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Abstract

Electronic Health Records (EHR) store valu-
able patient-staff interaction data. Recent ad-
vancements in proprietary online large lan-
guage models (LLMs) have shown promising
capabilities in analyzing EHR notes. However,
transmitting patient information through exter-
nal APIs to LLMs like ChatGPT introduces pri-
vacy risks, necessitating alternative approaches
that conform to hospital practices.

To address privacy concerns, we propose gen-
erating synthetic documents based on a reward-
mechanism-trained model from real documents
without leaking sensitive information but keep-
ing relevant clinical knowledge. These syn-
thetic documents may be annotated by large
proprietary models or existing public ones, and
used to train small specialized models that
can run on constrained medical infrastructure.
We validate our approach through a proof-of-
concept scenario using Mimic-III, assessing
the effectiveness of the generated documents
through several downstream tasks: a series
of ICD-9 multi-label classifications of vary-
ing complexity and a synthetic Named Entity
Recognition (NER) task. The results demon-
strate that synthetic documents preserve privacy
and improve performance when real annotated
data are sparse.

1 Introduction

Electronic Health Records (EHR) contain patient
and healthcare staff interactions. Professionals
record their impressions, observations, and vari-
ous medical procedures performed. These notes
remain fairly expressive and free to save health-
care personnel time and allow for the description
of unusual situations (Rosenbloom et al., 2011; Wu
et al., 2022). Natural Language Processing (NLP)
techniques speed up the decision processes (Zhou
et al., 2022; Wu et al., 2022). In recent years, Pro-
prietary Online Large Language Models (LLMs)

such as ChatGPT have shown impressive results us-
ing zero or few-shot techniques in analyzing these
notes (Agrawal et al., 2022; Meoni et al., 2023; Hu
et al., 2024). However, clinical NLP faces chal-
lenges that arise from the sensitive, confidential,
and specialized nature of its data—sending such
patient information through an external API raises
numerous legal issues and is often impossible. Hos-
pitals or third parties providing NLP-based medical
devices (i.e., directly impacting patient care) must
maintain control over their NLP systems to ensure
patient safety. Therefore, the customization of open
LLMs and their execution in a secure but compu-
tationally constrained environment is an important
issue.

Still, specific training datasets are necessary to
develop a model with clinical skills to address these
challenges. To create such a dataset, obtaining
real clinical data remains complicated and requires
anonymization, which is time-consuming, expen-
sive, and legally constrained. This also hinders the
use of online models to annotate real data. Alterna-
tively, we propose to create synthetic clinical notes
that look like real data but do not include person-
ally identifiable Information (PII) (Melamud and
Shivade, 2019; Ive et al., 2020). This approach
has several benefits: it reduces the need for human
input, complies with regulations, and is suitable for
annotation with external models to train local mod-
els. The local models and datasets can be shared
with the community without leaking confidential
information. These local models are also small
enough to be hosted inside the hospital’s infrastruc-
ture.

Considering these issues, we implement a novel
method for generating synthetic documents, enforc-
ing privacy preservation by design, using only a
tiny seed set of pseudo-anonymised data. As a
proof of concept, our key contributions include:

• Privacy-safe Document Generation guided
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by Clinical Knowledge and Reward Mech-
anism: We present an methodology that
leverages a minimal set of manually pseudo-
anonymized data to train fine-tuned generative
models. This process is enhanced by enrich-
ing prompts with keywords containing clinical
knowledge, in our case extracted using Quick-
UMLS (Soldaini and Goharian, 2016), as il-
lustrated in Section 5 and Figure 5. This ex-
traction does not contain any PII in the sense
that it contains only clinical entities (or key-
words). Furthermore, we improve the quality
of the synthetic documents thanks to an itera-
tive refinement process that employs a private
scorer to compare real and synthetic docu-
ments. This scorer returns only floats to the
public side, ensuring privacy while enabling
continuous improvement of the synthetic doc-
ument quality.

• Proof of Concept using Mimic-III: Because
it’s almost impossible to evaluate our meth-
ods on real private documents, we utilize the
Mimic-III clinical notes (Johnson et al., 2016)
as a proxy to simulate a private healthcare en-
vironment, demonstrating our method’s poten-
tial in a controlled setting. This proof of con-
cept illustrates how our methodology could be
applied in real-world hospital scenarios with-
out compromising patient data.

