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Abstract

The PerAnsSumm Shared Task at
CL4Health@NAACL 2025 focused on
Perspective-Aware Summarization of Health-
care Q/A forums, requiring participants to
extract and summarize spans based on prede-
fined perspective categories. Our approach
leveraged LLM-based zero-shot prompting
enhanced by semantically-similar In-Context
Learning (ICL) examples. Using Qwen-Turbo
with 20 exemplar samples retrieved through
NV-Embed-v2 embeddings, we achieved
a mean score of 0.58 on Task A (span
identification) and Task B (summarization)
mean scores of 0.36 in Relevance and 0.28
in Factuality, finishing 12th on the final
leaderboard. Notably, our system achieved
higher precision in strict matching (0.20) than
the top-performing system, demonstrating the
effectiveness of our post-processing techniques.
In this paper, we detail our ICL approach
for adapting Large Language Models to
Perspective-Aware Medical Summarization,
analyze the improvements across development
iterations, and finally discuss both the limita-
tions of the current evaluation framework and
future challenges in modeling this task. We
release our code for reproducibility.1

1 Background

Healthcare community question-answering (CQA)
forums serve as information resources for patients
seeking accessible explanations outside clinical
settings, caregivers navigating medical decisions,
and curious individuals performing health research
whilst avoiding stigma or costs tied to formal con-
sultations (Beloborodov et al., 2013). However, the
unstructured discussions typical of online forums
often bury actionable insights under noise such as
anecdotal claims, off-topic debates, or incorrect
advice (Naik et al., 2024).

1https://github.com/petervickers/
Roux-PerAnsSumm

Perspective-aware summarization addresses this
by categorizing forum responses into domains
like suggestions (“ERCP procedures minimize
scarring”) or experiences (“Phantom pain per-
sisted post-surgery”)—enabling users to contrast
evidence-based options with peer-endorsed narra-
tives. Perspective-Aware Summarization [PAS]
addresses this challenge by identifying and cate-
gorizing diverse viewpoints within healthcare fo-
rum responses. Unlike traditional summariza-
tion into a single version, PAS structures informa-
tion into distinct perspective categories: ’Cause’
(explanations of medical conditions), ’Sugges-
tion’ (recommended treatments or actions), ’Ex-
perience’ (personal accounts), ’Question’ (follow-
up inquiries), and ’Information’ (factual medical
knowledge). The PerAnsSumm Shared Task at
CL4Health@NAACL 2025 split this approach into
two subtasks: Span Identification: Tagging text seg-
ments in answers aligning with five perspectives
(Cause, Suggestion, Experience, Question, and In-
formation). Summarization: Generating concise
summaries for each of the five perspectives.

Building on the Perspective sUMmarization
dAtaset (PUMA) dataset, a corpus of 3,167 an-
notated CQA threads annotated with 10K Human-
authored Perspective-Aware Summarizations, the
task encouraged models to move beyond single-
view summaries common in traditional methods
(Agarwal et al., 2025).

Our approach used the few-shot capabilities of
Large Language Models to learn novel tasks with
minimal exposure to labeled examples, including
in the Medical Domain. Using just 20 exemplar
samples from the training set, we are able to ob-
tain a mean score of 0.58 on task A and 0.36 in
Relevance and 0.29 in Factuality on Task B.

In this paper, we detail our approach, including
releasing the code for all of our attempts. We then
outline further approaches to improve performance.
Finally, we discuss the difficulties of the task it-

389

https://github.com/petervickers/Roux-PerAnsSumm
https://github.com/petervickers/Roux-PerAnsSumm


self, including bias and ambiguity in community
question-answer forums.

2 Related Work

Healthcare community question-answering (CQA)
forums serve as information resources for pa-
tients seeking medical information outside clini-
cal settings, though unstructured discussions often
bury actionable insights beneath anecdotal claims
and incorrect advice (Beloborodov et al., 2013;
Naik et al., 2024). Traditional summarization ap-
proaches typically condense information into a sin-
gle narrative, whereas perspective-aware summa-
rization (PAS) addresses this limitation by catego-
rizing content into distinct perspective types (cause,
suggestion, experience, question, and information)
(Agarwal et al., 2025).

