, and Proportional-matching F1.

Comparing Task A and Task B performance
We find that teams that perform well in Task A,
which covers identification and classification, also
tend to perform comparatively better in Task B,
perspective-based summarization. It is observed
that teams often utilize substantially different meth-
ods for both the tasks, with greater reliance on
smaller pre-trained language models in the span
identification task compared to the summarization
task.

In-context learning as the new normal An
interesting observation from the submissions is
the reliance on novel in-context learning based
approaches through innovative prompting strate-
gies. Participants prefer inferencing on pre-trained
large language models, utilizing their vast train-
ing knowledge as compared to fine-tuning models
specifically for the task. This reliance is representa-
tive of the current shift in the NLP landscape from
a pre-train and fine-tune to a pre-train and inference
paradigm. This calls for the further development of
models trained specifically on specialized domains,
such as healthcare to advance research and boost
model capabilities in these specialized areas.

6 Submissions

The PerAnsSumm 2025 shared task attracted sub-
missions from 23 participating teams who made
a combined total of 155 valid submissions that
were evaluated by the task organizers. Out of these
teams, 22 teams participated in both Task A and
Task B, while 1 team participated in only Task B.
Out of the 23 participating teams, 12 teams sub-
mitted system papers. Brief summaries of the ap-
proaches taken by these teams are described in this
section. We also describe the baseline provided to
participants as a starter code.

Starter Kit: We utilized the PLASMA model (Naik
et al., 2024) as a strong starting point to the par-
ticipants. This modeling approach showed promis-
ing results in the perspective-based answer sum-
marization task (Task B). It utilized a perspective-
conditioned prompt that is generated following a
defined prompt template. Subsequently, the prompt
was fed to the Flan-T5 model (Chung et al., 2022)
with a prefix tuner to generate the summary. An
energy-driven loss function was incorporated along
with the standard cross-entropy (CE) loss to en-
force the perspective attributes in the generated
summary. This model represented the current state
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∗ ⋆ Team Relevance Factuality Avg
R-1 R-2 R-L BS MT BL Avg AS SC Avg

1 1 WisPerMed 45.15 22.10 41.02 89.91 40.95 13.47 42.10 40.85 29.58 35.21 38.66
2 2 YALENLP 46.90 23.14 42.87 88.28 44.54 15.71 43.57 37.94 27.07 32.50 38.04
3 5 KHU_LDI 45.48 20.44 40.31 90.12 39.50 14.13 41.66 42.00 26.53 34.27 37.96
4 4 AICOE 43.45 18.69 38.78 86.58 38.44 11.24 39.53 42.60 27.01 34.80 37.17
5 8 Team Airi 38.42 18.68 35.19 76.80 33.93 13.96 36.16 47.28 28.72 38.00 37.08
6 3 Team_ABC 40.01 16.49 35.78 84.06 31.87 10.60 36.47 46.01 28.34 37.17 36.82
7 9 DataHacks 37.08 16.83 33.65 77.62 33.91 11.16 35.04 44.27 28.99 36.63 35.84
8 6 LTR-IIITH 39.46 17.41 35.12 83.11 34.07 13.38 37.09 41.84 27.01 34.42 35.76
9 7 MNLP 40.22 16.39 36.08 84.93 38.85 10.70 37.86 36.17 25.53 30.85 34.36
10 10 UTSA-NLP 34.38 12.61 30.53 76.87 31.16 10.24 32.63 45.03 26.20 35.62 34.12
11 11 HSE NLP 30.84 9.61 26.03 83.36 20.62 3.81 29.05 51.50 25.78 38.64 33.84
12 17 Team_UMB 36.02 15.46 32.78 82.32 33.93 9.58 35.02 33.26 25.62 29.44 32.23
13 18 massU 36.27 15.84 33.32 82.26 34.55 9.44 35.28 32.03 25.77 28.90 32.09
14 13 NU-WAVE 38.44 16.67 33.95 82.74 33.35 12.41 36.26 32.16 23.06 27.61 31.93
15 21 TeamENSAK 30.67 12.84 27.67 69.74 25.48 11.19 29.60 41.10 25.99 33.54 31.57
16 15 Manchester Bees 29.23 9.11 24.54 77.34 21.18 4.04 27.57 47.75 23.16 35.45 31.51
17 20 TrofimovaMC 28.76 9.12 23.85 81.77 19.31 2.13 27.49 46.79 23.04 34.91 31.20
18 14 Roux-lette 37.37 15.42 32.67 82.52 32.84 11.22 35.34 31.15 22.88 27.02 31.18
19 12 MediFact 34.85 14.75 32.12 83.36 31.20 10.78 34.51 31.21 24.48 27.84 31.18
20 19 RVK_Med 30.11 11.40 27.05 81.96 26.87 8.86 31.04 33.87 24.67 29.27 30.16
21 22 CaresAI 28.00 8.45 24.31 85.00 22.06 6.12 28.99 33.14 25.21 29.17 29.08
22 16 Abdelmalak 31.32 11.30 25.56 79.88 23.40 6.34 29.63 33.84 22.70 28.27 28.95
23 23 LMU 21.48 9.05 19.42 53.51 20.32 5.95 21.62 35.64 24.71 30.17 25.90

Table 4: Leaderboard for Task B of the PerAnsSumm 2025 Shared Task in order of average performance. ⋆ denotes
the overall shared task rank column. ∗ denotes Task B rank column. Task B metrics - R-1 (ROUGE-1), R-2
(ROUGE-2), R-L (ROUGE-L), BS (BertScore), MT (METEOR), BL (BLEU), AS (AlignScore), SC (SummaC).
All metrics are F-1 scores wherever relevant. Average column is the average of the average Task B Relevance and
Task B factuality average scores.

