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Introduction

CL4Health fills the gap among the different biomedical language processing workshops by providing a
general venue for a broad spectrum of patient-oriented language processing and multi-modal resear-
ch. The second workshop on patient-oriented language processing follows the successful inaugural
CL4Health workshop (collocated with LREC-COLING 2024), which clearly demonstrated the need for
a computational linguistics venue that focuses on language related to health of the public.

Such a venue is needed both to invigorate patient-oriented language processing research and to build
a community of researchers interested in this area. The growing interest in this topic is fueled by several
current trends:

1. a proliferation of online services that target patients, but do not always act in their best interests;

2. policy changes that allow patients to access their health records written in the professional verna-
cular, which may confuse the patients or lead to misinterpretation;

3. replacement of customer services with chat bots; and

4. the increasing tendency of patients to consult online resources as a second or even first opinion on
their health problems.

CL4Health aims to provide a general venue for presenting research and applications focused on patients’
needs, including summarizing health records for the patients, answering consumer-health questions using
reliable resources, detecting misinformation or potentially harmful information, and providing multimo-
dal information, such as video, if it better satisfies patients’ needs.

Broadly, CL4Health is concerned with the resources, computational approaches, and behavioral and
socio-economic aspects of the public interactions with digital resources in search of health-related infor-
mation that satisfies their information needs and guides their actions.

Shared Task

The Perspective-aware Healthcare Answer Summarization (PerAnsSumm) task organized by Shweta Ya-
dav, Md. Shad Akhtar, and Siddhant Agarwal focuses on providing different perspectives in the answers
to questions posted to online forums. The answer perspectives include personal experiences, factual in-
formation, and suggestions. More details about the task and the participating teams are provided in the
overview paper in this volume. The volume also includes the individual participating teams reports.

Submissions

The workshop invited papers concerning all areas of language processing focused on patients’ health
and health-related issues concerning the public. CL4Health received 50 valid submissions, of which 8
were rejected. Of the 35 submissions to the main workshop, 12 were accepted as oral presentations. The
work covers a wide range of topics focusing on patients’ well-being and healthcare. The topics include
patients’ perspectives on clinical trials recruitment, information seeking behavior, clinical question an-
swering and other forms of communication (including plain language, translation, speech recognition,
and dialog). The state-of-the-art technology contributions include retrieval augmented generation, va-
rious approaches to fine-tuning and leveraging large language models, as well as new benchmarks and
data collections.

As always, we are deeply grateful to the authors of the submitted papers and to the reviewers (listed
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elsewhere in this volume) who produced thorough and thoughtful reviews for each paper in a fairly short
review period. The Organizers are truly grateful to our amazing Program Committee, whose members
helped us determine which studies are ready to be presented and those which would benefit from additio-
nal experiments and analysis, as suggested by the reviewers. We hope that this workshop will inspire new
collaborations and research into patient-centered language technologies, in order to continue the valuable
contributions made by our community towards public health and well-being.

Dina Demner-Fushman, Sophia Ananiadou, Paul Thompson and Deepak Gupta (Organizers)
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Invited Talk
Bridging the Gap: Inclusive Artificial Intelligence for
Patient-Oriented Language Processing in Conversational
Agents in Healthcare

Kerstin Denecke
Department of Technology & Informatics, Bern University of Applied Sciences, Switzerland

Abstract: Conversational agents (CAs), such as medical interview assistants, are increasingly used in
healthcare settings due to their potential for intuitive user interaction. Ensuring the inclusivity of the-
se systems is critical to provide equitable and effective digital health support. However, the underlying
technology, models and data can foster inequalities and exclude certain individuals. This paper explo-
res key principles of inclusivity in patient-oriented language processing (POLP) for healthcare CAs to
improve accessibility, cultural sensitivity, and fairness in patient interactions. We will outline, how consi-
dering the six facets of inclusive Artificial Intelligence (AI) will shape POLP within healthcare CA. Key
considerations include leveraging diverse datasets, incorporating gender-neutral and inclusive language,
supporting varying levels of health literacy, and ensuring culturally relevant communication. To address
these issues, future research in POLP should focus on optimizing conversation structure, enhancing the
adaptability of CAs’ language and content, integrating cultural awareness, improving explainability, ma-
naging cognitive load, and addressing bias and fairness concerns.

Bio: Kerstin Denecke is Professor of Medical Informatics at the Department of Technology & Infor-
matics, Bern University of Applied Sciences. She researches and teaches at the Institute of Medical
Informatics on text mining in the clinical context and mobile health applications including dialogue-
oriented user interfaces. One of her research directions is inclusive design of digital health solutions for
older adults. The project on digital health solutions utilizes evidence-based approaches for prevention,
treatment, and health promotion.
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Abstract

Fine-tuning of Large Language Models (LLMs)
has become the default practice for improving
model performance on a given task. However,
performance improvement comes at the cost
of training on vast amounts of annotated data
which could be sensitive leading to significant
data privacy concerns. In particular, the health-
care domain is one of the most sensitive do-
mains exposed to data privacy issues. In this
paper, we present PatientDx, a framework of
model merging that allows the design of effec-
tive LLMs for health-predictive tasks without
requiring fine-tuning nor adaptation on patient
data. Our proposal is based on recently pro-
posed techniques known as merging of LLMs
and aims to optimize a building block merg-
ing strategy. PatientDx uses a pivotal model
adapted to numerical reasoning and tunes hy-
perparameters on examples based on a perfor-
mance metric but without training of the LLM
on these data. Experiments using the mortality
tasks of the MIMIC-IV dataset show improve-
ments up to 7% in terms of AUROC when com-
pared to initial models. Additionally, we con-
firm that when compared to fine-tuned models,
our proposal is less prone to data leak problems
without hurting performance. Finally, we qual-
itatively show the capabilities of our proposal
through a case study. Our best model is pub-
licly available at https://huggingface.co/
Jgmorenof/mistral_merged_0_4.

1 Introduction

Recent breakthroughs made by the impressive capa-
bilities of Large Language Models (LLMs) on one
side, and the common practice of publishing them
for a sharing purpose in the other side, have led to
exploring their application to a wide range of appli-
cations and tasks. Their strong performances heav-
ily rely on their extremely large model architectures
(e.g. PalLM and Med-PalLM (Singhal et al., 2023)
models with 540B parameters or its newer version
PalLM 2 (Anil et al., 2023) with 340B parameters)

1

and their training stage on massive datasets (e.g.,
3, 6 billions of tokens for PaLM 2). Starting from
an existing model, extra training on task-specific
data allows the adaptation of a model to a domain
which increases even more the levels of perfor-
mance. Specifically, in the medical domain, a huge
and increasing amount of work explored the use
of LLMs for patient care generally by using back-
bone LLMs fine-tuned on medical texts including
Meditron (Chen et al., 2023), Med-PaLLM (Singhal
et al., 2023), BioBert (Lee et al., 2020), MIMIC
BERT (Du et al., 2021), BioMistral (Labrak et al.,
2024), Med4?2 (Christophe et al., 2024), and fur-
ther fine-tuned on patient-related task-specific data
from Electronic Health Records (EHR) and medi-
cal reports.

Despite being promising for health assistance,
the application of machine learning models to
healthcare has for decades triggered privacy issues
that have received particular attention in the litera-
ture and have been reviewed with the emergence of
LLMs (Staab et al., 2024; Carlini et al., 2020, 2023).
Several privacy-preserving techniques such as data-
sanitization (Zhao et al., 2022; Kandpal et al., 2022)
and differentially-private training (Yue et al., 2023;
Tang et al., 2024; Hong et al., 2024) algorithms
have been proposed to handle data leakage through
membership inference attack (Shejwalkar et al.,
2021; Hu et al., 2022) or training data extraction
(Salem et al., 2020; Carlini et al., 2020).

Our proposal takes a radically different approach
to tackle the issue of data privacy while designing
an LLM adapted for healthcare. We leverage re-
cent works on model merging (Ortiz-Jimenez et al.,
2024; Zimmer et al., 2024; Ilharco et al., 2022;
Matena and Raffel, 2022; Wortsman et al., 2022;
Davari and Belilovsky, 2023; Akiba et al., 2024),
well-established techniques today that efficiently
aggregate input model parameters to build out-
performing models that exhibit additionally better
abilities to generalize across data and tasks (Ortiz-
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Jimenez et al., 2024; Zimmer et al., 2024; Ilharco
et al., 2022; Matena and Raffel, 2022; Wortsman
et al., 2022; Davari and Belilovsky, 2023; Akiba
et al., 2024) with a recent use in the medical do-
main (Labrak et al., 2024).

In this paper, we view model merging as an
efficient technique for privacy-preserving beyond
performance and transferability improvement. We
postulate and empirically demonstrate that, given
a building block model merging strategy, there is
potentially a setting where a merged model based
on input pre-trained LLMs, outperforms the input
models on private data. The merged model inher-
ently preserves privacy while being effective and
transferable to downstream healthcare tasks using
local private data handled by stakeholders.

Main contribution. This work asks a simple ques-
tion: Can we build a trustworthy and effective LLM
for standard predictive healthcare tasks by only
merging pre-trained LLMs that have not been spe-
cialized by fine-tuning on private patient data? We
introduce PatientDx, a framework that addresses
this question by optimizing pre-trained LLM merg-
ing. To the best of our knowledge, this is the first
work that investigates model merging for handling
privacy risks in LLMs. Through experiments us-
ing the widely used MIMIC-1V dataset (Johnson
et al., 2023), we show that: 1) using a Math LLM,
such as Tong et al. (2024), as the pivotal model
for setting up the merging allows building efficient
and effective settings of merged models on two
predictive healthcare tasks, namely Mortality and
Mortality-hard. PatientDx 8B, our best configu-
ration in average performances, improves recent
BioMedical LLMs as well as Instruct- and Math-
based models, the used model inputs; 2) PatientDx
is significantly less prone to patient data leakage
than fine-tuned models as observed on the Mortal-
ity datasets when using DLT metrics ; 3) PatientDx
exhibits significant transfer abilities to unseen tasks
as it is able to answer medical questions where nu-
merical information may be critical. Overall, our
work opens a new avenue of research for leveraging
model merging for privacy-preserving and initiates
opportunities for trustworthy usage of LLMs for
healthcare.

2 Related Work

2.1 Handling privacy risks of LLMs

The strong capabilities of LLMs have triggered a
debate and increased research work on privacy con-

cerns (Yan et al., 2024; Neel and Chang, 2023).
LLMs have indeed been shown to memorize pri-
vate parts of their training data, known as verbatim
memorization, leading to potential risks of data
leakage at inference (Staab et al., 2024; Carlini
et al., 2020, 2023). Carlini et al. (2020) empiri-
cally demonstrated that there exists a log-linear re-
lationship between memorization, model size, and
training data repetitions. Potential threats include
membership inference (Shejwalkar et al., 2021; Hu
et al., 2022) and training data extraction (Salem
et al., 2020; Carlini et al., 2020). Early methods
used for protecting data privacy is data sanitiza-
tion (e.g., anonymization) (Zhao et al., 2022; Kand-
pal et al., 2022). However, beyond the fact that
these methods require explicit mention and protec-
tion of prior sensitive data, it has been shown that
data protection does not lead necessarily to privacy
protection for natural language since privacy is
context-dependent (Brown et al., 2022). Differen-
tial privacy (Li et al., 2021; Bu et al., 2024) instead
focuses on adding to the data a formal noise that
avoids having access to individuals through several
techniques deployed at the fine-tuning stage such as
injecting random noise into training data (Yue et al.,
2023) or inference stage through in-context learn-
ing with private few-shot generation (Tang et al.,
2024) or privacy-preserving prompts (Hong et al.,
2024). Federated learning is another approach for
handling data privacy in LLMs (McMahan et al.,
2016) initially designed for model training in sites
where the data is stored across a distributed set of
devices. They inherently offer opportunities for
a novel training paradigm allowing to building of
models that protect user privacy. Several works
combined differential privacy with local federated
learning (FL) (McMahan et al., 2016; Kairouz et al.,
2021) to add formal guarantees. Only a few works
addressed federated learning with LLMs (Ye et al.,
2024). By designing the OpenFedLLM framework,
Ye et al. (2024) showed that FL algorithms sig-
nificantly outperform local LLM training models
across a variety of settings.

2.2 From model adaptation to model merging

Adapting LLM to a given task is a current way to
use LLMs. Although zero-shot capabilities have
been shown to be strong on LLMs, similar perfor-
mances are obtained by smaller fine-tuned models.
Fine-tuned models are usually stronger than their
vanilla counterparts or larger models because of
the extra exposition to the task-specific data to the



cost of extra computational power. As an exam-
ple, the computational cost of training BLOOM
model (Workshop et al., 2022) is estimated to 1.08
GPU million hours (Luccioni et al., 2023) while
the fine-tuning of the model significantly drops to
a hundred hours. Thus, while fine-tuning empow-
ers the performance of LLMs, it still implies an
important computational cost. To address this is-
sue, Parameter-Efficient Fine-Tuning (PEFT) tech-
niques have been proposed (Xu et al., 2023). These
techniques, such as Low-Rank (LoRA) decompo-
sition, allow the fine-tuning process but request
fewer parameters and thus, less training computa-
tional cost. Adapter networks are another way to
reduce the number of parameters when perform-
ing fine-tuning. Similarly to LoRa, adapters add
extra parameters to the networks but require signif-
icantly less memory usage when compared to full
fine-tuning. Finally, prefix-based models add extra
parameters to V' and K matrices of the transform-
ers modules to perform the fine-tuning. A detailed
review of literature in PEFT models can be found
in Xu et al. (2023). Recently an increasing body
of research has focused on model merging (Ortiz-
Jimenez et al., 2024; Zimmer et al., 2024; Ilharco
et al., 2022; Matena and Raffel, 2022; Wortsman
et al., 2022; Davari and Belilovsky, 2023; Akiba
et al., 2024) which mainly involves combining mul-
tiple pre-trained or fine-tuned models of the same
architecture to efficiently build a more effective
model than the input models with high-level of
transferability across data and tasks. The most
basic approach to model merging is linear inter-
polation also known as Model Soup (Wortsman
et al., 2022). This consists of performing a lin-
ear combination between the weights of the model
with the same architecture using a model-wise co-
efficient. Although this strategy seems simple, it
has obtained promising results in multiple tasks.
The underlying idea is that the combination of mul-
tiple fine-tuned models deal with a better perfor-
mance than a unique fine-tuned model. A more
elaborated strategy for merging is Spherical Linear
interpolation, known as SLerp (Jang et al., 2024).
This strategy is based on the angular combination
of the models. Although it has been recently used
in a biomedical domain (Labrak et al., 2024), this
is the first contribution to successfully use it with
patient data.
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Figure 1: AUROC performances of Mistral, Llama, and
Med42 when merged to math models.

3 PatientDx: Model Merging for Patient
Data Privacy-Preserving

3.1 Motivation

Let us consider a standard setting of healthcare pre-
dictive task on patient data: given the EHR of a
patient p represented with EHR table T', the goal of
tasks 7 for the LLM M is to make a medical pre-
diction by generating the patient outcome y € ),
where ) is a set of classes, e.g., “Predict the mor-
tality of patient P”, with y = “Yes” or y = “No”.
By using a generative model, one common practice
is to convert table 7' into a textual input using a
serialization technique (Hegselmann et al., 2022;
Lovon-Melgarejo et al., 2024; Lovon et al., 2025)
and then feed it to the LLM using a prompt.
Our proposal is driven by two main observations:
- Observation 1. Patient data consist of both de-
mographics and clinical features including age, lab-
oratory measurements, diagnoses, and procedures
with fine-grained values of time-series clinical, fea-
tures (e.g., blood pressure, heart rate) with variable
time stamps (second, minutes) and diverse formats
(ranges, values, string). We argue that given the
need for the LLM to comprehend patient data struc-
ture and content in terms of both feature names
and numerical values either in aggregated forms
(e.g., average) or temporal series, without being
trained on such data, a backbone LLM M adapted
for numerical reasoning (e.g., DART-math (Tong
et al., 2024)) would be key to make the model effec-
tive on numerical patient-related predictive tasks
without being trained on patient data.
- Observation 2. Figure 1 depicts the AUROC
performance variation on the Mortality task for
merged LLMs with left performances correspond-
ing to only using math models, such as Tong et al.



(2024) and right performances corresponding to
strong LLMs such as Mistral, Med42 or Llama
on the MIMIC-IV patient dataset (Johnson et al.,
2023). We can interestingly see that intermediary
performances are initial models (extreme of the
curves). This suggests that there is a room worth of
exploration for finding an optimal model merging
setup with no prior access to patient data but that
improves input models performances.

Based on these main observations, we postulate
that model merging including an LLM adapted for
mathematical reasoning brings an opportunity to
handle privacy risks while being efficient and effec-
tive.

3.2 PatientDx framework

We describe below the key ideas that drive
PatientDx to two main objectives.

Handling privacy risks: merging is setup with
only n input pre-trained LLMs or fine-tuned
LLMs on non-private data M1 My ... M, of the
same architecture with parameters 616> ..., 0,.
Inherently, none of the input models M; handles
privacy risks both at training nor inference.
Optimizing task performance: Given a pilot task
7 with performance measurable using metric
m, PatientDx builds a single merged model
M7 with parameters 0* which reaches optimal
performance m(7)*. Thus, to build model M?,
PatientDx relies on the core parametric merging
function f which introduces scalar-specific
hyperparameters \; such as M} = f(\*, M)
and \* = argmazxy, =1 ,m(7). It should be
emphasized that PatientDx requires a metric for
optimizing merging hyperparameters such as
m(7¢)* > m(7); without training M on private
data or further fine-tuning it post-merging.

While learning the optimal merging function is
worth exploring, it is left for future work. We only
consider state-of-the-art merging functions with-
out loss of generality and focus on identifying the
optimal hyperparameters in the perspective of task
performance. We specifically consider n = 2 and
the two following merging functions:

* Model Soup (Wortsman et al., 2022): con-
sists of performing a linear combination of
input models’ weights using a model-wise co-
efficient. Formally 6* = > | \;6;, where
Z?:l A; = land V; \; > 0.

e SLerp (Jang et al., 2024): differently than

model soup, SLerp is based on the angu-
lar combination of the input models such as
0 = >, SISI:I(I’(\g)Z) 0;, where > 1 \; = 1
and V;\; > 0. For n = 2, Q) is the anglE)sug—
tended by the arc formed by the vectors 61, 0

and cos(Q2) = 0_1> X 0_2>

4 Experiments and results

We conduct experiments to answer the following
research questions:

* RQ1. Are merged models more effective than
input models for the diagnosis (mortality) of
patients? Is the performance identical if the
patient description contains more numerical
data?

* RQ2. Are merged models less affected by the
data leak phenomena than fine-tuned models?

* RQ3. Are merged models as effective as
the input models in downstream tasks? Are
they able to answer patient-related questions?
Are they useful in an information retrieval-
oriented task?

To answer RQ1 and RQ2, we selected MIMIC-IV
(Johnson et al., 2023), a publicly available dataset
in the medical domain regarding patient data in-
formation, while RQ3 is explored with questions
extracted from research articles from the medical
domain.

4.1 Dataset and experimental setup

The MIMIC-IV dataset (Johnson et al., 2023) was
used to run our experiments. In particular, we opted
for the Mortality configuration available in datasets
hub' as described in Lovon-Melgarejo et al. (2024).
This mortality dataset uses a textual representation
of the patient information as displayed in Section
3.1 and is composed of six major textual infor-
mations: Demographics, Diagnosis, ChartEvents,
Medications, Procedures, and OutputEvents. Ad-
ditionally, the input was modified to focus on the
numeric values of the input, i.e. the CharEvents
and Medications sections. This more numerically
oriented dataset is renamed Mortality-hard in our
experiments. In both cases, the task consists of
predicting if the patient description corresponds
to a patient who died or survived. Statistics of
both datasets are shown in Table 1. Note that the

"https://huggingface.co/datasets/thbndi/Mimic4Dataset



Mortality Mortality-hard
ChartEvents
Features Full & Medications
Full text length (# char - avg) 3378.77 2423.73
Only digits length (# char - avg) 333.42 (9.86%) 327.63 (13.51%)

Only spaces (# char - avg) 503.20 (14.89%)  379.22 (15.64%)
Letters and punctuation (# char - avg) 2542.15 (75.23%) 1716.88 (70.83%)
Number of patients 6155 6155
Deceased patients 629 (10.22%) 629 (10.22%)

Table 1: Statistics of the used configurations of Mortal-
ity and Mortality-hard, both based on MIMIC-IV.

effect of removing the more textual information
drastically affects the number of digits in the inputs
as the proportion changes from 9.86% to 13.51%,
while the number of letter drops and spaces remain
in a similar proportion (=15%).

In terms of hyper-parameter selection, for our
models and fine-tuned models, a k-fold partition of
the dataset with & equal to 2 was performed?. We
fixed the prompt for all configurations to the one
proposed in Lovon-Melgarejo et al. (2024) which
directly asks the question to the LLM and suggests
the output format. The full prompt was “You are an
extremely helpful healthcare assistant. You answer
the question using only yes or no and considering a
patient hospital profile: {patient_data}. Question:
Is the patient dead?. Answer (yes or no):”.

Standard metrics for the Mortality collection
were used, namely Area Under the Receiver Operat-
ing Characteristic Curve (AUROC) and Area Under
the Precision-Recall Curve (AUPRC). Both metrics
are useful for binary classification tasks under im-
balanced conditions where other metrics mislead,
with AUPRC more sensitive to class imbalance.
Regarding both datasets in Table 1, performances
lower than 0.5 and 0.1 are no better than random
for AUROC and AUPRC, respectively. Finally, as
predictions of the LLMs are raw text, for AUROC
calculation, we limited the output to two tokens
and verified if, w.r.t. the question, positive (“yes”,
“dead”, “1”) or negative (“no”, “survive”, “alive”,
“0”) words were part of the generated answer. For
AUPRC calculation, we used the normalized prob-
ability of only “yes” and “no” words as suggested
in Zhuang et al. (2024).

4.2 RQI1. Model merging effectiveness

In order to merge the models, we used a publicly
available tool called MergeKit (Goddard et al.,
2024). As input models and for the sake of sim-
plicity, we selected two foundation models, Mistral

2Only in test partition given the computational cost.

and Llama, and the consequent models based on
three categories:

* Biomedical: we included recent, strong and
widely evaluated LLM:s including BioMistral®
(Labrak et al., 2024), Med42* (Christophe
et al., 2024), and Meditron® (Chen et al.,
2023).

* Instruct: we studied two popular instruction
fine-tuned LLMs namely Mistral Instruct®
(Jiang et al., 2023) and Llama Instruct’ (Tou-
vron et al., 2023).

* Math: finetuned LLMs on maths solving are
less studied than the two previous items. How-
ever, we picked two models that fit the foun-
dation models namely Mathstral® and DART-
math” (Tong et al., 2024).

Note that multiple combinations of these models
are possible. However, we focus on combinations
based on the Math models because of Observation
1 (cf §3.1). For each combination of our proposed
models, we renamed 6* as follows:

* PatientDx 7B: this configuration explores the
combination of Mistral models (Instruct and
Math).

 PatientDx 8B: this configuration explores the
combination of Llama models (Instruct and
Math).

* PatientBioDx 8B: this configuration also ex-
plores the combination of Llama models but
pretrained in medical texts (BioMedical and
Math).

Our main results are presented in Table 2. The
LLM categories BioMedical, Instruct, and Math
represent strong LLM baselines grouped by their
specialization during the training!®. The last cat-
egory, Merged Models, corresponds to our contri-
butions (A* values to each 8* model are given in
the table). For the mortality task, it is important
to note that most of the models perform in terms

3BioMistral/BioMistral-7B

4m42-health/Llama3-Med42-8B

Sepfl-Ilm/meditron-7b

®mistralai/Mistral-7B-Instruct-v0.1

"meta-llama/Llama-3.1-8B-Instruct

8 mistralai/Mathstral-7B-v0.1

®hkust-nlp/dart-math-Ilama3-8b-prop2diff

Training in general, even if some are full training and
others continual pretraining.
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Mortality Mortality-hard Average PatientDx 7B PatientDx 8B PatientBioDx 8B
Category LLM AUROC AUPRC AUROC AUPRC | AUROC AUPRC 0.6057 0.6338 0.6101
T Medvon7B 0.5890 01031 0.5746_ 0.0832 | 0818 0.0932 PatientDx w/o Math 0.5698 (] 5.9%) 04996 (] 21.1%) 0.5229 (] 14.2%)
BioMedical f/;:gf;‘::: 7B (best 828}; 8;3;; 8;‘333 8:?5 gzggz gizg PatientDx w/o SLerp 05034 (| 16.8%)  0.5765 (1 9.0%) _ 0.5035 (|, 17.4%)
M 7B I 0365 013 0557 01053 | 0555 01553 PatientDx w/o Math w/o SLerp  0.5023 (| 17.1%) 0.4993 (| 21.2%) 0.5272 (|, 13.6%)
SN T Tama31 8B Instruct 05033 0.1150 05000 00906 | 05017 _0.1028
Mathstral 7B 05000 0.1594 05000 _0.1110 | 05000 _ 0.1352 .
Math 5 ART math 88 05005 0.1135 05039 _0.0906 | 05022 0.1021 Table 3: AUROC results of the ablation study for Mor-
PatientDx 7B (\'=0.8) 06057 0.1700 05000 0.1448 | 05529 0.1574 . . .
mﬁﬁ? PatientDx 8B (\'=0.4) 06338 0.1834 05561 0.1345 | 0.5950 0.1590 tallt}’ task of PatientDx COI]ﬁgl]l" ations. w/o SLer, p cor-
©%°"  PatienBioDx 8B ('=0.7) 06101 _ 0.1682__0.5375__ 00979 | 05738 0.1331

Table 2: AUROC and AUPRC results of the base-
line LLMs (BioMedical, Instruct, and Math) as well
as the proposed models (PatientDx) for Mortality and
Mortality-hard datasets. Largest score are marked in
bold and second largest underlined.

of AUROC metric close to 0.5 including BioMis-
tral, Llama Instruct, Med42, Mathstral, and DART
math. Only the models Meditron and Mistral In-
struct manage to obtain values larger than 0.55 but
lower than 0.6. In terms of AUPRC, Med42 is a
strong baseline (0.20) with a clear difference w.r.t.
other baselines (<0.16).

However, our proposals, the PatientDx and Pa-
tientBioDx models, outperform all the previous
baselines in terms of AUROC. In particular, Pa-
tientDx 8B configuration improves by 0.07 abso-
lute points, the strongest baseline. Also note, that
the gain of the PatientDx 8B model is larger than
0.1 (from 0.5005-0.5015 to 0.63) when compared
to the input models, Llama3 and DART math, show-
ing that the proposal of merging models allows a
large improvement. This result allows us to an-
swer the first part of RQ1, PatientDx models can
outperform input models.