Large Language Models (LLMs) have demon-
strated strong performance on healthcare tasks
in few-shot settings without domain-specific fine-
tuning (Brown et al., 2020; Liu et al., 2023).
Notably, Nori et al. (2023) showed that general-
purpose models like GPT-4, when enhanced with
appropriate prompting techniques (termed “Med-
Prompt”), can match or exceed specialized medical
models. MedPrompt combines dynamic few-shot
selection using k-nearest neighbors, self-generated
chain-of-thought reasoning, and choice shuffling
ensembles.

For span identification tasks similar to our work,
named entity recognition (NER) approaches have
been adapted for more complex extraction tasks.
Tools like Spacy-LLM (Honnibal et al., 2020; Ex-
plosion AI, 2025) provide structured templates for
guiding LLMs in entity extraction, which we adapt
for perspective categories. However, perspective
identification presents unique challenges compared
to traditional NER: perspective spans often cross
sentence boundaries, have ambiguous boundaries,
and require subjective interpretation based on an-
notator guidelines.

Current limitations in perspective-aware systems
include reliance on domain-specific training that
limits generalization, handcrafted prompts requir-
ing medical expertise, difficulties identifying per-
spective boundaries in conversational text, and chal-
lenges maintaining factual accuracy while generat-
ing perspective-specific summaries.

3 Methodology

Building on recent advances in LLM-based medi-
cal text processing, we introduce a novel approach
to the PerAnsSumm Shared Task, which requires
a two-stage cascaded pipeline: (1) Perspective-
Aware Span Extraction followed by (2) Perspective-
Aware Span Summarization (Agarwal et al., 2025).
Our system addresses the key limitations identified
in the related work through a specialized adaptation
of the MedPrompt framework (Nori et al., 2023)
for perspective-based tasks.

3.1 Overview of Our Approach
While MedPrompt has demonstrated state-of-the-
art performance on medical multiple-choice ques-
tions (Nori et al., 2023), adapting it to open-ended
perspective identification and summarization tasks
presents several unique challenges. We preserve
MedPrompt’s core strength—dynamic few-shot se-
lection—while modifying its architecture to accom-
modate span extraction rather than option selection.
We term this MedPrompt Adaptation for Perspec-
tive Tasks.

Our system leverages semantic similarity to
identify relevant examples from the training data.
This addresses the scalability limitations of expert-
dependent systems while maintaining the flexibility
to adapt to diverse healthcare topics.

For both tasks (A) and (B), our system imple-
ments a four-component architecture:

1. Dynamic In-Context Learning Sampling:
We extend MedPrompt’s k-nearest neighbors
approach to perspective-specific content by
encoding samples using NVEmbed-v2. Our
ICL strategy differs between the two subtasks:

• For Task A (span extraction), we gener-
ate embeddings with the input question
as the query and all questions in the train-
ing dataset as documents. For each test
instance, we compute cosine similarity
between its question embedding and all
training question embeddings.

• For Task B (summary generation), we
generate embeddings at the perspective
level, using the input spans as the query
and retrieving training examples where
the spans share the same perspective
category. This focuses similarity com-
putation on perspective-specific content
rather than general question context.
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Figure 1: Data Flow Diagram of our Span Extraction and Summarization System

In both cases, we select the k=16 most similar
examples based on these similarity scores to
serve as in-context examples.

2. Task-Specific Prompt Engineering: We
adapt Spacy-LLM’s NER templates (Honni-
bal et al., 2020; Explosion AI, 2025) to the
more complex task of perspective identifica-
tion. Where traditional NER identifies con-
crete entities with clear boundaries, perspec-
tive identification requires identifying abstract
categories that may span multiple sentences.

3. Annotator Bias Replication: We include ex-
plicit instructions directing the model to mir-
ror the subjective biases present in the In Con-
text Learning annotations.

4. Span Post-Processing: We implement a
three-stage cascading alignment strategy to
overcome LLMs’ known limitations in return-
ing precise character indices (Wu et al., 2023).
This approach significantly improves upon the
exact matching typically used in NER sys-
tems, which fails to account for the flexibility
needed in perspective boundary identification.

To ensure consistent output formatting across
both subsystems, we enforce JSON output struc-
ture by constraining the first token of the model’s
response to be ‘{’, effectively force-decoding the
beginning of a JSON object.

