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Abstract

In this paper, we describe our submission for
the shared task on Perspective-aware Health-
care Answer Summarization. Our system con-
sists of two quantized models of the LlaMA
family, applied across fine-tuning and few-
shot settings. Additionally, we adopt the Sum-
CoT prompting technique to improve the fac-
tual correctness of the generated summaries.
We show that SumCoT yields more factu-
ally accurate summaries, even though this im-
provement comes at the expense of lower
performance on lexical overlap and seman-
tic similarity metrics such as ROUGE and
BERTScore. Our work highlights an impor-
tant trade-off when evaluating summarization
models.

1 Introduction

In this paper, we present our submission for
the shared task on Perspective-aware Healthcare
Answer Summarization (PerAnsSumm) (Agarwal
et al., 2025). PerAnsSumm comprises two tasks:
span identification and summarization. Given a
medical question-answer pair as input, the system
must identify spans within the answer and classify
them into five distinct perspectives: ‘cause,’ ‘sug-
gestion,’ ‘experience,’ ‘question,’ and ‘informa-
tion.’ In Task 2, the system utilizes these extracted
perspective categories to generate summaries cor-
responding to the same five perspectives. The final
summaries encompass all perspectives present in
the given answer within the QA pair.

The shared task leverages the PUMA dataset
(Naik et al., 2024), a perspective-aware annotated
corpus of QA pairs and their respective summaries
extracted from Yahoo!’s L6 corpus. Participants
are provided with annotated spans and summaries
in the training and development sets, while the test
set contains only QA pairs. The first task, span
identification, is evaluated at the lexical level us-

ing strict and proportional matching metrics1. The
second task, summarization, is assessed using rel-
evance metrics, ROUGE (Lin, 2004), BERTScore
(Zhang et al., 2019), METEOR (Banerjee and
Lavie, 2005) and BLEU (Papineni et al., 2002)
at both lexical and semantic levels. Additionally,
the organizers introduce two metrics, AlignScore
(Zha et al., 2023) and SummaC (Laban et al.,
2022), to evaluate the factuality of generated sum-
maries. We participate in Task 2.2 (Factuality)
of the shared task, where we approach the prob-
lem by leveraging two quantized models from the
LLaMA family (Grattafiori et al., 2024) in fine-
tuning, few-shot and chain-of-thought (CoT) (Wei
et al., 2023) prompting settings. Depending on the
approach, we either generate summaries directly
or first identify spans and then incorporate them
into the summarization process.

2 Related Work

The prominence of Large Language Models
(LLMs) in the medical domain has been well doc-
umented through surveys and evaluation bench-
marks in recent years. Integrating them with var-
ious prompting strategies, such as zero-shot, few-
shot, CoT, and Analogical Reasoning (Yasunaga
et al., 2024), has yielded promising results (Vatsal
and Singh, 2024; Liévin et al., 2023; Jullien et al.,
2023). Their ability to handle long contexts in
medical domain and leverage intermediate reason-
ing steps make them suitable candidates not only
for text summarization but also for information ex-
traction tasks such as named entity recognition or
event extraction (Xu et al., 2024; Bian et al., 2023;
Yuan et al., 2023).

The effectiveness of LLMs in these tasks, how-
ever, is closely tied to their scale. Kaplan et al.
(2020) introduced the concept of sample efficiency
as part of their scaling laws, showing that larger

1https://github.com/PerAnsSumm/Evaluation/
blob/main/eval.py
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neural language models require fewer optimiza-
tion steps and are more sample efficient than their
smaller counterparts. This suggests that, even
with a small to moderate-sized datasets, opting
for a larger model can be advantageous. How-
ever, a key limitation of LLMs is their compu-
tational cost, which restricts their deployment in
resource-constrained environments. To address
this, low-rank adaptation (LoRA) method has been
proposed (Hu et al., 2021). LoRA freezes the pre-
trained model weights and updates only low-rank
approximations of the weight matrices. This dras-
tically reduces the number of trainable parame-
ters, thereby significantly lowering computational
overhead. QLoRA (Dettmers et al., 2023) further
optimizes this approach by quantizing the model
weights typically to 4-bit precision while utilizing
paged optimizers to efficiently manage memory,
avoiding spikes by dynamically offloading data
between GPU and CPU memory.

In our work, we employ quantized versions of
LLaMA-70B and LLaMA-8B from the Unsloth li-
brary2 and explore few-shot as well as fine-tuning
settings. Additionally, we incorporate a varia-
tion of CoT prompting called Summary Chain-
of-Thought (SumCoT) (Wang et al., 2023), which
is inspired by Lasswell’s Communication Model
(Laswell, 1948) and designed for element extrac-
tion and text summarization tasks in an end-to-end
manner.