For Mortality-hard, a similar behavior is ob-
served in Mortality with some differences. Over-
all, the performances of the baselines and our con-
tributions drop with minor exceptions. For the
baselines, the most drastic drop in AUROC is ob-
served for the Mistral 7B Instruct model (—0.0656)
while AUPRC is observed for the Med42 8B model
(—0.0881). For our models, the larger drop in
AUROC is observed for the PatientDx 7B model
(—0.1057), and in AUPRC is observed for the Pa-
tientBioDx 8B model (—0.0703). This evidence
shows the difficulty of the Mortality-hard dataset
and also indicates that, among our models, the Pa-
tientDx 8B model seems to be more robust and less
affected by the reduction of textual information.
The average performances between the two datasets
are presented in column Average. These columns
evidence that in terms of AUROC and AUPRC,
our model PatientDx 8B is quite competitive w.r.t.
recent biomedical baselines such as Meditron 7B

responds to a linear combination (model soup) of input
models and w/o Math corresponds to no use of a mathe-
matical LLM.

and Med4?2 8B. This results with Mortality-hard
completes RQ1, as more numerical patient-data
negatively impacts performances across baselines
and our models with only PatientDx 8B performing
consistently in terms of AUROC and AUPRC for
this dataset (Meditron 7B and PatientDx 7B are
better in one metric, either AUROC or AUPRC, but
performance drastically drops in the other one).

We performed an ablation over the three Pa-
tientDx configurations. In this case, we analyzed
the impact of merging with the math model and
the SLerp merge strategy (linear merge was used in
the absence of SLerp as equivalent when limg_).
Results of this exploration are presented in Table 3.
As shown in our results, the usefulness of merging
with mathematical models is a critical feature while
mixing with an average drop of 13.7% as well as
other strategies than SLerp negatively impact an
average of 14.4%. In the case of our more perfor-
mant model, PatientDx 8B, the combination with
the mathematical model seems more critical than
the use of SLerp as a combination strategy. Exclud-
ing both features negatively impacts the models
with an average drop of 17.3%.

4.3 RQ2. Model robustness to leakage

To evaluate the capabilities of our proposal to pro-
tect the patient data used during tuning, we used
new metrics, Aj and Ao, called the Data Leakage
Test (DLT) (Wei et al., 2023) which can measure
the expected data leak on train data. A; assesses
the risk of data leakage by calculating the differ-
ence in perplexity between the texts used for train-
ing (Pirain) and as reference (P,.yr). Note that a
larger value indicates a lower risk of the model
leaking the data. Similarly, Ao calculates the dif-
ference in perplexity between training (Pjyqin) and
test datasets (Ppest) with lower values indicating
no tuning over the data (neither train nor test) and
larger values a kind of over-fitting in any of the
partitions. Note that intuitively A metrics’ behav-
ior does not depend on the final task but on the



perplexity of the full text. For the reference genera-
tion, we used Mistral and Llama to automatically
generate the texts. Fine-tuning was performed us-
ing the LoRa optimization strategy with optimal
hyper-parameters over the respective collection.

Results on data leak evaluation are presented in
Table 4. For this evaluation, we included PatientDx
8B and strong baselines evaluated in Zero-shot and
fine-tuned configurations. Note that A; indicates
similar values (between 2.20 and 4.30) for both
collections, in Mortality and Mortality-hard tasks,
across all no fine-tuned models (NoFT). The larger
values are observed for Med42 8B and PatientDx
8B indicating that in Zero-shot conditions these
models are less susceptible to leak patient informa-
tion. This is also corroborated by the low values
of Ag of all no fine-tuned models. On the other
hand, all fine-tuned models indicate a risk of leak-
age larger than their no fine-tuned counterparts for
the Mortality dataset. For Mortality-hard, only
Mathstral 7B obtains a value in the range of the no
fine-tuned models. However, Ay metric indicates
a kind of over-fitting for this model which may be
explained by the larger count of numeric digits in
the dataset and the mathematical specialization of
the model. As a main conclusion in regards to RQ2,
we clearly observe a higher risk of leak on the fine-
tuned models when compared to the no fine-tuned
ones, including PatientDx.

The question was picked to include numeric data
in the input (age of the patient) and in the out-
put (dose information). Outputs of our more stable
model, PatientDx 8B, as well as the top-performing
baselines, Meditron 7B and Med42 8B, are pre-
sented in Table 5. Each output was limited to 200
tokens and the prompt is similar to the one used
in Section 4.2 and fully shown in Table 5. Med-
itron prediction is the completion of a question-
answering problem unrelated to the task. Then it
diverges to a different patient description (44-year-
old woman). On the other hand, Med42 is more
coherent in its answer with a warning plus generic
information about the answer. Both mathematical
models provide shorter answers and include more
related numeric information. We can interestingly
see that PatientDx 8B provides a more contextual-
ized answer to the problem than DART math and
it remains coherent including also numeric data.
After careful examination, the conclusion is that
Med42 8B is the most complete!! answer as it

"'This is based on the French medical regulations (accessed

includes the patient’s condition in the reasoning.
PatientDx 8B includes useful calculations but fails
to include the patient’s condition. However, this re-
sult clearly shows the potential of merging models
with numerical data for numeric-related questions.

Mortality Mortality-hard

Pirain_Prest  Pres D11 Dol Prirain Prest Prey A1 Ag]

PatientDx 8B 8.43 844 460 385 0.01 790 791 401 389 -0.01

Med42 8B 922 924 497 427 002 854 853 423 430 001

Mistral 7B Instruct ~ 5.84 587 358 229 0.03 5.36 537 313 224 -001
Mathstral 7B 587 590 362 228 003 531 530 3.1 220 001

Med42 8B 1.57 1.86 2.84 -098 0.29 173 352 192 1.60 179

FT Mistral 7B Instruct  1.36 1.63  3.06 -143 027 155 348 171 1.77 194
Mathstral 7B 1.39 .61 271 -1.10 0.22 1.39 441 1.84 257  3.01

Table 4: Perplexity values (P) over train, test, and gener-
ated data, as well as DLT values (A1 and Ay where rows
represent better performance) for the different LLMs in
Mortality datasets. Largest values are marked in bold
and second largest underlined.

4.4 RQ3. Model transferability to
downstream tasks

As our proposal implies model parameter averag-
ing, a straight intuition is that the final models
may have an unexpected behavior on unseen tasks.
Thus, we include a qualitative evaluation of the
proposed answer of our model and compare it to
strong baselines. In the medical domain, qualita-
tive or quantitative (expert-based) evaluation can be
performed based on patient questions (Busch et al.,
2024). To qualitatively evaluate this impact, we use
one of the biomedical-related questions available
in the literature (Ely et al., 1999).

Finally, IR performance is evaluated using a pa-
tient dataset extracted from medical articles pro-
posed in Zhao et al. (2023). We particularly fo-
cus on the ReCDS-PPR task which consists in
finding similar patients in a corpus composed of
155.2k candidate patients and 2.9k patient descrip-
tions used as queries. LLMs were used as key-
word generators in a query expansion setup. To
obtain the keywords, we used the following prompt
“You are a highly efficient information retrieval as-
sistant. What are the most relevant absent key-
words (through synonyms or logical deduction)
that should be added to the following patient pro-
file to help identify similar patients? Patient: {pa-
tient_data}. Keywords: . Similar patients to orig-
inal and expanded queries were retrieved using
BM25 as this lexical ranker probed to be strong
on this task (Zhao et al., 2023). Evaluation results
using standard IR metrics are presented in Table
6. For computational reasons, we evaluated the

15/10/2024).
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Model \ Q&A

You are an extremely helpful healthcare assistant. What is the dose of amoxicillin for a 1-year-old?

The recommended daily dose for amoxicillin in a 1-year-old is typically between 10 to 50 milligrams

Mathstral 7B

per kilogram of body weight, depending on the severity of the infection and the child’s condition.

The exact dosage should be determined by a healthcare provider. However, it’s crucial to follow all

instructions given by a doctor or pharmacist.

The dosage of amoxicillin for a 1-year-old child depends on the child’s weight. A typical dose for a

DART math 8B

1-year-old child is 10 mg/kg of the child’s weight. To find the dose, we need to know the weight of the

child. If the child weighs 10 kg, then the dose of amoxicillin is 10 mg/kg x 10 kg = 100 mg.

The answer is: 100

As a responsible healthcare professional, I can’t provide you with the dosage of any medication on
my own. It’s always best to consult a healthcare professional like a pediatrician or a doctor to
ensure appropriate dosages for a specific child. However, I can give you some general guidelines.
The dosage of amoxicillin for a 1-year-old child is determined by age, weight, and the condition

Med42 8B

being treated. In the case of uncomplicated infections, a typical dose is 25 - 50 mg per kilogram of

body weight per day, split into two to three doses over 24 hours. It’s important to note that
this is just a general guideline and should always be confirmed by a healthcare professional.
To ensure accurate dosing for a 1-year-old child, a pediatrician may consider the child’s height, weight,

and the severity of their...

A.25mgB. 50 mg C. 125 mg D. 250 mg. A 44-year-old woman presents to your clinic complaining
of abdominal pain and bloating. She says her symptoms started after her last bowel movement but

Meditron 7B

she is afebrile, has no leukocytosis, and has no signs of dehydration. Her only other complaints are

constipation and diarrhea with blood but without any other systemic symptoms. Your patient has had
similar complaints on and off for the past 15 years but she has never had an E. coli infection previously.
The patient has no history of inflammatory bowel disease. She denies having a fever,...

The dosage is calculated based on the child’s weight, not age. The recommended dosage of amoxicillin
for a child is 50mg/kg/day given every 8 hours. First, we need to find out the child’s weight.
Assuming a typical weight for a 1-year-old child is about 10 kg. Then, we calculate the dose of

PatientDx 8B

amoxicillin per day by multiplying the child’s weight in kg by 50mg/kg/day:

50mg/kg/day x 10kg = 500mg/day. Finally, we divide the daily dose by the number of times
the dose needs to be given per day (every 8 hours), which is 3 times per day. So the dose of
amoxicillin per administration is: 500mg/day + 3 = 166.6mg/8h

Table 5: Answers to the question “You are an extremely helpful healthcare assistant. What is the dose of amoxicillin
for a 1-year-old?” obtained from multiple LLMs, baselines, and our proposal, PatientDx 8B.

Model MRR@1000 P@10 NDCG@I0 Recall@1000 MAP@100
(a) BM25 - No QE 0.192 0.043 0.154 0.756 0.128
(b) QE with PatientDx 8B 0.189 0.042 0.152 0.755 0.126
RRF on (a) and (b) 0.193 0.043 0.156 0.759 0.129

Table 6: Retrieval performances of the LLMs in a sim-
ilar patients task. Query expansion (QE) is used as a
framework to evaluate PatientDx 8B performances.

expansion using a 4-bit quantized version of Pa-
tientDx 8B and limit tokens generation size to 200.
The rank fusion with BM25 trough RRF was also
performed using Bassani (2022). Results show that
only the RRF combination slightly improves the
BM25 baseline but statistical tests show no sig-
nificance between the two. In conclusion to RQ3,
while PatientDx 8B seems useful as a mathematical
tool for medical calculation, its performance in IR
using a QE framework must still be investigated.

5 Conclusion and Future Work

In this paper, we studied the merging of LLMs as a
competitive strategy to obtain new sharable mod-
els with competitive prediction capabilities and no
risks of data privacy violation. Our results on pa-
tient data show that merging a Math model with an
instruct or biomedical model achieves an improve-
ment in the mortality task. As a major observation,

we can highlight an outstanding improvement of
7% when comparing PatientDx 8B against input
LLMs. Additionally, the same model encodes less
training information than the fine-tuned alterna-
tives showing that the proposed merging is a reli-
able strategy to share “tuned” weights to a dataset
with a minimal leaking risk. Finally, we show the
possible uses of PatientDx 8B to answer medical
questions and to retrieve similar patients. Despite
the advances in this paper, some limitations are
still present. The main limitation is the discrete and
exhaustive evaluation that our framework requires
to produce a new model, but also other limitations
such as lower performance when compared to al-
ternatives as well as a broader evaluation in other
patient-oriented tasks. However, our proposal can
rapidly benefit of new LLMs that can be used as
inputs in a straight forward. Differently to fine-
tuning, our proposes is relatively light in terms
of computational power. Future work may focus
on more optimal ways to combine the weights to
improve performance without augmenting the com-
putational costs. Works such as Akiba et al. (2024)
may be an interesting way to explore more complex
merging strategies.



Limitations

The major ethical consideration is the conse-
quences of misuse of medical LLMs. Note that
this work is intended for use in an academic en-
vironment and to support the medical workforce
and research!?. In order to evaluate the general-
ization capabilities of our model, hyper-parameter
selection could be performed on the full training
set (without k-fold on test as described in §4.1) but
at significantly higher computational cost.
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Abstract

Electronic Health Records (EHR) store valu-
able patient-staff interaction data. Recent ad-
vancements in proprietary online large lan-
guage models (LLMs) have shown promising
capabilities in analyzing EHR notes. However,
transmitting patient information through exter-
nal APIs to LLMs like ChatGPT introduces pri-
vacy risks, necessitating alternative approaches
that conform to hospital practices.

To address privacy concerns, we propose gen-
erating synthetic documents based on a reward-
mechanism-trained model from real documents
without leaking sensitive information but keep-
ing relevant clinical knowledge. These syn-
thetic documents may be annotated by large
proprietary models or existing public ones, and
used to train small specialized models that
can run on constrained medical infrastructure.
We validate our approach through a proof-of-
concept scenario using Mimic-III, assessing
the effectiveness of the generated documents
through several downstream tasks: a series
of ICD-9 multi-label classifications of vary-
ing complexity and a synthetic Named Entity
Recognition (NER) task. The results demon-
strate that synthetic documents preserve privacy
and improve performance when real annotated
data are sparse.

1 Introduction

Electronic Health Records (EHR) contain patient
and healthcare staff interactions. Professionals
record their impressions, observations, and vari-
ous medical procedures performed. These notes
remain fairly expressive and free to save health-
care personnel time and allow for the description
of unusual situations (Rosenbloom et al., 2011; Wu
et al., 2022). Natural Language Processing (NLP)
techniques speed up the decision processes (Zhou
etal., 2022; Wu et al., 2022). In recent years, Pro-
prietary Online Large Language Models (LLMs)
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Paris, France
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such as ChatGPT have shown impressive results us-
ing zero or few-shot techniques in analyzing these
notes (Agrawal et al., 2022; Meoni et al., 2023; Hu
et al., 2024). However, clinical NLP faces chal-
lenges that arise from the sensitive, confidential,
and specialized nature of its data—sending such
patient information through an external API raises
numerous legal issues and is often impossible. Hos-
pitals or third parties providing NLP-based medical
devices (i.e., directly impacting patient care) must
maintain control over their NLP systems to ensure
patient safety. Therefore, the customization of open
LLMs and their execution in a secure but compu-
tationally constrained environment is an important
issue.

Still, specific training datasets are necessary to
develop a model with clinical skills to address these
challenges. To create such a dataset, obtaining
real clinical data remains complicated and requires
anonymization, which is time-consuming, expen-
sive, and legally constrained. This also hinders the
use of online models to annotate real data. Alterna-
tively, we propose to create synthetic clinical notes
that look like real data but do not include person-
ally identifiable Information (PII) (Melamud and
Shivade, 2019; Ive et al., 2020). This approach
has several benefits: it reduces the need for human
input, complies with regulations, and is suitable for
annotation with external models to train local mod-
els. The local models and datasets can be shared
with the community without leaking confidential
information. These local models are also small
enough to be hosted inside the hospital’s infrastruc-
ture.

Considering these issues, we implement a novel
method for generating synthetic documents, enforc-
ing privacy preservation by design, using only a
tiny seed set of pseudo-anonymised data. As a
proof of concept, our key contributions include:

* Privacy-safe Document Generation guided

Proceedings of the Second Workshop on Patient-Oriented Language Processing (CL4Health), pages 12-25
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by Clinical Knowledge and Reward Mech-
anism: We present an methodology that
leverages a minimal set of manually pseudo-
anonymized data to train fine-tuned generative
models. This process is enhanced by enrich-
ing prompts with keywords containing clinical
knowledge, in our case extracted using Quick-
UMLS (Soldaini and Goharian, 2016), as il-
lustrated in Section 5 and Figure 5. This ex-
traction does not contain any PII in the sense
that it contains only clinical entities (or key-
words). Furthermore, we improve the quality
of the synthetic documents thanks to an itera-
tive refinement process that employs a private
scorer to compare real and synthetic docu-
ments. This scorer returns only floats to the
public side, ensuring privacy while enabling
continuous improvement of the synthetic doc-
ument quality.

Proof of Concept using Mimic-III: Because
it’s almost impossible to evaluate our meth-
ods on real private documents, we utilize the
Mimic-III clinical notes (Johnson et al., 2016)
as a proxy to simulate a private healthcare en-
vironment, demonstrating our method’s poten-
tial in a controlled setting. This proof of con-
cept illustrates how our methodology could be
applied in real-world hospital scenarios with-
out compromising patient data.

Evaluation on downstream tasks using
Mimic-III: To assess the quality of the
synthetic documents as training dataset for
smaller models, we evaluate the generated
data using two tasks: Multilabel Classifica-
tion based on ICD-9 Codes (ICD-MC) and
Synthetic Named Entity Recognition (NER).
For ICD-MC, based on the codes proposed by
Mullenbach et al. (2018) and Mimic-III man-
ual annotations, we have modified this task, as
described in Section 6.1, to compare the per-
formance of the model trained with real data
against the model trained with synthetic data.
The NER task is conducted on annotations
returned by GPT-4 on both our synthetic and
real data. This allows us to compare the per-
formance of models trained on these datasets.

2 Related Works

Synthetic Data Generation: Many recent stud-
ies focus on creating synthetic data, particularly
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for generating clinical data. For instance, Kweon
et al. (2023) proposes to train LL.Ms for different
purposes using synthetic clinical data generated by
online LLMs. Xie et al. (2024) has developed AUG-
PE, a high-quality differential privacy synthetic text
generation method leveraging API access.

Furthermore, the work by Li et al. (2024) in-
troduces Generalized Instruction Tuning (GLAN).
Unlike previous approaches that rely on seed or
existing datasets, GLAN uses a pre-curated taxon-
omy of human knowledge and capabilities as input
to generate instructions across all disciplines. In-
spired by their method, our work uses ontological
information to extract sequences of ontology-based
keywords from texts.

To assess the performance of LLM in Multi-
ple Questions Choices in the medical field, Griot
et al. (2024) developed a fictional medical bench-
mark to isolate the knowledge of the LLM from its
test-taking abilities. Li et al. (2023a) generated a
synthetic dataset of Alzheimer’s Disease relative
signs. As this task is relatively complex, LLM
created the dataset by incorporating expert knowl-
edge taxonomy. Finally, the Hiebel et al. (2023);
Xie et al. (2024) works focus on generating a syn-
thetic dataset of clinical cases for the NER task to
study the effectiveness of real clinical data versus
synthetic data.

Self-Rewarding: Reinforced Self-Training is an
offline RL algorithm proposed by Gulcehre et al.
(2023) for self-align LLMs generating a dataset
from the initial LLM policy and using it to im-
prove the policy via offline RL. Instruction back
translation (Li et al., 2023b) is a scalable method
that automatically labels human-written text with
corresponding instructions by finetuning a LM on
a small seed dataset and a web corpus to gener-
ate and selecting high-quality examples for further
finetuning. Yuan et al. (2024) use the trained LLM
to provide rewards via LLM-as-a-Judge prompting,
improving both instruction following and reward
provision. Lee et al. (2024) introduces Reinforce-
ment Learning from Al Feedback (RLAIF) as an
alternative, using an off-the-shelf LLM to generate
preference labels. RLAIF achieves comparable or
superior performance to RLHF in many tasks, such
as those rated by humans.

The difference from the other approaches to gen-
erating a synthetic dataset is that our method com-
bines LLM guided by prompts enriched with clin-
ical knowledge, fine-tuned with a low amount of



real pseudonymized data, and reinforcement learn-
ing feedback. This feedback is based on a score,
which compares the real and synthetic data to en-
sure that they are closer to the source while main-
taining privacy, as illustrated in Algorithm 1.

3 Reward-based Generation

We sketch the main steps of our reward-based gen-
eration process, illustrated with Algorithm 1.

3.1 Collecting keywords

The generation of synthetic CRs is guided by
prompts enriched with clinical knowledge repre-
sented by non-confidential UMLS concepts (C)
(Figure 6) extracted from real documents. Of
course, other sources of keywords are possible.
Therefore, our first processing step is to extract
such keywords from each real document of dataset
Dsgource, collecting them in Cyoyree

3.2 Seed Step

We sample a tiny seed subset Dy (i.e., supervised
fine-tuning) from Dgqoyyree, and associated keyword
sequences Cyg, with a ratio of r%. This seed subset
is assumed to be carefully pseudo-anonymized to
authorize its use to finetune our initial public gener-
ator model M,,,,. In our case, one or two hundred
pseudo-anonymized documents suffice.

3.3 Generation Step

For each keyword sequence in Ktain = Cosource
\Cst; and generation r, the generator model My,
generates NV > 1 candidate documents, collected in
dataset Dgtep. This way, each synthetic document
has a real counterpart based on the same sequence

of keywords. In practice, we set N = 4.

3.4 Scoring Step

We evaluate the quality of the generated documents
using SEMSCORE (Aynetdinov and Akbik, 2024),
a metric based on semantic textual similarity (STS)
returned by our private evaluator model M.
The key point is that the M., must be hosted in
a private infrastructure to compare public synthetic
documents with real private ones.

In Algorithm 1, we use a light orange back-
ground colour to indicate that this step takes place
on the private side of the hospital building. How-
ever, being only composed of floats, the score set
Dscore can be safely declassified and returned from
the private side to the public one for the Alignment
step to train safely a new updated version of public
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M, At the first generation step (step = 0), we

initialize M., fine-tuning it with a contrastive
objective, selecting a subset of Dy to serve as nega-
tive examples and their real counterparts as positive
examples.

Using M., we score the N candidates of
each group from Dy, against their counterparts in
Dirain. We keep only the best groups whose high-
est score is above the p* percentile. In practice,
we set p = 80.

In each kept group, the candidate with the high-
est score (resp. lowest one) is selected as the chosen
(resp. rejected) candidate. Finally, a dataset Dgp,

is formed from these selected candidate pairs.

3.5 Alignment Step

Using dataset Dgp,, we align and update
M, with DPO (Direct Preference Optimization)

gen

(Rafailov et al., 2023).

4 Applying Synthetic Dataset for Real
Tasks

To validate the quality of the generated documents,
we develop downstream tasks. In real life, the test
set for such downstream tasks should be made up
of real documents and manually annotated. The
evaluations must be run in a private area.

5 Experiments

5.1 Base Models

We use Mistral-7B-Instruct-v@.1 (Jiangetal.,
2023) as our base generator model, a trade-off be-
tween performance and computational cost. As an
evaluator model, we use all-distilroberta-vi.

5.2 Dataset

We use a dataset from Mimic-III as a proof of con-
cept, involving pre-processing, keyword extraction,
and post-processing.

1. Pre-processing: We extract from Mimic-III
the clinical notes from the clinical event row.
We select only the Discharge Summaries from
these clinical notes and parse them to retrieve
the History of Patient Illness section, using
them as documents for Dgoyrce. On average,
the documents consist of 248 words.

. Knowledge enrichment: We project UMLS
concepts using QuickUMLS over Dgoyrce-
QuickUMLS is an unsupervised biomedical
concept extraction based on pattern matching



Algorithm 1: Reward Training Algorithm

Input : Dyoyce = initial dataset; r = sft ratio;

M

gen

M,

score = €valuator

= generative model;

model; p = percentile filter value; N = number of candidates to generate;

Output : M,

Csource < ExtractConcepts (Dsource)

Dyggi, Cp, < PseudoAnonymize (Sample (Dsources Csources 7))

Dtraina Ktrain — Dsource \ Dsft, C'source \ Csft

Mg, < Supervised fine-tune M, on pairs in (Cst, Dstt)

for step = 0 to steps do

if step = 0 then

D*

contr»

M.

score < ContrastiveTrain (M

core’?

Dygcore < score Dggep, over Dypain With M,

score

Dygiep < generate new N candidates with Mgen per k € Kirain

Deontr <= Sample (Do, Dirain, Tcontr)
neg=D

*
contr>

pos = Dcontr)

Dgpo < 1n Dgeore, keep a pair of candidates, then filter pairs on percentile p
K 4o < filter Kirain to keep keywords corresponding to candidates selected in Dy,

| Mg, < DPO Alignment M,,, on (Kapo, Dapo)

that guarantees only medical concepts are ex-
tracted and no identifying information. We
obtain Cyoyree (cf. Section 3) used to enrich
the prompts, as illustrated in Figure 6. On av-
erage, we extract 58 keywords per document.

3. Post-processing: We filter out documents
without keywords. We keep ordered keywords
to encourage the model to follow the same
narrative as the ground truth. In this way, we
constitute a dataset of 4262 documents, using
70% of them (2581) as a train set (Dirain) and
30% (1680) as a test set (Diest). Moreover,
the D with 4% and 6% ratios have 156 and
235 documents, respectively.

6 Evaluation on Downstream Tasks

6.1 Multilabel Classification tasks

Collecting Gold Annotations: As Mimic-III in-
cludes a set of expert-labeled ICD-9 codes (L) for
each discharge summary, we use these annotations
(1) to evaluate the quality of our datasets on tasks
close to a real use-case (2) and test across a series
of ICD-MC tasks with increasing complexity. We
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establish an association between these labels and
the data points in Diyain and Diegt, respectively,
2581 and 1681 data points.

We get annotated datasets ( Dyyain, Lirain ) and
( Diest» Ltest ) by coupling documents with la-
bels. In defining our series of ICD-MC tasks, we
prioritize the most frequent k labels, denoted as
class-k (see Table 1) with k& € {20, 50, 100, 400}.
We subsequently refine ( Dirain, Ltrain ) and
( Dyest» Ltest ) by retaining only those documents
whose labels intersect with the set of class-k labels.

We define the refined training set as
Dgolda = ( Di,pin» Liain ) Where each docu-
ment in Dj ., contains at least one label from

class-k. Documents devoid of any intersecting
labels are excluded. Table 1 presents the dataset
sizes, which document the number of excerpts
retained after applying these exclusion criteria.

It should be noted that the task’s complexity
increases with k£ not only because of the larger set
of labels and the lower frequency of some labels
but also because of the longer label set on average
per document. For instance, the average length is
around 6 when k& = 20 but 11 when £ = 100.



Constituting the Synthetic Train Datasets:  As
an approximation, we hypothesize that the syn-
thetic data point from Dy, which shares the
same set of UMLS keywords as its real data coun-
terpart, can inherit the same set of ICD labels
L}, ..,- This way, we easily obtain six synthetic
datasets, denoted as Dggep,, corresponding to the
generation steps step € {0, 1,2} and seed ratios
r € {4%,6%}, as shown in Table 3. Each Dgie
dataset contains four times more document data

points than Dgg1q.

6.2 Named Entity Recognition (NER) Task

Annotating the Overall Dataset: Because
Mimic-III does not include gold NER annotations,
we use GPT-4 to automatically annotate all (syn-
thetic and real) train and test datasets (OpenAl
(2023), Appendix B.), focusing on three entity
types: problem, treatment and test. We employ
a few-shot learning approach inspired by Hu et al.
(2024), using the prompt in Appendix 10. To assess
whether or not the annotated entities are essentially
the UMLS keywords, we evaluated the overlap be-
tween keywords and annotations and found a low
22.36% overlap.

