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Abstract

Medical notes contain a wealth of informa-
tion related to diagnosis, prognosis, and over-
all patient care that can be used to help physi-
cians make informed decisions. However, like
any other data sets consisting of data from di-
verse demographics, they may be biased toward
certain subgroups or subpopulations. Conse-
quently, any bias in the data will be reflected
in the output of the machine learning models
trained on them. In this paper, we investigate
the existence of such biases in Danish medi-
cal notes related to three types of blood cancer,
with the goal of classifying whether the medi-
cal notes indicate severe infection. By employ-
ing a hierarchical architecture that combines
a sequence model (Transformer and LSTM)
with a BERT model to classify long notes, we
uncover biases related to demographics and
cancer types. Furthermore, we observe perfor-
mance differences between hospitals. These
findings underscore the importance of investi-
gating bias in critical settings such as healthcare
and the urgency of monitoring and mitigating
it when developing AI-based systems.

1 Introduction

Electronic Health Records (EHRs) provide diverse
data on diagnoses, medications, and clinical tests,
enabling AI-based applications for various pur-
poses (Wang and Zhang, 2024). While medical
notes contain similar information in an unstruc-
tured format, they offer deeper insights that comple-
ment other EHR data. They help cross-check infor-
mation, retrieve missing details, and capture clini-
cally relevant events like infections, which are of-
ten difficult to extract from structured EHR sources.
Assessing EHRs and medical notes aids physicians
in making informed decisions on treatments, medi-
cations, and patient care. Notably, prior infections
are key predictors of clinical outcomes in blood
cancers (Parviz et al., 2022; Packness et al., 2024).
However, biases in EHR-derived medical data have

Figure 1: Document length distribution for each class
before resampling, and after weighted, and random re-
sampling. The dashed purple line indicates the number
of chunks retained for modeling.

been documented and can lead to performance de-
terioration in subpopulations with smaller sample
sizes (Cobert et al., 2024). In this paper, we clas-
sify medical notes on three common blood cancers
based on infection status and quantify bias related
to sex and cancer type. The cancers studied are
lymphoma (LYFO), multiple myeloma (MM), and
chronic lymphocytic leukemia (CLL). Since medi-
cal notes often exceed model context lengths, we
employ a hierarchical architecture combining a se-
quence model (Transformer and LSTM) with a
BERT model (Pappagari et al., 2019).

2 Method

2.1 Data
We curated a dataset of medical notes from patients
diagnosed with lymphoma, CLL, or MM in East-
ern Denmark, recorded between August 2016 and
November 2023. For each patient, notes recorded
less than two days apart were merged, as they often
related to the same health-related issue. This infor-
mation was extracted from data sources available
through the DALY-CARE database (Brieghel et al.,
2025).
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Figure 2: Schematic of modeling and data splitting strategy. A BERT model (red) is coupled with a transformer or
an LSTM (blue) architecture to capture information in long medical notes.

2.2 Infection definition
While EHRs provide valuable medical information,
identifying severe infections is not always straight-
forward. Therefore, severe infection was defined as
a blood culture draw and intravenous (IV) antimi-
crobial administration occurring within two days.
Clinically, blood cultures are taken when an infec-
tion is suspected, and IV antimicrobials are given in
severe cases. Defining the outcome by both events
enhances labeling precision and the likelihood that
physicians mention severe infections in medical
notes.

2.3 Modeling long medical notes
Due to the limited context of the BERT models, we
divide medical notes into smaller chunks that fit
within the maximum token limit of BERT (512).
Each chunk is then assigned the same label as the
full medical note. We adopt a similar approach to
that of (Pappagari et al., 2019), which is presented
in Figure 2. First, we fine-tune a BERT model
trained on Danish medical data (Pedersen et al.,
2023) to predict chunk labels. Next, we extract
embeddings for each chunk from the last hidden
state of BERT and model the chunk embedding se-
quences using either a Transformer (Vaswani et al.,
2017) or an LSTM architecture (Hochreiter and
Schmidhuber, 1997). We also compare the per-
formance of these stacked methods with simpler
approaches that return the chunk-level majority pre-
diction and any (positive) prediction from BERT,
which we refer to as MAJORITY and ANY.