Team Coherence Consistency Fluency Relevance Coverage

WisPerMed 4.40 4.40 4.47 4.00 4.07
YALENLP 4.73 4.53 4.60 4.20 4.40
Team_ABC 4.07 3.93 4.33 3.73 3.60

AICOE 4.27 4.00 4.40 3.73 3.80
KHU_LDI 4.53 4.67 4.67 4.33 4.53

Table 5: Human Analysis of 15 generated summaries
for the top 5 ranking teams

of the art for the task of perspective-based answer
summarization, and the source code for this model
is provided to the participants in the starter kit as a
part of the Shared Task.

WisPerMed Pakull et al. (2025) leveraged
DeepSeek-R1 (DeepSeek-AI, 2025) in a zero-shot
setting with structured prompting for Task A. They
designed a detailed system prompt instructing the
model to extract spans according to the given per-
spectives without modifying the original content.
They instruct the model to return structured out-
put for consistency and easy parsing. For Task
B, they utilized two step pipeline with sequence
classification and instruction tuning of the Mistral-

7B model (Jiang et al., 2023). In the first step of
this pipeline, they built a labeled answer dataset
by associating the spans with their corresponding
classes and using the Mistral model as a sequence
classifier. In the next step, the perspective-specific
subset of answers was used to generate perspective-
aware summaries. The team achieved first rank on
the leaderboard based on the average over Task A
and Task B metrics, and also lead performance in
Task B. Their approach exhibits close to peak per-
formance across all aspects of the two tasks leading
to a high overall rank compared to other teams’ ap-
proaches which ace one set of metrics while falling
behind on the overall task.

YALENLP Jang et al. (2025) utilized the zero-
shot capabilities of GPT-4o (OpenAI et al., 2024b)
for both Task A and Task B. They inference on
GPT-4o without fine-tuning and rely upon the ef-
fectiveness of GPT4o to capture the diverse med-
ical perspectives in CQA forums with promising
results. They highlight that the generalizability
of the GPT4o model allows for robust in-context
learning and even surpasses few-shot configura-
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tions. They also utilized a Mixture-of-Agents
(Wang et al., 2024) setup to enhance system perfor-
mance through ensembling multiple open-source
models, allowing them to compensate for the weak-
nesses of individual models. They exploited an
intermediate verification layer to refine predictions
and mitigate hallucinations. They achieved second
rank on the task leaderboard with the best score
Task B relevance metrics.

AICOE R et al. (2025) utilized a pipeline with
a combination of two closed-source LLMs infer-
enced for both Task A and Task B. For Task A, they
employed the OpenAI O1 (OpenAI et al., 2024a)
and the Google Gemini-2.0 Flash models. The
spans predicted by both these models are merged
with a preference given to the Gemini-2.0 model
based on an empirical review of performance. They
then used these predicted spans as an additional in-
put for Task B summarization using the Gemini 2.0
Flash model. They also highlight their experiments
with fine-tuned open-source LLMs.

LTRC-IIITH Marimuthu and Krishnamurthy
(2025) fine-tuned BERT-large (Devlin et al., 2019)
and RoBERTa-large (Liu et al., 2019) models
for span identification in the standard IO anno-
tation format. They demonstrate the robustness
of a fine-tuned RoBERTa model with the highest
classification-weighted F-1 score for Task A. For
Task B, they fine-tune BART-large (Lewis et al.,
2020) and Pegasus-large (Zhang et al., 2019) mod-
els with an MLM (Masked-Language Modeling)
objective for the BART model.

MNLP Lee et al. (2025) followed a two-stage
Classifier-Refiner Architecture (CRA) to improve
the classification of user-generated health re-
sponses in CQA forums. In the first stage, a clas-
sifier segments responses into self-contained snip-
pets and assigns one of five perspective classes.
If the classifier was uncertain, a refiner was trig-
gered to reassess the classification using retrieval-
augmented generation (RAG). The refiner retrieved
the two most similar training examples based on
all-MiniLM-L6-v2 sentence similarity and incorpo-
rated them as few-shot examples to enhance clas-
sification reliability. Additionally, they employed
instruction-based prompting, tone definitions, and
Chain-of-Thought (CoT) reasoning to guide the
model’s decisions and improve interpretability.

DataHacks Nawander and Reddy (2025) utilized
the Mistral 7B (Jiang et al., 2023) model as their

backbone for fine-tuning with LORA adapters. The
same configuration of fine-tuning an LLM with
Low-Rank Adaptation (Hu et al., 2022) was used
for both tasks. They perform prompt engineering
to restructure the input into the distinct sections
of Question, Context, and Answer, allowing the
model to better interpret details and leading to an
observed improvement in model performance.

Team_UMB Qi et al. (2025) employed an en-
semble learning approach combining multiple
transformer models (BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and DeBERTa (He
et al., 2021)) through weighted averaging for Task
A. For Task B, they developed a suite of prompting
techniques to leverage a pre-trained LLM (Llama-3
(Grattafiori et al., 2024)). Specifically, they used
chain-of-thought (CoT) techniques with integrated
keyphrases and additional guidance information.
To optimize these prompts, they applied the DSPy
framework with a designed downstream evalua-
tion metric aimed at balancing relevance and fac-
tuality. Using the 0-shot MIPRO optimizer within
DSPy, they iteratively optimized prompts to en-
hance summary generation capabilities. Further-
more, they demonstrated that incorporating super-
vised fine-tuning improved the quality of generated
summaries.

