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Abstract

Clinical coding is a critical task in health-
care, although traditional methods for automat-
ing clinical coding may not provide suffi-
cient explicit evidence for coders in produc-
tion environments. This evidence is crucial,
as medical coders have to make sure there
exists at least one explicit passage in the
input health record that justifies the attribu-
tion of a code. We therefore propose to re-
frame the task as an entity linking problem,
in which each document is annotated with its
set of codes and respective textual evidence,
enabling better human-machine collaboration.
By leveraging parameter-efficient fine-tuning
of Large Language Models (LLMs), together
with constrained decoding, we introduce three
approaches to solve this problem that prove ef-
fective at disambiguating clinical mentions and
that perform well in few-shot scenarios.

1 Introduction

Medical reports are essential documents that detail
patient medical history, procedures, exams, symp-
toms, and diagnoses. Clinical coding involves as-
signing standardized codes, such as those from
ICD-10, to these records. This process is crucial
for hospitals, since it helps justify expenses, secure
funding, or file insurance claims to cover health-
care costs. Furthermore, labeling Electronic Health
Records (EHRs) through clinical coding makes
their data more searchable and suitable for statisti-
cal analysis, e.g. potentially revealing cause-effect
relationships between diseases and symptoms.

Automated solutions can help medical coders by
accelerating their work and reducing errors. How-
ever, traditional automated systems that treat cod-
ing as a Multi-Label Classification (MLC) problem
are often non-explainable (Teng et al., 2023; Dong
et al., 2022), making it difficult for healthcare pro-
fessionals to trust or verify their outputs. If systems
are explainable, we can critically reason about their

decisions, allowing medical practitioners to bet-
ter work alongside AI tools (Arrieta et al., 2020;
Goldberg et al., 2024).

To address these challenges, we propose framing
clinical coding as an entity linking problem. This
particular task involves annotating documents with
specific entities and providing textual evidence for
each one. This could enable clinical coders to un-
derstand where each code is mentioned in a record,
allowing easier cooperation with AI systems. How-
ever, clinical entity linking remains largely under-
explored and lacking in terms of annotated data.

Recently, we have seen several advances in
Transformer-based (Vaswani et al., 2017) Large
Language Models (LLMs), such as LLaMA (Tou-
vron et al., 2023), Mistral (Jiang et al., 2023), or
Gemini (Anil et al., 2023), and in the formulation
of data- and compute-efficient ways to fine-tune
them (Hu et al., 2021; Dettmers et al., 2023). Con-
sequently, we focus on mitigating the above chal-
lenges by exploring clinical entity linking as a gen-
erative task through a biomedical LLM, namely
BioMistral (Labrak et al., 2024). By fine-tuning
an LLM, we aim to develop a system capable of
solving clinical entity linking tasks effectively.

Our contributions are three-fold: (i) we propose
to frame the explainability of ICD coding as an en-
tity linking task; (ii) we investigate the performance
gains of prompting versus fine-tuning a clinical
LLM for this task, evaluating how different formu-
lations for generative entity linking can enhance
model performance; and (iii) we compare the entity
linking approach to MLC, assessing the potential it
has for few-shot classification of mentions.

2 Proposed Approaches

Traditionally, clinical coding is treated as MLC,
in which a model annotates the input medical re-
port with its set of labels. In our setting, we treat
clinical coding as an entity linking problem. This
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means that given a medical report and its set of gold
mentions (i.e., our work assumes mentions have
been pre-detected, for instance, via named entity
recognition), our model must disambiguate each
mention by assigning it the corresponding entity.

The following subsections detail different ap-
proaches for tackling clinical entity linking.

2.1 ICL-BIOMISTRAL

ICL-BIOMISTRAL (in-context learning) prompts
a pre-trained Transformer decoder model. The
prompt comprises a (pre-determined) mention, and
a medical report excerpt, corresponding to the con-
text that surrounds it. The model must output an
ICD-10 code representation, corresponding to the
entity which the mention refers to.