• Evaluation on downstream tasks using
Mimic-III: To assess the quality of the
synthetic documents as training dataset for
smaller models, we evaluate the generated
data using two tasks: Multilabel Classifica-
tion based on ICD-9 Codes (ICD-MC) and
Synthetic Named Entity Recognition (NER).
For ICD-MC, based on the codes proposed by
Mullenbach et al. (2018) and Mimic-III man-
ual annotations, we have modified this task, as
described in Section 6.1, to compare the per-
formance of the model trained with real data
against the model trained with synthetic data.
The NER task is conducted on annotations
returned by GPT-4 on both our synthetic and
real data. This allows us to compare the per-
formance of models trained on these datasets.

2 Related Works

Synthetic Data Generation: Many recent stud-
ies focus on creating synthetic data, particularly

for generating clinical data. For instance, Kweon
et al. (2023) proposes to train LLMs for different
purposes using synthetic clinical data generated by
online LLMs. Xie et al. (2024) has developed AUG-
PE, a high-quality differential privacy synthetic text
generation method leveraging API access.

Furthermore, the work by Li et al. (2024) in-
troduces Generalized Instruction Tuning (GLAN).
Unlike previous approaches that rely on seed or
existing datasets, GLAN uses a pre-curated taxon-
omy of human knowledge and capabilities as input
to generate instructions across all disciplines. In-
spired by their method, our work uses ontological
information to extract sequences of ontology-based
keywords from texts.

To assess the performance of LLM in Multi-
ple Questions Choices in the medical field, Griot
et al. (2024) developed a fictional medical bench-
mark to isolate the knowledge of the LLM from its
test-taking abilities. Li et al. (2023a) generated a
synthetic dataset of Alzheimer’s Disease relative
signs. As this task is relatively complex, LLM
created the dataset by incorporating expert knowl-
edge taxonomy. Finally, the Hiebel et al. (2023);
Xie et al. (2024) works focus on generating a syn-
thetic dataset of clinical cases for the NER task to
study the effectiveness of real clinical data versus
synthetic data.

Self-Rewarding: Reinforced Self-Training is an
offline RL algorithm proposed by Gulcehre et al.
(2023) for self-align LLMs generating a dataset
from the initial LLM policy and using it to im-
prove the policy via offline RL. Instruction back
translation (Li et al., 2023b) is a scalable method
that automatically labels human-written text with
corresponding instructions by finetuning a LM on
a small seed dataset and a web corpus to gener-
ate and selecting high-quality examples for further
finetuning. Yuan et al. (2024) use the trained LLM
to provide rewards via LLM-as-a-Judge prompting,
improving both instruction following and reward
provision. Lee et al. (2024) introduces Reinforce-
ment Learning from AI Feedback (RLAIF) as an
alternative, using an off-the-shelf LLM to generate
preference labels. RLAIF achieves comparable or
superior performance to RLHF in many tasks, such
as those rated by humans.

The difference from the other approaches to gen-
erating a synthetic dataset is that our method com-
bines LLM guided by prompts enriched with clin-
ical knowledge, fine-tuned with a low amount of
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real pseudonymized data, and reinforcement learn-
ing feedback. This feedback is based on a score,
which compares the real and synthetic data to en-
sure that they are closer to the source while main-
taining privacy, as illustrated in Algorithm 1.

3 Reward-based Generation

We sketch the main steps of our reward-based gen-
eration process, illustrated with Algorithm 1.

3.1 Collecting keywords
The generation of synthetic CRs is guided by
prompts enriched with clinical knowledge repre-
sented by non-confidential UMLS concepts (C)
(Figure 6) extracted from real documents. Of
course, other sources of keywords are possible.
Therefore, our first processing step is to extract
such keywords from each real document of dataset
Dsource, collecting them in Csource

3.2 Seed Step
We sample a tiny seed subset Dsft (i.e., supervised
fine-tuning) from Dsource, and associated keyword
sequences Csft, with a ratio of r%. This seed subset
is assumed to be carefully pseudo-anonymized to
authorize its use to finetune our initial public gener-
ator model Mgen. In our case, one or two hundred
pseudo-anonymized documents suffice.

3.3 Generation Step
For each keyword sequence in Ktrain = Csource

\Csft and generation r, the generator model Mgen

generates N > 1 candidate documents, collected in
dataset Dstep. This way, each synthetic document
has a real counterpart based on the same sequence
of keywords. In practice, we set N = 4.

3.4 Scoring Step
We evaluate the quality of the generated documents
using SEMSCORE (Aynetdinov and Akbik, 2024),
a metric based on semantic textual similarity (STS)
returned by our private evaluator model Mscore.
The key point is that the Mscore must be hosted in
a private infrastructure to compare public synthetic
documents with real private ones.