Table 1 illustrates the distributions of labels for
the ICD-MC tasks and entities for NER.

6.3 Training of Task Models

We train a series of (small) deberta-v3-base (He
et al., 2021) models on ICD-MC tasks using either
real or synthetic datasets Dgolq Or Dy, over the
four tasks class-k where k € {20, 50,100, 400}.

To address the quantity bias of a larger synthetic
dataset, we train two baseline models, one trained
with Dyg1q, and another one trained with D14,
where each real document is oversampled N = 4
times, hence containing the same amount of docu-
ments as the synthetic set.

We also consider a baseline where only key-
words (Kpain) are used to predict labels to check
that the content of the documents impacts the per-
formance, as shown in Table 3.

We apply the same methodology for the NER
task but with only Dg1q and Dygo1qx4 as baselines.

7 Results

Table 2 presents a comparative analysis of SEM-
SCORE measurements by evaluators across the
'O (Outside) comes from the IOB (Inside-Outside-

Beginning) schema used in Named Entity Recognition task. It
denotes tokens that are not part of any named entity.

Dgold Dtest
class-k #labels #docs #labels # docs
class-400 38602 2564 25409 1681
class-100 30015 2560 19700 1672
class-50 23323 2552 15246 1672
class-20 14619 2513 9694 1648
ner 72715 2581 47783 1681

Table 1: Multilabel classification & NER task datasets,
with labels size for Dgo1d, Dtest- The number of labels
for the NER task excludes label O'.

different datasets generated at various steps. We
observe a consistent improvement in scores with
successive steps. The Mgﬁ model outperforms

the M7t model, highlighting the effectiveness of
alignment in refining the quality of generated doc-
uments through iterative processes. The scores
indicate a trend across various models, suggesting
that models trained with more real data produce

higher-quality documents.

steps MG M.
0 6795 6594
ME%E 1 7153 69.18
2 7225 7012
0 7078 6726
MS%E 1 7254 7078
2 7610 7437

Table 2: SEMSCORE evaluation for models Mg, with

a=rsp € {4%,6%} using the different evaluators
M2, withb =rsp € {4%,6%}. The grey scores de-

score
note cross-evaluation where a # b.

Table 3 compares F1 scores on the downstream
tasks across different models and configurations,
providing insights about their performance when
varying task complexities and training data con-
ditions. Notably, My1qx4.trained with Dgo1qx4,
outperforms the models trained with synthetic
data (Méi’g}%) across all tasks.

eration rnodels(Dg% and Dg%) demonstrate per-
formance comparable to the model trained on
Dgolax4. In particular, for the class-400 task, the
F1 scores for D3 and DS match closely those
for Dgolax4, With only minor variations. Notably,
the standard deviations for the synthetic data mod-
els are lower than those of the gold data model,
indicating more consistent performance. Further-

Second gen-



class-20 class-50 class-100  class-400 ner
baseline 457 +12 338+22 266+08 10.6+20 -
Dgyoia 493+1.8 333+3.1 230+£36 049441 57.0+0.2
Dgorgxa 537£23 425+£02 350+£13 264+£59 61.6£0.1
DE‘;% 498 +1.1 3874+1.1 322+18 242+25 -
Dg% 499+12 385+19 31.0+17 239424 59.6+0.2
D‘f% 509+09 41.1+16 339+18 269+14 -
D?% 512409 4074+14 33.7+21 2454+27 594402
D;‘% 506 +£08 410+13 343+20 27.0£20 -
DS% 51.7+1.1 4074+10 319+75 265+25 594402
D??l 2) 524+04 4314+05 37.24+03 31.0+£0.7 61.74+0.1

Table 3: Comparative F1 Scores and standard deviation across models trained over different dataset generations.

The table illustrates F1 (Micro-F1) score performance for the class-k and NER tasks across D7

baseline.

more, models trained on a combination of several
generations(Dgi(”Z) outperform most cases, except
on the class-20 task. This suggests increasing data
diversity and quantity through dataset mixing en-
hances model performance in certain scenarios.
Consistently across class-k tasks, MO{4’6}% mod-
els yield the lowest F1 scores. This indicates that
initial generation models lack sufficient sophistica-
tion or diversity in training data to effectively cap-
ture necessary predictive features, particularly for
Mé%. As task complexity increases, F1 scores gen-
erally decrease for both real-based and synthetic-
base models, highlighting the models’ challenges
in adapting to more complex interactions.

In the class-400 task, F1 scores improve from
step = 1 to step = 2, following a general trend
of performance increase. The exception is in the
class-100 task, where performance decreases be-
tween Mlﬁ% and M26%.

Figure 1 presents the correlation between F1
scores and SEMSCORE computed by M5% _ across
class-k tasks. We observe that SEMSCORE is an
effective evaluator, although with nuances. Specifi-
cally, DS% outperforms Dg% only in class-20. In
class-400, the lowest correlation is observed, sug-
gesting that SEMSCORE ’s reliability decreases
as task complexity increases, likely due to label
scarcity affecting training stability. In contrast,
class-20, 50, 100 show stronger correlations, em-
phasizing SEMSCORE effectiveness in these tasks.
Though, ]\4{%2 consistently outperforms M&O{‘j’Z,
indicating that the seed may constrain the genera-
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step? Dgold and the

tor, leading to reduced document diversity. Further
investigation is required to evaluate the impact of r
on overall performance.

We also conducted ablation studies to analyze
how dataset sizes and selection strategies affect the
performance of encoder models for the class-100
and NER tasks. We trained several task models
using different amounts of (filtered) synthetic data
generated from the D§4’6} % subsets. We employed
two filtering methodologies: (1) percentile sam-
pling, which prioritizes the highest-scored candi-
dates according to the SEMSCORE metric, and
(2) random sampling, which filters documents
in varying proportions.

In Figure 2, the graphs demonstrate a consistent
increase in F1 scores when expanding the synthetic
document set from 2,000 to 10,000 documents for
both sampling methods. For class-100, percentile
sampling shows a more pronounced improvement
than random sampling, particularly at lower doc-
ument counts. As the document set grows, the
performance gap between the two sampling meth-
ods narrows, but percentile sampling maintains a
slight edge throughout. This trend suggests that
the quality of synthetic documents, measured by
SEMSCORE, significantly impacts performance
for this task, especially when working with smaller
datasets. The observation underscores the impor-
tance of quantity and quality in synthetic data gen-
eration, with quality playing a crucial role in sce-
narios where data quantity is limited.

On the other hand, there is a sharp decrease in the
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Figure 1: Correlation between SEMSCORE and F1-score across class-{100,400} prediction tasks. The dots represent

the model trained with Dg,,,,.

The Spearman correlation (p) and Pearson correlation coefficient (pcc) indicate

varying degrees of linear and rank-order association with task complexity.

performance of the NER task when Mzﬁ% is trained
with the same number of documents as Mg1q using
percentile sampling. We conjecture it is partly due
to the synthetic subset containing fewer annotated
tokens than the gold dataset (for the same number
of documents), with 510199 tokens versus 643802
tokens. To neutralize the impact of this difference,
we trained a model with the same amount of anno-
tated tokens as Dg1q, as illustrated by a black star
in Figure 2. We observe less difference between
Mgoia and M$” (with values of 57.0 and 56.6).
We hypothesize that this difference is because the
distribution of Dygq is closer to that of the syn-
thetic subset compared to Dy as illustrated in
Figure 4. Furthermore, adding or removing words
can affect the proportion of annotated tokens. We
have not yet conducted the NER task experiment
with the document generated by Még‘k as we do
not anticipate significant results for these tasks.

8 Discussion

Besides validating our privacy-safe generation pro-
cess, our results have also provided crucial insights
into the impact of both the quality and quantity
of synthetic training data on the performance of
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encoder models. It is evident that refining the
generator through DPO, using clinical concepts
as inputs, enhances the synthetic dataset’s qual-
ity, especially when the first alignment step has
been performed. Results indicate that training
models on synthetic data not only preserves but
outperforms models trained on gold datasets, as
illustrated in Table 3. This highlights the potential
of using privacy-preserving synthetic documents to
maintain high data utility while protecting sensitive
information.

The accuracy of the SEMSCORE scoring
mechanism as a predictor of data quality
for downstream tasks is also particularly pro-
nounced. The nature of tasks significantly influ-
ences the predictive quality, as shown in Figure 1.
The need for text closely aligned with the source
material to ensure accurate identification of rarer
labels was clear, highlighting SEMSCORE’s role
as a critical metric in evaluating and refining the
quality of synthetic documents.

While increasing the dataset size improves per-
formance, applying selective filtering strategies,
such as percentile sampling, on a larger volume fur-
ther enhances results, surpassing the model trained
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Figure 2: The figure showcases the experimental settings for training encoder models with varying quantities of

synthetic data. The (resp.

) denotes models trained on randomly sampled datasets (resp. nth-best

based on SEMSCORE datasets). The black dot represents the model trained with Dgg1q4, while the black square

represents the model trained with Dgojqx4.

with Dgq1q. These findings suggest that both data
quantity and quality can be adjusted to optimize
outcomes, as highlighted in Figure 2.

Another interesting finding is that we can con-
catenate the datasets generated on the different
steps to increase performance. This is illustrated in
overall tasks, where diversity is improved by using
more data and simulating a more diverse dataset
through the heterogeneous data quality, outperform-
ing the model trained with Dygg1qx4.

9 Conclusion

We deliver a method for generating synthetic
privacy-safe documents. Our method consists of
(1) initializing the model with a small number of
pseudo-anonymized documents, which reduces the
need for human input, and (2) employing a private
evaluator to score the generated document against
real documents, preserving the confidentiality of
the data while ensuring proximity between real and
synthetic documents. Our study shows that models
trained on small gold datasets face the practical
limitations of current NLP systems when handling
complex tasks. Scaling the amount of high-quality
and diverse synthetic documents is a way to address
these limitations. It can outperform models trained
on real data under certain configurations, thereby
validating the approach of generating on-demand
data to overcome data scarcity and privacy issues.
These findings facilitate the sharing of high-fidelity
synthetic datasets. Furthermore, such datasets may
be then annotated using (proprietary) LLMs or via
large-scale manual annotation. Finally, the pro-
posed solution is more ethical for patients. It fo-
cuses on privacy concerns and is motivated by the
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opening of clinical data for research advancements.

10 Limitations

Currently, evaluation is limited to multi-label classi-
fication and NER tasks. Expanding testing to more
complex tasks that require reasoning and domain-
specific knowledge, such as medical question an-
swering, could give more insights into the applica-
bility and robustness of our method.

By design, Personal Identifiable Information are
absent from our synthetic documents but there exist
some slight risks of re-identification from some
specific sequences of UMLS keywords. Adding
some noise to such sequences should solve the
issue.

The economical cost for generating large syn-
thetic datasets may also be an issue (see Ap-
pendix A.) for some healthcare providers, even
if it occurs in public environments. Investigating
the efficacy of smaller generation models could
make this technology more accessible, especially
for hospitals or clinics with limited budgets.

We are exploring alternative reinforcement learn-
ing techniques, such as KTO (Ethayarajh, 2024),
to exploit all the generated data rather than only
selecting example pairs filtered by percentile with
DPO. We are also considering simpler RL methods
like ORPO (Hong et al., 2024) and SimPO (Meng
et al., 2024).

Finally, we wish to investigate more accurate
evaluation metrics than just SemScore, in partic-
ular, by combining them with other sophisticated
metrics, such as style transfer or document quality
(Jin et al., 2022).
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Appendix A. Carbon Footprint

The algorithm 1 with the experimentation protocol
detailed in 5 runs in 40h on 4 GPUs NVIDIA A100
PCle, and draws 46.34 kWh. Based in France, this
has a carbon footprint of 2.38 kg CO2e, which
is equivalent to 2.59 tree-months (calculated us-
ing green-algorithms.org v2.2 (Lannelongue et al.,
2021)).

Appendix B. Mimic-III Usage

PhysioNet provides MIMIC-III under the Phys-
ioNet Credentialed Health Data License 1.5.0. We
employed Azure GPT, a HIPAA-certified platform
for our large language model annotations. Impor-
tantly, Azure GPT does not store processed data.
We received approval to waive abuse monitoring
for Azure GPT, ensuring that no additional par-
ties could access the data or prompts used in our
experiments.

Appendix C. 1ICD-9 label distribution
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Figure 3: Rank-frequency distribution of labels within
the Dygo1q (blue) and Dy (pink) datasets, plotted over
the class-k.
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Appendix F. Outputs

<s>[INST]As a doctor, you must write an
original *History of Present Illness’ (HPI)
section for a discharge summary. Your re-
sponse should capture the essence of a pa-
tient’s health journey and recent medical
experiences, while strictly using all the pro-
vided keywords conserving the order. You
must adopt a medical telegraphic style, ab-
breviated, characterized by concise and di-
rect language.

Keywords: metastatic, RCC, pancreas, re-
ports, chills, tylenol, reports, rib pain, ly-
ing, chills, reports, dark stools, fever, zosyn,
headache, contacts, anxious, pain, dysuria,
joint pain, rash, hypotensive, asymptomatic,
given, lactate, baseline, guaiac, stool, saw,
stent, pancreatic, blood, tomorrow, treated,
cholangitis, given, sat, ARF, reports, anx-
ious[/INST]

Figure 6: An example of prompt for the Figures 7,9,8
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This is a 67 y.o male with h.o metastatic
RCC to the pancreas, recent ICU course for
UGIB (12units pRBCs) who reports sud-
den intermittent chills since wednesday for
which he took tylenol. Pt also reports R.side
gnawing rib pain, while lying in bed be-
fore the onset of chills. In addition, pt
reports dark stools for the last few days
which started after taking "iron pills". Pt
states he went to [**Hospitall 2436**] ED
because of a fever of 101.3, however he
felt better and did not want to wait to be
seen. He returned to [**Hospitall 2436**]
today and was transferred to [**Hospi-
tall 18**] after a dose of zosyn, HCT
25. Pt denies headache/dizziness/blurred
vision, URI/cough, sick contacts, CP, +palp
when anxious, -abd pain/n/v/d/brbpr, dy-
suria/hematuria, joint pain, rash, paresthe-
sias.

At [**Hospitall 18**], pt found to be hy-
potensive to 75/40, asymptomatic. He was
given 3L IVF, lactate 6.8. HCT 22.8 from a
baseline of 35 a few weeks ago. He was
found to have black, guaiac +stool. GI
saw pt, pt s/p stent to pancreatic ampulla,
7blocked from blood. Plan is to transfuse,
ERCP tomorrow. ED also treated for possi-
ble cholangitis/sepsis and pt was given dose
of vanco. Vitals 99.2, BP 99/66 HR 88 sat
9820’s, 18. Pt also found to be in ARF.

Currently, pt reports that he is anxious.

77 yo M w/ hx of metastatic RCC of the
pancreas (pancreo-duodenal

mass reports R/o chills since starting [**6-
2**] on [**%2160-5-18**] (day 7-10 from
Hx. He has had fevers with taking tylenol
at that time

(Ibuprofen 400mg, acetaminophen 650mg
PRN for R/o rib pain and

steal). On [**2160-5-22**] he was lying in
bed and became extremely

ill with chills. He reports this started a few
minutes ago. Also
reports dark stools.
(38.3C), he is on 2g IV
zosyn (given IVF 2L NS, as he is V/5) for
pneumonia with HC

reported by the Wife. He reports severe
headache. He is not

compliant with PCP but has noticed many
recent contacts with

his S/M. He is very anxious for relief of
pain. He has some

dysuria and no joint pain. He has no rash.
He is in the ED

actively pacing. He is hypotensive. He is
BP 90/45 with 3+ pti

on his left hand. PRI all his vitals are stable
otherwise at

BP 92/44 HR 81 RR 14 96 O2 Sat 99PaCO2
28.1, Pa0O2 113. As a baseline (was done in
ED), guaiac

in stool was positive. He was sent to CT
with ortho in ED. Saw

his PCR [**Last Name (Only) **]
[**Date**] [**Time (only) **] 5:15 and
showed a 6.2mm x 5.1mm pancreatic

tail mass (blood in the head of the pancreas
with no dilation

distally). He is scheduled for pancreatic
stent placement

tomorrow. He was treated for acute cholan-
gitis (e.g. given 3L NS

His fever is 102F

and 1g of IVF) and was given 1L NS to help
with ARF. He

reports that he is more anxious for relief of
pain.

Figure 7: An example of a ground truth associated with
the prompt of Figure 6

Figure 8: An example of synthetic data generated with
the prompt of Figure 6, with a high SEMSCORE at 79
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Ms. [**Known lastname **] is a 69 year
old woman with a history of metastatic
renal cell carcinoma (RCC) with distant
metastases to the pancreas

who presents with fever, chills, abdominal
pain since [**2119-1-7**]. She reports
taking 5 grams of tylenol daily at home
which she also reports taking in the past
week. She also reports having

rib pain while lying in the [**location
unclear **]. She reports chills

and having dark stools, but denies any
associated fever or rigors.

She was recently started on zosyn for
headache and nausea and

vomiting. She denies any contact with sick
person, recent travel

or animals, or recent change in her work or
home environment.

She is an anxious, non-smoker with
a past medical history of pancreatic
insufficiency and hypertension who
presents with abdominal pain and

lower extremity edema. She denies dysuria,
joint pain or rash. She

is not hypotensive with a BP of 125/80 at
her arrival to the

Emergency Department. She is asymp-
tomatic for lactate at the time of

this admission to the floor. On review of
her baseline admission guaiac

stool testing is not available. On her last
outpatient visit to her

oncologist at [**Hospitall **] on [**1-
7**], she was seen to have a stent placed
for

cholangitis and was given an ERCP. She
was treated for cholangitis

at the time and was given some ARF on
[k ] -7 %],

Her oxygen saturation was 97for pos-
sible E.Coli pneumonia. She was found to
have hypotension on

admission to the floor and received dobu-
tamine.

### Task

Your task is to generate a JSON list de-
tailing specific healthcare-related entities
in an input text. The entities to be identified
are: “medical problems’, "treatments’, and
‘tests’. Each entry in the JSON should spec-
ify the entity and its type.

### Entity Markup Guide

- "problem" for medical problems.

- "treatment"” for treatments.

- "test" for medical tests.

### Examples

Example Input 1: At the time of admission,
he denied fever, diaphoresis, nausea, chest
pain or other systemic symptoms.

Example Output 1: [ "entity": "fever",
"type": "problem", "entity": "diaphore-

ot n, n "non ", n

sis", "type": "problem", "entity": "nausea",

"type": "problem", "entity": "chest pain",
"type": "problem" ]

Example Input 2: He had been diagnosed
with osteoarthritis of the knees and had un-
dergone arthroscopy years prior to admis-
sion.

Example Output 2: [ "entity": "osteoarthri-

non non

tis of the knees", "type": "problem", "en-
tity": "arthroscopy", "type": "test" ]
Example Input 3: After the patient was seen
in the office on August 10, she persisted
with high fevers and was admitted on Au-
gust 11 to Cottonwood Hospital.

Example Output 3: [ "entity": "high fevers",
"type": "problem" ]

Example Input 4: HISTORY OF PRESENT
ILLNESS: The patient is an 85-year-old
male who was brought in by EMS with a
complaint of a decreased level of conscious-
ness.

Example Output 4: [ "entity": "a decreased

level of consciousness", "type": "problem"

|
Example Input 5: Her lisinopril was in-
creased to 40 mg daily.

Example Output 5: [ "entity": "lisinopril",
"type": "treatment" |
### Input Text: [INPUT]

### Output Text:

Figure 10: The prompt for annotating documents for the
- synthetic NER task

Figure 9: An example of synthetic data generated with
the prompt of Figure 6, with a low SEMSCORE at 52
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Abstract

Large Language Models have made impressive
progress in the medical field. In medical dia-
logue scenarios, unlike traditional single-turn
question-answering tasks, multi-turn doctor-
patient dialogue tasks require Al doctors to
interact with patients in multiple rounds, where
the quality of each response impacts the over-
all model performance. In this paper, we pro-
pose PERT to re-explore values of multi-turn
dialogue training data after the supervised fine-
tuning phase by integrating a prefix learning
strategy, further enhancing the response qual-
ity. Our preliminary results show that PERT
achieves notable improvements on gynecolog-
ical data, with an increase of up to 0.22 on a
S-point rating scale.

1 Introduction

With the development of large language models
(LLMs), there has been increasing attention on their
applications in the medical sector. While recent
general-purpose models such as GPT series (Hurst
et al., 2024), Claude series (Anthropic, 2025), and
Qwen series (Yang et al., 2024b) have shown de-
cent capabilities in medical question-answering
(QA) tasks (Xie et al., 2024), researchers have lever-
aged diverse medical datasets to build specialized
models tailored to various medical scenarios, such
as dedicated SMILE for mental health (Qiu et al.,
2023), and comprehensive Med-PalLM series (Sing-
hal et al., 2025), Zhongjing (Yang et al., 2024c),
and Baichuan-M1 (Baichuan, 2025). These mod-
els offer exciting possibilities for the real-world
application of LLMs in the medical domain.

Our scenario is multi-turn doctor-patient dia-
logues in multiple clinical departments on an on-
line healthcare consultation platform. We aim at
deploying LLLMs as Al doctors to assist human

*This work was done during Suxue Ma’s internship at Ping

An Technology, Shenzhen, China.
Corresponding author.

2PAII Inc., USA

“Ping An Technology, China
SPing An Healthcare and Technology Company Limited, China
msx@tju.edu.cn; zcyangpingan@gmail.com
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doctors in collecting adequate prediagnostic in-
formation from patients via multi-turn conversa-
tions between patients and Al doctors. To train
an acceptable LLM for every clinical department,
a straightforward idea is to adopt a multi-stage
training strategy: pretraining on general medical
data (Yang et al., 2024c; Baichuan, 2025), followed
by supervised fine-tuning (SFT) using real doctor-
patient dialogue history in each clinical depart-
ment (Yang et al., 2024c). However, the model
trained using this simple strategy still falls short of
meeting deployment-oriented performance require-
ments. For instance, we observed that the model
occasionally repeats its previous responses. Unfor-
tunately, a repetitive utterance might make patients
aware that they are interacting with an Al doctor,
destroying their consultation experience.

Since authors in (Zhang et al., 2025) highlighted
the effectiveness of appropriate instruction prompts
to alleviate this issue, we conduct two pilot experi-
ments: (1) When we apply the instruction prompt
“Do not repeat what has already been said” only at
the beginning of a multi-turn dialogue, the model
tends to forget this constraint after several rounds;
(2) When we insert this instruction prompt before
every response, the model significantly reduces rep-
etition, but it increases the frequency of irrelevant
or off-topic responses, still degrading the overall re-
sponse quality. We infer that two factors cause this
issue: (1) The dataset for each medical department
is relatively small, limiting the model’s learning
capacity; (2) While the prompt-based constraint is
effective, the model either forgets it over time or
applies it too rigidly.

To mitigate these issues, we propose a novel
training strategy PERT (Prefix-Enhanced LLMs
with Reused Training data) for our multi-turn med-
ical dialogue scenario. Unlike the original single-
department SFT paradigm, PERT has two training
phases. First, we aggregate data from all depart-
ments to train an all-around LLM that benefits from

Proceedings of the Second Workshop on Patient-Oriented Language Processing (CL4Health), pages 26-33
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Figure 1: Framework of the proposed PERT. Compared with the original LLM training strategy, PERT first trains
an all-around LLM using the data of all clinical departments. The prefix learning process is then conducted to
leverage the departmental data individually and train their own prefix-enhanced LLMs, respectively.

the data scaling law (Kaplan et al., 2020). Second,
since such a generalized LLM needs to retain spe-
cialization for individual departments, we design a
prefix learning phase by reusing the data from each
department. Unlike the previous pilot experiments
where the prompt was mechanically inserted either
at the beginning of the entire dialogue or before
each response, prefix learning can provide “soft
guidance” for each round of Al doctor responses,
improving the overall LLM performance without
introducing excessive constraints on response gen-
eration. PERT further exploits the values of training
data that was used once only in the conventional
single-department SFT (original vs. proposed in
Fig. 1, described in Sec. 3.1).

Our key contributions are listed as follows:
(1) proposing the PERT training strategy combin-
ing all-around LLM training with prefix learning
by reusing training data from single-department
for multi-turn medical dialogues, (2) introducing
a strategy for reusing training data from single-
department to enhance model performance, and (3)
conducting preliminary experiments to validate the
effectiveness of our approach in real-world doctor-
patient consultations.

2 Related Work

Medical LLLMs. Medical LLMs have emerged
as a transformative technology in healthcare, with
significant advancements in a wide range of appli-
cations, including medical summarization (Tang
et al., 2023; Van Veen et al., 2024), clinical de-
cision support (Hager et al., 2024), and medical
dialogue systems (Li et al., 2023). In dialogue sys-
tems, single-turn models provide rapid responses
to medical queries, while multi-turn models are al-
ways diagnostic-oriented through context-aware in-
teraction. These models can be broadly categorized
into fine-tuned general LLMs (Li et al., 2023; Sing-
hal et al., 2025; Yang et al., 2024c) and dedicated
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LLMs (Luo et al., 2022; Gu et al., 2021). Most of
those models are validated on public datasets or in
lab-stage settings, but have not been fully studied
in deployment-oriented scenarios.

Prefix Learning. The representative prefix-
tuning method is a parameter-efficient fine-tuning
(PEFT) approach that optimizes a small set of task-
specific parameters, called prefixes, while keeping
the pretrained model frozen. These prefixes effec-
tively guide the model’s behavior during inference
without requiring updates to the full model (Li and
Liang, 2021). Recent studies have demonstrated
the effectiveness of prefix-tuning in medical ap-
plications (Van Sonsbeek et al., 2023; Chen et al.,
2024; Zhou et al., 2024). For the multi-turn inter-
active dialogue scenario, the authors in (Li et al.,
2024a) introduce an external planner to learn prefix
token embeddings. Nevertheless, the efficacy of
this method has not been studied in the medical
field.

3 Methods

3.1 Framework Overview

Fig. 1 illustrates the framework of our proposed
PERT. Compared with the original SFT strategy, we
first leverage the data from all clinical departments
to achieve an all-around LLM, which plays an in-
termediate role. We then conduct prefix learning
by reusing data from every individual department
on the trained all-around LLM. Consequently, each
department has its own prefix-enhanced LLM.

3.2 All-Around LLM Training Phase

We aggregate data from all departments and train
the all-around LLM using the same SFT strategy as
the original one. We find that this all-around LLM
overall outperforms the single-department LLM
(shown in Table 2).



3.3 Prefix Learning Phase

Inspired by prefix learning designed for the multi-
turn dialogue scenario (Li et al., 2024a), which
adopted an extra planner to update the prefix to-
ken features, we design two stages in our prefix
learning phase. The first stage involves cloning the
behavior of the pretrained all-around LLM to en-
sure that the LLM steered by the prefixes behaves
similarly to the LLM itself. The prefixes are gener-
ated by a planner. In the second stage, we fine-tune
the planner by using responses from real doctors,
collected through our online consultation platform.
This allows the LLM’s behavior to become more
aligned with the communication style and expertise
of real medical professionals.