Inspired by Boyle et al. (2023), we designed a
prompt with a short context and the task description.
To improve the model’s capability to solve the task,
we use in-context learning (thoroughly analyzed
by Dong et al. (2024)). As such, we add 10 random
examples to the prompt. We illustrate the prompt
template in Appendix A.

Similarly to GENRE (De Cao et al., 2021), we
use constrained greedy decoding,1 to ensure that
the model output is always a valid ICD-10 code
representation. This is implemented with a pre-
fix tree of all possible outputs, and by forcing the
generated tokens to stay within the set of possible
continuations for titles of ICD codes.

2.2 SFT-BIOMISTRAL

SFT-BIOMISTRAL (supervised fine-tuning) is si-
miliar to ICL-BioMistral, as it also outputs an in-
context mention, given a report excerpt. However,
instead of learning through examples, this model
was fine-tuned on a causal language modeling ob-
jective, where we maximize the conditional proba-
bility for each output token, considering the input
and the expected previously generated output to-
kens (Williams and Zipser, 1989). We consider as
input the prompt (i.e., the task description and con-
text), and compute the cross-entropy loss over the
tokens of the output (the title of the desired ICD-10
code). Decoding with this model again relies on a
constrained decoding algorithm.

2.3 INSGENEL-BIOMISTRAL

Our last proposed model is inspired by INS-
GENEL (Xiao et al., 2023), which is based on

1https://huggingface.co/blog/
constrained-beam-search

GENRE (De Cao et al., 2021). Our model outputs
multiple mention-entity pairs for a medical report
in a single pass. This is closer to the approach clin-
ical coders take when annotating, and it enriches
predictions through the document’s global context,
improving coherence between predictions.

Like GENRE, our model receives a docu-
ment (with gold mentions) and outputs the doc-
ument with annotated mention-entity pairs. Un-
like GENRE, and following INSGENEL, we use a
Transformer decoder to annotate the documents.
The fine-tuning process optimizes a causal lan-
guage modeling objective by learning from super-
vised instruction-response pairs (Ren et al., 2024).
A prompt template is presented in Appendix A.

During inference, we ensure a valid generation
using constrained decoding. We implemented a
function (based on GENRE’s proposal) that re-
ceives the generated tokens and returns the possible
continuations. First, it determines the state as either
outside an entity—which can be the case when pro-
cessing a non-mention or mention token—or inside
an entity—where the model is disambiguating a
mention. If outside an entity, then the possible con-
tinuation is to resume copying the input document.
Otherwise, the model generates an entity represen-
tation. Similarly to our previous approaches, we
use a prefix tree to ensure the model generates valid
ICD-10 code representations.

3 Experimental Setup

To train and evaluate our models, we used pub-
licly available datasets for explainable ICD cod-
ing, i.e. including span evidences for each code,
namely CodiEsp (Miranda-Escalada et al., 2020),
DisTEMIST (Miranda-Escalada et al., 2022), and
MDACE (Cheng et al., 2023). Further details on
these datasets are given in Appendix B. Additional
experimental details are given in Appendix C.

Knowledge Base. In entity linking, entities are
organized in knowledge bases. We focus on the
International Classification of Diseases (ICD)2 cod-
ing system, proposed by the World Health Organi-
zation, as a standardized way of representing diag-
noses and procedures. The ICD is a hierarchical
ontology, as codes are first organized into chapters,
sub-chapters, and partial codes. We considered
version 10, which is divided into ICD-10-CM (for
diagnoses) and ICD-10-PCS (for procedures).

2https://www.who.int/standards/
classifications/classification-of-diseases
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Micro Macro
C

od
iE

sp ICL-BM 6.36 5.93
SFT-BM 63.39 62.41
INSGENEL-BM 66.85 64.40

M
D

A
C

E ICL-BM 10.36 7.79
SFT-BM 64.88 60.94
INSGENEL-BM 57.10 55.45

Table 1: Accuracy in the CodiEsp and MDACE test sets
for the entity linking task. BM denotes BIOMISTRAL.
We highlight in bold the best-in-class performance.