In Algorithm 1, we use a light orange back-
ground colour to indicate that this step takes place
on the private side of the hospital building. How-
ever, being only composed of floats, the score set
Dscore can be safely declassified and returned from
the private side to the public one for the Alignment
step to train safely a new updated version of public

Mgen. At the first generation step (step = 0), we
initialize Mscore, fine-tuning it with a contrastive
objective, selecting a subset of D0 to serve as nega-
tive examples and their real counterparts as positive
examples.

Using Mscore, we score the N candidates of
each group from Dr

step against their counterparts in
Dtrain. We keep only the best groups whose high-
est score is above the pth percentile. In practice,
we set p = 80.

In each kept group, the candidate with the high-
est score (resp. lowest one) is selected as the chosen
(resp. rejected) candidate. Finally, a dataset Ddpo

is formed from these selected candidate pairs.

3.5 Alignment Step
Using dataset Ddpo, we align and update
Mgen with DPO (Direct Preference Optimization)
(Rafailov et al., 2023).

4 Applying Synthetic Dataset for Real
Tasks

To validate the quality of the generated documents,
we develop downstream tasks. In real life, the test
set for such downstream tasks should be made up
of real documents and manually annotated. The
evaluations must be run in a private area.

5 Experiments

5.1 Base Models
We use Mistral-7B-Instruct-v0.1 (Jiang et al.,
2023) as our base generator model, a trade-off be-
tween performance and computational cost. As an
evaluator model, we use all-distilroberta-v1.

5.2 Dataset
We use a dataset from Mimic-III as a proof of con-
cept, involving pre-processing, keyword extraction,
and post-processing.

1. Pre-processing: We extract from Mimic-III
the clinical notes from the clinical event row.
We select only the Discharge Summaries from
these clinical notes and parse them to retrieve
the History of Patient Illness section, using
them as documents for Dsource. On average,
the documents consist of 248 words.

2. Knowledge enrichment: We project UMLS
concepts using QuickUMLS over Dsource.
QuickUMLS is an unsupervised biomedical
concept extraction based on pattern matching
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Algorithm 1: Reward Training Algorithm
Input :Dsource = initial dataset; r = sft ratio; Mgen = generative model; Mscore = evaluator

model; p = percentile filter value; N = number of candidates to generate;
Output :Mgen

// Running in Private Area, declassifying Dsft, Csft

Csource← ExtractConcepts(Dsource)
Dsft, Csft← PseudoAnonymize(Sample(Dsource, Csource, r))
Dtrain, Ktrain← Dsource \ Dsft, Csource \ Csft

// Seed Step
Mgen← Supervised fine-tune Mgen on pairs in (Csft, Dsft)
for step = 0 to steps do

// Generation Step
Dstep ← generate new N candidates with Mgen per k ∈Ktrain

// Scoring Step (Running in Private Area, declassifying Dscore)
if step = 0 then

// Building the evaluator model
D∗

contr, Dcontr← Sample(D0, Dtrain, rcontr)
Mscore← ContrastiveTrain (Mscore, neg = D∗

contr, pos = Dcontr)

Dscore ← score Dstep over Dtrain with Mscore

Ddpo ← in Dscore, keep a pair of candidates, then filter pairs on percentile p
Kdpo ← filter Ktrain to keep keywords corresponding to candidates selected in Ddpo

// Alignment Step
Mgen← DPO Alignment Mgen on (Kdpo, Ddpo)

that guarantees only medical concepts are ex-
tracted and no identifying information. We
obtain Csource (cf. Section 3) used to enrich
the prompts, as illustrated in Figure 6. On av-
erage, we extract 58 keywords per document.

3. Post-processing: We filter out documents
without keywords. We keep ordered keywords
to encourage the model to follow the same
narrative as the ground truth. In this way, we
constitute a dataset of 4262 documents, using
70% of them (2581) as a train set (Dtrain) and
30% (1680) as a test set (Dtest). Moreover,
the Dsft with 4% and 6% ratios have 156 and
235 documents, respectively.

6 Evaluation on Downstream Tasks

6.1 Multilabel Classification tasks

Collecting Gold Annotations: As Mimic-III in-
cludes a set of expert-labeled ICD-9 codes (L) for
each discharge summary, we use these annotations
(1) to evaluate the quality of our datasets on tasks
close to a real use-case (2) and test across a series
of ICD-MC tasks with increasing complexity. We

establish an association between these labels and
the data points in Dtrain and Dtest, respectively,
2581 and 1681 data points.

We get annotated datasets ( Dtrain, Ltrain ) and
( Dtest, Ltest ) by coupling documents with la-
bels. In defining our series of ICD-MC tasks, we
prioritize the most frequent k labels, denoted as
class-k (see Table 1) with k ∈ {20, 50, 100, 400}.
We subsequently refine ( Dtrain, Ltrain ) and
( Dtest, Ltest ) by retaining only those documents
whose labels intersect with the set of class-k labels.