As Figure 1 shows, our system consists of three
high-level components: Perspective Aware Span
Extraction, Perspective Aware Summarization, and
In-Context Learning. In-Context Learning (left)
leverages the PUMA training dataset through dual
NV-Embed-v2 encoding pathways—one optimized
for Task A using answer-based text encoding and
another for Task B using span-based encoding.
This creates semantic indices for efficient retrieval

of relevant examples during inference. Task A (up-
per right) performs perspective-aware span extrac-
tion through a three-stage cascading alignment pro-
cess (exact, case-insensitive, and fuzzy matching),
followed by a span merging step to produce co-
hesive perspective-specific text segments. These
extracted spans then feed into Task B (lower right),
which generates perspective-aware summaries or-
ganized across the five predefined categories (cause,
suggestion, experience, question, and information).

For Task A, we found no advantage in
perspective-level span extraction. For Task B, per-
formance improved with perspective-specific sum-
marization, so we generate summaries separately
for each perspective and merge the results.

This modular design allowed us to conduct con-
trolled experiments, isolating the impact of differ-
ent embedding models and varying quantities of
in-context examples on system performance.

3.2 Evaluation Metrics
The PerAnsSumm Shared Task evaluation frame-
work comprises distinct metrics for both span iden-
tification (Task A) and perspective-aware summa-
rization (Task B). Of note, the perspective-aware
summarization was dependent on the output of the
span identification model. Gold standard span in-
puts were not provided for Task B. Metrics com-
pared between the generated outputs and the max-
voted labels from the test split of the PerAnsSum-
m/PUMA dataset.

Task A: Span Identification Metrics

1. Macro-averaged F1 score: Evaluates perfor-
mance across all five perspective categories
(cause, suggestion, experience, question, and
information), mitigating class imbalance ef-
fects.

2. Strict Matching: Measures exact correspon-
dence between predicted and ground-truth
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spans, considering both boundaries and classi-
fication labels.

3. Proportional Matching: Allows partial credit
for spans that overlap with the ground truth,
accounting for minor discrepancies in extrac-
tion.

"Ground-truth" reference spans were from the
task/PUMA dataset annotations, which were man-
ually labeled for each perspective and reflected
annotation bias discussed elsewhere.

Task B: Perspective-aware Summarization
Metrics

1. ROUGE (R-1, R-2, R-L) (Lin, 2004): Mea-
sures unigram overlap (R-1), bigram overlap
(R-2), and longest common subsequence (R-
L) between generated summaries and refer-
ence summaries.

2. BLEU (Papineni et al., 2002): Computes n-
gram precision against reference summaries,
commonly used in machine translation but
adapted here for summarization.

3. METEOR (Banerjee and Lavie, 2005): Ex-
tends BLEU by incorporating synonymy and
stemming, better capturing semantic equiva-
lence.

4. BERTScore (Zhang et al., 2020): Uses contex-
tualized BERT embeddings to compare gener-
ated and reference summaries at the semantic
level, overcoming limitations of n-gram-based
metrics.

Additionally, "factuality" assessments were in-
cluded to evaluate the alignment of generated sum-
maries with the source content:

1. AlignScore (Zha et al., 2023): attempts to
measures factual consistency using a unified
alignment function to compare source text and
generated summaries.

2. SummaC (Laban et al., 2022): attempts to
detect contradictions and hallucinations in
summarization by leveraging natural language
inference (NLI) models and sentence-level
document-summary pairs.

Reference summaries were the annotator-
provided summaries from the task/PUMA dataset,
which were written post-hoc based on extracted

spans. As with Task A, these summaries inherit the
dataset’s biases and limitations, influencing how
models were evaluated.

4 Experimental Setup

We developed our approach over four system vari-
ants (summarized in Table 1), each representing
incremental improvements to our initial baseline
implementation. All systems were evaluated on the
PerAnsSumm Shared Task.

4.1 System Implementation Details

Our implementation leveraged the core Med-
Prompt architecture with targeted adaptations for
perspective-aware tasks:

Model Selection: We initially employed Ope-
nAI’s GPT-4o-mini model (et al., 2024) (versions
v1-v2) before transitioning to Qwen/Qwen-turbo
(Qwen et al., 2025) (versions v3-v4) based on pre-
liminary performance evaluations.