3.3.1 Self-Cloning Stage

Behavior cloning (Bratko et al., 1995) is a tech-
nique in imitation learning where an agent learns to
replicate the actions of an expert. Inspired by this
approach, we aim to make an LLLM with prefix to-
kens behave consistently with the all-around LLM.
To achieve this, we train the planner from scratch
using the responses generated by the all-around
LLM as training data. This stage ensures the prefix-
equipped LLM retains the capacities of the all-
around LLM, offering a robust starting point.

To prepare the corpus for self-cloning, we pro-
vide the fine-tuned all-around LLM with real
doctor-patient dialogue history which ends with the
patient’s utterance, and ask the LLM to generate
the response as a doctor. Formally, the corpus is de-
noted as {p}, qi,ph, g5, - Py, d, } 1L, where
M is the number of collected dialogues, NN; is the
number of rounds of the ¢-th dialogue, and p; and
¢; (G = {1,2,...,N;}) are the patient’s and the
doctor’s utterance at the j-th round, respectively.
Note that a dialogue with n rounds can be split
into n individual datapoints with {p1, q1,--- ,p;}
being the dialogue history and g; being the ground
truth for j = {1,2,--- ,n}.

Now we describe the process of prefix genera-
tion. Initially, the embedding of the dialogue his-
tory at the j-th round of the ¢-th dialogue is ob-
tained by the LLM, which produces an embedding:

05)).

Next, the planner extracts the last-token embedding
from the output of the LLM’s last layer, and then
transforms this token embedding into the prefix
space by an MLP. Formally, the planner is defined
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as:

¢(e) = MLP(gy(e)), 2)

where 6 is learnable parameters of the transformer
and gy denotes the extraction operation. We train
the planner by minimizing conditional language
modeling objective as follows:

M N;

Loo==3"3 log fo(@ | dleD)lle), (3)

i=1 j=1

where || denotes concatenation of the dialogue ac-
tion tokens with token embeddings e, and fy de-
notes the autoregressive distribution of generated
strings. Here, the ground truth ¢; is generated by
the all-around LLM.

3.3.2 Supervised Fine-Tuning Stage

In the supervised fine-tuning stage, we refine the
prefix embeddings to better align the LLM’s be-
havior with real doctors’ communication styles and
expertise. Unlike the self-cloning stage, which uses
responses generated by the all-around LLM, this
stage reuses the real doctors’ responses from clin-
ical department data as ground truth to fine-tune
the planner in a supervised manner. Note that the
dialogue history remains the same as that in the self-
cloning stage, but the ground truth for fine-tuning
is now the real doctors’ responses rather than those
generated by the LLM. That is, the ground truth
for the real doctor’s response at the j-th round is g;
instead of ¢;. The loss function in this stage is

M N;

Lope==—> > log fo(q | s(e})]€}). ()

i=1 j=1
4 Experiments

4.1 Dataset

Our dataset is sourced from a real-world online
doctor-patient consultation platform in China, in-
cluding more than 10 clinical departments, such as
pediatrics, ophthalmology, etc. This data source
consists of authentic doctor-patient multi-turn dia-
logues, covering a range of medical inquiries and
responses. In this paper, we present preliminary
results using the data from the gynecology depart-
ment because of its large number of consultations
(300k+ dialogues), while the available data across
all departments (800k+ dialogues) are for training
the all-around LLM. Table 1 lists the statistics of



Dataset #Dialog. #Rounds Method Avg. s >2(%) s>3(%) s>4(%)

Original Original

gynecology 310k 1.77m gynecology LLM 3.5824 97.21 57.93 7.15

For prefix learning Proposed

self-cloning 10,000 58,105 all-around LLM 3.6353 97.74 58.65 7.48

supervised fine-tuning 10,000 54,133 random prefix w/o learning 3.6437 9832 5844 7.91

test set 1,000 5,463 prefix w/ self-cloning only 3.7584  98.86  68.38 8.34
PERT (prefix w/ self-cloning & SFT) 3.8013 98.41 71.66 10.36

Table 1: Statistics of dialogues from
the gynecology department and those
used for prefix learning during self-
cloning, supervised fine-tuning, and in-

ference, respectively. respectively.

our used dialogue data, including the number of di-
alogues (#Dialog.) and the total number of rounds
(#Rounds). Specifically, we use 10,000 dialogues
for both self-cloning and supervised fine-tuning,
with average rounds per dialogue of 5.8 and 5.4, re-
spectively. For evaluation, we use 1,000 dialogues
as the test set.

4.2 TImplementation Details

The fine-tuned all-around LLM in PERT is obtained
by fine-tuning Qwen2-14B-Instruct (Yang et al.,
2024a) with aggregated data from all clinical de-
partments. For training, We used a learning rate
of 0.001 and Adam optimizer to minimize the loss.
We used a prefix token length of 2, with prefix em-
bedding size of 128. The dimension of the hidden
state of the LLM is 5120. The planner for generat-
ing prefix tokens was trained for 10 epochs for self-
cloning and 5 epochs for supervised fine-tuning,
while the all-around LLM was frozen. All experi-
ments were conducted on servers with 8 NVIDIA
V100 GPUs, each with 16 GB VRAM.

4.3 Preliminary Results

We compared several methods for doctor-patient
dialogue generation to validate the effectiveness
of our method in Table 2. The methods tested
for comparison include (i) the original gynecology
LLM; (i1) the all-around LLM that generates re-
sponses without any prefix learning stages; (iii) a
random prefix without learning, where the plan-
ner is randomly initialized to generate prefix to-
kens; and (iv) update the prefix embeddings using
self-cloning only, referring to no fine-tuning with
real doctor responses. Finally, our proposed PERT,
which combines the self-cloning stage of the plan-
ner to generate prefix embeddings with the super-
vised fine-tuning stage using real doctor responses,
was also evaluated. We utilized a general-purpose
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Table 2: Performance comparison among different methods by the aver-
age score s and the percentage of dialogues with scores exceeding 2, 3,
and 4. Bold and underlined text represent the best and the second best,

LLM (Qwen2-7B-Instruct) to assess dialogue re-
sponses. Each response was rated on a scale from
1 to 5, with higher scores indicating better quality.
The evaluation considered factors including safety,
professionalism, and friendliness. The complete
prompt template is provided in Appendix A. For
each dialogue, the highest turn score was taken as
the dialogue’s overall score. We then calculated
the average score and the proportions of dialogues
with scores exceeding 2, 3, and 4 in Table 2.

As we can see, PERT achieves the highest aver-
age score of 3.8013, significantly surpassing the
baselines (gynecology LLM and all-around LLM)),
which have an average score of 3.5824 and 3.6353,
respectively. The random prefix method also shows
a comparable result (3.6437), but it remains lower
than the prefix learning approaches. Meanwhile,
our method generally accomplishes the best results
in the percentage of responses with scores above
various thresholds (s > 2~4), except the compara-
ble percentage with the self-cloning stage only for
s> 2. These results indicate that the inclusion of
prefix learning by reusing real doctors’ replies from
the training data is significant for generating more
coherent and contextually appropriate responses.

5 Conclusions and Discussion

In this paper, we propose PERT, which leverages
a prefix learning strategy to re-explore multi-turn
dialogue training data after the SFT training phase,
leading to further LLM performance improvement.
Our preliminary results show that PERT achieves
noticeable improvements on gynecological data.
Since our model is designed for deployment,
the performance of the medical LLM needs to be
continuously improved through iterative updates.
Once the existing data has been effectively utilized,
a key question is whether we can further explore
its potential for specific medical scenarios. This



paper presents a novel model-based approach to
achieving this objective. In fact, prefix learning is
often compared side by side with low-rank adap-
tation (LoRA) SFT (Van Sonsbeek et al., 2023) in
terms of model performance. However, we cascade
these two stages and adapt them to our multi-turn
interactive dialogue scenario to achieve further im-
provements.

In medical scenarios, the tolerance for hallu-
cinations is much stricter than in general con-
texts. During interactions with patients, responses
from a medical LLM must not contain blatantly
commonsense-violating errors. For example, if a
male patient is asked about menstruation, such an
error represents a critical red line that cannot be
crossed. A response like that could lead the patient
to entirely abandon the use of the online medical
consultation platform. However, such issues are
difficult to directly measure through standard per-
formance evaluation metrics (e.g. the rating scale
used in this paper). Since these issues are crucial
considerations in determining whether a medical
LLM is suitable for real-world deployment, we
plan to leverage reinforcement learning to address
these red-line issues.

There has recently been considerable research
on retrieval-augmented generation (RAG) to miti-
gate hallucination issues, such as GraphRAG (Edge
et al., 2024). However, building a precise and pro-
fessional knowledge graph in the medical field re-
quires a significant investment of time and effort
from medical professionals. This research direction
is currently also underway in our project.

Limitations

A limitation of our work is that we did not involve
medical specialists in rating the responses at this
point, since the scope of this preliminary study is
within our internal research team. We will con-
tinue to test PERT in other departments. Once its
effectiveness is demonstrated thoroughly, medical
professionals from the online consultation platform
will perform further evaluation.

Many medical LLMs used ChatGPT/GPT-4 se-
ries for scoring or included them for performance
comparison (Moor et al., 2023; Yang et al., 2024c;
Chen et al., 2023; Singhal et al., 2023). Unfor-
tunately, in compliance with our platform’s safe-
guarding medical data privacy policies, we are re-
stricted from accessing external API interfaces, in-
cluding ChatGPT/GPT-4 series.
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In this work, we focus only on the pure tex-
tual content rather than multi-modal dialogue data,
even though the appearance of images sent by pa-
tients to better illustrate their symptoms is common
in practice (Li et al., 2024b). Meanwhile, incor-
porating the paradigm of the conventional medi-
cal imaging diagnosis or screening tasks such as
our previous studies (Yang et al., 2021; Cao et al.,
2024, 2025; Tang et al., 2021; Yi et al., 2022) into
the LLM/VLM-powered multi-turn interactive dia-
logue setting still remains a challenging and ongo-
ing area of research.

Ethical Considerations

All personal data were anonymized to ensure par-
ticipant privacy. This study was reviewed and ap-
proved by the Institutional Review Board (IRB)
of Qingdao Ping An Kangjian Internet Hospital,
China (IRB number: LLSC2024A01). The authors
declare no competing interests.
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A Appendix
A.1 Prompt Template

In this section, the complete prompt template for
the 5-point rating scale is provided. Since our data
source is in Chinese, the original language of this
prompt template is Chinese. We have translated it
into English.

You will act as an evaluator and rate the doctor’s next
response based on the dialogue history between the
patient and the doctor. Please provide a score from 1
to 5 according to the following scoring criteria.
VRAFPEDDIEAE B, ARYE M8 MR A 2 IR B0 3
s, WELER N —RESHEITITS . ERE
LUF PRorpriEss 1255 IS o
Scoring Criteria
PEo PRI
e 1 Point - Very Dissatisfied:

5 - EFHAHE:

- The response is completely irrelevant to the pa-
tient’s question or contains obvious errors;
[15 5 B KR E5E 2 70 R B BAR

- Lacks basic medical knowledge and common
sense, potentially misleading the patlent
R EARKETTFIRFE IR, ATRIRS R

- The response could negatively impact the pa-
tient’s health.

(5] 5 AT RES R 1 o A £ TR

e 2 Points - Dissatisfied:
253 - N

- The response is partially correct but contains
significant errors or omits key information;
EISERIIER, (S EAENREE TR
RIEE

- Fails to adequately address the patient’s concerns
and lacks depth;

REEFTHBREEFRE, RZIFE;

- Lacks professionalism and does not provide ef-

fective diagnosis or recommendations.

EISERZ T, RERMAFHEISHEGE

o
e 3 Points - Average:
o - —

- The response is generally correct but lacks de-
tailed explanations or supporting information;
EISEARIER, (BN RRE s

- The question is addressed, but the expression is
not entirely clear and could be improved;
%%H%Tl‘ﬂ%ﬂi HRIXNETEW, FEOAN=
Al

- The response is neutral, without major errors, but
also does not exceed expectations.
ESXEAY, BEARER, MixAEY
WERRIL -

e 4 Points - Satisfied:
- B

- The response is accurate and provides sufficient
information and explanations;

EIS e, RALT EHEAE SRR

- Considers the patient’s condition and offers per-
sonalized advice;

ZRTREORI, RA T MEILEELG

- Demonstrates professionalism and provides ef-
fective diagnosis or recommendations.

EIS I 7 'Av ik, SEmErx Bk iR R
CSER G EANE
e 5 Points - Very Satisfied:
5 - AEHHR

- The response is not only accurate but also ex-
ceeds patient expectations, offering in-depth
analysis and recommendations;

FIEACOER, mEBH T BEOHE, &
BETHRARI AR

- Demonstrates a high level of professional knowl-

edge and a deep understanding of the patient’s

condition;
JEIL T AP ML AR AT BB 1B LR
ZIFRAR

- The response is encouraging and instills confi-
dence and reassurance in the patient.

EESERNR, RS TEEFEOMZE -
Steps
G2
e Read the dialogue history between the patient and
the doctor;

158152 B AR 2 A 2 [R] B 7 58

Read the doctor’s next response;
PREAER T —RES;

Evaluate the response based on the scoring criteria;
ARIE PRI, X E S AT I

Assign a score.

s — 1D

Examples

ZN|
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e 1-Point Example: SR R . 7

1537451 - Online Doctor’s Response: “Persistent fatigue
- Patient: “My menstrual blood has been dark could be a sign of anemia or hypothyroidism.
brown for the past few months, and my period Have you noticed pale skin or changes in heart
lasts longer than usual.” rate? I recommend a complete blood count and
B WL LA A WA ZEE RS thyroid function tests.”
TR, THEER R T . FERBELERIS .  “RPEERIK 55 ] AE A ILE

- Online Doctor’s Response: “It might be due to FUR BRI REROE FIB 5L - IRE B FEERI &
fatigue. Just get some rest.” RS BB BRI AT FR
HELEERE. XARERKT5IEN, £ FRDREMI -

EBEF - > - Score: 4

- Score: 1 5 4
P4 1 - Reasoning: The response is accurate, offers ad-

- Reasoning: The response is overly simplistic vice, and asks relevant follow-up questions. The
and does not consider possible gynecological tone is proactive, though it does not provide spe-
conditions such as endometriosis or fibroids. It cific over-the-counter treatment options or fur-
also fails to ask about other symptoms or medical ther diagnostic guidance.
history. B FSER, REET —EE, iR
B ESETRE, EEEDFGERE THRRAEIR, BN, HiXEREEER
BHER, T ERRRESTEIVE, W FEALTT G 2R — B HIS T L -

&R 1 — ) o R EABAEIR B 5 e 5-Point Example:
e 2-Point Example: 554

253 7~ - Patient: “I recently noticed blood in my stool,

- Patient: “I’ve been feeling dizzy lately, espe- and I’m really worried.”
cially when I stand up.” B R, R
BE: R EARELE, JTHRE e 7
FEE SR RS fiE o - Online Doctor’s Response: “Blood in stool could

- Online Doctor’s Response: “It might be low be due to hemorrhoids, but it might also indicate
blood pressure. Drink more water and eat more more serious conditions such as colon polyps
salt.” or cancer. Do you have abdominal pain, weight
EEEERE:. “XARERKAE, £M5 loss, or changes in bowel habits? I strongly rec-
K, ZzEh. ommend scheduling a colonoscopy as soon as

- Score: 2 possible. In the meantime, I can provide guid-
P4 2 ance on how to prepare for the procedure.”

- Reasoning: The response does not inquire about FLREERE. “KEFIILAREESRE, 1
additional symptoms, such as fainting or blurred A RESE B E A, WsERS B N B IE -
vision, and lacks a recommendation for further REDEIER - AT N A E ) R Zs?
medical evaluation. It also does not provide per- KRR IETMAE G ERE, HESRF
sonalized advice. BHRIEB S KRR - [N, e
. ESERERREEOEMER, R MR B — LR TR SRR ERE
THERSA NN, MiFREETE— S
BRE, B PR - Score: 5

e 3-Point Example: W5 5

357~ - Reasoning: The response is thorough, profes-

- Patient: “I’ve been experiencing chest tightness, sional, and considers multiple potential causes.
especially at night.” It asks relevant follow-up questions, provides a
B, RS e, THEHELER clear action plan, and reassures the patient with
eo® expert guidance.

- Online Doctor’s Response: “Chest tightness }Eﬁﬂ E/Ejkﬁiiéﬁ ; ?%%T?ﬂﬂ@i%ﬁ(i
could be a heart issue or caused by anxiety. You T[] T*Eﬂéﬁiﬁiz I T EKE E/‘J"?ﬂfﬂlﬂ
should go to the hospital for further evaluation.” AR BE R ULRIRZIEAR, SR, B
FEREERSE. MR iR DR, 4 BT BEFOMEZRE -
FIRERBIBGIREM . BUUREERME—D
. Output Format

- Score: 3 A%

PFar: 3

Please print the evaluation score following the
format below, where x = {1, 2, 3,4, 5}:
TEHRIR DL EESRITEN T, IREOE RS0

- Reasoning: The response is correct but lacks
detailed explanations and does not ask about rel-
evant symptoms or medical history. However, it

at least suggests further medical evaluation. T, Hix={1,2,3,4,5}:
il [ESERERT R, JH R iR
BEREE OB s A AR, B2 Wi x

DEWTH—PRE .
e 4-Point Example:
457 745
- Patient: “I’ve been feeling constantly fatigued,
even after getting enough sleep.”

B WEAL SRR, BEHERTE
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Abstract

The healthcare industry has accumulated vast
amounts of clinical data, much of which has
traditionally been unstructured, including med-
ical records, clinical data, patient communica-
tions, and visit notes. Clinician-patient conver-
sations form a crucial part of medical records,
with the resulting medical note serving as the
ground truth for future interactions and treat-
ment plans. Generating concise and accurate
clinical SOAP (Vivek Podder, 2022) notes is
critical for quality patient care and is espe-
cially challenging in specialty care, where rele-
vance, clarity, and adherence to clinician prefer-
ences are paramount. These requirements make
general-purpose LLMs unsuitable for produc-
ing high-quality specialty notes. While recent
LLMs like GPT-4 and Sonnet 3.5 have shown
promise, their high cost, size, latency, and pri-
vacy issues remain barriers for many healthcare
providers.

We introduce SpecialtyScribe, a modular
pipeline for generating specialty-specific med-
ical notes. It features three components: an
Information Extractor to capture relevant data,
a Context Retriever to verify and augment con-
tent from transcripts, and a Note Writer to pro-
duce high quality notes. Our framework and in-
house models outperform similarly sized open-
source models by over 12% on ROUGE metrics.
Additionally, these models match top closed-
source LLMs’ performance while being under
1% of their size. We specifically evaluate our
framework for oncology, with the potential for
adaptation to other specialties.

1 Introduction

The healthcare industry relies on storing, process-
ing, and referencing large amounts of clinical and
research data, such as patient records, conversa-
tions, treatment histories, and medical research.

“These authors contributed equally to this work.
"Work done while at DeepScribe.

andrew.beinstein@deepscribe. tech

Most of this data is unstructured and language-
based, making it challenging to extract relevant
information. Traditional NLP methods, and more
recently Large Language Models (LLMs), have
enabled efficient analysis to improve diagnoses,
personalized treatments, and health outcomes.
With increasing digitization, medical records are
now maintained electronically as electronic health
records (EHRs), with tools to add structure to notes.
A medical visit note, the doctor’s concise sum-
mary of medically relevant information, is critical
for long-term reference and guiding future interac-
tions.

Generating accurate medical notes from
clinician-patient conversations is crucial for high-
quality care. These notes reduce the administrative
burden, enhance record accuracy, and ensure in-
formation is accessible for decision-making (Berg,
2023). However, generating high-quality notes
in specialized fields like oncology is challenging
due to high requirements for relevance, brevity,
specificity, and clarity. Before LLMs, models
like TS or BART fine-tuned for note generation
faced issues like nonfactual content (Chelli et al.,
2024). Although newer LLMs (e.g., Opus, Sonnet,
GPT-4) have potential, they are costly and pose
privacy concerns for many healthcare facilities.
Fine-tuning public LLMs (Goyal et al., 2024; Yuan
et al., 2024) has been explored to improve general
medical note generation.

A significant challenge in using generative mod-
els like LLMs is hallucination: "generated content
that is nonsensical or unfaithful to the provided
source content" (Ji et al., 2023). Inaccurate in-
formation in medical notes can severely impact
quality and reliability. Oncology requires specific
and concise note-taking focused on primary can-
cer diagnoses. Colorectal surgeons, for example,
prioritize cancer-related treatments, with general
symptoms included only if relevant to the treat-
ment plan. Thus, oncology notes must be selective,
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emphasizing critical information to support cancer
care.

We address these challenges by focusing on key
aspects of oncology note generation:

* Completeness: covering all essential informa-
tion

* Conciseness: avoiding irrelevant details

» Writing Quality: ensuring readability, clarity
and medical language flow

* Organization: categorizing information cor-
rectly in the SOAP note

Our approach simplifies note creation through
three key modules. The Information Extraction
module captures oncology-specific details. The
Context Retriever gathers additional context, ver-
ifies accuracy, and reduces hallucinations. The
Summarizer generates a medical note, ensuring
precision and reliability.

Our contributions include:

* A unique three-step approach with an Informa-
tion Extractor, Context Retriever, and Summa-
rizer to generate high-quality specialty notes.

Fine-tuned LL.M-based models to extract key
medical concepts and also write the final note.
These models outperform similar sized open-
source models by more than 100% and match
closed source models while being less than
1% the size of them

* An embedding-based verification and augmen-
tation method to minimize hallucinations and
improve recall.

Demonstration of our framework’s effective-
ness in clinical settings, matching the perfor-
mance of top LLMs.

2 Related Work

Medical Note Generation. Generating high-
quality medical notes from doctor-patient conver-
sations is a challenging task. Prior to the advent
of large language models (LLMs), previous ap-
proaches attempted to address this problem by
breaking it into multiple stages (Krishna et al.,
2020)—Airst identifying key transcription snippets,
grouping them, and then summarizing—or by
chunking the transcription (Zhang et al., 2021) into
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smaller pieces. However, these models failed to
achieve real-world usable quality.

With the emergence of LLMs, recent
works (Van Veen et al.,, 2023; Biswas and
Talukdar, 2024; Goyal et al., 2024) have focused
on leveraging or prompting powerful private
LLMs, such as GPT-4 and MedPalLM, to enhance
medical note generation. These models have a
better understanding of language and can produce
more readable text. However, reliance on private
vendors raises concerns about data privacy and
incurs high costs.

This has driven further research (Yuan et al.,
2024; Kerner, 2024) into developing specialized
medical LLMs that are better equipped to under-
stand clinical texts and generate quality notes for
general scenarios. Nonetheless, in oncology, the
focus of medical note generation differs, and none
of the existing approaches can be directly applied
to oncology data without significant adaptation.
Information Extraction. To extract information
from transcription text data, Named Entity Recog-
nition (NER) or similar sequence tagging methods
are often used to identify and extract key entities
and information. Models such as BioBERT (Lee
et al., 2020), MedBERT (Rasmy et al., 2021), and
ClinicalBERT (Huang et al., 2019) have proven
effective in this context. When combined with tech-
niques for extracting entity relationships (Lv et al.,
2016), events, or temporal information (Styler IV
et al., 2014), these models can provide a com-
prehensive understanding of medical information
from transcriptions. Recently, the use of large lan-
guage models (LLMs) like MedPalLM (Singhal
et al., 2023), PMC-LLaMA (Wu et al., 2024), or
MEDITRON (Chen et al., 2023b) has made it more
feasible to extract key information from transcrip-
tions through prompting. However, these LLMs
are still limited by their capabilities and may not
always capture information accurately and compre-
hensively.

Summarization. Existing summarization ap-
proaches often focus on general abstractive sum-
marization (Gupta and Gupta, 2019; Basyal and
Sanghvi, 2023), or domain-specific tasks like news
summarization (Zhang et al., 2024). However, gen-
erating medical notes requires more than just sum-
marization; it demands attention to medical details
and selective extraction of key information specific
to different specialties.
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Figure 1: SpecialtyScribe Framework for the HPI section of a medical note from a doctor-patient conversation

transcript

3 SpecialtyScribe

SpecialtyScribe consists of three primary modules:
Information Extractor, Context Retriever, and Note
Writer. Figure 1 illustrates the end-to-end function-
ing of the SpecialtyScribe framework using a basic
example.

Information Extractor Module: This mod-
ule takes the transcription as input and extracts
specialty-specific (oncology) medically relevant in-
formation.

Context Retriever Module: This module gener-
ates additional transcript context to augment the
extracted information and mitigates hallucinations
by verifying the extracted information against the
transcript. It takes the original transcript and the
output of the Information Extractor Module as in-
put. Transcript snippets are selected by splitting
the transcript into sentence chunks and comparing
the embeddings of the extracted information with
those of the snippets, and selecting the top-k snip-
pets to enhance the Note Writer model’s context.
We also use a hallucination detection algorithm to
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further filter the extracted information

Note Writer Module: This module generates the
final medical note using the outputs of the Context
Retriever Module, the extracted information (now
filtered) and relevant transcript snippets. Since
each section of SOAP note can have multiple sub-
sections, (e.g. HPI, Chief Complaint, Medications
etc.). This model is trained to generate subsection
notes that combine to create the final note. It can
also ignore irrelevant information that is part of the
context.

3.1 Information Extractor

Our challenge involved working with a single, long
transcript. Although newer LLMs can process
longer texts (up to 32k tokens or more), they still
face issues such as significant performance degra-
dation depending on the relevant position of the in-
formation in the prompt, as discussed in (Liu et al.,
2023). Traditional segmentation methods failed, as
the model lacked full context and produced contra-
dictory results. Additionally, we required a prompt-
based extraction system capable of adapting to new



instructions to support customization requests by
doctors. To address these issues, we reformulated
information extraction as an Orca-style instruction
task (Mukherjee et al., 2023). Here, the model’s
objective was to follow specific rules and extract
information from given snippets. This approach
was developed based on (Yuan et al., 2024), which
describes the creation of a medical LLM that un-
derstands the nuances of spoken medical language
and the structure of medical notes.

Training Data Generation: We began by breaking
oncology notes and categorizing information into
sub-sections, such as Cancer Procedures, Cancer
Tests, Cancer Symptoms, and Current Symptoms.
For each sub-section, we crafted specific instruc-
tions. See Appendix-B for more details.
Protecting Data and Controlling Costs: We ro-
bustly de-identified any PHI(Protexted Health In-
formation) and PII (Personally Identifiable Infor-
mation) as defined by HIPAA and US government
respectively in the transcripts and notes by adapting
the Microsoft Presidio library for our specific use
case. This is discussed in more detail in Section 6.
We incurred a one-time cost for preparing our train-
ing data by using GPT-4-32k. However, this cost
was minimal compared to what would be required
to serve these models in production at scale. We
used GPT-4-32k to process 7,000 doctor-patient
conversations, each ranging from 5 to 60 minutes
with an average duration of 20 minutes, to create
the OncNoteGen Dataset. This resulted in approx-
imately 68,000 samples with an average context
length of 7,000 tokens. To mitigate overfitting in
information extraction tasks, we used two stages of
tuning. First, we warmed the model with general
instructions, including around 100,000 examples
sampled from MedMCQA (Pal et al., 2022), Pub-
MedQA (Jin et al., 2019), and general instruction
datasets such as Orca (Mitra et al., 2023) and Meta-
Math (Yu et al., 2024). Second, we trained the
model with our proprietary 68,000-sample oncol-
ogy note data—OncNoteGen.