We define the refined training set as
Dgold = ( D′

train, L′
train ) where each docu-

ment in D′
train contains at least one label from

class-k. Documents devoid of any intersecting
labels are excluded. Table 1 presents the dataset
sizes, which document the number of excerpts
retained after applying these exclusion criteria.

It should be noted that the task’s complexity
increases with k not only because of the larger set
of labels and the lower frequency of some labels
but also because of the longer label set on average
per document. For instance, the average length is
around 6 when k = 20 but 11 when k = 100.
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Constituting the Synthetic Train Datasets: As
an approximation, we hypothesize that the syn-
thetic data point from Dr

step, which shares the
same set of UMLS keywords as its real data coun-
terpart, can inherit the same set of ICD labels
L′
train. This way, we easily obtain six synthetic

datasets, denoted as Dstep, corresponding to the
generation steps step ∈ {0, 1, 2} and seed ratios
r ∈ {4%, 6%}, as shown in Table 3. Each Dstep

dataset contains four times more document data
points than Dgold.

6.2 Named Entity Recognition (NER) Task
Annotating the Overall Dataset: Because
Mimic-III does not include gold NER annotations,
we use GPT-4 to automatically annotate all (syn-
thetic and real) train and test datasets (OpenAI
(2023), Appendix B.), focusing on three entity
types: problem, treatment and test. We employ
a few-shot learning approach inspired by Hu et al.
(2024), using the prompt in Appendix 10. To assess
whether or not the annotated entities are essentially
the UMLS keywords, we evaluated the overlap be-
tween keywords and annotations and found a low
22.36% overlap.

Table 1 illustrates the distributions of labels for
the ICD-MC tasks and entities for NER.

6.3 Training of Task Models
We train a series of (small) deberta-v3-base (He
et al., 2021) models on ICD-MC tasks using either
real or synthetic datasets Dgold or Dr

step over the
four tasks class-k where k ∈ {20, 50, 100, 400}.

To address the quantity bias of a larger synthetic
dataset, we train two baseline models, one trained
with Dgold, and another one trained with Dgold×4,
where each real document is oversampled N = 4
times, hence containing the same amount of docu-
ments as the synthetic set.

We also consider a baseline where only key-
words (Ktrain) are used to predict labels to check
that the content of the documents impacts the per-
formance, as shown in Table 3.

We apply the same methodology for the NER
task but with only Dgold and Dgold×4 as baselines.

7 Results

Table 2 presents a comparative analysis of SEM-
SCORE measurements by evaluators across the

1O (Outside) comes from the IOB (Inside-Outside-
Beginning) schema used in Named Entity Recognition task. It
denotes tokens that are not part of any named entity.

Dgold Dtest

class-k # labels # docs # labels # docs

class-400 38602 2564 25409 1681
class-100 30015 2560 19700 1672
class-50 23323 2552 15246 1672
class-20 14619 2513 9694 1648
ner 72715 2581 47783 1681

Table 1: Multilabel classification & NER task datasets,
with labels size for Dgold, Dtest. The number of labels
for the NER task excludes label O1.

different datasets generated at various steps. We
observe a consistent improvement in scores with
successive steps. The M6%

gen model outperforms
the M4%

gen model, highlighting the effectiveness of
alignment in refining the quality of generated doc-
uments through iterative processes. The scores
indicate a trend across various models, suggesting
that models trained with more real data produce
higher-quality documents.

steps M4%
score M6%

score

0 67.95 65.94
M4%

gen 1 71.53 69.18
2 72.25 70.12

0 70.78 67.26
M6%

gen 1 72.54 70.78
2 76.10 74.37

Table 2: SEMSCORE evaluation for models Ma
gen with

a = rsft ∈ {4%, 6%} using the different evaluators
M b

score with b = rsft ∈ {4%, 6%}. The grey scores de-
note cross-evaluation where a ̸= b.