Evaluation Details. In end-to-end entity link-
ing, we distinguish the precision, recall, and F1
metris. In our case, where we used gold men-
tions, these equate to a measure of accuracy, as
explained by Balog (2018). We consider micro-
accuracy (where we average the accuracy of all
mentions) and macro-accuracy (where we compute
the accuracy per document and average all values).
To compare our results with existing work, we com-
puted coding evaluation metrics. By aggregating
all assignments for the entity linking task, we ob-
tain a solution for MLC that can be evaluated with
precision, recall, and F1. These were computed
with the script by Miranda-Escalada et al. (2020).

4 Experimental Results

Table 1 presents our micro- and macro-accuracy on
the CodiEsp and MDACE test datasets.

Practical Highlights. From Table 1, we con-
clude that fine-tuned models perform consider-
ably better than ICL-BIOMISTRAL. We highlight
that SFT-BIOMISTRAL has a stable performance
for both evaluation corpora, whereas INSGENEL-
BIOMISTRAL has limitations in MDACE, which
we hypothesize might be related to the increased
length of the documents. Additionally, we find
that INSGENEL-BIOMISTRAL is beneficial in pro-
duction scenarios: not only does it better alleviate
the coder’s job with its increased accuracy, but it
also deals with all of a document’s mentions si-
multaneously. Nonetheless, clinical coders receive
non-annotated documents and a separate procedure
must be used to recognize and annotate the textual
evidence to which a code should be assigned.

Partial Results. Since the ICD-10 is organized
hierarchically, a wrong prediction can be partially
correct if it determines the code’s ancestors up to

Chap Sub Part

C
od

iE
sp ICL-BM 30.64 18.33 12.55

SFT-BM 85.65 82.27 75.94
INSGENEL-BM 87.79 83.60 78.81

M
D

A
C

E ICL-BM 43.88 33.90 23.35
SFT-BM 89.17 84.84 78.91
INSGENEL-BM 90.09 83.73 76.18

Table 2: Micro-accuracy in the CodiEsp and MDACE
test sets for the entity linking task, considering only
the chapter (Chap), subchapter (Sub), and partial (Part)
code of each ICD-10. BM denotes BIOMISTRAL.

1-shot 5-shot

CodiEsp
SFT-BM 47.49 56.66
INSGENEL-BM 34.97 49.30

MDACE
SFT-BM 36.74 40.89
INSGENEL-BM 24.39 29.66

Table 3: 1- and 5-shot micro-accuracy in the CodiEsp
and MDACE test corpora. BM denotes BIOMISTRAL.

a certain point. We assessed micro-accuracy on
the chapter, subchapter, and partial code levels (a
partial code contains the first three digits of an
ICD), and the results are in Table 2. Both SFT-
BIOMISTRAL and INSGENEL-BIOMISTRAL can
provide orientation helpful in practical scenarios.

Few-shot Analysis. In Table 3, we compare the
few-shot performance for all codes seen at most
once or 5-times during training (1-shot and 5-shot).
The number of such codes in the inference corpora
is given in Appendix B. The model with the best
few-shot performance was SFT-BIOMISTRAL, but
INSGENEL-BIOMISTRAL is nevertheless able to
predict codes trained in few-shot scenarios. We hy-
pothesize that the reduced performance on MDACE
is related to the increased document length, which
may lead to hard long-range dependencies.