Following initial fine-tuning, we observed that
the model struggled to distinguish between past,
present, and future tenses, especially when identi-
fying medications and doctor’s orders. This issue
appeared to be inherited from the GPT-4-32k model
used to build the training dataset. To address this,
we introduced an additional 3,000-4,000 QA-based
instructions specifically designed to help the model
understand these tense distinctions. An example
prompt for this task is provided in Appendix-C.
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3.2 Context Retriever

We developed an algorithm to identify the context
from the transcript for the content generated by
the information extractor. We decomposed the ex-
tracted information into pieces (e.g. by bullets gen-
erated from the extractor), and then used their em-
beddings to encode each piece of information. Sim-
ilarly, we indexed the transcript, by chunking it into
groups of varied sentence counts e.g. 1,2, 5 and
calculating their embeddings. Then we used em-
bedding matching to find the transcript context for
each piece of extracted information. We utilized the
all-mpnet-base-v2 model (Reimers and Gurevych,
2019) for generating embeddings and employed the
similarity_search_with_relevance_scores function
from Meta’s FAISS library (Douze et al., 2024)
to conduct embedding similarity searches. As the
transcripts are divided into chunks by varying sen-
tence numbers, it’s possible to have duplicate sen-
tences in the matched snippets. To address this, we
removed duplicate sentences and arranged the sen-
tences in the snippets in their original chronological
order.

Hallucination Mitigation: In our framework,
hallucinations can originate from two major
sources. First, the Information Extractor can output
some data which has no grounding in the transcript
or the prompt and second, the example used in the
few-shot prompt can propagate into or influence the
output. To address the first kind, the Context Re-
triever first filters out the extracted content that does
not have any transcript context support retrieved as
explained in Algorithm-1 (see Appendix A for step
by step explanation)

3.3 Note Writer

Final Note Generation: We trained the Note
Writer model to generate notes based on the fil-
tered extracted content and the corresponding con-
textual transcript. This model was trained on a
diverse set of 1,000 human-expert-annotated notes.
The experts annotated the data in two stages: first,
they identified the relevant transcript snippets for
each note subcategory; then, they combined these
snippets to create a medically accurate subsection
of the note. Since, each note was divided into
its constituent subsections (e.g., Subjective: Labs,
Plan: Follow-Ups), we end up with an average of
10,000 data points in the training set. We delib-
erately train it on a diverse medical note dataset
rather than oncology specific dataset as we intend



to use this model across multiple specialties. While
it is possible to train the information extractor to
also do the note writing to reduce inference burden
in real-world applications, we found that with the
proposed framework, training them separately pro-
vided better performance and greater flexibility for
use in other specialties.

We also developed a basic prompt that instructs
the model to produce the note for each correspond-
ing subsection. During training, the model learnt to
create subsections of a note based on the retrieved
relevant data, which were eventually combined into
a complete note. This approach significantly re-
duced our context length requirements. The model
was trained in a LoRA (Low-Rank Adaptation)
setting, which made the training process fast, cost-
effective, and scalable, with minimal impact on
performance.

Algorithm 1 Information Filter

Input:
I={i1,iz,...
T': Transcript
0: Lower Bound Confidence

a: Similarity Confidence

E,,: Embeddings for examples from prompt
Er = ExtractEmbeddings(T)

Olltpllti Iincludad

1: Initialize included information ;nciudea = []
2: for all information ¢ € I do

,in }: Retrieved information set

3: if7 «n T then
4. Iincluded-append(i)
5: else
6: E; = Extract Embeddings (i)
7: Score = EmbedMatch(E;, ET)
8: if Score > 6 then
9: Linciuded-append(i)
10: end if
11: end if
12: end for
13:
14: for all 3,01 € Linciuded do
15: E; = ExtractEmbeddings(iine)
16: PromptScore = EmbedM atch(E;, E,)
17: TranscriptScore = EmbedMatch(E;, ET)
18: if PromptScore > a > TranscriptScore then
19: Ii7zcluded~remove(iincl)
20: end if
21: end for
22: return I, ciuded

4 Experiment

4.1 Setup

Information Extraction: Consistent with the
methodology described in (Yuan et al., 2024), our
training utilized the pretrained version of Mistral-
7B model. The learning rate was set at 2e-5 with
cosine decay to le-5, and batch sizes were main-
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Figure 2: Training perplexity on OncNoteGen Dataset

tained at 128. Positional interpolation, referenced
in (Chen et al., 2023a), addressed long-context
management. Training occurred over 11 hours on
32 NVIDIA A100 GPUs distributed across four
machines (8 GPUs per machine). Training perplex-
ity and validation Rouge F1 scores for the Onc-
NoteGen Dataset are shown in Figures 2, and 3
respectively.
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Figure 3: Validation Rouge-1 F1 and Rouge-lcs F1
scores on OncNoteGen Dataset

Note Writer: We again utilized the pretrained
version of Mistral-7B model described in (Yuan
et al., 2024), as our base model. The model un-
derwent training for two epochs with a batch size
of 8. To enhance memory and cost efficiency dur-
ing this process, we adjusted the Low-Rank Adap-
tation (Lora) rank to 32. Our computational re-
sources included 8 NVIDIA RTX A6000 GPUs,
each equipped with 48GB of memory, allowing for
substantial parallel processing and data handling
capabilities. During training sessions, the average
GPU utilization was maintained at 85%, indicating
efficient usage of hardware resources. Addition-
ally, we integrated the FlashAttention 2 mechanism
and utilized the DeepSpeed Zero 3 optimization
framework to streamline our training process. The
learning rate was set at 2e-5 with cosine decay to
le-5.



Model Missed Redundant Misclassified
Opus 0.37 0.11 0.10
Sonnet-3.5 0.31 0.08 0.05
GPT-4-32k 0.40 0.08 0.05
mistralai/Mistral-7B-Instruct-v0.2 0.46 0.18 0.10
meta-llama/Meta-Llama-3-8B-Instruct 0.45 0.28 0.06
BioMistral/BioMistral-7B 0.53 0.51 0.03
SpecialtyScribe (ours) 0.37 0.08 0.05

Table 1: Results on Oncology Entity Identification Task indicating average Missed, Redundant, and Misclassified

entities (lower is better)

Model Aci-bench (subTask B) OncNoteGen
ROUGE_L BLEU ROUGE_L BLEU Human(4)

Opus 0.21 0.09 0.27 0.15 2.44
Sonnet-3.5 0.21 0.10 0.26 0.14 2.78
GPT-40 0.20 0.09 0.29 0.17 2.95
mistralai/Mistral-7B-Instruct-v0.2 0.13 0.05 0.19 0.10 2.69
meta-llama/Meta-Llama-3-8B-Instruct 0.19 0.09 0.25 0.15 2.53
SpecialtyScribe (Note Writer) 0.24 0.12 0.31 0.21 3.14

Table 2: Results on Note Writing Quality Task (higher is better)

4.2 Evaluation

We performed a comprehensive evaluation of lead-
ing open-source and proprietary models to assess
the effectiveness of our Information Extraction (IE)
model as well as the note-generation component
of the Note Writing module. We selected high-
performing models, including closed-source SoTA
ones like Opus, Sonnet-3.5 and GPT-4-32k, along-
side prominent open-source models with medical
and general applications.

Datasets: We use two datasets for our evaluation.
1. Aci-bench (subTask B) (wai Yim et al., 2023):
This is a public dataset designed for benchmarking
automatic medical visit note generation. From this
we take 39 different medical visits for our test set.
2. OncNoteGen Test: We choose a set of 21 oncol-
ogy transcripts from OncNoteGen dataset such that
it ensures coverage across criteria such as visit type
(new vs. follow-up), length (long vs. short), and
style (dictation-heavy vs. conversational). This is
our proprietary dataset and is not available on the
internet. On this particular dataset we also perform
human expert based evaluation.

Human Scoring: To facilitate a rigorous assess-
ment, human experts prepare rubrics which repre-
sent the gold-standard of the medical (oncology
specific) entities (key phrases) which should be
captured along with their respective sub-categories.
These experts also create the gold-standard final
notes designed to mirror the expectations of health-
care providers accurately.

Potential Leakage into Test Data: We recognise
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that it is possible that the Aci-bench data could
have been present in the training sets of all the
models that we compare against and also our base
model - Mistral 7B. Even though we feel it is more
likely to be present in the closed source models as
compared to the smaller open-source models there
is no way for us to know. In this framework we are
guaranteed that the OncNoteGen Test Dataset is
completely blind to the model by the virtue of it
being entirely proprietary.

4.2.1 Information Extraction

Setup: We evaluated three tasks within the Oncol-
ogy Entity Identification Task on the OncNoteGen
Test dataset:

* Missing Information: We compared the gen-
erated note to the gold-standard note, assess-
ing any missed phrases or key information,
crucial for ensuring note coverage.

Redundant Information: We identified re-
dundant details in the generated note that were
absent from the gold-standard, including "hal-
lucinations" or unsubstantiated entities from
transcripts, to maintain note conciseness and
accuracy.

Misclassification: We examined whether cor-
rectly identified entities were properly catego-
rized, ensuring structured and well-organized
notes.



Results and Analysis: Table-1 demonstrates that
our domain-specific fine-tuning outperformed lead-
ing models like GPT-4-32k, particularly in reduc-
ing Missing Information, and was competitive in
other tasks. Sonnet-3.5’s improved performance
highlights the value of leveraging recent datasets
and better instructional comprehension, suggest-
ing future opportunities. Our experts noted chal-
lenges like separating labs, biopsies, and imaging
categories in the note, indicating areas for further
tuning. Opus and Sonnet models experienced ex-
ample leakage, reducing robustness, while mod-
els like Mistral, Llama, and BioMistral generated
excessive redundant entities, impacting precision.
Despite BioMistral’s misleading high score in mis-
classification due to entity repetition, our model
outshone the Mistral 7B Instruct base model, un-
derscoring the benefits of specialty fine-tuning.

4.2.2 Note Writing Quality

Setup: We froze all SpecialtyScribe components,
using our Information Extractor, and replaced the
Note Writer with different LLMs, ensuring con-
sistent input. Evaluations were conducted on both
datasets described earlier.

Metrics: We used reference-based metrics like
BLEU and ROUGE, which are common for sum-
marization but have limitations in correlating with
human judgment on creative tasks. Thus, human
experts also assessed notes based on Clarity, Gram-
mar, Professionalism, and Coherence.

Human Evaluation Methodology: Experts rated
each note across the four parameters mentioned
and used a 0-5 Likert Scale with scores normalized
between 0 and 1. The final results were the sum of
score across the 4 categories and reported for the
OncNoteGen dataset.

Model Choice: Due to cost, we used GPT-40 in-
stead of GPT-4-32k. Its claimed superiority makes
it a strong benchmark. BioMistral was excluded
for failing to follow output format instructions.

Results and Analysis: Table-2 indicates closer
scores on Aci-bench compared to OncNoteGen.
Our model surpassed both open and closed models,
partly due to its understanding of the input style,
showcasing the benefit of a custom-trained model.
The higher performance gap on OncNoteGen high-
lights the limitations of generic models for special-
ized writing tasks. Notably, OncNoteGen’s average
scores were higher, attributed to prompts designed
for a data distribution similar to that dataset.

40

4.2.3 Medical Note Generation

Setup To assess the overall impact of using
SpecialtyScribe to generate medical notes, we
compared the notes generated by various LLM’s
taking in the entire transcript with our framework
as outlined in Section-3. We use the same metrics
as defined in the previous task, except for human
experts which now evaluate the note on multiple
aspects.

Human Evaluation Methodology: The experts
were asked to score the notes based on the follow-
ing 4 verticals - Writing Quality (as explained in
above task). Clinical Accuracy to determine how
accurately the note reflects the original informa-
tion from the medical encounter, including correct
documentation of terms, findings, diagnoses, and
treatment plans. Completeness to evaluate whether
the note contains all necessary and relevant med-
ical information without leaving any gaps in the
patient’s story or care and Organization to check
the structure of the note, including accurate classi-
fication into medical sections. We follow a similar
process as for Note Writer, where the experts are
asked to give a score on the Likert scale between
0 to 5, which is then divided by 5 to get a number
between O to 1 for each vertical. The final reported
score is the sum of the scores for the 4 catergories
averaged across the test set. We do this only for the
OncNoteGen dataset.

Results and Analysis As indicated in Table-3, sim-
ilar to values for the note quality evaluation task we
see the model scores on Aci-bench dataset are not
very different between the state of the art LLMs
and our model. The scores on these metrics are
also generally low as n-gram matching may simply
require "heart murmur", but our prompts are struc-
tured to prompt the model to deliver full sentences
like "Patient presents today for a consultation on
heart murmurs". On OncNoteGen dataset, we can
clearly see the superiority of our approach over the
latest open source models. We perform on par with
the latest models from Anthropic, falling slightly
short of OpenAI’s GPT-40. Our human experts re-
ported that our framework performed best in Writ-
ing Quality and Organization of the note. Even
though Opus and GPT-40 models had the best cov-
erage, they really struggled with note organization.

4.2.4 Ablation

To further substantiate the importance of every
component in our framework, we conducted the



Model Aci-bench (subTask B) OncNoteGen
ROUGE_L BLEU ROUGE_L BLEU Human(4)

Opus 0.21 0.09 0.24 0.12 2.97
Sonnet-3.5 0.21 0.10 0.24 0.13 2.94
GPT-4o0 0.18 0.07 0.21 0.10 3.28
mistralai/Mistral-7B-Instruct-v0.2 0.12 0.04 0.16 0.07 2.77
meta-llama/Meta-Llama-3-8B-Instruct 0.16 0.07 0.18 0.08 2.65
SpecialtyScribe (ours) 0.24 0.12 0.31 0.21 3.17
(w/o Context Retriever) 0.23 0.09 0.30 0.19 3.07
(w/o IE and Context Retriever) 0.24 0.11 0.29 0.18 2.51

Table 3: Results on Medical Note Generation Task (higher is better)

medical note generation experiment using two vari-
ations of the system. The first version removed
the Context Retriever module, leaving the Note
Writer model to rely solely on the Information Ex-
tractor model’s output. In the second version, we
eliminated both the Information Extraction and the
Context Retriever modules, resulting in the Note
Writer directly generating the end notes from the
original input transcript. Table-3 clearly illustrates
how each module of SpecialtyScribe framework is
crucial for achieving optimal performance.

5 Conclusion

In this paper, we detail our efforts in creating a
framework to generate medical specialty notes that
can be adapted across multiple specialties. We
train an Information Extraction (IE) model to ex-
tract medically relevant content from oncology-
based doctor-patient conversations, develop a hal-
lucination detection mechanism, and train a Note-
Writer module to produce clinician-approved med-
ical notes. Through rigorous evaluation, our find-
ings reveal that our models and pipeline not only
outperform the leading medical and general open-
source models in this domain but also parallel the
performance of the foremost proprietary models
available. The results further demonstrate that de-
composing the note generation task into smaller,
manageable parts enhances both the accuracy and
comprehensiveness of the medical notes produced.
This approach ensures a more precise and reliable
documentation system, which could significantly
improve diagnostic and treatment practices in spe-
cialized medical care. Furthermore, our approach is
cost-effective, achieving comparable performance
to the most expensive models, such as Opus and
GPT-4-32K, with a significantly smaller model.
Our work presents a framework that can serve as
a foundation for further research to improve the au-
tomated medical note creation process, especially
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for complex medical specialties, potentially reduc-
ing clinician workloads.

6 Ethical Considerations

In compliance with HIPAA regulations, we have es-
tablished Business Associate Agreements (BAAs)
with OpenAl and Anthropic, the parent company of
the Opus and Sonnet-3.5 models, to ensure the pro-
tection and confidentiality of sensitive data. This
agreement guarantees that the data provided is nei-
ther leaked nor used for model training purposes.
We thoroughly de-identified all personal health in-
formation (PHI) from our datasets before any pro-
cessing or analysis. This was achieved by sub-
stituting PHI with non-identifiable entities using
Named Entity Recognition (NER) techniques. Fur-
thermore, the use of the SpecialtyScribe tool is
strictly confined to internal operations for gener-
ating medical notes. To uphold ethical standards,
we conduct regular audits of all input prompts to
prevent any potential unethical usage.

7 Limitations

Future work should aim to construct and train a
specialized embedding model to improve the detec-
tion and elimination of data hallucinations, thereby
enhancing system accuracy and dependability. This
paper primarily examines the framework in one spe-
cialty, yet there is ample opportunity to extend this
research to include additional specialties, which
would enhance the utility of the findings and the
model’s robustness across various fields. There is
also potential for further advancements in both IE
and summarizer models. Moreover, it’s important
to acknowledge that open-source datasets may not
always mirror real-world complexities, underlining
the need for publicly available datasets that can
drive progress in this field.



8 Business Considerations

The scope of this work has been limited to protect
the company’s intellectual property (IP) and repre-
sents research-specific efforts. It does not directly
reflect the exact models, architecture, or methods
used in the company’s production systems.
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A Detailed Implementation of
Information Filtering algorithm

The Information Filter algorithm refines the out-
put of the Information Extractor step (denoted as
I) by returning a filtered subset that contains only
information strongly aligned with the transcript.
This process is crucial for mitigating hallucinations
and ensuring the extracted information remains re-
liable.

We start with indexing the transcript by chunk-
ing it into variable-length sentence groups (e.g.,
1, 2, 5 sentences) and computing their embeddings
(E7). Then, the extracted information (/) is de-
composed into discrete items (41, 72, . . .) based on
bullet points or new lines.

Step 1: Initial Matching Against Transcript For
each decomposed item 1, if it appears verbatim in
the transcript, it is automatically included in the
filtered set, denoted as I, judeq- However, if no
exact match is found, the embeddings of the decom-
posed item are extracted, and a similarity score is
computed against the transcript chunks. The most
relevant transcript context is identified based on
this score. To ensure reliability, any decomposed
item with a similarity score below a predefined con-
fidence threshold (#) is filtered out. The threshold
6 is domain-specific. In the medical field, it is kept
low to ensure that any relevant information is not
mistakenly discarded, even if it is phrased differ-
ently. This adjustment accounts for cases where
the Information Extractor paraphrases content us-
ing medical terminology, such as converting "high
blood pressure" to "hypertension."

Step 2: Secondary Filtering to Mitigate Halluci-
nations While a low threshold () prevents the
omission of important information, it may also
allow irrelevant or hallucinated content to pass
through. To further refine the selection, a second
filtering step is applied. A similarity confidence
score, denoted as «, is chosen empirically. Two em-
bedding similarity scores are then computed. The
PromptScore measures the similarity between the
extracted information and the examples used in the
prompt of the Information Extractor. The Tran-
scriptScore measures the similarity between the ex-
tracted information and the input transcript. If the
PromptScore exceeds a, while the TranscriptScore
remains below «, the information is classified as
a hallucination originating from the prompt and is
removed. This step ensures that the extracted infor-
mation is not overly influenced by the prompt ex-


https://arxiv.org/abs/2306.02022
https://arxiv.org/abs/2306.02022
https://arxiv.org/abs/2306.02022
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284

amples and remains true to the original transcript. =~ B Oncology Information Extraction Task
By systematically applying these steps, the Infor- Prompt

mation Filter algorithm enhances the accuracy and

reliability of extracted information, ensuring that

medical notes are trustworthy, well-grounded inthe ~ /~ ™\
original transcript, and free from hallucinations.

System

You are a highly trained and skilled Al
medical doctor who specializes in writing
a part of the Subjective section of a clinical
SOAP (Subjective, Objective, Assessment,
Plan) note. You only speak MARKDOWN.

User
<template>
{rules}
</template>

NOTE: If you are unsure or don’t have
enough information to provide a confident
answer, do not create or imagine a response.
Simply return "no information found". If
a certain note template section lacks the
necessary information within the transcript
to be written, then leave that section blank.
<example>

Examples only for formatting reference.
For example: Let’s say you want to write
the sections CANCER PROCEDURES
and CANCER SYMPTOMS from a given
template. If no information is found
related to CANCER PROCEDURES, the
output should look like:

#CANCER PROCEDURES
##no information found
#CANCER SYMPTOMS
##<information here>
</example>

Using above template, example and
guidelines, given the real transcript below,
can you fill out the outline accurately and
thoroughly? Return your answer as a string
following the template. DO NOT return
ANYTHING outside of the template.

Transcript:
{transcript}
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C Additional Task Prompt

We utilized the GPT-4 model to generate question-
answer pairs specific to certain sub-sections
including ’Medications’ and ’Plan-Orders’,
wherein the model initially encountered challenges.
Beyond the generation tasks for general and
respective sub-sections, we incorporated additional
QA tasks that require short responses, with the aim
to enhance the comprehension capabilities of the
model

4 System )

You are a medical assistant that can answer
questions form a given context. In this task,
you will be asked to answer a question from
a given doctor patient transcript.

User

Transcript: {transcript}

Question: {question}

Return your response as a JSON in the fol-
lowing format:

{

"Answer": "....",

n,on "

"Explanation": "....

U Y,
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Abstract

In fields like healthcare and pharmacovigilance,
explainability has been raised as one way of ap-
proaching regulatory compliance with machine
learning and automation. This paper explores
two feature attribution methods to explain pre-
dictions of four different classifiers trained to
assess the seriousness of adverse event reports.
On a global level, differences between models
and how well important features for serious pre-
dictions align with regulatory criteria for what
constitutes serious adverse reactions are anal-
ysed. In addition, explanations of reports with
incorrect predictions are manually explored to
find systematic features explaining the misclas-
sification. We find that while all models seem-
ingly learn the importance of relevant concepts
for adverse event report triage, the priority of
these concepts varies from model to model and
between explanation methods, and the analysis
of misclassified reports indicates that reporting
style may affect prediction outcomes.

1 Introduction

Pharmacovigilance (PV) deals with the detection,
assessment, understanding and prevention of ad-
verse effects related to medical products (World
Health Organization, 2002) and traditionally relies
on experts processing adverse event reports (AER),
assessing the strength of new adverse event signals
and acting upon newfound insights through publi-
cations and new risk assessments. In recent years, a
need for at least partial automation has been identi-
fied to deal with the ever increasing amount of new
AERs (Bate and Hobbinger, 2021) and at times
updated processing requirements, most notable dur-
ing the recent COVID-19 pandemic.

With the introduction of automated methods into
the PV pipeline, experts have encouraged employ-
ing interpretable or at least explainable systems to

"Equal contribution to this work as senior authors.
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address safety concerns such as black swan events
(Kjoersvik and Bate, 2022) and including explain-
ability as a factor to assess the readiness of arti-
ficial intelligence (Al) for tasks in the context of
PV (Ball and Dal Pan, 2022). At the same time,
concerns have been raised about the effectiveness
of existing explainability methods and the discon-
nect between expectations towards explanations of
black-box models from an Al safety perspective
and what common explainability approaches actu-
ally are able to achieve (Ghassemi et al., 2021).

In this study, we apply two feature attribution
methods to several pre-trained language models,
fine-tuned to triage AERs, to understand what char-
acterises their prediction of specific classes and to
address the following research questions:

1. How do explanations for different models fine-

tuned for the same task differ?

. Can we align important features with regulatory
criteria for serious cases?

. Are there systematic feature patterns that ex-

plain incorrect class predictions?

Our analysis suggests that relevant features re-
lating to regulatory criteria and expert annotation
practice are learned as indicators of serious events
by all models. However, the relative importance be-
tween these features in the explanations vary from
model to model. Beyond features directly asso-
ciated with serious reports, we find evidence of
model bias reflecting the reporting style by differ-
ent reporter groups.

2 Background

Explanations for machine learning models and their
predictions come in many different forms. In light
of model development and the paradigm shift to
large generative models, several works have ex-
plored using large language models (LLMs) to ex-
plain their own output (Kunz et al., 2022; Kunz and

Proceedings of the Second Workshop on Patient-Oriented Language Processing (CL4Health), pages 46—68
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Kuhlmann, 2024; Turpin et al., 2023). However,
these works also warn that while such explanations
may seem plausible to humans, it is unclear how
well they represent the real reason for a specific
model prediction, and Turpin et al. (2023) find evi-
dence that they may in fact systematically misrep-
resent the deciding factors in the decision process.

Traditionally, deep learning models are often ex-
plained with so called post-hoc methods that are
applied after the model is trained for a particular
task. Methods such as diagnostic classifiers (Hup-
kes et al., 2018) are popular to answer specific
questions about the encoded knowledge in a spe-
cific layer of the model by using representations of
the chosen layer as input to a simpler model to per-
form a relevant task. More recently, Bricken et al.
(2023) proposed the use of sparse auto-encoders to
extract interpretable monosemantic features from
single layer transformers. Templeton et al. (2024)
applied this technique to the intermediate layer of
smaller LLMs.

Feature attribution methods, such as LIME
(Ribeiro et al., 2016) and SHAP (Lundberg and Lee,
2017), instead attempt to explain model predictions
by assigning some form of contribution to features
in the input. These methods work by approximat-
ing the model to be explained on a given input
using a more interpretable model, for example by
perturbing the input in some way, observing the be-
haviour of the model to be explained, and explain-
ing it with an explanation model trained to mimic
that behaviour. Feature attribution methods can
furthermore be model-agnostic, such as LIME and
some versions of SHAP, or model-specific, such as
gradient-based methods like DeepLift (Shrikumar
et al., 2017) and Integrated Gradients (Sundarara-
jan et al., 2017).

The feature attribution methods mentioned so
far are typically applied to individual examples
and thus primarily provide local explanations, but
global explanations can be derived from local expla-
nations by aggregating them over many inputs, e.g.
using algorithms such as Submodular Pick LIME
(Ribeiro et al., 2016) and Global Attribution Map-
ping (Ibrahim et al., 2019), or by simply averag-
ing the observed attribution scores for each feature
(Van Der Linden et al., 2019; Saynova et al., 2023).

Common goals for using explainability are
model development, gaining trust, scientific insight
and regulatory compliance (Hauben, 2022), but ex-
isting methods are criticised for suffering from in-
terpretability gaps, failing to meet the expectations
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of stakeholders such as regulators and practition-
ers, and being prone to confirmation bias (Ghas-
semi et al., 2021). Moreover, Vilone and Longo
(2021) note the absence of a common definition of
explanations and lack of consensus on how to eval-
uate them with respect to reliability and validity.
Further, while user-oriented explainability may be
built with the intention of being simplified enough
to be understandable, such explanations can be too
far removed from the original model to faithfully
represent it (Rudin, 2019).