3 Methods

We evaluate a set of prompting strategies to
generate factually correct summaries. Our ap-
proaches include fine-tuning, few-shot, and Sum-
CoT prompting. As a baseline, we use LLaMA-8B
with fine-tuning.

3.1 Fine-Tuning

For fine-tuning, we use the training dataset pro-
vided by the organizers and employ the 4-bit quan-
tized LLaMA-8B model with a learning rate of 2e-
4 and train it for 3.5 epochs. Additionally, we con-
figure all applicable modules with a rank of 16 and
an alpha value of 16.

3.2 Few-Shot

For few-shot prompting, we use a quantized
LLaMA-8B model in a 1-shot setting, where in-
context examples are randomly selected for each

2https://huggingface.co/unsloth

Dataset Statistics Dev Set Train Set

Total Instances 959 2236

Total Tokens 239,486 555,249

Avg Tokens per Instance 249.72 248.32

Avg Words per Instance 216.02 214.78

Avg Answers per Instance 3.23 3.11

Avg Perspectives per Instance (Answers) 1.97 1.97

Avg Perspectives per Instance (Summaries) 1.96 1.95

Perspective Distribution (Answers)
EXPERIENCE 316 747

INFORMATION 735 1767

CAUSE 139 308

SUGGESTION 595 1360

QUESTION 102 215

Perspective Distribution (Summaries)
EXPERIENCE 315 745

INFORMATION 733 1742

CAUSE 138 305

SUGGESTION 595 1363

QUESTION 101 213

Table 1: PUMA Dataset Statistics for Development
and Training Sets. Test Set consists of 50 instances
and only includes QA pairs with a context information
without providing any perspective spans or summaries.

inference to prevent the model from overfitting to a
fixed set of examples. Each example includes both
labeled spans and their corresponding summaries,
and the model is instructed to generate only the
summary. The model used in this setting has al-
ready been fine-tuned on the provided training set.

3.3 Summary Chain-of-Thought (SumCoT)

We incorporate a variant of CoT prompting called
SumCoT, which is designed for element extrac-
tion and text summarization tasks in an end-to-
end manner. This approach is inspired by Lass-
well’s Communication Model, which later found
itself application in journalism as the 5W frame-
work (Who, What, When, Where, Why). Follow-
ing prior work by Wang et al. (2023) that sug-
gests that performance gains become evident only
at scale, we employ a 4-bit quantized version of
LLaMA-70B. In line with their findings, we for-
mulate our questions using only a single type of
W-question, specifically "What", as it can encap-
sulate the essence of all other questions.3 We later
append the five distinct perspectives found in our
dataset to the questions. As we observe the stabi-

3https://github.com/Alsace08/SumCoT/blob/
master/prompts/cot_element_extraction.txt
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Prompt Template
You are provided with a text containing community-based questions and an-
swers from the medical domain. Your task is to analyze the answers by iden-
tifying and considering different perspectives such as ‘Information’, ‘Cause’,
‘Suggestion’, ‘Experience’, and ‘Question’ as in the provided examples below
and then summarize the text into a coherent summary. Only output the sum-
maries and nothing else.
In-Context Examples:
Example:
Question: Do I have lupus?
Context: I had a fever and fatigue. I looked at the symptoms on the internet.
My doctor disagrees with me. [...]
Answers: What other symptoms did you have? It’s usually never lupus. Listen
to your doctor. Lupus is an autoimmune disorder [...]
EXPERIENCE_GROUP: My teacher used to say this. It turns out it was just
a flu.
INFORMATION_GROUP: Lupus is an autoimmune disorder [...]
CAUSE_GROUP: I had a fever and fatigue. [...]
SUGGESTION_GROUP: Listen to your doctor. [...]
QUESTION_GROUP: What other symptoms did you have? [...]
EXPERIENCE_SUMMARY: In users experience, [...]
INFORMATION_SUMMARY: For information purposes [...]
CAUSE_SUMMARY: Some of the causes are [...]
SUGGESTION_SUMMARY: It’s suggested that [...]
QUESTION_SUMMMARY: It’s inquired [...]
Text: {text}
Answer: {answer}

Table 2: Prompt Template for Few-Shot Method. Sum-
mary examples are given with common start phrases
found in the PUMA dataset.

lizing effect of it during generations, we addition-
ally prefix the phrase "Let’s think step by step."
(Kojima et al., 2023) before the model extracts the
relevant perspectives. After eliciting information
about spans from the model, we then provide the
fine-tuned 8B model with the output generations
of the 70B variant and let it generate summaries
based on the extracted perspectives.