Table 3 compares F1 scores on the downstream
tasks across different models and configurations,
providing insights about their performance when
varying task complexities and training data con-
ditions. Notably, Mgold×4,trained with Dgold×4,
outperforms the models trained with synthetic
data (M{4,6}%

0,1,2 ) across all tasks. Second gen-
eration models(D4%

2 and D6%
2 ) demonstrate per-

formance comparable to the model trained on
Dgold×4. In particular, for the class-400 task, the
F1 scores for D4%

2 and D6%
2 match closely those

for Dgold×4, with only minor variations. Notably,
the standard deviations for the synthetic data mod-
els are lower than those of the gold data model,
indicating more consistent performance. Further-
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class-20 class-50 class-100 class-400 ner

baseline 45.7 ± 1.2 33.8 ± 2.2 26.6 ± 0.8 10.6 ± 2.0 -

Dgold 49.3 ± 1.8 33.3 ± 3.1 23.0 ± 3.6 04.9 ± 4.1 57.0 ± 0.2
Dgold×4 53.7 ± 2.3 42.5 ± 0.2 35.0 ± 1.3 26.4 ± 5.9 61.6 ± 0.1

D4%
0 49.8 ± 1.1 38.7 ± 1.1 32.2 ± 1.8 24.2 ± 2.5 -

D6%
0 49.9 ± 1.2 38.5 ± 1.9 31.0 ± 1.7 23.9 ± 2.4 59.6 ± 0.2

D4%
1 50.9 ± 0.9 41.1 ± 1.6 33.9 ± 1.8 26.9 ± 1.4 -

D6%
1 51.2 ± 0.9 40.7 ± 1.4 33.7 ± 2.1 24.5 ± 2.7 59.4 ± 0.2

D4%
2 50.6 ± 0.8 41.0 ± 1.3 34.3 ± 2.0 27.0 ± 2.0 -

D6%
2 51.7 ± 1.1 40.7 ± 1.0 31.9 ± 7.5 26.5 ± 2.5 59.4 ± 0.2

D6%
{0,1,2} 52.4 ± 0.4 43.1 ± 0.5 37.2 ± 0.3 31.0 ± 0.7 61.7 ± 0.1

Table 3: Comparative F1 Scores and standard deviation across models trained over different dataset generations.
The table illustrates F1 (Micro-F1) score performance for the class-k and NER tasks across Dr

step, Dgold and the
baseline.

more, models trained on a combination of several
generations(D6%

0,1,2) outperform most cases, except
on the class-20 task. This suggests increasing data
diversity and quantity through dataset mixing en-
hances model performance in certain scenarios.
Consistently across class-k tasks, M{4,6}%

0 mod-
els yield the lowest F1 scores. This indicates that
initial generation models lack sufficient sophistica-
tion or diversity in training data to effectively cap-
ture necessary predictive features, particularly for
M4%

0 . As task complexity increases, F1 scores gen-
erally decrease for both real-based and synthetic-
base models, highlighting the models’ challenges
in adapting to more complex interactions.

In the class-400 task, F1 scores improve from
step = 1 to step = 2, following a general trend
of performance increase. The exception is in the
class-100 task, where performance decreases be-
tween M6%

1 and M6%
2 .

Figure 1 presents the correlation between F1
scores and SEMSCORE computed by M6%

score across
class-k tasks. We observe that SEMSCORE is an
effective evaluator, although with nuances. Specifi-
cally, D6%

2 outperforms D4%
2 only in class-20. In

class-400, the lowest correlation is observed, sug-
gesting that SEMSCORE ’s reliability decreases
as task complexity increases, likely due to label
scarcity affecting training stability. In contrast,
class-20, 50, 100 show stronger correlations, em-
phasizing SEMSCORE effectiveness in these tasks.
Though, M4%

0,1,2 consistently outperforms M6%
0,1,2,

indicating that the seed may constrain the genera-

tor, leading to reduced document diversity. Further
investigation is required to evaluate the impact of r
on overall performance.

We also conducted ablation studies to analyze
how dataset sizes and selection strategies affect the
performance of encoder models for the class-100
and NER tasks. We trained several task models
using different amounts of (filtered) synthetic data
generated from the D

{4,6}%
2 subsets. We employed

two filtering methodologies: (1) percentile sam-
pling, which prioritizes the highest-scored candi-
dates according to the SEMSCORE metric, and
(2) random sampling, which filters documents
in varying proportions.

In Figure 2, the graphs demonstrate a consistent
increase in F1 scores when expanding the synthetic
document set from 2,000 to 10,000 documents for
both sampling methods. For class-100, percentile
sampling shows a more pronounced improvement
than random sampling, particularly at lower doc-
ument counts. As the document set grows, the
performance gap between the two sampling meth-
ods narrows, but percentile sampling maintains a
slight edge throughout. This trend suggests that
the quality of synthetic documents, measured by
SEMSCORE, significantly impacts performance
for this task, especially when working with smaller
datasets. The observation underscores the impor-
tance of quantity and quality in synthetic data gen-
eration, with quality playing a crucial role in sce-
narios where data quantity is limited.