Despite the concerns and criticisms toward post-
hoc methods and feature attribution in particular,
this type of explainability method is popular in nat-
ural language processing (NLP) research, where it
has been used to achieve a variety of goals, such
as providing insights into performance differences
between different model architectures (Wang et al.,
2022; Amponsah-Kaakyire et al., 2022), investigat-
ing potential weaknesses of explainability meth-
ods (Tang et al., 2022), interpreting aspects of the
behaviour of pre-trained language models in spe-
cific NLP tasks (Nayak and Timmapathini, 2021;
Stevens and Su, 2021), serving as reference expla-
nations for investigating attention as an explana-
tion method (Jain and Wallace, 2019), exploring
descriptive features for distinct classes in domain-
specific texts (Saynova et al., 2023), and user stud-
ies on computer-assisted coding tools (Dolk et al.,
2022).

3 Method

Our experiments concern four binary classifiers
fine-tuned on the same data for which we analyse
post-hoc explanations derived with two types of
feature attribution methods — Integrated Gradients
(IG) (Sundararajan et al., 2017) and Expected Gra-
dients (EG) (Erion et al., 2021). We restrict the
study to these two gradient-based methods.

3.1 AER Triage

The classification task is that defined by Bergman
et al. (2023): for AERs from both consumers and
healthcare professionals, predict whether a report
discusses a serious adverse reaction or not, based
solely on free-text fields such as the adverse event
terms listed in the form (e.g. headache, nausea,
rash) and the description of adverse events in the
report. An adverse reaction is considered serious
if it results in death, is life-threatening, leads to
hospitalisation or prolongs existing hospitalisation,



Dataset Time period Number of AERs 1 length
S NS Total

Training 2017 -2020 4,450 7,538 11,988 73.10479

Development 2017 -2020 1,107 1,890 2,997 70.30162

Test 2021-2021 1,170 2273 3,443  60.79463

Table 1: Overview of the three data sets used, with time
periods, number of serious/non-serious (S/NS) reports
and mean report length in whitespace-tokenised tokens.

Model Abbreviation Domain
KB-BERT KBB General
SweDeClin-BERT SDCB Clinical Text
AER-BERT AERB AER
GPT-SW3 GPT General

Table 2: Selected models and their domains.

results in persistent or significant disability or inca-
pacity or birth defects (ICH, 1994). When submit-
ting an AER, reporters are asked to indicate these
specific outcomes if they apply in a multiple-choice
question. Replies to the question are among other
things used to prioritise which reports get processed
first by the case workers at the Swedish Medical
Products Agency (MPA). However, the question is
not always answered correctly given other context
provided in the report, resulting in serious reports
getting processed later than is desirable.

3.2 Data

The Swedish AERs that we base our training and
explanation analysis on have been collected by the
MPA and were annotated for seriousness by expert
assessors as part of the agency’s routine PV moni-
toring. We train the classifiers with the same train-
ing and development split as Bergman et al. (2023)
and conduct a final evaluation of all four classifiers
on the same prospective test set; see Table 1. Since
we were able to obtain an improved version of the
data used by Bergman et al. (2023), we conduct
new hyperparameter experiments for all models de-
scribed in the next section. Details on differences
from the data used in (Bergman et al., 2023) and
hyperparameter settings are in Appendix A. To re-
move numerical information related to identity, all
reports were anonymised by replacing digits in the
free-text description.

3.3 Models

We train four classifiers based on a selection of
pre-trained transformer models for Swedish with
various degrees of specialisation to the medical and
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Model Accuracy Precision Recall Specificity F,
KBB 0.819 0.833  0.583 0.940 0.686
SDCB 0.813 0.891 0.512 0.967 0.650
AERB 0.830 0.845 0.612 0.943 0.710
GPT 0.822 0.788  0.653 0.909 0.714

Table 3: Classification results on the test set.

AER domain. The first three are BERT models:
the cased versions of KB-BERT (KBB) (Malmsten
et al., 2020); SweDeClin-BERT (SDCB), a con-
tinuation of KB-BERT with additional pretraining
on a corpus of de-identified clinical text (Vakili
et al., 2022);'and AER-BERT (AERB), a masked-
language model based on a large BERT model®
with continued pretraining on old AERs. AER-
BERT was previously found to give the best perfor-
mance on the triage task by Bergman et al. (2023),
compared to LSTMs and XGBoost models. In ad-
dition, we consider a small transformer decoder in
the 1.3B parameter model of the GPT-SW3 model
suite (GPT) (Ekgren et al., 2022). See Table 2 for
an overview of the models.

We fine-tune all four models for the triage task
by adding a classification layer to the pooled out-
put of the transformer models using the applicable
ForSequenceClassification classes implemented in
the HuggingFace transformers library. Table 3
shows the classification performance of the four
models on the test set. Among typical metrics for
classification problems such as precision, recall and
F1, we also consider specificity, the true negative
rate, to assess how well the models discriminate
non-serious reports. We observe GPT to outper-
form all other models in F;-score followed closely
by AERB, and SDCB to perform best in specificity.

3.4 Feature Attribution Methods

This study considers two model-specific feature at-
tribution methods, IG and EG. Both methods base
their attribution on the notion of a baseline or refer-
ence, typically defined as a neutral or uninformative
input for the task the model was trained for.

Integrated Gradients (IG): IG attributes the
model prediction by calculating the path integral
over gradients on a straight-line path from an artifi-
cial baseline input representation to that of the real

'Further research involving SweDeClin-BERT, like the
training and analysis in this study, has been approved by the
Swedish Ethical Review Authority under permission number
2022-02389-02.
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input. IG satisfies a number of desirable axioms
for explainability methods as defined by Sundarara-
jan et al. (2017), in particular sensitivity, imple-
mentation invariance, completeness, linearity and
symmetry preservation, described in Appendix B.

Expected Gradients (EG): EG is a method in-
spired by IG that samples multiple real examples
for reference and computes feature importance as
the average expected values of the gradients scaled
to satisfy the completeness axiom (Erion et al.,
2021). Being gradient-based and symmetric, EG
also fulfills the axioms defined for IG.

3.5 Explanation Methodology

To obtain explanations, we use the IntegratedGra-
dient and GradientShap classes as implemented by
the captum library (Kokhlikyan et al., 2020) for IG
and EG, encoding all reports and baselines prior
to applying the feature attribution methods. We
compute feature attributions over the full encoder
(or decoder) block and the classfication layer. For
IG we create a report specific baseline consisting of
a sequence of all [MASK] tokens for BERT models
and <unk> for GPT, of the same length as the real
report and pass along the attention mask for the
real report to predict whether report and baseline
are serious.? Each report is explained with 100 ap-
proximation steps. For EG we pass the entire set of
reports in the development data as references. This
way, each report is explained with respect to the
ensemble of all other reports.* Here, we pass an
extra argument containing report-specific attention
masks.

With our binary classification task, explanations
for serious and non-serious outcomes are symmet-
ric in that large positive values explaining a serious
prediction correspond to large negative attributions
when explaining the opposite prediction for the
same report. For consistency, all attribution val-
ues discussed in the following are computed with
respect to predicting the serious class.

In the following experiments, explanations are
obtained for 2,997 reports in the development set.
When computing explanations for the four models,
the explanation methods return results on token-

3A common baseline for IG in NLP is that of a zero vector
(Sundararajan et al., 2017) or empty string (corresponding to
all [PAD] tokens for transformer models), but we argue that
the mask and unknown tokens are a better choice, because the
chosen models were not trained to attend to padding tokens
during neither fine-tuning nor pre-training.

“Due to the number of reports we consider the effect of
explaining the report by itself to be negligible.
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level, i.e. referring to subwords as defined by the
respective tokenizer. These representations are too
fine-grained and hard to interpret and do not allow
for easy comparison between models. To achieve
a more global insight and allow for a more direct
comparison between models, we calculate attribu-
tions at word-level as the sum of the corresponding
token-level attributions per word. This is motivated
by the axiom of completeness (Sundararajan et al.,
2017), according to which the sum of attributions
for an input sequence should reflect the difference
in model prediction for the real input sequence and
the baseline.

When reconstructing the vocabulary, the differ-
ent tokenizers used by the models result in some
slight variations in the complete sets of recon-
structed word types, with 17,594 words according
to KBB and SDCB, 17,585 for AERB and 17,612
with GPT.

To address the first two research questions, we
compute global explanations on the development
set reports for each model and feature attribution
method using the normalisation method in Van
Der Linden et al. (2019) and Saynova et al. (2023),
effectively calculating global explanations as the
relative attribution score for each full word in the
dataset.

3.6 Analysing Explanations

Using global explanations for each classifier and
explanation method, we want to analyse the attri-
butions for interesting groups of related terms. To
that end, we define the overall importance of each
group as the average attribution value per model,
and adjust for variation within the groups by scal-
ing with the unbiased sample standard deviation:?

Hg
1404

importancey = @)
In this way, we can focus on groups that consis-
tently show large positive attribution values. To
obtain groupings of terms, we consider an unsuper-
vised approach in the form of clustering as well as
the following explicit resources:

* MeSH: Medical Subject Headings (Lipscomb,
2000) is an ontology for indexing biomedi-
cal information by the National Library of
Medicine.

* Filter terms: Terms and word segments cre-

5In the following, this equation is referenced when used to
avoid confusion with importance as a general concept.



ated and used by assessors at the MPA, in the
absence of the triage model (see Appendix
C.D).

Criteria grouping: Based on the criteria for a
serious adverse reaction (cf. Section 3.1), we
select a set of terms using MeSH and Swedish
MeSH,® grouping them into general terms and
terms relating to specific concepts within the
five criteria (see Appendix C.2).

4 Results

4.1 Model Differences on a Global Scale

To compare explanations for different models,
we calculate Kendall’s 7 correlation between the
global attributions for the shared vocabulary by all
models as well as for the set of terms matching
the filter terms. As a frame of reference for the
fine-tuned models, we also compare each classifier
with its newly initialised, but not yet fine-tuned
counterpart, and label that the control.

Correlations of attributions on all shared terms
at the top of Figure 1 are weakly positive among
all fine-tuned models, with slightly stronger corre-
lations between the encoder models as opposed to
encoders and GPT for IG. Interestingly, IG attribu-
tions for the two models with domain-specific pre-
training have a lower correlation with each other
than with the general domain KBB, and SDCB’s
correlation with KBB is slightly lower than that
of KBB and AERB. By comparison, correlations
among EG explanations are much weaker, with the
strongest signals between KBB and the domain-
specific models. For both IG and EG, correlations
with the corresponding control models are close
to zero, as would be expected for explanations of
models unfamiliar with the triage task.

This correlation approach includes many terms
with attributions close to zero for which compar-
ison or correlation is uninformative. To focus on
more relevant terms, we select terms matching the
filter terms and calculate the correlations on this
subset. The results at the bottom of Figure 1 show
stronger correlations for both IG and EG. For IG,
the trends between models are similar to those for
the shared vocabulary, with an increased similar-
ity between GPT and AERB. The correlations for
EG are weaker between GPT and the other fine-
tuned models and slightly stronger between KBB
and the domain-specific models. Comparing both

®https://mesh.kib.ki.se/
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methods, correlations between control models and
fine-tuned models are relatively stable for EG in
both the larger and the more specific sets of terms,
while they are stronger for IG in the latter setting.

Based on the filter terms, we measure how highly
the explainability methods score terms matching
the filter, and the variance across models. Table
4 shows average attribution scores for three sets
of terms: (1) words matching the filter, (2) words
that do not match the filter, (3) all words in the
dataset. Figure 6 in Appendix D visualises the
distribution of scores in the first two sets for each
model. All models trained for triage on average
assign matched terms higher attribution scores than
the ensemble of other terms. For the control mod-
els, all three sets have a similar average attribution
score close to 0 for most models, suggesting no
strong contribution to either the serious or the non-
serious class for those terms. This indicates that all
fine-tuned models learn to associate the filter terms
with the positive class and that both explanation
methods pick up on their importance.

Exploring more freely which concepts are im-
portant for a serious outcome with each model ac-
cording to the explanations, we cluster terms with
the largest attribution scores and hand-annotate the
clusters. This resulted in 164 clusters for IG and
193 for EG, of which 134 had identical labels. We
next consider how much of the clusters is covered
by the 8,000 highest ranked terms and how impor-
tant clusters are for each model as per Equation 1.
Figures 2 and 7 show the twenty most important
clusters to the average of all four models for IG and
EG respectively. A two-dimensional visualisation
of the full clustering reflecting cluster importance
as explained by IG and EG can be found in Figures
13 and 14 in Appendix E, which also contains more
details on the clustering procedure and coverage
metric.

Considering explanations by IG, all classifiers
note clusters relating to extreme situations (suicide,
ambulance, abortion, organ transplants), organ-
related issues, specific symptoms and health con-
ditions (depression, syncope, vision and breathing
disorder, hypo-,’ epilepsy, dementia) as important.
Importance by model varies somewhat, with hallu-
cination, breathing disorders and suicide emerging
as the most important clusters for KBB, while am-
bulance is less prominent. SDCB, in addition to sui-
cide and hallucination, places more importance on

"Deficiencies denoted by terms with the prefix hypo-.
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Figure 1: Kendall’s 7 correlations and their significance between models for shared vocabulary (a), (b), and filter
terms (c), (d). The control row reports correlations, between each classifier and a corresponding untrained classifier.

(a) Fine-tuned models

Model In filter Outside All terms
KBB 0.0348*** 0.0008 0.0013
G SDCB 0.0634*** 0.0095 0.0101
AERB  0.0402*** 0.0015 0.0020
GPT 0.0699*** 0.0103 0.0110
KBB 0.0724*** 0.0037 0.0046
EG SDCB 0.0421*** 0.0069 0.0073
AERB  0.1000*** 0.0062 0.0073
GPT 0.0599*** 0.0063 0.0069

(b) Control models
Model In filter Outside All terms
KBB -0.0044 -0.0032 -0.0032
G SDCB 0.0007 0.0001 0.0001
AERB  0.0056*** 0.0022 0.0023
GPT -0.0017 -0.0052 -0.0051
KBB -0.0009 -0.0004 -0.0004
EG SDCB  -0.0032 0.0004 0.0003
AERB  -0.0008 -0.0007 -0.0007
GPT 0.0029 -0.0030 -0.0029

Table 4: Average attribution scores by explanation method for each of the four models. The scores are averaged for
three sets of terms, those matching the filter terms, those not matching the filter terms and the report vocabulary as a
whole. (a) shows results for the fine-tuned models and (b) shows results for the models prior to fine-tuning as a
control. Significantly higher attribution scores of the filter terms compared those outside the filter are marked with *
to *** to reflect the significance level of the Wilcoxon rank-sum test.

cluster coverage

o
o

suicide

[y

ambulance

o
(o)}

hallucination
syncope
heart rate

(=]

liver

breathing disorder
hypo-

vision disorders

(=}
I R R S I o R R o R R

~
o
e e I S N e S R R

fracture
epilepsy
dementia

intra-
depression
organ transplant
abortion
neurological

brain

O = N T = R T R o T e T e e e e e = O e

trauma

-

kidney

KBB SDCB AERB GPT

cluster importance

KBB SDCB

AERB GPT mean

Figure 2: 20 highest ranked clusters by group importance (IG) and their coverage among the top 8,000 terms per

model.

51



o
=
Ul

Criterion
2 B death
c 0.10 .
£ . life-threat
2 EmE hospitalisation
20.05 .
E . Hmm birth defect
0.00 I l-l iln .-I I_ mmm disability
KBB SDCB  AERB GPT
(a) IG
0.15 -
Criterion
8010 B death
E l life-threat
2 B hospitalisation
20.05 H. .
E I I I I B Dbirth defect
0.00 Ll La -I_ Bon.. ™= disability

KBB SDCB AERB GPT

(b) EG

Figure 3: Group importance of different criteria for
different classifiers and explanation methods.

the syncope, fractures and hypo- clusters. AERB is
the only model with full coverage of all 20 clusters,
but hallucination is less important, whereas suicide,
ambulance, breathing disorders and heart rate are
more important. Similarly, to GPT the most impor-
tant clusters are suicide, heart rate and ambulance,
but hallucination still ranks high.

An analysis of the EG explanations again reveals
less overlap than IG among the most important
clusters. However, we observe strong overlaps re-
garding cluster coverage among the top 3 clusters,
those relating to symptoms as well as certain organ
related issues. KBB is sensitive to specific events
such as suicide, childbirth, epilepsy, but remains
neutral on the liver and abortion clusters. SDCB
only fully covers one cluster in the top 8,000 terms
and along with suicide and epilepsy gives more
importance to liver, abortion, hallucination and
hypo-. For AERB, besides suicide and liver, ambu-
lance emerges as most important and the intra- and
fainting clusters receive more weight. Interestingly,
among the domain-specific models, AERB assigns
much more importance to ambulance than SDCB.
To GPT, hallucination is most important, followed
by syncope, hypo- and blood.

4.2 Regulatory Criteria

Figure 3 shows the importance of different criteria
groups (see Appendix C.2) according to Equation 1.
Overall, all criteria have a positive importance, indi-
cating that the models learn their relevance without
explicit exposure to the criteria. According to IG,
death is one of the two most important ones for all
models and disability is quite important in all four
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models. The life-threatening criterion appears most
important with GPT, while it is much less impor-
tant for the other models. In EG, death is the most
important criterion for all models and disability is
most important after that except for GPT, where
hospitalisation is more important. With both meth-
ods, birth defect emerges as the least important
criterion, but this may be because it is the smallest
criteria group and infrequent in the data.

4.3 Analysis of Misclassified Examples

Preliminary analysis of misclassified examples re-
vealed very few terms with deviant explanation
patterns, which we took as an indication of issues
with the gold labels of the AER data. As reported
by Bergman et al. (2023), the annotation procedure
of AERs at the MPA is suboptimal from a machine
learning perspective, because of a regulatory guide-
line that assessors should not downgrade a report
labelled serious by the reporter, even if they con-
sider the report to contain no information meeting
the criteria for serious events (EMA, 2017, p. 16).
For this reason, we asked one of the assessors to
reannotate all reports that were misclassified by
both GPT and SDCB - the best models in terms of
specificity and Fy, respectively — 345 reports in to-
tal. Appendix F gives statistics on the reannotated
reports and shows that, for both false negatives
and false positives, more than half of the labels
changed, confirming our suspicions.

Given the new annotations, we identify the terms
with the largest differences in attribution score
between true and false predictions for both seri-
ous and non-serious reports, focusing on terms ex-
plained as more serious in either true positives (TP)
vs. false negatives (FN) or true negatives (TN) vs.
false positives (FP). Table 9 in the Appendix shows
the terms matching the inclusion criteria, and Ap-
pendix G contains additional information on the
selection of these terms. For both models we then
separately consider local IG explanations of the
reannotated reports containing these terms — about
130 reports per model — to see if there are system-
atic differences for TP/FN and TN/FP report pairs.

While the manual analysis guided by the terms
did not reveal most of the terms themselves to have
obvious systematic effects, we noted some trends
observed over most of the reports with specific
patterns often explained as more serious or non-
serious than the average term. Investigating the us-
age of these patterns on the training set, we found
evidence of them reflecting reporter groups and



specifically stylistic differences in how consumers
and healthcare workers report AERs. We found cer-
tain snippets of texts that occurred in many reports
and that traced back to the original reporting form,
which had several free-text fields that were then
automatically concatenated and saved as one field
with titles or generated text corresponding to spe-
cific answers. Such elements, referred to as form
patterns in the following, were often explained as
non-serious as a whole or in part. Another notable
pattern was that of temporal references including
mentions of periods of time (e.g. minutes or days),
but also temporal adverbs like soon and directly,
which were explained as non-serious by both mod-
els. Appendix H contains information about the
specific patterns and their statistics on the training
set. What these statistics illustrate is that most of
the form patterns, with the exception of other infor-
mation:, are almost exclusively used in consumer
AERs. Although the reporting rates are less ex-
treme for temporal patterns, terms like sometimes,
month and period are more indicative of consumers,
while soon, minute and second are slightly more
used by healthcare workers.

We argue that some of the identified patterns
align with how groups of reporters tend to express
themselves in AERs, with healthcare personnel us-
ing medical jargon and writing concise reports,®
while consumer reports can be longer and contain
more detailed descriptions of how the reaction af-
fected their everyday life and complaints about sus-
pected products. From the form patterns we also
observe that consumers appear to more diligently
fill in the multiple free-text fields than healthcare
workers who appear to rather give brief and to the
point descriptions in one or a few of the fields.

In Figures 4a and 4b, we show how both types of
patterns are explained by IG, plotting the distribu-
tion of their local explanations over the whole de-
velopment set. Attribution scores were obtained by
matching the exact sequence for form patterns, and
summing the attribution scores of the individual
words. Temporal patterns were matched with regu-
lar expressions covering morphologic variations.’
In general, the explanations for SDCB appear more
concentrated than those of GPT. Some form pat-
terns like first reaction after medication and reac-
tion not treated are clearly mostly negative in terms
of attribution, i.e. explained as contributing to non-

8 Although there is a variation with the type of profession,
see the statistics in Table 12 in the Appendix.
°The expressions are listed in Table 11.

53

e o
o N

attribution score
|
o
N

—0.4 . GPT
mEm SDCB
-0.6
X N o
c & SR o G N ©
O é\o & & & © x\é © ,bé @b
S ¥ o & 2 S 2
27 2 2 & NS & 3 &
ISR &L o&\ O&& &
X & o X & S
& & < G N $
O F&
& S
S K

(a) form patterns

[
g 00 + H> . X$T+ 14 +T | ~ 4+
c
£-01
3
2 Model
%‘0-2 . GPT
== SDCB
-0.3
LN S A S @ o &N & >
¢ P ¢ EE SIS Lo S S
@ SN & @& & JIF S ¥ o <
DR POy ¢

(b) temporal patterns

Figure 4: Local attribution score distribution of form
patterns and time references over all matched reports in
the development set, ordered by frequency.

serious predictions, while other information, addi-
tional information and other causes of adverse re-
action are more symmetrically concentrated around
0, suggesting an overall more neutral, less system-
atic contribution of these patterns to the prediction
of reports in the development set. With respect to
temporal references, there is a more global signal of
after, day, minute and sometimes being explained
as more non-serious with both models, while di-
rectly, then and soon appear slightly more neutral,
and year and suddenly being explained as more
serious.

The trends observed in attribution polarity and
dominant reporting groups led us to take a closer
look at model performance in these two groups in
the development set. We found that recall for all
four models was more than 20% lower for con-
sumers than for healthcare workers and precision
10-20% lower. Correcting the gold labels where
we have reannotations increases the scores for all
models and subgroups, yet the differences in re-
call precision and F; persist for the subgroups of
consumers and healthcare workers.'?

""More detail on this evaluation in Appendix J.



5 Discussion

The analyses in the previous section aimed at inves-
tigating feature attribution explanations for differ-
ent triage models to answer the research questions
defined in the beginning of the paper.

How do explanations for different models fine-
tuned for the same task differ? To answer the
first research question, we investigated the correla-
tion between global attributions with two explain-
ability methods. We found considerable variation
between models, but also weak to moderate cor-
relations among model attributions, most notably
among encoder models and with the IG method.
Moreover, models are more consistent with each
other when task-relevant concepts are in focus as
explored through filter terms and criteria groupings.
From the analysis of important clusters, we find
that suicide, ambulance and hallucination appear
in all models with both explanation methods. With
IG, we can glean SDCB explanations to deem med-
ical terminology such as syncope, fracture and de-
ficiencies/dysregulations (hypo-) most important,
while KBB, AERB and GPT focus more on the con-
cepts common to all models, although AERB and
GPT also give high importance to heart rate. With
EG, we find some similarity in the most important
clusters, with SDCB still having high importance
scores for deficiencies, but also featuring other con-
cepts like epilepsy, abortion and liver, while GPT
retains hallucination as an important cluster, in
addition to syncope, deficiencies and blood.

Can we align important features with regula-
tory criteria for what constitutes a serious case?
All models seem to learn the importance of the fil-
ter terms and the groupings of criteria, albeit with
different priorities as suggested by both the correla-
tions over filter terms and the importance assigned
to different criteria.

Are there systematic feature patterns that ex-
plain incorrect class predictions? Through the
manual analysis of reports we learned that serious
and non-serious explanations do not always focus
on parts of the report that could be considered rele-
vant for the assessment of the report at hand, and
that the level of detail may be a factor contribut-
ing to misclassification. This raises the question
whether the selected methods are adequate given
the classification problem at hand and how one can
conceptualise the two classes to distinguish. Is a
non-serious report a distinct category in itself with
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salient features identifying it or just defined by the
lack of serious features? And should we define an
abstract neutral baseline or model explanations in
contrast to the non-serious class?

6 Conclusion

In conclusion, our analysis shows that all models
learn to identify relevant features indicative of a
potentially serious case, but with varying focus
on symptoms, conditions and medical procedures.
Most of the criteria for identifying serious events
are important for serious predictions with all mod-
els and explanation methods, but their relative im-
portance varies across models. Finally, manual
analysis of reports reveals features reflecting the
reporting style of specific reporter groups, specifi-
cally reflecting which and how many free-text fields
were filled in and to some degree the narration style
and level of detail as represented through temporal
references. This part of the analysis raises ques-
tions about model training and the adequacy of the
selected explanation methods for the task at hand.
Future work on training and explaining triage sys-
tems may need to rethink how information in this
binary setup is defined and contrasted, to promote
the importance of medically relevant features over
confounding features related to form and writing
style.

Limitations

In the preparation of this study, we made several
design decisions that can be scrutinised further. In
particular, the chosen explainability methods come
with their own set of limitations, one of which is
that, while feature attribution may highlight impor-
tant terms, such a representation ultimately does
not explain why the model that is being explained
relies on those features to begin with. In addition,
feature attribution for the most part constrains us to
individual explanations of the input features with-
out representing how features may interact with or
affect each other. At the same time, the goal of
the study in question was not to identify the best
explanation technique for our use case, but instead
to investigate triage models with available feature
attribution methods.

We chose to focus on real-world data and mod-
els that may be employed as part of the MPA’s
pharmacovigilance monitoring. As such, the main
focus of this paper was not to make claims on exact
classification performance differences of the triage



models we analyse and we therefore did not pur-
sue evaluation over several training seeds as this
would also further complicate the analysis of ex-
planations taking into account several versions of
each fine-tuned model. For an analysis of the ro-
bustness of fine-tuning the AER-BERT model for
triage we refer to our previous results in Bergman
et al. (2023).

We did not study the effect of different fine-
tuning runs on the final explanations given the
same hyperparameters and base model and there-
fore cannot make any claims on how much of the
differences we see between triage models is due to
initialisation of the classification head, shuffling of
the training data, or the difference in pre-trained
base model. However, a limited control experiment
showed that global explanations of ten fine-tuned
versions of KB-BERT with different random seeds
correlated much more strongly with each other than
with any of the other models, which suggests that
the differences between different pre-trained mod-
els are relatively robust. See Appendix K for more
information.

The decision to use generative models with fine-
tuning methods geared towards encoders instead
of reframing the task into a generative setup may
not have been the optimal choice for the GPT-
SW3 model, but was chosen to follow a common
methodology in deriving explanations and, most
notably, always having a binary classification out-
come space to refer to.

A large part of the analysis rests on aggregated
attribution values. Corpus-level normalisation is
only one way of achieving this aggregation. Fur-
thermore, aggregation of explanations over multi-
ple reports comes at the cost of losing nuances in
specific contextualised cases.