4.1 Comparison with Existing Results

The CodiEsp-D and CodiEsp-P tasks can be eval-
uated with MLC metrics, as we explain in §3.
CodiEsp also proposes an end-to-end entity link-
ing task, CodiEsp-X. It is not evaluated with entity
linking metrics, since if a code is mentioned more
than once in the same document, it only needs to
be correctly predicted once to be considered cor-
rect. This means the evaluation micro-metrics for
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Multi-label Classification Entity Linking

CodiEsp-D CodiEsp-P CodiEsp-X

P R F1 P R F1 P R F1

IAM CodiEsp 81.70 59.20 68.70 69.10 42.00 52.20 75.00 52.40 61.10
DAC-E − − 74.40 − − 56.0 − − −
ICL-BM 8.91 7.19 7.96 11.34 12.45 11.87 8.42 7.19 7.76
SFT-BM 75.04 76.20 75.62 34.31 38.53 36.30 64.66 67.10 65.86
INSGENEL-BM 73.93 71.94 72.92 46.26 46.78 46.52 68.34 66.96 67.64

Table 4: Comparison of automated medical coding and entity linking micro performance metrics on the CodiEsp
test set with existing results for the CodiEsp shared task. BM denotes BIOMISTRAL.

CodiEsp-X do not equate to our micro-accuracy.
In Table 4, we compare our results to those of

the challenge’s winner, i.e., the IAM team (Cossin
and Jouhet, 2020), and to a solution that was sub-
sequently proposed, DAC-E (Barros et al., 2022).
These systems are described in Appendix D. Al-
though a strict comparison is not possible, since
we used gold mentions contrarily to the shared
tasks, our fine-tuned models had similar or better
performance in most settings, indicating that our
approaches remain useful in the MLC scenario.

MDACE was proposed for a different task: given
the output of MLC, finding sufficient textual evi-
dence for each code. This means that we cannot
compare with the paper’s benchmarking results.

5 Related Work

We briefly describe previous related work on auto-
mated ICD coding and also on entity linking.

ICD Coding & Explainability. Most solutions
for automated ICD coding are based on MLC. For
example, Barros et al. (2022) leverage the ICD hier-
archy and propose two MLC sub-tasks on different
granularities. Furthermore, many studies have ad-
dressed the importance of solving explainable ICD
coding, so that clinical coders can understand the
system’s decisions. However, most studies focus
on label-wise attention mechanisms (Glen et al.,
2024; Amjad et al., 2023; Figueira et al., 2023),
which are challenging to systematically evaluate,
as pointed out by Teng et al. (2023) and Dong et al.
(2022). More recently, researchers have developed
methodologies to evaluate these interpretability so-
lutions (Edin et al., 2024; Wu et al., 2024).

Entity Linking & Different Entity Linking Ap-
proaches. Entity linking solutions range from

discriminative to generative models. Discrimina-
tive models are the most common, but many state-
of-the-art models, such as those of Yamada et al.
(2022), Ayoola et al. (2022), and Shavarani and
Sarkar (2023), were trained on large corpora (the
Wikipedia), which is not available for our domain.
Generative models require less fine-tuning data to
achieve similar performance. For example, Xiao
et al. (2023) performed better than Ayoola et al.
(2022), using 50 times less data. The model was
inspired by a previous proposal from De Cao et al.
(2021), which uses constrained decoding to ensure
valid generation.

Clinical & Biomedical Entity Linking. The
clinical and biomedical domains are specialized,
and general-purpose models cannot solve clinical
problems, even with a target domain fine-tuning
corpus (Alekseev et al., 2022). Existing work
uses methodologies similar to general-domain al-
gorithms, but with models trained on domain cor-
pora (Yuan et al., 2022a; Agarwal et al., 2022). For
instance, Yuan et al. (2022b) propose a method sim-
ilar to GENRE. In the clinical domain, most entity
linking studies focus on the DisTEMIST (Miranda-
Escalada et al., 2022) and CodiEsp (Miranda-
Escalada et al., 2020) challenges. For example, Gal-
lego et al. (2024) propose a Transformer encoder-
based solution to DisTEMIST.

6 Conclusions

We described three approaches for the clinical en-
tity linking problem, based on BioMistral 7B, that
annotate medical reports with each mention’s ICD-
10 code. The models we fine-tuned, i.e., SFT-
and INSGENEL-BIOMISTRAL, were substantially
better than the prompted ICL-BIOMISTRAL, and
yielded interesting results for few-shot codes.
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Limitations

Our models only deal with the disambiguation sub-
problem of entity linking, using pre-detected men-
tions. Future work should explore mention detec-
tion to obtain an end-to-end solution, which makes
our models useful in production environments.