On the other hand, there is a sharp decrease in the
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Figure 1: Correlation between SEMSCORE and F1-score across class-{100,400} prediction tasks. The dots represent
the model trained with Dr

step. The Spearman correlation (ρ) and Pearson correlation coefficient (pcc) indicate
varying degrees of linear and rank-order association with task complexity.

performance of the NER task when M6%
2 is trained

with the same number of documents as Mgold using
percentile sampling. We conjecture it is partly due
to the synthetic subset containing fewer annotated
tokens than the gold dataset (for the same number
of documents), with 510199 tokens versus 643802
tokens. To neutralize the impact of this difference,
we trained a model with the same amount of anno-
tated tokens as Dgold, as illustrated by a black star
in Figure 2. We observe less difference between
Mgold and M6%

2 (with values of 57.0 and 56.6).
We hypothesize that this difference is because the
distribution of Dgold is closer to that of the syn-
thetic subset compared to Dtest as illustrated in
Figure 4. Furthermore, adding or removing words
can affect the proportion of annotated tokens. We
have not yet conducted the NER task experiment
with the document generated by M4%

0,1,2 as we do
not anticipate significant results for these tasks.

8 Discussion

Besides validating our privacy-safe generation pro-
cess, our results have also provided crucial insights
into the impact of both the quality and quantity
of synthetic training data on the performance of

encoder models. It is evident that refining the
generator through DPO, using clinical concepts
as inputs, enhances the synthetic dataset’s qual-
ity, especially when the first alignment step has
been performed. Results indicate that training
models on synthetic data not only preserves but
outperforms models trained on gold datasets, as
illustrated in Table 3. This highlights the potential
of using privacy-preserving synthetic documents to
maintain high data utility while protecting sensitive
information.

The accuracy of the SEMSCORE scoring
mechanism as a predictor of data quality
for downstream tasks is also particularly pro-
nounced. The nature of tasks significantly influ-
ences the predictive quality, as shown in Figure 1.
The need for text closely aligned with the source
material to ensure accurate identification of rarer
labels was clear, highlighting SEMSCORE’s role
as a critical metric in evaluating and refining the
quality of synthetic documents.

While increasing the dataset size improves per-
formance, applying selective filtering strategies,
such as percentile sampling, on a larger volume fur-
ther enhances results, surpassing the model trained

18



2000 4000 6000 8000 10000

# docs

20

25

30

35

F1
Sc

or
e

class-100 (D6%
2 )

2000 4000 6000 8000 10000

# docs

10

15

20

25

30

35

class-100 (D4%
2 )

2000 4000 6000 8000 10000

# docs

56

58

60

ner

Figure 2: The figure showcases the experimental settings for training encoder models with varying quantities of
synthetic data. The pink line (resp. blue line) denotes models trained on randomly sampled datasets (resp. nth-best
based on SEMSCORE datasets). The black dot represents the model trained with Dgold, while the black square
represents the model trained with Dgold×4.

with Dgold. These findings suggest that both data
quantity and quality can be adjusted to optimize
outcomes, as highlighted in Figure 2.

Another interesting finding is that we can con-
catenate the datasets generated on the different
steps to increase performance. This is illustrated in
overall tasks, where diversity is improved by using
more data and simulating a more diverse dataset
through the heterogeneous data quality, outperform-
ing the model trained with Dgold×4.

9 Conclusion

We deliver a method for generating synthetic
privacy-safe documents. Our method consists of
(1) initializing the model with a small number of
pseudo-anonymized documents, which reduces the
need for human input, and (2) employing a private
evaluator to score the generated document against
real documents, preserving the confidentiality of
the data while ensuring proximity between real and
synthetic documents. Our study shows that models
trained on small gold datasets face the practical
limitations of current NLP systems when handling
complex tasks. Scaling the amount of high-quality
and diverse synthetic documents is a way to address
these limitations. It can outperform models trained
on real data under certain configurations, thereby
validating the approach of generating on-demand
data to overcome data scarcity and privacy issues.
These findings facilitate the sharing of high-fidelity
synthetic datasets. Furthermore, such datasets may
be then annotated using (proprietary) LLMs or via
large-scale manual annotation. Finally, the pro-
posed solution is more ethical for patients. It fo-
cuses on privacy concerns and is motivated by the

opening of clinical data for research advancements.

10 Limitations

Currently, evaluation is limited to multi-label classi-
fication and NER tasks. Expanding testing to more
complex tasks that require reasoning and domain-
specific knowledge, such as medical question an-
swering, could give more insights into the applica-
bility and robustness of our method.

By design, Personal Identifiable Information are
absent from our synthetic documents but there exist
some slight risks of re-identification from some
specific sequences of UMLS keywords. Adding
some noise to such sequences should solve the
issue.