MediFact Saeed (2025) presented a three-stage
hybrid pipeline for Task A consisting of weak su-
pervision with Snorkel, supervised learning with
SVM and zero-shot classification using transform-
ers. The transformer model was deployed in case of
uncertainty in the predictions of the previous stages.
For Task B, Saeed (2025) proposed an approach
consisting of extractive summarization using the
BART (Lewis et al., 2020) model and abstractive
refinement using Pegasus (Zhang et al., 2020a).

Roux-lette Antony et al. (2025) used an LLM-
based approach with semantic similarity-guided
in-context learning (ICL). For Task A, they queried
the Qwen-Turbo LLM (Qwen et al., 2025) by
prompting it with 20 In-Context Learning sam-
ples selected from the training data using NVIDIA
NV-Embed-v2 (Lee et al., 2024) text embedding
model to obtain spans for each perspective. These
spans were then processed through a matching
pipeline that attempted exact matches first, fol-
lowed by case-insensitive and fuzzy matching if
needed. For Task B, they used a similar ICL-based
approach, selecting relevant examples based on se-
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mantic similarity between the input text and train-
ing examples. The LLM leveraged these examples,
along with the extracted spans from Task A, to
generate perspective-aware summaries. The most
effective prompt asked the model to replicate the
annotation patterns observed in the ICL samples,
ensuring that the summaries maintained alignment
with human annotations.

Manchester Bees Romero et al. (2025) proposed
an approach with Iterative Self-Prompting (ISP)
with the closed source LLMs Claude and o1. They
used the models to develop prompts for itself dur-
ing inferencing in multiple iterations, allowing the
model to refine the prompts. The effectiveness of
this approach stands out with the team achieving
the highest score in strict-matching precision.

Abdelmalak Abdelmalak (2025) primarily fo-
cused on Task A. They used SpaCy to tokenize
the answers into sentences and then matched the
labels based on proportional alignment with the
reference data for training and development. Fol-
lowing this, they fine-tuned COVID-Twitter-BERT
on two tasks: one to identify relevant sentences and
the other to label each relevant sentence based on
its perspective.

LMU Agustoslu (2025) participated only in Task
B and evaluated a set of different prompting tech-
niques for the summarization task. They achieved
high performance in relevancy metrics through the
use of fine-tuning and few-shot learning based ap-
proaches. Competitive performance was achieved
in the factuality metrics by deploying a variant
of Chain-of-thought reasoning known as SumCoT,
which was designed for element extraction and text
summarization tasks.

Human Analysis We conducted a thorough hu-
man analysis of the summaries by the top 5 teams
based on five criteria defined by Fabbri et al. (2021).
The human annotator annotates 15 summaries gen-
erated by the top 5 teams for this evaluation on a
Likert scale from 1-5. These criteria are as follows:

1. Coherence- Is the generated summary coher-
ently framed?

2. Consistency- Is the summary logically im-
plied by the source answer?

3. Fluency- How well-formulated is the sum-
mary gramatically?

4. Relevance- Does the summary include only
relevant and non-redundant information from
the source answers?

5. Coverage- How well is the particular perspec-
tive covered in the summary?

The results of the human analysis based evalua-
tion are given in Table 5. Based on this evaluation,
we identified Team YALENLP (Jang et al., 2025)
and Team KHU_LDI as consistently producing the
highest quality of summaries. This observation is
consistent with our evaluation using the automatic
metrics where Team YALENLP (Jang et al., 2025)
achieved the best scores in the relevance metrics.
The high fluency and coherence scores for all teams
are expected outcomes of using LLMs for gener-
ation, as these models are capable of producing
high-quality, grammatically correct English text.
However, relevance remains a weak point for all
submissions, as the models often produce elabo-
rate, unrelated, and irrelevant content. Consistency
scores indicate how well the model follows the
flow and logic of the user’s answers, with Team
KHU_LDI performing the best in this metric. Cov-
erage is strong for some models, while others often
miss key pieces of information, an issue that we be-
lieve can be mitigated by more effective utilization
of the predicted spans as input.

7 Conclusion

This work presents an overview of the Per-
AnsSumm 2025 Shared Task, organized at the
CL4Health Workshop 2025 which received 155
total submissions from 23 teams. The task aimed
to identify and summarize perspective spans in
answers in Community Question-Answering fo-
rums. Specifically, it contains two subtasks: (a)
Perspective Span Identification and Classification
and (b) Perspective-based Summarization. To this
end, this task utilized the PUMA dataset (Naik
et al., 2024) that was supplemented with a newly
annotated test set for evaluation. We described
relevant performance metrics for this task and pro-
vided an overview of our findings, as well as the
approaches taken by the 12 teams that submitted
system papers. We are optimistic that the provided
resources will help foster further research toward
the task of perspective-based answer summariza-
tion. To enable future work, we continue maintain-
ing the CodaBench webpage for the Shared Task
as a benchmark.
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Limitations

The PerAnsSumm shared task involves generation
of summaries which are evaluated automatically
while presenting the leaderboard. This involves
the selection of automatic metrics, which, while a
strong indicator, may not be completely represen-
tative of actual summary quality. For this reason,
we include a range of diverse evaluation metrics.
Due to the number of participants, we conduct our
human evaluation study only on the summaries gen-
erated by the top five participants which may be
expanded to include all participants to determine
the correlation between the human evaluation and
automatic metrics in future work. Further, the wide
use of LLMs in the shared task encourages us to
define metrics more suited for evaluating LLM gen-
erated content in future runs of this shared task.
These evaluations which were not included in the
current shared task may include evaluating specifi-
cally for LLM hallucinations along with the current
evaluation of factuality.
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Abstract