In addition, our experiments were limited to
three publicly available datasets, which only rep-
resent a small subset of patients, possible medical
conditions, and medical procedures. There is not a
lot of clinical data publicly available to support re-
search studies, especially annotated for entity link-
ing. In the future, we can explore other approaches
to data collection, and even leverage additional
information from clinical knowledge bases, such
additional information in ICD-10 itself and UMLS.

Finally, large generative models such as BioMis-
tral 7B are generally very costly to use. For in-
stance, the IAM system (Cossin and Jouhet, 2020),
based on a dictionary, only takes 5 seconds to run
on an 8 CPUs’ machine. The DAC-E (Barros et al.,
2022) system, while using GPU processing, is also
more efficient as it uses a smaller Transformer en-
coder as the backbone. Future work can perhaps
assess the impact of using LLMs of different sizes.

Ethical Considerations

ICD coding is a sensitive task that influences clini-
cal and financial decisions. In our problem formu-
lation, we facilitate keeping practitioners in charge
of all clinical decisions, as they can critically assess
each model decision. This allows medical coders to
work alongside AI tools, fostering human-machine
collaboration rather than replacing human input,
with basis on the supporting evidence.

Due to restrictions in data access, we used pub-
licly available datasets that only represent a small
part of the target population. To use the MDACE
corpus, we took the Data or Specimens Only Re-
search training course from the CITI program.3
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A Prompt Templates

The prompt used for ICL-BIOMISTRAL is in List-
ing 1. For SFT-BIOMISTRAL, we used a similar
prompt, without the [Example]s. For INSGENEL-
BIOMISTRAL, we used the prompt in Listing 2.
We use a prompt in English, and generate outputs
in English, even with CodiEsp’s Spanish reports.

1 You are a medical coder at a hospital ,
and you have to assign ICD -10 codes
to mentions. I will give you a
report excerpt and a mention that
can be found in that excerpt. Your
job is to associate the mention to
an ICD -10 code.

2 Each code can be a Diagnosis in ICD -10-
CM or a Procedure in ICD -10-PCS. You
should give the ICD -10 code

according to its type (Diagnosis or
Procedure).

3 [Example ]:
4 The following report excerpt , written in

<language >: """<
example_mention_in_context >""",
contains the following mention: <
example_mention >.

5 It corresponds to the ICD -10 entity: <
example_icd >.

6 [Task]:
7 The following report excerpt , written in

<language >: """< mention_in_context
>""", contains the following mention
: <mention >.

8 It corresponds to the ICD -10 entity:

Listing 1: Prompt for ICL-BIOMISTRAL.

1 You are a medical coder at a hospital ,
and you have to assign ICD -10 codes
to mentions.

2 I will give you a medical report , whose
mentions are annotated between { and
}. Your job is to associate each

mention to an ICD -10 code.
3 Each code can be a Diagnosis in ICD -10-

CM or a Procedure in ICD -10-PCS. You
should give the ICD -10 code

according to its type (Diagnosis or
Procedure) and hierarchy , that is,
you should first write the chapter ,
then the subchapter up until the

title of the ICD -10 code , separated
by "-->".

4 ICD -10 codes should be delimited by |
and |.

5 Annotate the following report:
6 <report >

Listing 2: Prompt for INSGENEL-BIOMISTRAL.

B Dataset Details and Statistics

We used three different corpora during training.