The economical cost for generating large syn-
thetic datasets may also be an issue (see Ap-
pendix A.) for some healthcare providers, even
if it occurs in public environments. Investigating
the efficacy of smaller generation models could
make this technology more accessible, especially
for hospitals or clinics with limited budgets.

We are exploring alternative reinforcement learn-
ing techniques, such as KTO (Ethayarajh, 2024),
to exploit all the generated data rather than only
selecting example pairs filtered by percentile with
DPO. We are also considering simpler RL methods
like ORPO (Hong et al., 2024) and SimPO (Meng
et al., 2024).

Finally, we wish to investigate more accurate
evaluation metrics than just SemScore, in partic-
ular, by combining them with other sophisticated
metrics, such as style transfer or document quality
(Jin et al., 2022).
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Appendix A. Carbon Footprint

The algorithm 1 with the experimentation protocol
detailed in 5 runs in 40h on 4 GPUs NVIDIA A100
PCIe, and draws 46.34 kWh. Based in France, this
has a carbon footprint of 2.38 kg CO2e, which
is equivalent to 2.59 tree-months (calculated us-
ing green-algorithms.org v2.2 (Lannelongue et al.,
2021)).

Appendix B. Mimic-III Usage

PhysioNet provides MIMIC-III under the Phys-
ioNet Credentialed Health Data License 1.5.0. We
employed Azure GPT, a HIPAA-certified platform
for our large language model annotations. Impor-
tantly, Azure GPT does not store processed data.
We received approval to waive abuse monitoring
for Azure GPT, ensuring that no additional par-
ties could access the data or prompts used in our
experiments.

Appendix C. ICD-9 label distribution
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Figure 3: Rank-frequency distribution of labels within
the Dgold (blue) and Dtest (pink) datasets, plotted over
the class-k.
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Appendix E. Workflow
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Figure 5: workflow of our approach

Appendix F. Outputs

<s>[INST]As a doctor, you must write an
original ’History of Present Illness’ (HPI)
section for a discharge summary. Your re-
sponse should capture the essence of a pa-
tient’s health journey and recent medical
experiences, while strictly using all the pro-
vided keywords conserving the order. You
must adopt a medical telegraphic style, ab-
breviated, characterized by concise and di-
rect language.
Keywords: metastatic, RCC, pancreas, re-
ports, chills, tylenol, reports, rib pain, ly-
ing, chills, reports, dark stools, fever, zosyn,
headache, contacts, anxious, pain, dysuria,
joint pain, rash, hypotensive, asymptomatic,
given, lactate, baseline, guaiac, stool, saw,
stent, pancreatic, blood, tomorrow, treated,
cholangitis, given, sat, ARF, reports, anx-
ious[/INST]

Figure 6: An example of prompt for the Figures 7,9,8
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This is a 67 y.o male with h.o metastatic
RCC to the pancreas, recent ICU course for
UGIB (12units pRBCs) who reports sud-
den intermittent chills since wednesday for
which he took tylenol. Pt also reports R.side
gnawing rib pain, while lying in bed be-
fore the onset of chills. In addition, pt
reports dark stools for the last few days
which started after taking "iron pills". Pt
states he went to [**Hospital1 2436**] ED
because of a fever of 101.3, however he
felt better and did not want to wait to be
seen. He returned to [**Hospital1 2436**]
today and was transferred to [**Hospi-
tal1 18**] after a dose of zosyn, HCT
25. Pt denies headache/dizziness/blurred
vision, URI/cough, sick contacts, CP, +palp
when anxious, -abd pain/n/v/d/brbpr, dy-
suria/hematuria, joint pain, rash, paresthe-
sias.
.
At [**Hospital1 18**], pt found to be hy-
potensive to 75/40, asymptomatic. He was
given 3L IVF, lactate 6.8. HCT 22.8 from a
baseline of 35 a few weeks ago. He was
found to have black, guaiac +stool. GI
saw pt, pt s/p stent to pancreatic ampulla,
?blocked from blood. Plan is to transfuse,
ERCP tomorrow. ED also treated for possi-
ble cholangitis/sepsis and pt was given dose
of vanco. Vitals 99.2, BP 99/66 HR 88 sat
9820’s, 18. Pt also found to be in ARF.
.
Currently, pt reports that he is anxious.
.