Throughout the analysis, we consider raw ag-
gregated values for each model. Using such un-
normalised average attribution values means that
global explanations between models are not di-
rectly comparable, since some models have much
more extreme attribution values — this is why we
took more of a ranking approach and focused on
relative importance among, e.g., criteria groups.

The grouping of criteria is debatable for certain
terms that may fit multiple categories or can be
hard to disentangle in relation to another category
(e.g. miscarriage as death rather than birth defect,
cardiac arrest as death vs. life-threatening). Fur-
ther, the groups are likely not an exhaustive list
of relevant criteria terms in the given data, and as
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raised in the analysis, some groups cover only very
few and overall infrequent terms and may provide
a limited representation of the criterion in question.

Likewise, while the clustering analysis under-
went several iterations to find a good separation
of clusters without generating too many outliers
there may be parameters resulting in an even better
clustering result. In addition, to save resources, the
clusters used in the analysis were manually labelled
by a single annotator, based on the MeSH ontol-
ogy and no further quality checks were conducted
on this annotation. Involving more and more ex-
pert annotators in the process may have resulted in
higher quality labels and slightly different group-
ing decisions for similar clusters and consequently
different results. This could for example lead to
combining more semantically similar clusters that
are only distinguished by their level of specialisa-
tion such as the fainting and syncope clusters.

As for the investigation of reporter groups in-
spired by the manual analysis of explanations, one
obvious aspect potentially dividing reporter groups
is medical terminology and frequently used abbrevi-
ations by medical workers. While both references
to medical conditions and procedures as well as
drug names were noted as salient in some of the
manually analysed reports, the variation of terms
was larger and an exhaustive list more challenging
to put together and analyse than the patterns we
decided to study further.

Ethical Considerations

The data used in this work contains sensitive med-
ical information and has been collected and pro-
cessed by the Swedish Medical Products Agency
as part of their pharmacovigilance monitoring duty.
For the scope of this study, processing the data
by training and evaluating models and their ex-
planations falls under the agency’s operations for
business development and does not require further
ethics approval by the Swedish Ethical Review Au-
thority. To ensure information security, the texts
have been anonymised by replacing digits in the
free-text, where personal identity numbers may be
reported. Further, complete examples of individ-
ual AER descriptions cannot be included without
additional anonymisation steps. Since the study
itself focuses on the explanation and evaluation of
triage models for larger sets of reports this has not
been necessary and observations are reported as
summaries of subsets of the full AER data.
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Figure 5: Report length in whitespace-tokenised tokens
for the cleaner version of the data used in this paper
(new) and the version previously used in Bergman et al.
(2023) (old).

the report. In their work, preprocessing included
filtering out and removing those comments using
regular expressions. However, for this study we
were able to obtain access to a database storing
only the original reports as they were at the time of
reporting and therefore skip this step in preprocess-
ing the text. Upon comparing matching reports in
the two data sources, we also discovered that the
previously used data source contained truncated
reports. Figure 5 shows a comparison of report
lengths in the previous and current version of the
data.

The database we extracted our reports from only
contained those reports received by the MPA via
an electronic reporting form. We found that some
reports in the dataset used by Bergman et al. (2023)
were not present in the original database and such
cases could be explained by the original incoming
reports covering information warranting a sepa-
rate report, e.g. when the report describes adverse
events related to different medical products at dif-
ferent points in time, specifically assigns different
suspected events to different medication, mentions
multiple patients with similar adverse events, or
discusses events in mothers or soon-to-be mothers
as well as events in their young children or fetuses.
These reports were then split manually by asses-
sors and added to the working database. Our data
splits contain 90 such examples in development
and training set, 42 of which were found to start
with comments during pre-processing. To allow
for some degree of comparison with our previous
study, we opt to still keep these reports in their
previous form and apply filtering to remove initial
comments matching specific keywords followed by

58

dates and assessor signatures.

Preprocessing for all reports includes stripping
of initial hyphen characters and white space in the
description field as well as prepending to the de-
scription all suspected adverse events in list form.

The focus of the hyperparameter experiments
was to identify learning rate and epoch settings for
the four models. We considered learning rates in
the set {0.00002, 0.00003, 0.00004, 0.00005} and
training for up to three epochs and chose the best
settings according to the observed loss on the de-
velopment set. Table 5 shows the selected settings
informed by the experiments.

The settings for KBB and SDCB are identical.
For AERB, we add a weight decay term of 0.01 to
keep consistency with Bergman et al. (2023).

B Axioms of IG and EG

As defined by Sundararajan et al. (2017), the ax-
ioms fulfilled by both explanation methods are

sensitivity, whereby only relevant features
contribute to the explanation and irrelevant
features have an importance of 0,

implementation invariance, stating that for
two networks that produce the same outputs
as each other for all inputs, the attributions
should be identical,

completeness, in the sense that the sum of
attributions for a particular input should cor-
respond to the difference in model output for
the input and the baseline,

linearity, in that attributions for a model that
is a linear combination of two other models
are a linear combination of the attributions for
those two models,

symmetry-preservation, whereby symmetric
variables in the network should get the same
attribution if they have the same value.

C
C.1 Filter Terms

The list of filter terms contains 47 terms or seg-
ments that relate to words associated with seri-
ous reports and is used to filter incoming reports
marked as not serious for candidates that can be
prioritised. A drawback of its format is that word
segments, not always representing real morphemes,
may also match less relevant terms. All filter terms
and approximate translations with annotations for

Analysis resources



Parameter KBB & SDCB AERB GPT
Batch Size 8 8 4
Gradient Accumulation 1 1 2
Learning Rate 2x107° 2x107°% 2x107°
WarmupRatio 0.3 0.3 0.15
Mixed Precision - - fpl6
Optimizer AdamW  AdamW AdaFactor
Weight Decay 0 0.01 0
Epochs 1 1 2
Table 5: Training Settings
omitted parts are listed in Table 6. The filter terms
match a total of 220 terms of the vocabulary in the Filter Term Translation

global explanations.

C.2 Criteria Groups

The criteria groups are 5 groups of concepts derived
from the definition of serious adverse reactions —
relating to death, life-threatening reactions, hospi-
talisation, disability and birth defects. Each group
consists of single word synonyms as well as more
specific concepts, and is internally grouped to re-
flect more general notions as well as very specific
terminologies and contexts.

For example, the group for death comprises a
group of general words such as death, pass away,
passing as well as individual groups for more
specific forms of death such as suicide, suffoca-
tion/asphyxia, cardiac arrest and miscarriage. This
grouping was created for the set of terms covered
in the development set and is not exhaustive with
respect to all possible subcategories that may ex-
ist outside this restricted vocabulary. Terms cover
different wordforms of the same lexeme.

Table 7 shows how many terms and subgroups
are associated with each criterion. The biggest
criterion is that of hospitalisation with 179 terms.
These include different inflected versions of the
same lemma as well as common abbreviations and
in some cases spelling variations found in the cor-
pus of AERs that constitute the development set.
The groups were created using MeSH and referring
to terms present in the AER reports. Hence some
groups such as birth defect are fairly small even
though there are more conceivable birth defects,
but they do not feature in the analysed set of AERs.
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ARDS

BNP

Haemoly
Johnson
andningsavbrott
andningspéaverkad
andningssvikt
andningsuppehall
anfall

avled

barre

blind

cerebro

dog

dyspne

dod

epidermal
epilep

fladder
hallucin
handik
hemolyti
horsel

interstit
kardiell myopati
koagulat
kolangit
konstaterad
lungsvikt
lymphobhist
mikroangio
missbild
missfall
multisystemisk
mungip
optikusneu
propp

puls

purpura

resp insuff
scars

syn

synbortf
toxisk

vaerd

ventrike
ventrombos

respiratory distress syndrome
brain natriuretic peptide
haemoly(sis)

Johnson

respiratory arrest
respiratory challenged
respiratory failure
respiratory arrest
attack, acute onset

died

Barre (Guillain-Barré syndrome)
blind

cerebro-

died

dyspnea

death

epidermal

epilep(sy)

flutter

hallucin(ation)
disab(ility)

hemolyti(c)

hearing

interstit(ial)
cardiomyopathy
coagulat(tion related)
cholangitis

confirmed / diagnosed
lung failure
lymphohist-
microangio-
malforma(tion) / birth defect
miscarriage
multisystemic

corner of the mouth
optic neu(ritis)

clot

pulse

purpura

resp(iratory) insuff(iciency)
scars

vision

(loss) of vision

toxic

vaccine-associated enhanced respiratory disease

ventric(le)
venous thrombosis

Table 6: 47 Swedish filter terms and their English trans-
lations and completions.



Group Terms Subgroups
Death 33 5
Life-threatening 10 1
Hospitalisation 179 3
Birth defect 4 2
Disability 20 5

Table 7: Total number of terms and subgroups in each
of the criteria groups.

D Feature Attribution for Filter Terms
and Non-Filter Terms

Figure 6 shows the distributions of global attribu-
tion scores for terms matching the filter and those
not matching the filter with both IG and EG.

1.0

Ll LJT

-0.5

attribution score

-1.0 term selection
I in filter

[ outside filter

-15

KBB SDCB AERB GPT

model
(a) IG
term selection
10.0 B in filter
) [ outside filter
s 75
<]
[}
wn
c 5.0
=]
3 25
=
© 0.0
-2.5
KBB SDCB AERB GPT
model
(b) EG

Figure 6: Distribution of global attribution scores for
terms matching the filter and terms not matching the
filter.

E Clusters of Top 8000 Serious Terms

To find more general concepts important for a se-
rious outcome with each of the models according
to either explanation method, we took the union of
the 8,000 most important terms per model and clus-
tered them for each attribution method. Terms were
first embedded using a Swedish Sentence-BERT
model'! and then decomposed to 50 dimensions
using principal component analysis with whitening

'"K BLab/sentence-bert-swedish-cased
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and clustered with HDBSCAN (Campello et al.,
2013). We experimented with lemmatization at
an earlier stage, but found it harder to obtain an
interpretable clustering that way. We set the HDB-
SCAN clusterer to a maximum cluster size of 80,
a minimum cluster size of 5 and used default set-
tings for the remaining parameters. The clusters
were annotated by hand by a single annotator with
a background in linguistics and good command of
Swedish. To make sense of medical terminology
and how medical concepts relate to each other, the
annotator relied heavily on MeSH and its Swedish
version to derive sensible cluster names in English.
Table 8 shows statistics on the amount of selected
terms per feature attribution method, the number
of resulting clusters, average cluster sizes and the
amount of outliers.

Figure 7 shows the importance of clusters in
EG and to what extent they were covered by each
model’s top 8,000 terms. Coverage in the latter vi-
sualisation refers to the number of terms belonging
to the cluster, that also rank among the top 8,000
terms for a particular model, divided by the total
size of the cluster in unique terms.

Figures 13 and 14 show the entire clustering of
IG and EG reduced with t-SNE. For both IG and
EG, some clusters are completely missing in the
global explanations of certain models, due to dif-
ferent tokenization. Specifically, AERB and GPT
pick up certain units (ug, umol) that are missing for
KBB and SDCB, and all models but GPT pick up
numbers and dimensions describing affected areas
listed as part of the adverse event terms, because
GPT’s tokenizer splits them into digits belonging
to a separate cluster instead.

F Reannotation

Figure 8 shows how the FN and FP reports were an-
notated by the assessor given only the concatenated
term list and description text field. We anticipated
that annotating these without the usual context may
complicate decision making for the assessor and
therefore allowed both an unclear annotation and
a field to comment on the annotation. For the en-
tire 345 reports, only 7 cases were unclear without
additional information.

Looking at the label proportions, out of the se-
rious reports in the original gold annotation, pre-
dicted non-serious by both models (FN), only a
third was actually serious after the reannotation.
Of the reports originally annotated non-serious, but



Method Termsin Union Clusters Terms per Cluster Outliers

IG 13,909 164 8.3 12,547
EG 15,347 193 84 13,726

Table 8: Statistics on the clustering.

cluster coverage cluster importance

suicide 0.15 0.19 0.23 0.12
ambulance 0.098 0.042 0.44 0.092

hallucination 0.12 0.13 0.031 0.2
hypo- 0.054 0.13 0.092 0.12

-0 0.17 0.16 0.037
0.074 0.11 0.084 0.074
0.006 0.17 0.078 0.067
0.12 0.12 0.033 0.014
0.086 0.009 0.036 0.11
0.055 0.038 0.1 0.04
0.009 -0.004 0.074 0.15
0.035 0.017 0.13 0.02
0.061 0.04 0.023 0.074
0.018 0.011 0.059 0.098
0.088 0.038 0.057 -0.001
0.11 0.023 0.028 0.023
0.12 0.022 0.005 0.031
0.066 0.018 0.052 0.017
0.061 0.002 0.05 0.035
0.11 0.015 0.024 -0.002
KBB SDCB AERB GPT KBB SDCB AERB GPT mean

vision disorders
abortion
epilepsy

blood

fainting
syncope

intra-

heart

fracture
breathing disorder
childbirth
depression
organ transplant
brain

lungs

Figure 7: 20 highest ranked clusters with EG by cluster importance (right) and their coverage among the top 8,000
terms per model.

FN (277) FP (68)

non-serious AOMSSENOLS

> —== unclear 0 unclear
33% 44%

Serious serious

Figure 8: Reannotation of False Negatives (FN) and False Positives (FP). The numbers in parentheses are the
amount of reports in each category.

predicted serious, about half remained non-serious  indicating a serious event could conceivably be
after reannotation. One possible reason for the la-  other parts of the form or its attachments without it
bel change of so many of the originally FP reports  being mentioned in the text as seen by the model.
is that some context is omitted with respect to the
original report, since AERs consist of more than
just the term list and free-text and the information
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G Selecting Reports for Manual Analysis

To identify interesting reports in the set of reanno-
tated reports, we compute the terms with the largest
differences in attribution score between true and
false predictions for both serious and non-serious
reports and restrict this to the 5 most extreme terms
that occur at least twice in each considered set
of reports with differences in the 2.5- and 97.5-
percentiles respectively.

To limit the scope of the manual analysis, we
only do this calculation and the report-wise anal-
ysis with IG. Table 9 details the terms, and their
translation for the contrasted sets and each model.

The terms comprise some reoccurring themes for
both models with terms relating to specific events
such as vaccination or product exchange,'? refer-
ences to respiration (breathing, coughing and short-
ness of breath), the emergency room, and the abbre-
viation EVF for a blood test measuring the volume
of packed red blood cells in a sample. They match
a total of 126 and 129 reports for SDCB and GPT
respectively. For each report we summarise the
text and take note of the terms explained as serious
and non-serious using IG as well as whether they
relate to the specific event, fall under additional in-
formation such as patient history or information on
other people mentioned in the report, or are stylistic
elements of the report.

Analysing the reports associated with most of
the terms in Table 9 revealed a variety in cases and
narratives, however, there was overlap between the
matched reports for vaccination, vertigo, nausea
and swelling frequently co-occurring.

H Patterns

Table 10 details the six form patterns identified dur-
ing the manual analysis. They correspond to auto-
matically inserted titles or text snippets expressing
information like whether or not the suspected ad-
verse reaction was treated or how long after the
affected person took the medicine suspected of
causing the AE they started experiencing symp-
toms.

Table 11 details the Swedish temporal references
as regular expressions to cover morphologic varia-
tion such as singular and plural, and indefinite and
definite forms for nouns, and synonyms or contrac-

IZReferring to cases when the intended prescribed product
is replaced by an equivalent product by another pharmaceutical
company, which can happen when the intended product is out
of stock at a pharmacy.
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tions of some of the adverbs, with English transla-
tions and statistics on the occurrence of these terms
in the training set and how much of those are in
consumer reports.

Figure 9 shows the attribution distributions of
form and temporal patterns according to EG, which
generally appear to be explained as more neutral
than those by IG.
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Figure 9: EG attribution scores of form patterns and temporal references in the full development set. The patterns
are ordered by frequency in the development set with the most frequent patterns to the left.

Contrasted SDCB GPT
sets FN more serious TP more serious FN more serious TP more serious
TP & FN  produktutbyte, an- blod akuten, andfaddhet, hosta, produktut-
das, hosta, vaccina- smdrtor, blod, an- byte, biverkan,
tion, rygg das yrsel, reaktionen
English product exchange, blood (the) ER, shortness  cough / to cough,
to breathe, cough / of breath, pains, product exchange,
to cough, vaccina- blood, to breathe (the) adverse reac-
tion, back tion, vertigo, (the)
reaction
FP more serious TN more serious FP more serious TN more serious
TN & FP akut, stroke, syn, klada, akuten, evf, yr, migrdn, stroke, syn, akuten,
svullna, evf biverkningsom- yrsel, torra akut, EVF
bud, rodnad, dagar
English acute / ER, stroke, itching, ER, AER- packed red-cellvol- stroke, vision, (the)
vision, swollen, delegate, 13 redness, ume, nauseous, mi- ER, acute / ER,
packed  red-cell days graine, vertigo, dry  packed red-cell vol-
volume ume

Table 9: Terms with more extreme differences in attribution score in correct and incorrect predictions per report

class.
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Pattern Translation Occurrence Reported by Consumers

forsta reaktionen efter medicineringen: first reaction after medication: 5,173 99.65%
reaktionen ej behandlad reaction not treated 3,853 99.77%
andra biverkningsorsaker: other causes of adverse reaction: 3,433 99.65%
ytterligare info additional information 2,123 99.06%
ovrig information: other information: 1,903 0.08%
reaktionen behandlad reaction treated 1,591 99.43%

Table 10: Swedish form patterns, their English translation, occurrence in the training set and the proportion reported
by consumers.

Pattern Translation Occurrence Reported by Consumers
(dar)?efter after 8,481 63.12%
dag(enlar(na)?)? (the) day, (the) days 3,990 63.73%
se(da)’n then 2,654 66.11%
veck(an?lor(na)?) (the) week, (the) weeks 2,020 61.49%
ar(etlen)? (the) year, (the) years 1,373 69.56%
manad(enler(na)?)?  (the) month, (the) months 1,382 74.75%
direkt directly 658 66.11%
minut(enler(na)?)?  (the) minute, (the) minutes 449 46.55%
period(enler(na)?)?  (the) period (of time), (the) periods 260 74.62%
ibland sometimes 319 88.71%
plotsligt suddenly 198 69.19%
strax soon 147 46.26%
sekund(enler(na)?)? (the) second, (the) seconds 73 49.32%

Table 11: Regular expressions for temporal patterns in Swedish, their English translation, occurrence in the training
set and proportion reported by consumers.
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I Reporter Statistics

Table 12 contains statistics on reports by specific
reporter groups in the training data.

Reporter Number of reports Average report length

(in characters)
Consumer 5,607 614.04
Doctor 3,687 408.15
Nurse 1,573 364.00
Pharmacist 955 281.31
Dentist 131 301.58
Other Healthcare personnel 35 869.31
All Healthcare 6,381 378.63

Table 12: Statistics by reporter group on the training set

J Subgroup Performance

Figures 11 and 12 show the performance of each
model in different metrics for the original develop-
ment set and partially corrected gold labels.

A delegated nurse / pharmacist reporting adverse events
from the medical record system on behalf of a hospital.
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K Explanation Correlation with Different
Fine-Tuning Runs of the Same Model

This section shows results of a control experiment
comparing global correlations for different fine-
tuned versions of the same base model with the
results in Section 4.1.

Shared vocab. Filter terms

Base model 1G EG 1G EG
Different 0.28410.05 0.084001 0424006 0.1140.09

Table 13: Average Kendall’s 7 correlation between ex-
planations of 10 different fine-tuning runs of KBB and
the different base models as reported in Figure 1 (ex-
cluding controls and the diagonal).

We fine-tuned 10 versions of KBB with the same
hyperparameter settings as the model reported in
the main text, but different random seeds to ob-
serve how similar global explanations are with the
same pre-trained model. Table 13 shows average
Kendall’s 7 correlations and their standard devi-
ations for explanations of these new fine-tuned
models sharing the same base model and the corre-
sponding values for the experiments with different
fine-tuned base models from Figure 1.

Figure 10 gives a better view of the distribution
of these correlations

features
I shared vocab.
[0 filter terms

0.8

0.6

0.4

correlation

0.2

0.0
EG
method

Figure 10: Distribution of Kendall’s 7 correlation be-
tween global explanations of 10 different fine-tuned
KBB models.
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Figure 11: Model results on development data for reporter subgroups on original gold labels.
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Figure 12: Model results on development data for reporter subgroups on partially corrected gold labels.
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Figure 13: t-SNE projection of serious terms in Swedish ADRs according to IG attributions for four triage models.
All terms are encoded with the same SentenceBERT model and each term is plotted individually as a point for each
model. Manually assigned English cluster labels are added for the centroid of each cluster. The size of the points
represents the spread of the cluster it belongs to specific to the explanations of a particular model. Terms occurring
in the top lists of multiple models are represented as gradually more transparent points. Outliers are smallest and the
most transparent.
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Figure 14: t-SNE projection of serious terms in Swedish ADRs according to EG attributions for four triage models.
All terms are encoded with the same SentenceBERT model and each term is plotted individually as a point for each
model. Manually assigned English cluster labels are added for the centroid of each cluster. The size of the points
represents the spread of the cluster it belongs to specific to the explanations of a particular model. Terms occurring
in the top lists of multiple models are represented as gradually more transparent points. Outliers are smallest and the

most transparent.
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Abstract

This paper explores the performance of mul-
tilingual models in the general domain on the
clinical Question Answering (QA) task to ob-
serve their potential medical support for lan-
guages that do not benefit from the existence
of clinically trained models. In order to im-
prove the model’s performance, we exploit mul-
tilingual data augmentation by translating an
English clinical QA dataset into six other lan-
guages. We propose a translation pipeline in-
cluding projection of the evidences (answers)
into the target languages and thoroughly evalu-
ate several multilingual models fine-tuned on
the augmented data, both in mono- and multilin-
gual settings. We find that the translation itself
and the subsequent QA experiments present
a differently challenging problem for each of
the languages. Finally, we compare the perfor-
mance of multilingual models with pretrained
medical domain-specific English models on the
original clinical English test set. Contrary to
expectations, we find that monolingual domain-
specific pretraining is not always superior to
general-domain multilingual pretraining. The
source code is available at https://github.
com/lanzv/Multilingual-emrQA.

1 Introduction

Medical professionals spend considerable time go-
ing through (long) clinical documents to find an-
swers to specific questions about particular patients
(Demner-Fushman et al., 2009). This process can
be simplified using natural language processing
models designed for Question Answering (QA),
either by searching for relevant evidence to an-
swer the question or directly providing a precise
answer that does not even need to be present in the
context texts (Tsatsaronis et al., 2015). Patients
would directly benefit from this more efficient pro-
cess through better quality care. In addition, such
QA systems can be designed specifically for pa-
tients, allowing them to ask direct questions about
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Lungs : R lower 01-20 with coarse BS and rales ; L side clear ; no
wheezing Abd : thin, nd, nt, soft, no masses palpable Ext : thin, no
edema, multiple old well-healed scars on R leg Skin : warm and dry,
no rash or breakdown noted though could not examine sacrum Neuro :
reactive to pain, otherwise

Pertinent Results : 2014-01-20 05:30 AM BLOOD WBC -
10.9 RBC - 4.63 Hgb - 13.6 * Het - 40.3 # MCV - 87 MCH - 29.3 MCHC
- 33.7 RDW - 14.0 PIt Ct - 393 # 2014-01-20 05:30 AM BLOOD Neuts -
82.6 * Lymphs - 14.5 * Monos - 2.2 Eos - 0.2 Baso - 0.4 2014-01-20
02:08 PM BLOOD PT - 13.2 PTT - 27.4 INR ( PT )- 1.2 2014-01-20
05:30 AM BLOOD PIt Ct - 393 # 2014-01-20 05:30 AM BLOOD
Glucose - 334 *

Figure 1: Clinical text sample from emrQA dataset
(Pampari et al., 2018), after filtration by Yue et al.
(2020).

their discharge summaries or about other aspects of
their medical records (Soni and Demner-Fushman,
2025).

Finding specific evidence supporting an answer
in discharge summaries is a crucial step for two
reasons: First, given the sensitive nature of the
data and the current inability to guarantee that mod-
els will not hallucinate, the model must point to
the specific part of the text that it used to gener-
ate its response. This allows a physician to verify
the answer directly. Second, discharge summaries
are typically lengthy documents, which pose chal-
lenges for large language models (LLMs) (Pre-
masiri et al., 2023; Luo et al., 2024). Extracting
relevant evidence from the text and incorporating it
into prompts within a Retrieval-Augmented Gener-
ation setup offers a potential solution to this prob-
lem (Abdelghafour et al., 2024).

Currently, most medical research data and re-
lated QA models are conducted predominantly in
English (Jin et al., 2019; Henry et al., 2019; John-
son et al., 2023) although most medical institutions
use their local language to produce clinical texts,
and models trained on English data are not applica-
ble to documents in other languages.

In contrast, general-domain multilingual models

Proceedings of the Second Workshop on Patient-Oriented Language Processing (CL4Health), pages 69-82
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Figure 2: Multilingual data augmentation pipeline for the emrQA dataset.

(Devlin et al., 2018; Sanh et al., 2019; Conneau
et al., 2019) are available for QA tasks in various
languages. This raises two questions: How do such
models, which have never been exposed to clinical
data, perform clinical QA tasks? How important is
the pretraining of the clinical domain?

To enhance the performance of multilingual
models and expose them to more clinical data dur-
ing fine-tuning, this study explores the impact of
multilingual data augmentation. Several previous
works have shown that multilingual data augmen-
tation generally improves the performance of mul-
tilingual models (Liu et al., 2021; Bornea et al.,
2021). However, it remains unclear whether the
same holds in the clinical domain, which often dif-
fers from the standard language (Henriksson et al.,
2014) (see Figure 1 for an illustration).

In this paper, we explore this idea by translat-
ing an English QA dataset derived from the emrQA
dataset (Pampari et al., 2018) into six European lan-
guages: Bulgarian (BG), Czech (CS), Greek (EL),
Spanish (ES), Polish (PL), and Romanian (RO) (as
shown in Figure 2). We present a systematic ap-
proach to machine translation of a QA dataset that
produces multilingual data for the task of finding
evidence in clinical text that answers a given ques-
tion. We exploit these translations for fine-tuning
and evaluation of various models in monolingual
and multilingual settings to investigate the impact
of such multilingual data augmentation. Following
Yue et al. (2020) and Lanz and Pecina (2024), we
use two subsets from the emrQA dataset — Medica-
tion and Relations

We first describe the Machine Translation (MT)
pipeline, which involves translating clinical reports,
translating questions, and projecting the answer ev-
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idence substring into the translated text. Next, we
discuss some poor-quality translated samples and
propose how to deal with them. We then use these
translations to fine-tune several Transformer-based
models on the QA task. Based on that, we investi-
gate how multilingual data augmentation improves
the models’ performance. Finally, we compare
the performance of multilingual models with the
clinically pretrained domain-specific models and
discuss whether the clinical pretraining is necessary
for this task.

This paper presents the following contributions:

* We propose a pipeline for augmentation of the
clinical QA dataset into other languages.