• CodiEsp (Miranda-Escalada et al., 2020) con-
sists of Spanish medical reports, which were
manually annotated with their ICD-10 codes
and textual evidence spans. The corpus was
developed for the CodiEsp shared task, which
comprises three sub-tasks: automated ICD
coding for ICD-10-CM (CodiEsp-D) and ICD-
10-PCS (CodiEsp-P), and end-to-end clinical
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Diagnoses Procedures

Reports Samples Codes 1-shot codes Samples Codes 1-shot codes

CodiEsp 500 8, 199 1, 720 618 2, 799 435 86
DisTEMIST 750 1, 912 451 176 23 4 1
MDACE 181 4, 993 966 446 168 89 61

Total 1, 431 15, 104 2, 513 912 2, 990 515 138

Table 5: Datasets used for training. Codes refers to the number of distinct ICD-10 codes in the training data, and
1-shot codes refers to the number of codes that only appear once.

CodiEsp MDACE

No. 1-shot codes 219 49
No. 5-shot codes 923 203

Table 6: Number of 1-shot and 5-shot codes in the
CodiEsp and MDACE test sets, considering the number
of times they were seen in the training corpus.

entity linking for ICD-10 (CodiEsp-X).

• DisTEMIST (Miranda-Escalada et al., 2022)
comprises medical reports in Spanish and En-
glish (we only used the English version), man-
ually annotated with their SNOMED CT dis-
ease codes and textual evidence spans. The
authors mapped the SNOMED CT codes to
ICD-10 using UMLS. This mapping was only
performed for the training data, so we could
not evaluate our model’s performance on the
DisTEMIST validation and test splits.

• MDACE (Cheng et al., 2023) consists of En-
glish medical reports, which are part of the
MIMIC-III collection (Johnson et al., 2016),
with manually annotated ICD-10 codes and
respective textual evidence spans.

The number of test few-shot codes is in Table 6.
Table 5 summarizes the training datasets.

C Experimental Details

Our models were initialized with BioMistral-
7B (Labrak et al., 2024). SFT- and INSGENEL-
BIOMISTRAL were fine-tuned for 5 epochs on an
NVIDIA RTX A6000 GPU for 20 hours, with a
batch size of 4. We used QLoRA (Dettmers et al.,
2023), with rank r = 64 and 4-bit NF quantization,
and the AdamW (Loshchilov and Hutter, 2019) op-
timizer with a learning rate of 2 ∗ 10−4 and weight
decay equal to 10−3. For inference, models were

loaded without quantization on the same GPU, and
we used the same batch sizes and a greedy decoding
strategy. Inference took 8 hours for all datasets.

For INSGENEL-BIOMISTRAL, to ensure all
training samples did not exceed the model’s con-
text window of 8, 192 tokens, we truncated all doc-
uments to 5, 000 characters. During inference, the
entire documents were processed.

D Comparison Systems

In Table 4, we compare our experimental results on
the CodiEsp test corpus with those of the IAM and
DAC-E systems, which work as follows:

• The IAM (Cossin and Jouhet, 2020) system
performs explainable ICD coding. It starts by
normalizing every document in the training
data, and composing a dictionary whose items
are the normalized mentions (denoted terms)
and their corresponding ground-truth ICD-10
codes. Additionally, the KB entities’ normal-
ized titles are added to the dictionary. Then,
each dictionary term is tokenized and stored
in an n-gram tree. For inference, a matching
algorithm parses each document’s tokens to
find matching dictionary entries. Three match-
ing strategies are employed: perfect matching,
abbreviation matching (where a hand-crafted
dictionary of abbreviations is used), and Lev-
enshtein distance-based matching.

• The DAC-E (Barros et al., 2022) approach
is not as directly explainable, as it treats
ICD coding as MLC. This system comprises
two sub-tasks, respectively performed by
matcher and ranker models. The matcher as-
sociates documents to clusters (the chapters in
ICD-10), leveraging a biomedical RoBERTa
model (Liu et al., 2019). The ranker computes
the likelihood of each code being present in
a document, considering its chapter. It was
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implemented with a binary classifier for each
code, trained only with documents with codes
in the same cluster, for better fine-grained dif-
ferentiation. The ranker was trained using the
XGBoost algorithm (Chen et al., 2015).
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