Figure 7: An example of a ground truth associated with
the prompt of Figure 6

77 yo M w/ hx of metastatic RCC of the
pancreas (pancreo-duodenal
mass reports R/o chills since starting [**6-
2**] on [**2160-5-18**] (day 7-10 from
Hx. He has had fevers with taking tylenol
at that time
(Ibuprofen 400mg, acetaminophen 650mg
PRN for R/o rib pain and
steal). On [**2160-5-22**] he was lying in
bed and became extremely
ill with chills. He reports this started a few
minutes ago. Also
reports dark stools. His fever is 102F
(38.3C), he is on 2g IV
zosyn (given IVF 2L NS, as he is V/5) for
pneumonia with HC
reported by the Wife. He reports severe
headache. He is not
compliant with PCP but has noticed many
recent contacts with
his S/M. He is very anxious for relief of
pain. He has some
dysuria and no joint pain. He has no rash.
He is in the ED
actively pacing. He is hypotensive. He is
BP 90/45 with 3+ pti
on his left hand. PRI all his vitals are stable
otherwise at
BP 92/44 HR 81 RR 14 96 O2 Sat 99PaCO2
28.1, PaO2 113. As a baseline (was done in
ED), guaiac
in stool was positive. He was sent to CT
with ortho in ED. Saw
his PCR [**Last Name (Only) **]
[**Date**] [**Time (only) **] 5:15 and
showed a 6.2mm x 5.1mm pancreatic
tail mass (blood in the head of the pancreas
with no dilation
distally). He is scheduled for pancreatic
stent placement
tomorrow. He was treated for acute cholan-
gitis (e.g. given 3L NS
and 1g of IVF) and was given 1L NS to help
with ARF. He
reports that he is more anxious for relief of
pain.

Figure 8: An example of synthetic data generated with
the prompt of Figure 6, with a high SEMSCORE at 79
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Ms. [**Known lastname **] is a 69 year
old woman with a history of metastatic
renal cell carcinoma (RCC) with distant
metastases to the pancreas
who presents with fever, chills, abdominal
pain since [**2119-1-7**]. She reports
taking 5 grams of tylenol daily at home
which she also reports taking in the past
week. She also reports having
rib pain while lying in the [**location
unclear **]. She reports chills
and having dark stools, but denies any
associated fever or rigors.
She was recently started on zosyn for
headache and nausea and
vomiting. She denies any contact with sick
person, recent travel
or animals, or recent change in her work or
home environment.

She is an anxious, non-smoker with
a past medical history of pancreatic
insufficiency and hypertension who
presents with abdominal pain and
lower extremity edema. She denies dysuria,
joint pain or rash. She
is not hypotensive with a BP of 125/80 at
her arrival to the
Emergency Department. She is asymp-
tomatic for lactate at the time of
this admission to the floor. On review of
her baseline admission guaiac
stool testing is not available. On her last
outpatient visit to her
oncologist at [**Hospital1 **] on [**1-
7**], she was seen to have a stent placed
for
cholangitis and was given an ERCP. She
was treated for cholangitis
at the time and was given some ARF on
[**1-7**].

Her oxygen saturation was 97for pos-
sible E.Coli pneumonia. She was found to
have hypotension on
admission to the floor and received dobu-
tamine.

Figure 9: An example of synthetic data generated with
the prompt of Figure 6, with a low SEMSCORE at 52

### Task
Your task is to generate a JSON list de-
tailing specific healthcare-related entities
in an input text. The entities to be identified
are: ’medical problems’, ’treatments’, and
’tests’. Each entry in the JSON should spec-
ify the entity and its type.
### Entity Markup Guide
- "problem" for medical problems.
- "treatment" for treatments.
- "test" for medical tests.
### Examples
Example Input 1: At the time of admission,
he denied fever, diaphoresis, nausea, chest
pain or other systemic symptoms.
Example Output 1: [ "entity": "fever",
"type": "problem", "entity": "diaphore-
sis", "type": "problem", "entity": "nausea",
"type": "problem", "entity": "chest pain",
"type": "problem" ]
Example Input 2: He had been diagnosed
with osteoarthritis of the knees and had un-
dergone arthroscopy years prior to admis-
sion.
Example Output 2: [ "entity": "osteoarthri-
tis of the knees", "type": "problem", "en-
tity": "arthroscopy", "type": "test" ]
Example Input 3: After the patient was seen
in the office on August 10, she persisted
with high fevers and was admitted on Au-
gust 11 to Cottonwood Hospital.
Example Output 3: [ "entity": "high fevers",
"type": "problem" ]
Example Input 4: HISTORY OF PRESENT
ILLNESS: The patient is an 85-year-old
male who was brought in by EMS with a
complaint of a decreased level of conscious-
ness.
Example Output 4: [ "entity": "a decreased
level of consciousness", "type": "problem"
]
Example Input 5: Her lisinopril was in-
creased to 40 mg daily.
Example Output 5: [ "entity": "lisinopril",
"type": "treatment" ]
### Input Text: [INPUT]
### Output Text:

Figure 10: The prompt for annotating documents for the
synthetic NER task
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