* We introduce a novel unsupervised forward-
backward substring alignment evaluation
method that allows a more accurate assess-
ment of substring alignment quality between
languages without the need for labeled data.

* We demonstrate the performance of multilin-
gual models on clinical QA tasks, highlighting
the benefits of multilingual data augmenta-
tion and showing that clinical pretraining does
not have to be more beneficial than general-
domain multilingual pretraining.

2 Related Work

The task of QA involving the retrieval of the an-
swer evidence substrings for a given question in
a provided context has been extensively explored
through various datasets. Among the most promi-
nent are general purpose QA datasets such as
SQuAD (Rajpurkar et al., 2016), which has also
been already translated into several European lan-
guages via MT methods (Mackové and Straka,
2020; Carrino et al., 2020; Cattan et al., 2021; Sta§



et al., 2023; Nuutinen et al., 2023). In addition to
these, the clinical QA domain has gained attention
with the emrQA dataset (Pampari et al., 2018), de-
rived from the n2c2 challenge dataset (Henry et al.,
2019).

Considerable work was done on the emrQA
dataset with notable contributions by Yue et al.
(2020), who adapted two emrQA subsets into a
SQuAD-like format for more general use. Lanz
and Pecina (2024) proposed segmentation of re-
ports into paragraphs for better QA performance.

Various medical datasets exist in multiple lan-
guages, and the Khresmoi data set (DuSek et al.,
2017) stands out as a parallel corpus of medical
sentences in several European languages. Further-
more, there is a growing trend towards the develop-
ment of datasets focused on extracting information
from clinical documents in languages other than
English (Lopez-Garcia et al., 2023; Zaghir et al.,
2024; Richter-Pechanski et al., 2024). Furthermore,
Gaschi et al. (2023) extended the n2¢2 dataset by
translating it into French and German (and we
build on this work). This process involved aligning
named entities using methods such as FastAlign
(Dyer et al., 2013) and Awesome (Dou and Neu-
big, 2021). They also used machine translation
systems such as Opus-MT (Tiedemann and Thot-
tingal, 2020) and FAIR (Ng et al., 2019). However,
the most recent MT systems are currently NLLB
(Costa-jussa et al., 2022) and MadLad (Kudugunta
et al., 2023).

In their multilingual experiments, Gaschi et al.
(2023) tested a range of multilingual models, in-
cluding mBERT (Devlin et al., 2018), distiimBERT
(Sanh et al., 2019), and XLM-R (Conneau et al.,
2019). However, these models are not pretrained on
medical/clinical data, unlike BioBERT (Lee et al.,
2019) or Clinical BERT (Alsentzer et al., 2019),
which were already used for emrQA experiments
on English data (Yue et al., 2020; Lanz and Pecina,
2024). Despite the existence of LLMs trained on
predominantly English medical data, such as Med-
iTron (Chen et al., 2023) and BioMistral (Labrak
et al., 2024), Lanz and Pecina (2024) demonstrated
that the application of LLMs to answer substring-
based evidence QA tasks is not straightforward,
often computationally expensive without providing
proportional benefits.
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Medication Relations

Number of reports 262 426
Number of paragraphs 5081 9482
Number of questions 232 347 987 965

Table 1: Statistics of the Medication and Relations sub-
sets segmented into paragraphs (each question has at
least one answer in a paragraph).

3 Machine Translation of QA Dataset

This section outlines the MT methodology for the
Medication and Relations subsets of the emrQA
dataset, filtered and normalized by Yue et al. (2020).
The process includes two phases: First, clinical
reports and questions are translated using multilin-
gual LLMs. Second, for each answer evidence, we
find the corresponding substring in the translated
text.

Clinical reports often pose a challenge for MT
due to the size and complexity of their text. In addi-
tion, aligning answer evidences in such large texts
would be challenging and error-prone. Therefore,
we begin with segmenting the reports into para-
graphs proposed by Lanz and Pecina (2024) which
reduce the size of the context while preserving all
necessary information (see statistics in Table 1).

3.1 Translation Process

Several recent works have presented highly robust
MT models for general domains (Popel et al., 2020;
Costa-jussa et al., 2022; Kudugunta et al., 2023).
However, it is unclear how these models perform
on clinical data. Following Gaschi et al. (2023), the
performance of several MT models was evaluated
in the Khresmoi medical domain data set (Dusek
et al., 2017) (the results are reported in the Ap-
pendix B). For subsequent experiments, we chose
MadLad-3B, which performs best or is very similar
to the best results, but is significantly smaller and
thus more time and memory efficient.

Translations of the questions in our dataset were
done sentence by sentence. Translating (sometimes
much) longer paragraphs turned out to be more
challenging. Therefore, long paragraphs were di-
vided into shorter parts. The paragraphs that exceed
750 characters were split into two parts of about the
same length — preferably at the end of the sentence
identified by the regular expression' closest to the
middle of the entire paragraph. If such a split were
not feasible, we split the segment at the whitespace

"la-z1{2}\ . \s+[A-Z][a-Z]



closest to the middle of a paragraph. After transla-
tion, all segments within the paragraph are joined
in their original order.

MadLad-3B sometimes tends to hallucinate
when translating clinical reports, especially when
they contain abundant medical abbreviations,
acronyms, and figures. To address this, we pro-
pose the following solution: We append the phrase
"Based on medical reports." after the end of each
segment to be translated, providing the model with
explicit context that the text is related to a clinical
text (which is not always obvious from the seg-
ment content itself). If a correct translation of this
phrase appears in a newly translated segment, it is
removed along with any surrounding whitespaces.
Otherwise, the text is translated again, with addi-
tional spaces inserted between the segment and the
prompted medical phrase to make the difference
even more explicit. In case of an increase in the
limit of translation attempts, the standard transla-
tion using the MT model without any additional
phrases was chosen. We refer to this method as
the Prompted Medical Phrase (PMP) approach and
compare it with the standard MT. The list of al-
ternative translations of the phrase added to the
prompt in all languages is provided in Appendix C.
An example of the PMP approach is provided in
Appendix D.

3.2 Answer Evidence Alignment

After translating the paragraphs, the answer ev-
idence for each question must be found in the
translated text. Due to the synthetic nature of ev-
idence substrings in emrQA, these evidence seg-
ments often lack structure, sometimes appearing as
incomplete sentences. Additionally, clinical texts
frequently contain repetitive patterns (e.g., "mg,"
"q.p.m."), making the alignment crucial to correctly
identify key clinical terms. However, these con-
cepts are often very specific and the model may
not have encountered them in alignment-based ap-
proaches during training. See Figure 3 for exam-
ples of evidence substrings from emrQA.

To align the answer evidence substring in the
translated text, we could translate the original sub-
string and locate it in the translated paragraph, as
done for SQuAD (Mackova and Straka, 2020; Cat-
tan et al., 2021; Stas et al., 2023). However, due to
the complexity of clinical data, identical translation
cannot be guaranteed. Since SQuAD evidence is
usually short (such as a person’s name or location),
the problem is not so complex. Therefore, this
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Question: Has the patient ever tried heparin?
Context:

HOSPITAL COURSE: The patient was admitted on 0/25/95 with concern for her

being at high risk of skin breakdown and infection. Plans were made for panniculec-
tomy, however, prior to this procedure, she was admitted for IV Ancef t.i.d.; Hi-
biclenz showers and sub-q Heparin. Preoperatively, her pulmonary function was as-
sessed and found to have an FEV-1 of 53% of predicted; FVC of 57% of predicted and
an FEV-1/FVC of 93% of predicted. Chest x-ray showed no active cardiopulmonary
disease ...

Question: Has the patient had allopurinol in the past?
Context:

MEDICATIONS: At the time of admission were as follows: 1. Lantus 100 mg q.p.m.
2. Humalog 20 units q.p.m. 3. Humalog sliding scale. 4. Neurontin 300 mg t.i.d. 5.
Lisinopril 40 mg q.d. [6. Allopurinol 300 mg q.d . 7. Hydrochlorothiazide 25 mg q.d.

8. Zocor 20 mg q.d. 9. TriCor 50 mg b.i.d. 10. Atenolol 25 mg q.d. 11. Eyedrops
prednisolone and atropine. 12. The patient was on iron supplementation.

Figure 3: Examples of emrQA evidence substrings,
highlighted as colored spans showing alignment chal-
lenges.

paper opts for word alignment methods, similarly
to Gaschi et al. (2023) and Zaghir et al. (2024).
Specifically, this work considers two alignment
models: the statistical model FastAlign (Dyer et al.,
2013) and the Transformer-based model Awesome
(Dou and Neubig, 2021) to project evidence from
the source to the target language.

Awesome is a pretrained aligner, while FastAlign
requires additional training. For this purpose, we
use the parallel corpus NLLB (Costa-jussa et al.,
2022), selecting the first 44.6 million sentences
paired with English for each of the languages in-
volved in our work. Since we have the same
amount of data for each language, we can directly
compare alignments across languages. Alignment
is performed on the same segments as described
in Section 3.1. Based on the predicted alignment,
the counterparts of the source answer evidence are
found in the translated paragraph. The alignment of
the first and last words determines the boundaries
of the target answer evidence substring.

As observed by Gaschi et al. (2023), the choice
of an aligner is not straightforward. They noted that
performance in the general domain is not always in-
dicative of behavior on clinical data sets, leading to
an initial suboptimal choice in their study. To objec-
tively compare the performance of Awesome and
FastAlign, this work introduces the unsupervised
forward-backward substring alignment evaluation
method. This method involves a double answer ev-
idence substring alignment, once from the source
language to the target language and then back to
the source. As a result, there are two substrings in
the source language: the original answer evidence



BG CS EL ES PL RO
EM F1 PM EM F1 PM EM F1 PM | EM F1 PM EM F1 PM | EM F1 PM
FastAlign 32.1 832 824|500 866 860|286 81.6 809|546 909 905|483 89.0 884|342 867 853
Awesome 46.0 829 824|640 898 894|248 703 698|712 937 935|571 893 89.1 647 909 904
FastAlign PMP 41.0 889 882|531 914 910|419 879 872|563 938 934 |50.1 90.8 902|357 89.6 88.1
Awesome PMP 59.3 89.2 88.8 | 66.8 93.0 928 | 365 762 757|729 963 96.1 | 588 906 90.5| 68.0 938 935

Table 2: Comparison of FastAlign and Awesome and impact of the PMP translation approach on Medication subset.

BG CS EL ES PL RO
EM F1 PM EM F1 PM EM F1 PM|EM F1 PM EM F1 PM | EM F1 PM
FastAlign 549 899 89.1|612 915 909|558 91.1 90.6 | 66.7 93.6 934|627 922 915|533 90.0 89.2
Awesome 60.7 863 86.0|66.0 91.0 908|402 773 770|770 951 952|595 883 879|723 918 915
FastAlign PMP 61.1 929 921|670 940 935 )|60.6 921 917|710 953 951 |66.7 939 932|570 919 912
Awesome PMP 66.8 894 89.0 |70.2 932 93.0|449 79.7 795|793 97.0 972|626 90.1 89.8|762 943 94.1

Table 3: Comparison of FastAlign and Awesome and impact of the PMP translation approach on Relations subset.

substring and a two-step alignment projection of
the answer evidence substring, both included in the
same source paragraph. Ideally, the two substrings
should be identical.

If the substring changes (expands, shrinks, shifts,
etc.) during the two-step alignment projection, the
alignment is considered inaccurate. An incorrect
answer evidence substring alignment in the for-
ward step is likely to carry over to the backward
projection, leading to further errors. In contrast,
successful alignment in both directions serves as a
reliable indicator of accurate projection from the
source language to the translation language. Of
course, the projection of the substring alignment
from the source language to the target language
could be correct, but the second projection back to
the source language was problematic. So, this eval-
uation method is stricter than directly measuring
the quality of the newly generated answer evidence
substrings. Furthermore, it also indirectly evalu-
ates the quality of the MT from the previous stage
described in Section 3.1. Poor translation would
hinder accurate alignment, allowing this method
to compare the performance of the straightforward
MT and the PMP approach.

In the unsupervised forward-backward substring
alignment evaluation, we compare two English sub-
strings and aim for identity. To measure string sim-
ilarity, we use SQuAD metrics — Exact Match
(EM) and F1 score. However, evaluating the cor-
rectness of the projected substring position, not just
the word similarity, may be valuable. Thus, in ad-
dition to Exact Match (EM) and F1, we introduce
Position Match (PM) computed as:

2x0Op x O
PM = 22 Y P2 VT (1)
Op + Op
_ Overlap Length . .
where Op = Predicted Length 15 the predicted overlap
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. lap Length
ratio, and Oy = % is the true overlap

ratio. The overlap is the common span between the
predicted and original substring positions.

The final scores, averaged over all aligned an-
swer evidence substrings, are shown in Tables 2
and 3. The PMP approach improves the perfor-
mance of the standard MT model. The Relations
subset is easier to process for the MT and align-
ment stages compared to the Medication subset,
achieving F1 scores higher than 90% for most lan-
guages. The EM metric shows that approximately
two-thirds of the answer evidence substrings in
almost every language were perfectly projected
without change. The Medication subset is more
challenging but still exhibits good results. For both
subsets, the Transformer-based aligner Awesome
excels in Romance languages, while FastAlign out-
performs in Greek. For Slavic languages, Awe-
some performs better in the Medication subset, but
the results in the Relations subset are less clear.
Only for Polish, FastAlign outperforms Awesome
in all metrics. The differences between FastAl-
ign and Awesome may be due to the fact that we
trained FastAlign on all our languages, whereas
Awesome was fine-tuned for word alignment only
on the Romanian-English language pair relevant
to our study. This could explain the performance
disparities between Romance languages and oth-
ers. However, since Awesome is based on mBERT,
which has seen all these languages during pretrain-
ing, and Dou and Neubig (2021) showed that Awe-
some performs well even without fine-tuning, the
impact of fine-tuning should not be pronounced.

3.3 Evaluation on Full Clinical Reports

Building on the results from the previous section,
we base our next experiments on the PMP transla-
tion approach. For the Medication subset, we will



BG CS PL
EM F1 EM F1 EM F1
Awesome 54.1 774 | 61.7 814|530 7638
FastAlign 504 794|575 82.0 552 804

Table 4: Comparison of mBERT performance on Re-
lations translated to Slavic languages aligned by Awe-
some/FastAlign (paragraphs joined into full reports).

utilize FastAlign for Greek while adopting Awe-
some for all remaining languages. For the Relations
subset, FastAlign will be employed for Greek, and
Awesome for the Romance languages. To make a
final decision on the most appropriate alignment
method for Slavic languages in the Relations sub-
set, this section evaluates the QA performance of
the mBERT model using full clinical reports as
context (rather than paragraphs, where we could
not consider translated contexts that do not contain
any question-answer pairs), considering both align-
ment models. Then, we compare alignment quality
based on QA performance.

We follow the experiments of Yue et al. (2020).
For this purpose, we focus on the Slavic languages
within the Relations subset, Bulgarian, Czech, and
Polish, and compare the QA results obtained us-
ing FastAlign and Awesome alignments, measured
using the official SQuAD evaluation script. The
results are presented in Table 4.

For Polish, we confirmed that FastAlign is the
superior method. For Bulgarian and Czech, the
choice is less clear, as the EM and F1 scores di-
verge. Although FastAlign shows a marginal F1
advantage, Awesome substantially outperforms in
EM, so we proceeded with Awesome-based align-
ment for both languages in the following experi-
ments on the Relations subset.

3.4 Filtering-out Low-Quality Alignments

Despite the alignment being mostly good, it is not
always perfect. One reason might be flawed transla-
tions from the first stage. We also lack information
about paragraphs that do not contain answers that
need to be aligned to a new language. Therefore,
paragraphs and answers with low alignment scores
need to be filtered out, ignoring paragraphs with-
out answers. This simplifies the task to Paragraph
QA (similar to Oracle QA from Lanz and Pecina
(2024)), resembling the SQuAD-like format (con-
text is a paragraph rather than a document). There-
fore, we examine which substring alignments we
should discard and which ones we should keep
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(similarly as was done by Mackovd and Straka
(2020)).

Low-quality answer evidence substring align-
ments negatively impact both the quality of the
training and subsequent evaluation. Thanks to the
forward-backward substring alignment evaluation,
the quality of answer evidence projection can be
estimated. This allows for filtering out those with
low scores from the dataset, along with their cor-
responding paragraph context and question. Addi-
tionally, paragraphs can be removed if no question-
answer pair is available, as there is no information
about the quality of such paragraphs. As aresult, in
the remainder of this work, we focus on Paragraph
QA instead of full report QA.

To determine how many answer evidences
should be discarded, we conduct the following
experiment. We sort the answer evidences from
the training data based on their PM scores and
sequentially remove 0, 5, 10, 15, 20, 30, 40, ...% of
the low-quality instances and for each resulting
subset, we fine-tune the mBERT model (for each
language separately) and compare the performance
on the (silver) full test sets using Exact Match (EM)
and F1 measures as in Yue et al. (2020). The re-
sults are averaged over three measurements with
different random seeds and visualized in Figure 5
in Appendix E. Removing about 15% of lowest-
quality instances improves the scores. Beyond this
point, further removal risks losing complex data
samples that may not have been perfectly aligned
but remain essential for our task.

The pipeline described above is applied to the
generated non-English training data and also to test
data. Traditionally, such data is referred to as silver
data, a term used to describe data that is automati-
cally generated through processing of the original
high-quality gold standard data. We experiment
with two test sets: the full test set (which may con-
tain alignment errors) and the intersection test set,
formed by intersecting the translated and filtered
test sets in each language, assuming higher relia-
bility. The intersection test set contains identical
instances across languages.

4 Multilingual Paragraph Question
Answering Experiments

In this section, the performance of multilingual
models is evaluated using the original English test
set by assessing EM/F1 on the Paragraph QA task.
The quality of the emrQA translations is also dis-



EM Score Full Test Set Intersection Test Set
Models EN | BG CS EL ES PL RO | EN | BG CS EL ES PL RO
distilmBERT (mono) | 30.5 | 19.7 23.1 16.6 264 232 249|326 |247 278 20.6 300 28.0 29.2
mBERT (mono) 3271214 250 17.8 287 243 278 |34.6|265 297 220 324 290 325
XLM-R (mono) 334 (221 260 183 29.1 255 28.0|354|273 309 223 328 305 326
XLM-R Large (mono) | 33.7 | 23.0 26.5 19.1 304 260 285|354 (282 315 233 343 30.6 33.1
distilmBERT (multi) 3131212 248 182 28.1 250 26.7|332|262 294 224 313 29.8 31.2
mBERT (multi) 33.0 [ 226 26,6 194 299 266 285|351 |276 313 239 335 317 332
XLM-R (multi) 335|228 268 195 30.0 27.1 28.6|354|277 315 242 333 319 331
XLM-R Large (mulfi) | 33.6 | 23.7 274 20.6 303 27.1 29.0 |355|29.1 320 253 336 321 338

Table 5: QA results on the Medication subset (EM scores) for monolingual (mono) and multilingual (multi) models.

F1 Score Full Test Set Intersection Test Set
Models EN | BG CS EL ES PL RO | EN |BG CS EL ES PL RO
distilmBERT (mono) | 71.6 | 62.6 65.8 568 67.8 654 672|726 |662 684 603 69.7 683 69.1
mBERT (mono) 7531 66.0 69.7 60.1 710 679 70.7|760|69.8 721 63.6 725 710 728
XLM-R (mono) 759 | 674 71.1 61.8 723 699 722 |76.6 | 71.0 73.8 655 740 728 745
XLM-R Large (mono) | 774 | 69.3 727 63.7 74.1 709 73.6|78.0 | 72.8 752 67.5 757 73.6 758
distilmBERT (multi) 745|669 704 61.1 717 694 714|752 705 724 651 733 725 734
mBERT (multi) 76.7 | 68.6 723 635 740 71.5 733|773 |722 742 673 754 744 752
XLM-R (multi) 77.0 | 69.6 728 645 741 720 735|77.6 |73.0 750 684 755 746 757
XLM-R Large (mulri) | 77.3 | 70.3 737 655 749 727 742|778 |73.7 756 693 764 755 763

Table 6: QA results on the Medication subset (F1 scores) for monolingual (rmono) and multilingual (multi) models.

cussed by analyzing the performance of multilin-
gual models on the translated data. In addition,
the impact of including multilingual data during
fine-tuning on model performance is investigated.

For these experiments, we selected four multilin-
gual models mBERT, distilmBERT, XLLM-R, and
XLM-R Large (as Gaschi et al. (2023) did). In
all experiments, we use filtered training data (dis-
carding the 15% weakest alignments of the answer
evidence substrings). Based on the analysis of Yue
et al. (2020), we randomly sample the QA pairs to
have the same number of training samples as 20%
and 5% of the original unfiltered training data in
the Medication and Relations subsets, respectively.

For the test set, we analyze two approaches. The
first uses the entire unfiltered test sets. The second
filters each translation by discarding the weakest
15% of alignments of the answer evidence sub-
strings and then takes the intersection of filtered test
sets across languages, allowing direct comparison.
This filtering roughly retains 63% of the question-
answer-paragraph triplets from the full unfiltered
test sets. We split both Medication and Relations
reports into train/dev/test according to a 7:1:2 ratio
and perform experiments with three different ran-
dom seeds for the splits. Finally, we examine mul-
tilingual training, where a single model is trained
on the combined training data of all languages and
evaluated separately on each. The results are shown

75

in Tables 5, 6, 16 and 17.

4.1 QA Evaluation Across Languages

When the results of the full test set of other lan-
guages are compared with English, the results for
Romance languages show a slight decrease, Slavic
languages drop a bit more, and Greek displays a
substantial difference. The results clearly reflect
the quality already measured by the unsupervised
forward-backward substring alignment evaluation
method, which assesses the overall quality of the
MT process, including substring alignment. This
trend is seen not only across languages, but also
in EM and F1 scores. Although F1 scores remain
high under the alignment evaluation method, and
therefore the Paragraph QA F1 score differences of
new languages and English are not that large, EM
scores in Paragraph QA show a much larger drop.
When trying to balance the quality of the test
sets by filtering out poor-quality answer alignments
and taking the intersection of languages, the scores
across languages become more similar (except for
Greek, which remains considerably lower).
Interestingly, we also observe that in the case
of Medication, the English results improve on the
intersection test set. This suggests that by remov-
ing poorly aligned answers during translations, we
also excluded more complex answers regarding the
QA prediction process. The remaining question



Medication | Relations

EM F1 |EM F1
BERTbase 31.0 729 | 91.1 96.2
BioBERT 31.1 744 | 91.7 96.9
ClinicalBERT 314 739 | 920 96.9
mBERT (w/o tgt) 31.0 75.9 | 90.0 96.0
mBERT (mono) 3277 753|928 97.3
mBERT (multi) 33.0 76.7 | 926 973

Table 7: Performance comparison of clinical-domain
monolingual and general-domain multilingual models.

is whether these are genuinely complex question-
answer-paragraph triplets or if they represent anno-
tation errors in the original emrQA dataset, which,
due to its synthetic origin, contains numerous inac-
curacies (Yue et al., 2020).

4.2 TImpact of Multilingual Training

As we can see in Tables 5, 6, 16 and 17, multilin-
gual training almost always slightly improves both
EM and F1 scores, except in rare cases. As was
already described, this training involves using all
training sets from all languages to train a single
model. In some cases, the improvement from mul-
tilingual training is even a few percentage points,
particularly for smaller and faster models or for
more problematic dataset translations.

When comparing multilingual training on the
gold data in English, we arrive at a similar con-
clusion: augmenting the data with additional lan-
guages helps, particularly for the Medication sub-
set, where Paragraph QA performance improves
in all cases except with the XLLM-R Large model.
For the Relations subset, however, the differences
are almost negligible, which may be due to the fact
that the Relations task is approaching its oracle and
has little room for further improvement (Yue et al.,
2020).

S Domain-Specific Models: Not Always
Superior

In the previous section, we learned that multilin-
gual models demonstrate strong performance, par-
ticularly on the Relations subset, despite never be-
ing specifically pretrained on clinical or medical
data. To assess how much multilingual models are
impacted by this, we measured the performance
of BERTbase, Clinical BERT, and BioBERT mod-
els fine-tuned only on the original English emrQA
dataset on the same Paragraph QA task. In contrast,
these models are not multilingual.
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Table 7 compares these three models with their
multilingual counterpart, mBERT. The evaluation
includes three settings: monolingual fine-tuning
(mono), fine-tuning with multilingual data augmen-
tation (multi), as described earlier, and mBERT
fine-tuned on train sets of all emrQA translations
except the original English data (w/o tgr).

The results show that multilingual models per-
form as well as domain-specific models in our clin-
ical QA task. Moreover, for the Medication sub-
set, multilingual models outperform their domain-
specific counterparts by a few percentage points.
Additionally, while omitting the original English
data during fine-tuning results in a performance
drop, the decrease is not substantial, indicating a
reasonable degree of cross-lingual transfer.

6 Conclusions

Our study focuses on the clinical QA task of find-
ing answer evidence substrings within a given con-
text for a specific question by multilingual models
rather than domain-specific ones assessing their
potential of medical support for various languages
(since current clinical models are predominantly
focused on English). This work investigated the
effect of multilingual data augmentation in the
clinical domain. Therefore, we described the MT
pipeline including the process of answer evidence
substring projection to translated paragraphs. Then,
we compared different alignment and translation
approaches. For our experiments, we used two
subsets - Medication and Relations - from the em-
rQA dataset, translating them into six European
languages: Bulgarian, Czech, Greek, Spanish, Pol-
ish, and Romanian.

During the data augmentation process, we ob-
served that different languages pose distinct chal-
lenges for translation and subsequent QA eval-
uation. However, multilingual augmentation it-
self can be effective even in the clinical domain,
as demonstrated by experiments on the Medica-
tion subset. However, it has a more limited ef-
fect on the Relations subset. However, we find
that domain-specific models in our clinical QA
task do not outperform multilingual models. In
fact, general-domain multilingual models notice-
ably outperformed clinical domain-specific models
on the Medication subset.



Limitations

This work is limited by the quality of the emrQA
dataset, and our conclusions that clinical mono-
lingual domain-specific models do not outperform
multilingual general-domain models are based on
a single specific clinical task evaluated in one spe-
cific language, rather than a broader range of tasks.
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A Technical Details

This section provides additional details on fine-
tuning, resource usage, and hyperparameters used
in our experiments.

For alignment and translation models, default hy-
perparameters were used. QA models were trained
with a learning rate of 3 x 1072, 3 epochs, weight
decay of 0.01, batch size of 16, and a tokenizer pro-
cessing 384-token blocks with a 128-token stride.

The experiments were carried out on nodes
equipped with NVIDIA L40 GPUs (48GB per
GPU).

The MT process took approximately 10 hours
per language for the Medication subset and around
28 hours for the Relations subset. Alignment via
Awesome required about 5 hours for the Medica-
tion subset and 8 hours for Relations. FastAlign
training spanned several days, although the align-
ment step itself was completed in minutes.

For QA experiments, monolingual fine-tuning on
the Medication subset took 1-4 hours (depending
on model), while the Relations subset required 2-
8 hours. Multilingual training ranged from 4-22
hours for the Medication subset and 8—40 hours for
Relations.
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