Dynamic In-Context Learning: For version v1,
we used zero-shot prompting without in-context
learning examples. Version v2 incorporated 5 in-
context examples selected using OpenAI’s text-
embedding-3-small model to match samples, while
versions v3-v4 employed NVIDIA’s NV-Embed-v2
(Lee et al., 2025) with retrieval sets of 5 and 20
examples, respectively. This progression allowed
us to evaluate the impact of both example quantity
and embedding quality on performance.

Post-processing Pipeline: All systems em-
ployed our three-stage cascading alignment strat-
egy for span reconciliation, with refinements in
later versions to address edge cases identified dur-
ing development:

1. Exact substring matching: First attempt-
ing verbatim matches using Python’s native
string.find() function, with extension to word
boundaries for cleaner spans

2. Case-insensitive matching: If exact match-
ing failed, converting both source and target
texts to lowercase before applying the find()
function again

3. Sentence-level fuzzy matching: For spans
still unmatched, breaking the text into sen-
tences and applying thefuzz library’s ratio()
algorithm to find the best matching sentence,
with early termination at 95% similarity
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System Model K Embedder Prompts Scores

Task A (Span Extraction) Task B (Summarization) A B

v1 openai/gpt-4o-mini None None Span-Prompt-V1 Summ-Prompt-V1 0.58 0.30
v2 openai/gpt-4o-mini 5 OpenAI text-embedding-3-small Span-Prompt-V2 Summ-Prompt-V2 0.58 0.33
v3 qwen/qwen-turbo 5 NVIDIA NV-Embed-v2 Span-Prompt-V3 Summ-Prompt-V3 0.58 0.35
v4 qwen/qwen-turbo 20 NVIDIA NV-Embed-v2 Span-Prompt-V4 Summ-Prompt-V4 0.58 0.36

Table 1: System configurations and performance comparison. K indicates the number of in-context learning
examples, Embedder refers to the model used for retrieving similar examples. Scores represent macro-averaged
metrics: Task A scores show span alignment accuracy (Avg. column from Table 2), Task B scores show relevance
performance (Relevance Avg. from Table 3).

The fuzzy matching threshold (θ = 0.7) served
as a quality filter, with spans scoring below this
threshold being discarded. Our implementation
also included specialized handling for overlapping
spans through the, which merged spans of the same
perspective category that were within 5 characters
of each other.

4.2 Experimental Configurations
Table 1 summarizes our four experimental configu-
rations. The progression from v1 to v4 represents
an evolution from simple baseline approaches to
sophisticated in-context learning with optimized
similarity matching:

Key experimental parameters were:

• Similar Example Selection: For ICL-based
systems (v2-v4), we selected examples from
the training corpus based on cosine similar-
ity between embedding vectors. Version v4’s
expanded number of ICL samples (K=20) al-
lowed for more diverse exemplars.

• Fuzzy Matching Threshold: We empirically
determined a similarity threshold of θ = 0.7
for accepting predicted spans, with scores be-
low this threshold triggering rejection during
post-processing.

4.3 Evaluation Process
Systems were evaluated using the official Per-
AnsSumm metrics as described in Section 3.2. We
submitted all versions, v1-v4, to the shared task
evaluation server, with v4 representing our best-
performing configuration. The detailed prompt
specifications for all system variants are provided
in Appendix A.

5 Results

Tables 2 and 3 present the performance of our four
system variants on Tasks A and B, respectively.
Our final system (v4) achieved an average score of

0.58 on Task A (span identification) and 0.36 on
Task B’s relevance metrics with 0.28 on factuality
metrics, placing our team 13th out of 23 teams
overall in the shared task.

For Task A, all four of our system variants
achieved consistent performance with a macro F1
classification score of 0.81, strict matching F1 of
0.22, and proportional matching F1 of 0.64. Our
overall Task A average of 0.58 placed us within
3.4% of the top-performing system’s score of 0.60.