Prompt Template
You are provided with a text containing community-based questions and an-
swers from the medical domain. Your task is to analyze the answers by iden-
tifying and considering different perspectives such as ‘Information’, ‘Cause’,
‘Suggestion’, ‘Experience’, and ‘Question’. Show your reasoning steps while
extracting.
Questions:
What are the important suggestions in these answers?
What are the important causes in these answers?
What are the important informations in these answers?
What are the important questions in these answers?
What are the important experiences in these answers?
Please answer the above questions.
Text: {text}
Answer: Let’s think step by step. {answer}

Table 3: Prompt Template for SumCoT Method

4 Evaluation Protocol

The PerAnsSumm shared task evaluates submis-
sions across three axes. Task 1 focuses on lex-
ical overlap, using both proportional and strict
matching metrics to assess the accuracy of ex-
tracted label spans from answers as well as the
generated summaries. Task 2 is further divided

into two subcategories: Task 2.1 evaluates lexical
and semantic similarity using relevance metrics,
ROUGE, BERTScore, METEOR and BLEU. Task
2.2 assesses the factual consistency of the gener-
ated spans and summaries using AlignScore and
SummaC.

AlignScore is a reference based metric, for-
mally:

AlignScore(x, y) =
1

|x|

|x|∑

i=1

max
j

s(xi, yj) (1)

where x is the generation, y is the reference and
|x| is the number of sentences in the generation,
and maxj s(xi, yj) selects the maximum align-
ment score for each sentence of the generation
across all chunks of the reference (split into ap-
proximately 350-token chunks for RoBERTa (Liu
et al., 2019)) using an unified alignment function
trained on a diverse set of NLP tasks (e.g., natural
language inference, question answering, seman-
tic similarity, fact verification) with a combined
dataset of 4.7 million examples.

SummaC follows a similar chunking approach,
but adds an additional layer by using an NLI
model to scan sentence pairs. These entailment
scores are aggregated into histogram bins, which
are then processed through a convolutional neu-
ral network (CNN) (LeCun and Bengio, 1998) to
produce scalar values for each summary sentence.
These scalar values are averaged to compute the
final consistency score.

Despite the significant drawbacks of frequent
test set evaluation (van der Goot, 2021), we eval-
uated our approaches on the test set due to time
constraints, as the hyperparameters for AlignScore
and SummaC were not known until a later stage of
the shared task.

5 Results

The results presented in Table 4 provide insights
into the impact of different methods on improv-
ing factuality and help address our research ques-
tion: Can we improve the factuality of generated
summaries with in-context-learning and chain-of-
thought prompting?

Table 4 shows that there is no clear win-
ner across all metrics. The standard fine-tuning
method achieves the best results in relevance met-
rics, with the exception of the few-shot approach,
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Name ROUGE-1 ROUGE-2 ROUGE-L BERTScore METEOR BLEU Rel. Avg. AlignScore SummaC Fact. Avg.

Fine-Tuning 0.2550 0.0991 0.2288 0.6448 0.2349 0.0643 0.2545 0.3235 0.2398 0.2817

Few-Shot 0.1912 0.0573 0.1701 0.6512 0.1636 0.0489 0.2137 0.2263 0.2262 0.2263

8B-Labels 0.2226 0.0896 0.2044 0.5413 0.2045 0.0704 0.2221 0.3246 0.2274 0.2760

70B-Labels (SumCoT) 0.2148 0.0905 0.1942 0.5351 0.2032 0.0595 0.2162 0.3564 0.2471 0.3017

Table 4: PerAnsSumm 2025 test set results for all evaluated approaches. All approaches use the same fine-tuned
model for summary generation. Few-Shot used in a 1-shot setting. In the 8B-Labels, spans are identified by the
fine-tuned 8B model and the output passed to the same 8B fine-tuned model for summary generation. In the 70B-
Labels (SumCoT), spans are identified by 70B model without fine-tuning and the output passed to the same 8B fine-
tuned model for summary generation. ROUGE scores measure n-gram overlap, BERTScore evaluates semantic
similarity, METEOR compares unigrams, synonyms and stemming with penalties for word order differences,
BLEU compares n-gram precision between the generated summary and the ground truth, applying a brevity penalty
for shorter generations. AlignScore and SummaC measure factual consistency. Rel. Avg shows the average of
ROUGE, BERTScore, METEOR and BLEU, and Fact. Avg. shows the average of AlignScore and SummaC.