Conversational agents (CAs), such as medical
interview assistants, are increasingly used in
healthcare settings due to their potential for in-
tuitive user interaction. Ensuring the inclusivity
of these systems is critical to provide equitable
and effective digital health support. However,
the underlying technology, models and data can
foster inequalities and exclude certain individu-
als. This paper explores key principles of inclu-
sivity in patient-oriented language processing
(POLP) for healthcare CAs to improve accessi-
bility, cultural sensitivity, and fairness in patient
interactions. We will outline, how considering
the six facets of inclusive Artificial Intelligence
(AI) will shape POLP within healthcare CA.
Key considerations include leveraging diverse
datasets, incorporating gender-neutral and in-
clusive language, supporting varying levels of
health literacy, and ensuring culturally relevant
communication. To address these issues, future
research in POLP should focus on optimizing
conversation structure, enhancing the adaptabil-
ity of CAs’ language and content, integrating
cultural awareness, improving explainability,
managing cognitive load, and addressing bias
and fairness concerns.

1 Introduction

Conversational agents (CAs) in healthcare - intelli-
gent systems that enable natural language interac-
tion - have the potential to improve access to health-
care services, enhance patient literacy (Wynia and
Osborn, 2010), and empower individuals to make
informed healthcare decisions. These systems are
increasingly being used in a variety of applica-
tions, including medical history taking (Denecke
et al., 2024), blended psychotherapy, and deliv-
ery of cognitive behavioural therapy (e.g., WoeBot
(Sackett et al., 2024)). While early healthcare CAs
were predominantly rule-based, the emergence of
transformer-based models has opened up new pos-
sibilities for more dynamic, flexible and engaging

conversations enabled through patient-oriented lan-
guage processing (POLP) (Sarker et al., 2021).

A critical component of effective healthcare CAs
is the ability of these systems to tailor communica-
tion to individual patient needs, taking into account
factors such as health literacy, cultural context and
linguistic diversity that is realized by artificial in-
telligence (AI), natural language processing (NLP),
ideally incorporating POLP. While AI-driven CAs
hold promise for improving access to healthcare,
they also pose risks, particularly in terms of ex-
acerbating existing inequalities. The design and
implementation of these systems, including the AI
models and datasets on which they rely, often fail
to adequately represent diverse user populations,
leading to biased outcomes and interaction barriers
(Cross et al., 2024). Marginalised communities,
already disproportionately affected by structural
inequalities in healthcare, may be further excluded
if AI fails to process and deliver health information
in a way that meets their linguistic and cognitive
needs. In addition, if patient-facing AI systems
present excessive, irrelevant or poorly prioritised
information, users may feel overwhelmed, hinder-
ing their ability to derive meaningful insights for
their health concerns.

To develop inclusive POLP within healthcare
CAs, the methods must be designed with fair-
ness, adaptability, and user-centred communica-
tion strategies in mind. Inclusive AI involves in-
tegrating diverse human attributes and perspec-
tives throughout the entire lifecycle of AI sys-
tems—from data collection and model training
to implementation and governance (Zowghi and
Bano, 2024). Nadarzynski et al. proposed a 10-
phase roadmap for the design and implementation
of inclusive CAs in healthcare (Nadarzynski et al.,
2024), primarily focusing on system development
and evaluation. In contrast, this paper takes a
more specific approach, focusing on the linguis-
tic and technical aspects required to achieve inclu-
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sive POLP within healthcare CAs. While some
general aspects of usability and accessibility will
be discussed, our primary focus lies in ensuring
that language processing within CAs effectively
accommodates diverse patient populations.

In the era of digitisation and AI-driven health-
care, it is imperative to ensure that AI-driven con-
versational systems are not only functionally effi-
cient, but also linguistically and culturally inclu-
sive. Despite increasing discussions on AI ethics
and responsible AI practices, there is still a lack of
practical strategies to bridge the technology divide,
especially for underserved populations.

This paper aims to address this gap by exploring
concrete strategies for ensuring inclusivity in AI-
driven healthcare CAs. Specifically, we explore as-
pects for improving POLP for ensuring that health-
care CAs account for linguistic diversity, vary-
ing levels of health literacy, and cultural sensitivi-
ties. The World Health Organization’s 2021 Ethical
Guidelines emphasise inclusivity, transparency and
accountability as core principles for AI in health-
care (World Health Organization, 2024). Building
on this framework, our study aims to contribute
to the development of more equitable AI-driven
healthcare solutions that prioritise inclusivity and
accessibility for all patient demographics.

To achieve this, we address the following re-
search questions (RQs):

• RQ1: How does inclusive AI impact POLP in
healthcare CAs?

• RQ2: What NLP or other technologies are
required to achieve inclusive POLP in health-
care CAs?

• RQ3: What are the most important future
research directions for achieving inclusive
POLP in healthcare CAs?

By answering these questions, this paper aims to
contribute actionable insights for the design and im-
plementation of fair, effective, and inclusive POLP
in healthcare CAs. It is intended as starting point of
research towards inclusive POLP for CA in health-
care.

2 Methods

To answer our research questions, we apply two
steps. First, we use the facets of inclusive AI that
have been collected in a recent review (Bokolo
et al., 2025) and study how inclusive AI impacts

on POLP within healthcare CA based on our expe-
rience in developing CAs.