For Task B, we observed progressive improve-
ments across our system versions. The relevance
metrics improved from 0.30 in v1 to 0.36 in v4
(+20%), while factuality scores declined slightly
from 0.29 to 0.28. The gap between our system and
the top-performing system was more pronounced
in Task B, with our relevance average trailing the
leader by 14% relative.

Each system iteration brought incremental im-
provements: v1 (zero-shot GPT-4o-mini) achieved
0.30 on Task B relevance, v2 (GPT-4o-mini with
ICL) improved to 0.33 (+10%), v3 (Qwen-Turbo
with NV-Embed-v2) reached 0.35 (+6%), and v4
(expanded to 20 examples) achieved our best score
of 0.36 (+3%).

Analysis of the overall leaderboard reveals that
the top 13 teams were tightly clustered, with scores
ranging from 0.457 to 0.400, indicating that minor
implementation differences had significant impact
on final rankings.

6 Discussion

6.1 Task A Performance Analysis

Despite transitions from GPT-4o-mini (v1-v2) to
Qwen-Turbo (v3-v4) as our base LLM, our Task
A performance remained remarkably consistent.
This stability suggests that our model effectively
learned to distinguish between the five perspective
categories regardless of the specific implementa-
tion details or embedding model used for in-context
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CLASSIFICATION STRICT MATCHING PROPORTIONAL MATCHING

Submission Macro F1 Weighted F1 P R F1 P R F1 Avg.

Roux-lette 1 0.81 0.87 0.20 0.22 0.21 0.59 0.73 0.64 0.58
Roux-lette 2 0.81 0.87 0.20 0.23 0.22 0.57 0.72 0.64 0.58
Roux-lette 3 0.81 0.87 0.20 0.23 0.22 0.57 0.72 0.64 0.58
Roux-lette 4 0.81 0.87 0.20 0.23 0.22 0.57 0.72 0.64 0.58

Mean Gradient 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Overall Improvement 0.00 0.00 0.00 0.00 0.00 -0.02 -0.01 0.00 0.00

Leader (WisPerMed) 0.88 0.92 0.17 0.23 0.20 0.62 0.74 0.68 0.60
delta (Roux - WisPerMed) -0.07 -0.05 0.03 0.00 0.02 -0.05 -0.02 -0.04 -0.02

Table 2: Task A Results

RELEVANCE FACTUALITY

Submission ROUGE1 ROUGE2 ROUGEL BERTScore METEOR BLEU Avg. AlignScore SummaC Avg.

Roux-lette 1 0.31 0.09 0.27 0.80 0.27 0.07 0.30 0.37 0.22 0.29
Roux-lette 2 0.34 0.12 0.30 0.82 0.31 0.08 0.33 0.36 0.22 0.29
Roux-lette 3 0.37 0.15 0.33 0.83 0.33 0.11 0.35 0.31 0.23 0.27
Roux-lette 4 0.38 0.17 0.34 0.83 0.33 0.12 0.36 0.32 0.23 0.28

Mean Gradient 0.02 0.03 0.02 0.01 0.02 0.02 0.02 -0.02 0.00 -0.01
Overall Improvement 0.07 0.07 0.07 0.03 0.06 0.06 0.06 -0.05 0.01 -0.02

Leader (WisPerMed) 0.45 0.22 0.41 0.90 0.41 0.13 0.42 0.41 0.30 0.35
delta (Roux - WisPerMed) -0.07 -0.05 -0.07 -0.07 -0.08 -0.01 -0.06 -0.09 -0.07 -0.08

Table 3: Task B Results

example retrieval.
Notably, our precision in strict matching (0.20)

exceeded the top-performing system (WisPerMed’s
0.17), indicating that our cascading alignment strat-
egy with fuzzy matching was particularly effec-
tive at identifying precise span boundaries. While
our recall matched the leader (0.23), our overall
strict matching F1 (0.22) slightly outperformed the
leader’s 0.20, demonstrating the effectiveness of
our three-stage cascading alignment strategy with
fuzzy matching threshold (θ = 0.7).

The small performance gap between participat-
ing teams in Task A is striking, with the top 13
systems achieving scores within a narrow range
(0.58-0.62). This clustering suggests that the task
may have reached a performance ceiling with cur-
rent LLM-based methods, possibly due to inherent
ambiguities in perspective boundary identification.