which surpasses fine-tuning in semantic similar-
ity when evaluated using contextual BERT (Devlin
et al., 2019) embeddings. However, the few-shot
approach exhibits relatively low ROUGE scores
(especially ROUGE-2) alongside lower METEOR
and BLEU scores. This results in a higher av-
erage relevance score for fine-tuning, suggesting
that the model may have prioritized the in-context
examples while being penalized for differences in
word order and shorter generations by METEOR
and BLEU during few-shot generations. A sim-
ilar pattern is observed in ROUGE-L, where the
longest common subsequence between the gen-
erated and reference summaries is less aligned.
When it comes to factuality, surprisingly, the few-
shot approach does not lead to any improvements
and performs significantly worse than the standard
fine-tuning method. Additionally, we observe a
slight decline in SummaC and average factuality
with the 8B label extraction method, along with
a notable drop in BERTScore. It appears that in
both approaches, the model was biased toward the
in-context examples and the extracted spans, re-
spectively. Moreover, the extracted spans from the
fine-tuned model may be incorrect, as the model
was trained solely for the summary generation
task. This suggests that it may be heavily relying
on its memorized knowledge of training set labels
acquired during parameter updates, which could
have skewed the metrics.

On the other hand, even without any fine-tuning,
the SumCoT approach with the 70B label extrac-
tion method shows a noticeable impact. Despite a
significant drop in BERTScore and ROUGE (sim-
ilar to the 8B label extraction) the final summaries
are the most factually accurate. This also high-

lights the important trade-off between relevance
and factuality metrics when evaluating summa-
rization models. Lexical and semantic alignment
does not always guarantee hallucination-free, fac-
tually correct summaries.

The challenge of identifying the optimal sum-
mary is a complex and nuanced issue. As proven
by Schluter (2017), performing a ROUGE evalu-
ation of a summarization model for optimal sum-
maries is an NP-hard task and relying solely on
relevance metrics does not capture the full capa-
bilities of the implemented system. As demon-
strated in this shared task, it makes sense to in-
troduce multiple perspectives into the evaluation
by incorporating additional metrics and averaging
them to mitigate the shortcomings of any single
metric.

6 Conclusion

In our submission, we explored several ap-
proaches to improve the factuality of generated
summaries. Our best-performing method, Sum-
CoT, involved extracting spans using a 4-bit quan-
tized LLaMA 70B model with W-Questions, and
feeding the output into a fine-tuned 8B model to
generate summaries. This approach led to im-
provements in the factuality of the generated sum-
maries compared to standard fine-tuning and few-
shot methods. However, these improvements are
not always reflected in relevance metrics such as
ROUGE and BERTScore. Our final submission
ranks 15th in AlignScore, 16th in SummaC, and
15th in average factuality on the official leader-
board4.

4https://docs.google.com/spreadsheets/d/
1faysHdA7YQ-xELztsm7jA5RPTMh7lP7tycsjd8ANLGE/
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7 Limitations

In this section, we highlight some shortcomings
of our implemented system and outline potential
directions for future work.

One notable limitation in our approach is the
choice of random sampling for the few-shot ex-
amples, which was intended to prevent bias toward
the same examples. However, Gema et al. (2024)
demonstrates the effectiveness of the BM25 re-
triever over naive random sampling. BM25 al-
lows for the selection of only the most relevant
in-context examples, which could improve perfor-
mance in future iterations of the shared task.

Another limitation is our use of quantization
due to computational constraints, which may
have affected our findings. As highlighted by
Pochinkov (2024), performance degradation is of-
ten inevitable in quantized LLaMA models.

Our final submission, SumCoT, showed im-
provements in factuality metrics. However, as
noted by Wang et al. (2023), the success of the
proposed approach is often correlated with the
model’s parameter count. We expect that using
larger models, including closed-source ones like
GPT (OpenAI et al., 2024), would likely amplify
these results. An important consideration, how-
ever, when transitioning to closed-source mod-
els, is the memorization ability of neural language
models (Carlini et al., 2023) and the issue of data
leakage. Balloccu et al. (2024) identified poten-
tially leaked datasets within the training data of
ChatGPT and GPT-4 by systematically reviewing
255 research papers. In our case, as the PUMA
dataset and Yahoo’s L6 Corpus are not publicly
available and primarily cover texts from the early
2000s to early 2010s, data leakage is unlikely to
be a significant concern. However, taking ba-
sic measures and implementing simple n-gram
matching metrics to detect potential data leakage
in model completions of any given data instance
(Gema et al., 2024) or adopting the Contamination
Detection via Output Distribution (CDD) frame-
work proposed by Dong et al. (2024) could fur-
ther strengthen the reliability of the obtained re-
sults and would align well with the broader goal
of trustworthy AI.
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