In a previously conducted review (Bokolo et al.,
2025), we retrieved papers that included the key-
word “Inclusive AI” in their abstract from six
databases (PubMed, PsycINFO, CINAHL, Aca-
demic Search Premier, IEEE Xplore, and Scopus).
The included research studies should address in-
clusive AI in the context of healthcare. Out of
1377 papers, 18 were included with information
extracted on strengths, weaknesses, opportunities
and threats (SWOT). From this SWOT analysis,
six facets of inclusive AI in healthcare were con-
cluded: 1) Accessibility, 2) Equity, 3) Usability and
Navigability, 4) Diversity and Cultural Sensitivity,
5) Mitigation of Disparities, and 6) Skill Devel-
opment and Literacy. In more detail, accessibility
asks AI technologies in healthcare to be designed
in a useable manner by individuals with diverse
needs (Accessibility). They should offer fair access
and outcomes for everyone (Equity) and must be
designed in a user-friendly manner (Usability and
Navigability). AI technologies in healthcare should
recognize and accommodate socio-demographic di-
versity (Diversity and Cultural Sensitivity), should
mitigate existing disparities (Mitigation of Dispari-
ties). Users should be equipped with relevant skills
to engage efficiently with AI technologies when
used for healthcare purposes (Skill development
and literacy).

We will consider these six facets and assess
how inclusive AI impacts on POLP within CA in
healthcare. In a second step, we suggest a research
agenda for technologies and methodologies to ad-
dress the identified impact factors.

3 Impact of Inclusive AI on POLP within
Healthcare CA

This section is structured along the 6 facets of in-
clusive AI described in the section before. We will
outline how inclusive AI shapes POLP within CA
with regard to these specific facets.

3.1 Accessibility

Accessibility takes into account users with disabil-
ities and different abilities such as visual, hear-
ing, motor or cognitive impairments (Henni et al.,
2022). An accessible CA must provide multimodal
interaction to ensure that users with different abil-
ities can effectively engage with it. This includes
speech-to-text and text-to-speech capabilities for
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visually impaired or low-literacy users, keyboard-
only navigation for those with motor impairments,
and support for screen readers. In addition, the
CA should provide high-contrast visual options,
adjustable font sizes, and easy navigation to accom-
modate users with cognitive or visual impairments.

From a POLP perspective, the CA should:

• Use short, clear sentences to break down com-
plex medical information.

• Offer step-by-step explanations for processes
such as measuring blood pressure, ensuring
better comprehension.

• Enable adaptive communication styles, al-
lowing users to choose between brief re-
sponses and detailed explanations based on
their needs.

• Provide direct answers with optional elabora-
tion, offering additional details upon request.

To effectively implement these or similar fea-
tures into healthcare CAs, adaptive language gen-
eration could be applied such as text simplification
models to adjust the complexity of responses. User
profiling and context-aware interactions consider
the user’s preferences for adapting answer length,
style, etc.

A reverse Chain-of-Thought prompting, where
the CA explicitly guides users through stepwise
instructions (e.g., breaking a process into incre-
mental, explainable steps for better user compre-
hension) could better guide through processes. De-
pending on the purpose of the CA, the conversation
could be implemented as progressive disclosure
where information is revealed gradually,

3.2 Equity

Studies show that limited health literacy is linked to
poor health outcomes, increased healthcare costs,
and health disparities (Gibney et al., 2020). Dig-
ital communication tools in healthcare, including
CAs, have the potential to improve health literacy
and empower individuals to take a more active role
in managing their health (Fitzpatrick, 2023). In
this context, CAs can play a critical role in provid-
ing equitable responses tailored to different socio-
economic backgrounds, ensuring that all individ-
uals - regardless of location, income or education
- receive accurate and relevant health information
formulated and presented in a way that addresses

their reading skills, health literacy and data literacy
(Nadarzynski et al., 2024).

Linguistic and culture inclusivity could be
achieved by multilingual support, but needs also
additional aspects such as cultural-appropriate
health recommendations (see section 3.4). Trauma-
informed conversational strategies (Berring et al.,
2024) could be applied to address specific needs of
users with trauma: NLP models should be designed
to recognize distress and provide gentle, support-
ive responses. For example, if a user expresses
suicidal thoughts, the CA should prioritize crisis
intervention resources over generic health advice.

To address these and similar aspects related to
equity, healthcare CAs should use simple, jargon-
free language, integrating explanatory visuals, and
providing localised health advice based on regional
medical practices. Underlying AI models need
to be trained on datasets that include diverse user
groups to avoid biases that could lead to misinfor-
mation or exclusion of marginalised populations.

3.3 Usability and Navigability
Previous research also showed that user interfaces
must be designed with consideration of the infor-
mation requirements, cognitive capabilities, and
limitations of end users in healthcare environments
(Patel and Kushniruk, 1998). Therefore, healthcare
CAs should be designed with an intuitive, patient-
friendly interface that prioritizes clarity, guidance,
and responsiveness (Denecke, 2023). For example,
guidance would mean that the CA guides the user
through the conversation, supports when the user
has no idea what to write or say. Also structuring
the dialogue could help or summarizing previously
said aspects from time to time when the interaction
gets long.

CAs should provide clear fallback options, such
as the ability to speak with a human operator or ac-
cess a help menu when the CA fails in recognizing
user intent. They should maintain a consistent tone
throughout the conversation which could be for-
mal, friendly or empathetic. Proactive engagement
would make the interaction more user-centric and
intuitive. By anticipating what the user might need
next, CAs can offer relevant information or actions
before the user even asks. For example, if a user
has been discussing symptoms of a cold, the CA
might proactively suggest remedies or ask if they
need a doctor’s appointment. Based on previous in-
teractions, the CA can suggest next steps or related
information, making the user feel understood and
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supported.
Aspects mentioned for accessibility or equity

could also support usability (e.g. clear, concise
language).