6.2 Task B Performance Analysis

The clear progression in our Task B performance
correlates directly with improvements in our LLM
and embedding models. The significant gains in
ROUGE-2 (0.09 to 0.17, +89%) and BLEU (0.07
to 0.12, +71%) indicate better capture of n-gram
sequences and improved alignment with reference
summaries as we enhanced our embedding model
quality and expanded ICL example counts.

The inverse relationship between relevance and
factuality scores raises important questions about
evaluation metrics in perspective-aware summa-
rization. As our systems better matched reference
summaries (higher relevance), they simultaneously
drifted from factual alignment with source con-
tent (lower factuality). This trade-off, particularly
evident in the drop in AlignScore (0.37 to 0.32,
-13.5%), suggests that human annotators may have
introduced interpretations or simplifications in their
summaries that deviated from the original forum
content.

The leaderboard reveals a significant gap in Task
B performance between the top 5 teams (relevance
scores of 0.40-0.42) and the remainder of the field
(scores below 0.39), suggesting that certain archi-
tectural approaches may have offered substantial
advantages in summarization quality.

6.3 Effectiveness of In-Context Learning
Approaches

The most substantial improvements in our sys-
tems came from the transition from zero-shot to
in-context learning with semantically similar exam-
ples. The progression from v1 to v4 underscores
the importance of both the quality of embedding
models for finding related samples and the quan-
tity of in-context examples in achieving optimal
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performance for perspective-aware summarization.
The diminishing returns observed when increas-

ing from 5 to 20 examples (+6% vs. +3% improve-
ment) suggests that example quality may be more
important than quantity beyond a certain thresh-
old. This finding aligns with recent research show-
ing that carefully selected few-shot examples often
outperform larger random samples in in-context
learning scenarios.

6.4 Bias Learning vs. Medical Understanding

We speculate that the structure of Task A encour-
aged models to imitate annotator biases rather than
developing genuine understanding of medical dis-
course. Our experiment with explicit bias instruc-
tion did not significantly improve results, suggest-
ing that the bias patterns were either inconsistent
or difficult for the model to internalize.

This observation is supported by our Task A per-
formance remaining stable across different LLMs
and embedding models, indicating that the task
primarily measures how effectively systems can ap-
proximate existing annotation patterns rather than
demonstrating true innovation in perspective identi-
fication. The tight clustering of team performances
on the leaderboard further supports this hypothesis.

Examining the leaderboard, we observe that the
top-performing systems achieved their advantage
primarily through Task B (summarization) rather
than Task A (span identification), where scores
were more tightly clustered. This suggests that
while span identification may have reached a per-
formance ceiling, summarization quality remains
an area where significant improvements are possi-
ble.

7 Conclusion

In this work, we explored an LLM-driven approach
to perspective-aware summarization in the Per-
AnsSumm shared task, leveraging a lightweight,
zero-shot ICL methodology that requires no fine-
tuning and can be readily applied to any LLM.
Our approach used semantic similarity-guided in-
context learning with minimal example retrieval,
demonstrating the efficacy of model-agnostic tech-
niques for structured medical text understanding.

For Task A, we used Qwen-Turbo guided by
20 semantically similar training samples retrieved
using NV-Embed-v2 embeddings, achieving a
mean score of 0.58 and notably exceeding the
top-performing system in strict matching precision

(0.20 vs. 0.17). Our three-stage cascading align-
ment strategy (exact, case-insensitive, and fuzzy
matching with θ = 0.7) proved effective for cap-
turing perspective boundaries without the need for
task-specific training.

For Task B, we extended this model-agnostic
methodology to summarization, incrementally im-
proving relevance metrics from 0.30 (zero-shot)
to 0.36 (20 examples), while maintaining factual-
ity scores around 0.28. Our experimental progres-
sion showed embeddings quality and example se-
lection significantly impact performance, with the
transition from zero-shot to ICL (v1→v2: +10%)
yielding greater improvements than embedding up-
grades (v2→v3: +6%) or increasing example count
(v3→v4: +3%).