2.4 Sensitivity to note length
We found a significant discrepancy in medical note
length between classes (Figure 1); notes labeled
as infection were longer than those without infec-
tion. To prevent the model from using length as
a proxy for the outcome, we resample negative-
class notes using a weighted approach to match the
length distribution of the positive class (Figure 1).

We evaluate models using both weighted resam-
pling (Weighted) and random sampling (Random),
which occur in real scenarios where one class has
significantly shorter notes.

2.5 Measuring bias in subgroups

Following (Czarnowska et al., 2021), we assess
potential biases in model predictions related to sex
and cancer type using the false positive rate (FPR)
and false negative rate (FNR). If the models are
biased toward a subgroup, we expect a lower FNR
and/or higher FPR compared to the other group(s).
We perform binomial tests to determine whether
the differences between subgroups and the majority
class (male for the sex factor and lymphoma for
cancer types) are statistically significant. The null
hypothesis assumes that predictions for minority
subgroups follow the same distribution as those for
the majority subgroup.

2.6 Data splitting

To minimize data leakage or biases related to the
memorization of physician-specific information
(e.g., writing style or specialties) and patient history
during data splitting, we ensure that training, vali-
dation, and test sets come from different hospitals.
Specifically, two hospitals are used for training, the
third for validation and testing, and the process is
repeated for all three combinations. Figures 3 and 4
illustrate the distribution of notes across subgroups,
as well as the proportion of notes labeled as infec-
tion in the training, validation, and test splits. To
mitigate dataset imbalance, we resample the train-
ing set to ensure it contains an equal number of
notes across female and male subgroups, cancer
types, and positive and negative classes (Balanced).
Since medical notes are recorded at different time
points, they must be treated as a time series. There-
fore, we use a time-based splitting approach when
dividing the data into training, validation, and test
sets. The models were trained with a learning rate
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of 2× 10−5, a batch size of 32, and for one epoch.
These parameters were selected based on prelimi-
nary experiments on the validation set.

Figure 3: Notes by sex across hospitals (columns) and
sets (rows). Total notes are shown atop each bar, with
infection-positive percentages inside.

3 Results

3.1 Model performances

The results show that, overall, using sequence mod-
eling (Transformer or LSTM) outperforms the sim-
pler MAJORITY and ANY models at the classifier
layer. Additionally, coupling a Transformer with
the base BERT model performs better than cou-
pling BERT with an LSTM (Table 1). All models
tend to overclassify samples as infections, as evi-
denced by higher FPRs than FNRs. The FPRs of
the two sampling strategies indicate that, despite be-
ing trained on artificially longer negative samples,
the models achieve the same performance level on
shorter texts observed in the dataset.

3.2 Variation in error rates by sex

The results in Table 2 show that, on both the Valida-
tion and test sets, FNR values remain at similar lev-
els between males and females across the three hos-
pitals. Without resampling (Observed), both FPRW
and FPRR are significantly lower for females in
two out of three hospitals in the test set. Although
resampling (Balanced) eliminates sex differences
in FPRR, FPRW values remain significantly lower

Figure 4: Notes by cancer type across hospitals
(columns) and sets (rows). Total notes are shown atop
each bar, with infection-positive percentages inside.

for females. This disparity suggests that the lower
FPRs observed for females may be influenced by
their under-representation in the dataset, leading
to biased model predictions (Figure 3). Addition-
ally, other sources of bias, such as differences in
clinical documentation patterns may have further
contributed to these discrepancies.

3.3 Variation in error rates by cancer type

The results on cancer types show higher FPRW and
FPRR on MM compared with LYFO consistently
across the three hospitals (Table 3). In the test set,
MM and CLL both have worse FPRR compared
to LYFO. Resampling based on cancer type has
little effect on reducing the significant differences.
These results highlight that the models are biased
against underrepresented subgroups (Figure 4).