3.4 Diversity and Cultural Sensitivity

Cultural factors have been identified to affect ac-
cess to and uptake of digital health technologies
among culturally and linguistically diverse popula-
tions (Davies et al., 2024; Whitehead et al., 2023).
An inclusive patient-facing healthcare CA must be
culturally competent and linguistically adaptable.
This requires multilingual support with real-time
translation capabilities to communicate in regional
dialects and under-represented languages. In ad-
dition, the CA should be able to adapt health rec-
ommendations based on cultural beliefs, dietary re-
strictions and traditional medical practices. Avoid-
ing gender bias in language, respecting gender iden-
tity pronouns, and acknowledging religious sensi-
tivities in healthcare (e.g. fasting during Ramadan)
are critical to making the CA more inclusive. By
incorporating cultural nuances and linguistic diver-
sity, healthcare CA can foster trust, improve en-
gagement and increase the effectiveness of interac-
tions, ultimately leading to better health outcomes
for all communities (Davies et al., 2024).

3.5 Mitigation of Disparities

Individuals may struggle with limited health liter-
acy, so it is essential for inclusive POLP in health-
care CA to simplify medical language and ensure
that critical health information is easy to under-
stand. Strategies to achieve this include dynamic
simplification, where the CA adjusts its complexity
based on the user’s familiarity with medical terms,
and interactive learning features such as visual aids,
audio explanations and quizzes that reinforce un-
derstanding. The CA should proactively identify
and clarify misunderstood terms and offer alter-
native explanations in simpler language to bridge
gaps in understanding. Again, underlying data has
to accurately represent different demographics, pre-
venting the reinforcement of harmful stereotypes
and the exclusion of marginalised groups.

3.6 Skill Development and Literacy

From a POLP perspective, skill development and
CA literacy are essential to ensure that patients can
effectively interact with healthcare CA, understand
medical information, and make informed health de-
cisions. To support skill development, healthcare

CA should incorporate strategies to teach users
how to engage with the CA, increase health liter-
acy, and build confidence in using digital health
tools. When users first interact with a CA, it should
provide a guided onboarding experience that ex-
plains its capabilities, how to ask questions, and
how to navigate responses and inform about the
possibilities and shortcomings of the CA. Offer-
ing simple scenarios or guided exercises (e.g., "Try
asking me about your symptoms!") can help users
become comfortable with the interactions. Users
may be unsure of how to phrase health-related ques-
tions effectively and what could the CA be asked.
To address this, a CA can guide users by offering
question templates (e.g. "You can ask me: ’What
are the symptoms of diabetes?’").

4 Research Agenda for Inclusive
Patient-oriented Language Processing
in CA

The previous sections described the characteris-
tics that inclusive POLP within a healthcare CA
should provide. Considered from multiple facets,
we can recognize that some aspects are of rele-
vance to support multiple facets (e.g. concise lan-
guage supports accessibility, equity and usability).
Some technologies are already available to realize
these aspects, while others still require research
efforts. In this section, we are outlining possible re-
search directions recommended for future research
towards inclusive patient-oriented language pro-
cessing within healthcare CAs. Table 1 lists some
possible research questions for the future.

Conversation structure. Research is needed
to determine how conversations in healthcare CA
should be structured and how to implement these
structures in POLP. A well-structured conversation
flow ensures that information is delivered in a clear,
understandable and digestible way. This minimises
confusion and allows users to focus on key health
information without unnecessary complexity. To
achieve this, it is essential to analyse the linguis-
tic and cultural barriers that affect communication
with patients. These barriers can include low health
literacy, non-native speakers and regional dialects.
In addition, understanding how patients with dis-
abilities - such as blindness, hearing loss or cogni-
tive impairment - interact with health care CAs is
crucial. Incorporating participatory methods during
the design phase can help gather input from these
user groups to ensure accessibility and usability.
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Research area Examples for possible research questions
Conversation structure How should language simplification be implemented in healthcare

CAs to ensure user comprehension of complex medical concepts?
Adaptability How can CAs dynamically adapt to user’s reading level, health literacy

or cognitive load?
Cultural awareness How can CA responses become culturally sensitive?
Explainability How can explainability be included in the conversation flow without

disturbing it?
Cognitive load analysis How can a CA analyse a user’s cognitive load in real time?
Bias and fairness-
awareness

Which bias mitigation techniques could be implemented into health-
care CAs in general or into POLP specifically?

Table 1: Research areas and examples for research questions towards inclusive patient-oriented language processing
in healthcare CA

Considering established rules of communication
or best practices from patient-doctor interactions
can help in designing effective conversation flows
(Denecke, 2023).

Research could also explore how patients inter-
pret and respond to medical terminology. Identify-
ing areas where NLP-based language simplification
or explanation of medical concepts is needed can
improve comprehension. However, simplification
must be carefully balanced, as excessive reduction
of medical terminology may result in the loss of
critical health information.

Cognitive load analysis. Interacting with a
CA could be overwhelming when the conversation
gets long and comprehensive. It could be studied
whether NLP or other techniques can be used for
real-time cognitive load detection (Zayim et al.,
2023). This would mean signs of frustration, stress
or cognitive fatigue could be recognized while the
interaction takes place which in turn would allow
to adjust CA responses accordingly. For example,
inclusion of multimodal AI could offer an opportu-
nity to address detected cognitive load by allowing
for various modes of communication.