Our results suggest potential limitations in the
current task framework. The narrow performance
range across teams in Task A (0.58-0.62) may indi-
cate a ceiling effect possibly attributable to inherent
ambiguities in perspective boundary identification.
The observed inverse relationship between rele-
vance and factuality metrics raises questions about
potential annotation biases or simplifications in ref-
erence summaries. Additionally, the patterns we
observed suggest the task design may encourage
models to replicate annotation patterns rather than
develop genuine medical understanding.

The primary advantage of our approach lies in
its simplicity and transferability across mod-
els, requiring only basic API access to any ca-
pable LLM rather than expensive fine-tuning or
domain-specific architectures. Future perspective-
aware summarization tasks would benefit from
more clinically relevant, open-ended evaluation
frameworks that foster methodological innovation
with real-world impact rather than alignment with
pre-existing annotation patterns.

8 Limitations

Our approach faces several limitations.
First, our models learn to replicate annotator

biases rather than develop true medical understand-
ing, evidenced by the tight clustering of Task A
scores (0.58-0.62) across teams. Second, the di-
minishing returns when scaling from 5 to 20 exam-
ples (10% → 6% → 3% improvement) suggests
fundamental constraints in example-based learn-
ing without domain-specific training. Third, the
inverse relationship between relevance and factu-
ality scores indicates that optimizing for reference
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similarity may reduce source content faithfulness.
Due to time and computational constraints, we

were unable to exhaustively test all possible val-
ues for the fuzzy matching threshold (θ), optimal
number of ICL samples, or evaluate across a broad
spectrum of available LLM models.

Finally, and most importantly, our system lacks
mechanisms to verify medical accuracy or distin-
guish between credible and non-credible informa-
tion in healthcare forums. We highlight broader
concerns about using AI for medical applications,
which carries documented risks and should never
replace physician guidance.

Future work should focus on integrating domain-
specific medical knowledge, developing evaluation
frameworks better aligned with clinical utility, and
establishing robust fact-verification mechanisms
for healthcare content.
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A Appendix A: Prompts

A.1 Task A: Span Extraction Prompts

• Baseline Prompt (v1):

– Core instruction: Analyze text and iden-
tify spans expressing different perspec-
tives (CAUSE, SUGGESTION, EXPERI-
ENCE, QUESTION, INFORMATION)

– Added sliding window matching in v2
for phrase boundary detection

– Integrated overlap handling in v3 with
span merging logic

– JSON structure requirements:

* Extract complete phrases (under 100
characters)

* Prefer full sentences where possible

* Mandatory "text" field in JSON ob-
jects

• In-Context Learning Prompt (v2): En-
hanced version with example-based guidance:

– Detailed perspective definitions:

* EXPERIENCE: First-hand accounts

* INFORMATION: Factual data

* CAUSE: Explanatory reasoning

* SUGGESTION: Recommendations

* QUESTION: Information requests
– Example JSON format:

{
"EXPERIENCE": [{"text": "..."}],
"INFORMATION": [{"text": "..."}]

}

– Includes 5 retrieved examples using Ope-
nAI embeddings

• NV-Embed-v2 Prompt (v3): Optimized ver-
sion with:

– NVIDIA NV-Embed-v2 for example re-
trieval

– OpenRouter API integration
– Upgraded LLM backend
– Maintains 5-example context (K=5)

• Scaled ICL Prompt (v4): Enhanced capacity
version:

– Expands context window to 20 examples
(K=20)

– Retains NV-Embed-v2 retrieval system
– Optimized for long-context processing

A.2 Task B: Summarization Prompts
• Merged Baseline Prompt (v1):

– Core template: Summarize {perspective}
points about "question"

– Requirements:

* 2-3 sentence summaries

* Maintain factual accuracy

* Direct answer alignment

• ICL Summarization (v2): Example-
enhanced version:

– Incorporates retrieved examples
– Structured template: "Analyze text and

extract perspective summaries for {per-
spective}"

– Processes span inputs:

* {span 1 text}

* {span 2 text}

• NV-Embed-v2 Summarization (v3): Opti-
mized architecture:

– NV-Embed-v2 retrieval system
– Human-aligned prompt structure
– Maintains K=5 examples

• Scaled Summarization (v4): Expanded con-
text version:

– Processes 20 examples (K=20)
– Enhanced coherence through extended

context
– Maintains NV-Embed-v2 retrieval
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