4 Conclusion

Medical notes supplement EHRs with information
not available in structured formats. Unlike other
EHR data, which are automatically compiled, med-
ical notes are written by physicians and nurses,
making them more prone to bias. In this paper,
we explore potential sources of bias within the de-
mographic population and across three types of
blood cancer. The results indicate biases related
to sex and among different cancer types. We also
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Validation Test
Sampling Model HHER HRH HROS HHER HRH HROS

Weighted

ANY 66.1 72.3 69.3
MAJORITY 81.9 76.5 83.4
LSTM 85.5 81.9 82.7
Transformer 86.4 83.9 85.5 78.3 81.2 83.4

Random
ANY 83.3 88.6 89.1
MAJORITY 80.9 78.4 86.7
LSTM 81.8 77.4 84.7
Transformer 84.4 84.8 86.9 84.8 84.1 84.6

Table 1: Infection classification performance of the models, measured using balanced accuracy, on the validation
and test sets constructed with weighted and random sampling across hospitals.

Validation Test
Balance Method Metric Sex HHER HRH HROS HHER HRH HROS

Observed

FNR F 6.8 11.6• 5.9• 5.8 9.0 6.9
M 6.3 8.6 8.1 4.5 8.3 8.1

FPRR
F 25.3 18.7 19.4 25.9 20.2∗ 20.9∗

M 24.2 22.2 18.8 25.1 25.9 25.0

FPRW
F 20.6 21.0 22.3 35.0∗ 25.3∗ 24.0
M 21.0 23.6 21.7 40.8 31.8 26.6

Balanced

FNR F 10.2 21.4 13.3* 5.2 13.5 14.5
M 9.5 19.5 17.6 4.1 15.2 15.3

FPRR
F 25.3 13.6 11.1• 24.6 18.0 15.2
M 23.1 16.7 8.5 22.2 16.5 16.2

FPRW
F 22.6 15.8 17.5 32.6• 20.3* 16.7•

M 22.1 17.5 14.8 36.8 26.4 19.8

Table 2: Infection classification performance of the models in male and female subpopulations, measured using FPR
and FNR, on the validation and test sets constructed via weighted and random sampling across hospitals. P-values
are calculated using binomial test ( · p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001).

Validation Test
Balance Method Metric Cancer HHER HRH HROS HHER HRH HROS

Observed

FNR
CLL 5.4 10.5 5.9 5.2 8.9 8.0
LYFO 6.8 10.1 8.4 4.0 9.1 8.2
MM 6.6 8.4 4.5* 6.5 6.0 6.0•

FPRR

CLL 21.2 20.0 16.2 30.3** 30.6** 27.9*

LYFO 20.8 17.7 15.3 19.1 19.9 20.6
MM 34.0** 29.0** 29.9*** 32.4*** 29.4** 25.8*

FPRW

CLL 19.7 25.0• 20.2 38.9 29.5 24.2
LYFO 18.3 18.5 20.0 36.7 27.9 24.4
MM 26.3* 33.6*** 30.3** 41.6• 33.9• 31.2*

Balanced

FNR
CLL 15.3 23.7 23.8 9.3 16.7 19.9
LYFO 12.3 24.1 21.6 6.8 17.7 21.1
MM 14.1 26.3 19.6 12.2* 13.3 18.9

FPRR

CLL 21.2 16.4 13.1 25.5** 21.1** 27.4*

LYFO 18.2 13.3 18.0 14.6 11.4 21.0
MM 25.5* 14.5 35.7*** 26.7*** 14.4 35.9***

FPRW

CLL 16.4 20.0• 14.1 31.6 20.5 18.6
LYFO 16.2 13.4 13.2 30.9 20.1 15.8
MM 23.1* 23.4** 18.9• 34.2 26.9* 22.8**

Table 3: Infection classification performance of the models across different cancer subpopulations, measured using
FPR and FNR, on the validation and test sets constructed via weighted and random sampling across hospitals.

observe variations in classification performance
across hospitals, highlighting the need for further
investigation into potential differences. These dis-
crepancies may stem from variations in data quality
or differences in how information related to severe
infections is recorded.

5 Limitations

One limitation of this study is the model’s shorter
context than the input documents. Future work
could explore longer-context models like Long-
former for improvement (Beltagy et al., 2020).
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