Cultural awareness. Another research direc-
tion regarding inclusive POLP within CA is how to
consider cultural aspects in the health dialogue. Re-
search could explore ways to incorporate cultural
sensitivity into language models used in healthcare
CAs. This may involve adapting conversation flows
to align with cultural norms, addressing variations
in health-related beliefs, or ensuring that medical
terminology is explained in ways that resonate with
different communities.

Adaptability. The previous three areas already
indicate another important direction of research.

While rule-based CAs capture the flow of conver-
sations through predefined rules, LLMs and other
AI methods offer greater flexibility and adaptabil-
ity. Future healthcare CA can adapt their responses
to the user’s health literacy, reading level, cogni-
tive abilities, or culture. Future research could
explore adaptive models that dynamically adjust
text complexity based on the user’s level of com-
prehension or reading skills. Additionally, research
could consider personalised AI for health literacy
growth, enabling CAs to dynamically adapt their
responses based on a patient’s evolving compre-
hension of medical concepts. This will require the
development of adaptive NLP models that assess
a user’s level of comprehension in real time and
adjust explanations accordingly - offering simpler
definitions for beginners, while gradually introduc-
ing medical terminology for more advanced users.
Related to this, it could be studied how to realize a
closed-loop-communication that ensures and ver-
ifies patient’s comprehension by methods such as
teach-back (Kreps, 2018).

Cultural adaptations can take multiple dimen-
sions. The provided content can be tailored to align
with the user’s cultural context (e.g., dietary sugges-
tions should respect cultural norms). Additionally,
research could explore how the tone and structure
of interactions adapt to different cultures. How-
ever, careful design is essential to avoid reinforcing
stereotypes or generating biased responses.

Explainability. When transitioning from rule-
based CAs in healthcare to LLM-based CAs, ensur-
ing patient safety is crucial to maintaining control
over the information provided. Research on ex-
plainability in conversational AI is essential for
enhancing transparency and trust. AI-generated
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explanations of medical information should be in-
terpretable, contextually relevant, and aligned with
user expectations, while also ensuring they do not
pose any risk to patients. Some approaches are al-
ready available for explainable CA such as the one
presented by Nguyen et al. (Nguyen et al., 2023)
or Garofalo et al. (Garofalo et al., 2023) .

Bias and fairness-awareness. Existing NLP
models still have problems regarding fairness and
come along with bias (Hovy and Prabhumoye,
2021). Therefore, research is necessary regarding
bias detection and mitigation frameworks for gen-
der, racial, disability, and socio-economic biases to
be integrated in POLP within healthcare CA. Such
advances in diverse and bias-aware dataset curation,
along with fairness-driven fine-tuning of medical
NLP models, are essential to mitigate model biases
in POLP. Models capturing the peculiarities of spe-
cific user groups could help in handling local lan-
guages and developing specifically focussing solu-
tions. This would require developing low-resource
NLP models for underserved communities, inte-
grating local dialects and indigenous languages.

5 Conclusions

This paper explored how patient-facing language
processing in healthcare CAs should be designed
to achieve inclusivity. Ensuring that healthcare
CAs are accessible, equitable, usable, and useful to
all individuals - regardless of their social or socio-
economic background, cultural identity, health liter-
acy, digital literacy, or cognitive abilities - is critical
to their effectiveness as digital health interventions.
These topics gain in relevance when moving from
rule-based CAs to LLM-based systems as they al-
low for more flexibility.

We identified several key research directions
for future work, including optimising conversation
structure, improving the adaptability of CA lan-
guage and content, integrating cultural awareness,
improving explainability, managing cognitive load,
and addressing bias and fairness concerns. These
aspects are particularly important in healthcare set-
tings, where CAs are used by a diverse patient
population and must effectively support users with
different needs.

Inclusive POLP is essential to prevent the unin-
tentional exclusion of certain user groups, which
could exacerbate existing health disparities and in-
equalities in healthcare. By prioritising inclusiv-
ity in the design of healthcare CAs, research can

contribute to a more equitable and patient-centred
digital health landscape.

6 Limitations

This work comes along with some limitations.
While the facets of inclusive AI have been collected
in a literature review, the impact of inclusive AI
on POLP within healthcare CA was only reflected
based on the experiences in CA development of the
author. In future work, this should be verified by
input from other experts in the field.

References
Lene Lauge Berring, Tine Holm, Jens Peter Hansen,

Christian Lie Delcomyn, Rikke Søndergaard, and
Jacob Hvidhjelm. 2024. Implementing trauma-
informed care—settings, definitions, interventions,
measures, and implementation across settings: a scop-
ing review. In Healthcare, volume 12, page 908.
MDPI.

Anthony Junior Bokolo, Kerstin Denecke, and Elia
Gabarron. 2025. A literature review on inclusive ai
in healthcare- a user-centered approach to potential
benefits, challenges, and recommendations.

James L Cross, Michael A Choma, and John A
Onofrey. 2024. Bias in medical ai: Implications
for clinical decision-making. PLOS Digital Health,
3(11):e0000651.

Godson Kofi Davies, Martin Luther King Davies, Es-
ther Adewusi, Kenechukwu Moneke, Olwaseun
Adeleke, Lateefat Abiodun Mosaku, Abdulbasit
Oboh, Damilola Sherifat Shaba, Isa Aisha Katsina,
Joshua Egbedimame, et al. 2024. Ai-enhanced cul-
turally sensitive public health messaging: A scoping
review. E-Health Telecommunication Systems and
Networks, 13(4):45–66.

Kerstin Denecke. 2023. How to design successful con-
versations in conversational agents in healthcare? In
International Conference on Human-Computer Inter-
action, pages 39–45. Springer.

Kerstin Denecke, Daniel Reichenpfader, Dominic Willi,
Karin Kennel, Harald Bonel, Knud Nairz, Nikola
Cihoric, Damien Papaux, and Hendrik von Tengg-
Kobligk. 2024. Person-based design and evaluation
of mia, a digital medical interview assistant for radi-
ology. Frontiers in Artificial Intelligence, 7:1431156.

Patrick J Fitzpatrick. 2023. Improving health literacy
using the power of digital communications to achieve
better health outcomes for patients and practitioners.
Frontiers in Digital Health, 5:1264780.

Marco Garofalo, Alessia Fantini, Roberto Pellugrini,
Giovanni Pilato, Massimo Villari, and Fosca Gian-
notti. 2023. Conversational xai: Formalizing its ba-
sic design principles. In Joint European Conference

461



on Machine Learning and Knowledge Discovery in
Databases, pages 295–309. Springer.

Sarah Gibney, Lucy Bruton, Catherine Ryan, Gerar-
dine Doyle, and Gillian Rowlands. 2020. Increasing
health literacy may reduce health inequalities: evi-
dence from a national population survey in ireland.
International journal of environmental research and
public health, 17(16):5891.

Silje Havrevold Henni, Sigurd Maurud, Kristin Skeide
Fuglerud, and Anne Moen. 2022. The experiences,
needs and barriers of people with impairments re-
lated to usability and accessibility of digital health
solutions, levels of involvement in the design process
and strategies for participatory and universal design:
a scoping review. BMC public health, 22(1):35.

Dirk Hovy and Shrimai Prabhumoye. 2021. Five
sources of bias in natural language processing. Lan-
guage and linguistics compass, 15(8):e12432.

Gary L Kreps. 2018. Promoting patient comprehen-
sion of relevant health information. Israel Journal of
Health Policy Research, 7(1):56.

Tom Nadarzynski, Nicky Knights, Deborah Husbands,
Cynthia A Graham, Carrie D Llewellyn, Tom
Buchanan, Ian Montgomery, and Damien Ridge.
2024. Achieving health equity through conversa-
tional ai: A roadmap for design and implementation
of inclusive chatbots in healthcare. PLOS Digital
Health, 3(5):e0000492.

Van Bach Nguyen, Jörg Schlötterer, and Christin Seifert.
2023. From black boxes to conversations: Incorpo-
rating xai in a conversational agent. In World Con-
ference on Explainable Artificial Intelligence, pages
71–96. Springer.

Vimla L Patel and Andre W Kushniruk. 1998. Inter-
face design for health care environments: the role
of cognitive science. In Proceedings of the AMIA
Symposium, page 29.

Casey Sackett, Devin Harper, and Aaron Pavez. 2024.
Do we dare use generative ai for mental health?
IEEE Spectrum, 61(6):42–47.

Abeed Sarker, Mohammed Ali Al-Garadi, Yuan-Chi
Yang, Jinho Choi, Arshed A Quyyumi, Greg S Mar-
tin, et al. 2021. Defining patient-oriented natural lan-
guage processing: a new paradigm for research and
development to facilitate adoption and use by medical
experts. JMIR Medical Informatics, 9(9):e18471.

Lara Whitehead, Jason Talevski, Farhad Fatehi, and
Alison Beauchamp. 2023. Barriers to and facilitators
of digital health among culturally and linguistically
diverse populations: qualitative systematic review.
Journal of medical Internet research, 25:e42719.

WHO World Health Organization. 2024. Who releases
ai ethics and governance guidance for large multi-
modal models.

Matthew K Wynia and Chandra Y Osborn. 2010. Health
literacy and communication quality in health care
organizations. Journal of health communication,
15(S2):102–115.
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Dürlich, Luise, 46

Ekanayake, Vinu, 83
Elyazori, Hadeel R A, 321

Field, Thalia, 158
Fleischhauer, Anke, 180
Fontana, Federico, 298
Friedrich, Christoph, 180, 359
Friedrich, Julian, 124

Garcelon, Nicolas, 109
Gayen, Souma, 228
Gerber, Naomi, 321
Goyal, Sagar, 34
Guo, Yue, 285
Gupta, Deepak, 228

Han, Lifeng, 205, 303, 340
Henkin, Rafael, 236
Horn, Peter, 180, 359
Hou, Jieke, 26

Jain, Dhruv, 260
Jang, Dongsuk, 415

Kaminski, Katharina, 180
Karine, Karine, 137
Kavuluru, Ramakanth, 83
Khan, Mohammed Sameer, 398
Kilicoglu, Halil, 285
King, Patrick, 321
Kleesiek, Jens, 124, 180
Koras, Osman, 124
Krishnamurthy, Parameswari, 409

Lanz, Vojtech, 69
Larsson, Maria, 46
Lavergne, Thomas, 193
Lee, Jooyeon, 349
Lee, Seiyon, 321
Li, Chuyuan, 158
Li, Haoxin, 415
Liang, Xiaohui, 437
Lin, Ruei-Sung, 26

463



Lovon-Melgarejo, Jesus, 1
Lybarger, Kevin, 321

Ma, Suxue, 26
Malila, Bessie, 169
Malpetti, Daniele, 298
Manns, Syleah, 321
Manrique, Rubén, 269
Marimuthu, Sushvin, 409
Marlin, Benjamin, 137
Martins, Bruno, 219
Mattioni Maturana, Felipe, 298
Meoni, Simon, 12
Meyer, Francois, 169
Micheletti, Nicolo, 205
Ming, Shufan, 285
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