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Abstract

Summarizing clinical trial data poses a signif-
icant challenge due to the structured, volumi-
nous, and domain-specific nature of clinical
tables. While large language models (LLMs)
such as ChatGPT, Llama, and DeepSeek
demonstrate potential in table-to-text genera-
tion, they struggle with raw clinical tables that
exceed context length, leading to incomplete,
inconsistent, or imprecise summaries. These
challenges stem from the structured nature of
clinical tables, complex study designs, and the
necessity for precise medical terminology. To
address these limitations, we propose an end-
to-end pipeline that enhances the summariza-
tion process by integrating fact selection, en-
suring that only the most relevant data points
are extracted for summary generation. Our ap-
proach also incorporates a feedback-driven re-
finement mechanism, allowing for iterative im-
provements based on domain-specific require-
ments and external expert input. By system-
atically filtering critical information and refin-
ing outputs, our method enhances the accuracy,
completeness, and clinical reliability of gen-
erated summaries while reducing irrelevant or
misleading content. This pipeline significantly
improves the usability of LLM-generated sum-
maries for medical professionals, regulators,
and researchers, facilitating more efficient inter-
pretation of clinical trial results. Our findings
suggest that targeted preprocessing and itera-
tive refinement strategies within the proposed
pipeline can mitigate LLM limitations, offering
a scalable solution for summarizing complex
clinical trial tables.

1 Introduction

The growing scale of medical research, reflected
in thousands of clinical trials conducted globally
each year, has resulted in a vast amount of tabular
data that requires effective interpretation. Clini-
cal trial tables, which summarize key aspects such
as patient demographics, treatment arms, and out-

comes, play a critical role in the evaluation of med-
ical interventions. However, these tables are often
complex and dense, containing a mixture of statis-
tical information and clinical findings that are not
easily digestible without significant time and exper-
tise. This creates a bottleneck in the dissemination
and practical application of clinical findings, as
stakeholders-ranging from healthcare profession-
als to policy makers struggle to extract meaningful
insights quickly and accurately from trial reports.

The recent advances in natural language pro-
cessing, particularly with large language models
(LLMs) like ChatGPT, have unlocked new oppor-
tunities for automating the conversion of struc-
tured data into readable and informative sum-
maries. LLMs have shown significant potential
in table-to-text generation tasks (Hegselmann et al.,
2023), where they can summarize data tables
into coherent narratives by identifying key pat-
terns and relationships. In fields such as busi-
ness analytics (Nasseri et al., 2023), (Jiang et al.,
2024), (Teubner et al., 2023) and scientific report-
ing (Telenti et al., 2024), (Sallam, 2023), LLMs
have demonstrated their utility in transforming
structured datasets into succinct summaries (Chen,
2022). However, when applied to the highly spe-
cialized domain of clinical trial data, these models
face substantial limitations.

Clinical trial tables are often vast and intricately
detailed, encompassing a wide array of variables
such as multiple treatment arms, efficacy measures,
adverse events, and participant characteristics. The
complexity and scale of these tables overwhelm
current LLM capabilities, leading to incomplete or
overly generalized summaries when the tables are
provided as direct input. Moreover, clinical data
requires precision, as even minor inaccuracies in
summarization can have significant implications
for patient safety and medical decision making.
The inherent challenge lies in ensuring that the
generated summaries retain both the accuracy and
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the contextual relevance of the underlying data, a
requirement that LLMs struggle to meet without
intervention.

To address these limitations, we propose an end-
to-end pipeline designed to improve the summa-
rization of clinical trial tables using LLMs. This
pipeline incorporates a fact selection mechanism
that preprocesses the tables by extracting the most
relevant data points, ensuring that the input to the
LLMs is both concise and focused. The pipeline
further integrates a feedback loop, allowing users to
refine and improve the generated summaries itera-
tively. This approach not only enhances the quality
and reliability of the summaries but also offers flex-
ibility, enabling the adaptation of summaries based
on specific user requirements.

2 Related Work

Clinical Study Reports (CSRs) provide a detailed
account of a clinical study’s design, methodology,
and outcomes, serving as crucial documents for reg-
ulatory approval, labeling, and commercialization.
Unlike academic papers, CSRs offer a comprehen-
sive, data-driven evaluation of a drug’s therapeutic
effectiveness. Earlier approaches to summary gen-
eration using tabular data devise complex template
schemes in collaboration with domain experts to
build a consistent set of data-to-word rules (Bao
et al., 2018), (Chen et al., 2019a), (Chen et al.,
2019b). This has been used in domains such as
weather and medical report generation (Deng et al.,
2013; Reiter et al., 2005; Varges et al., 2012). These
works relied heavily on expert knowledge to bring
out semantics from structured-data.

Most of the modern techniques for Table-to-Text
summary generation can be divided into two in-
dependent components: (1) content selection: in-
volves choosing a subset of relevant records in a
table to include in the summary. (2) generating nat-
ural language descriptions for this subset. Multiple
approaches have been proposed for the individ-
ual modules. For content selection, the approach
by (Barzilay and Lapata, 2005) builds a content
selection model by aligning records and sentences.
Summary generation is often treated as a surface
realization problem where text is generated from a
given concept representation.

Authors in (Lebret et al., 2016), (Wiseman et al.,
2017) have approached the table-to-text problem by
formulating the input table as a sequence of records.
They have developed table-to-text methods using

the Seq2Seq framework, and in the process, they
explored the modeling of table representation, as
studied by (Geng et al., 2018) and (Gong et al.,
2019) in their respective works. In the paper by (Li
et al., 2023), a non-autoregressive model for table-
to-text generation is introduced, named “Plan-then-
Seam" (PTS). This model is designed to generate
outputs in parallel through a single network.

The PTS approach consists of two distinct steps
that are executed iteratively while sharing param-
eters. In the first step, the model creates and re-
fines a content plan for the generated output. In
the second step, the model uses this content plan
as context to decode the description. In the work
presented by (Gong et al., 2020), a method called
TableGPT is introduced for table-to-text generation.
The approach involves a multi-step process aimed
at enhancing the alignment between structured ta-
bles and their corresponding natural language sum-
maries.

The incorporation of auxiliary tasks to enhance
the table representation is another paradigm for
tackling the table-to-text problem, as demonstrated
in the works of (Tian et al., 2019), (Li et al., 2021).
In (Chen et al., 2023) have proposed an approach
for table-to-text generation with a pre-trained lan-
guage model. In the paper by (Lin et al., 2023) the
authors introduce the “Inner Table Retriever,", a
general-purpose approach to address the challenge
of handling large tables in TableQA (Table Ques-
tion Answering). This method involves extracting
sub-tables from the original large table to retain the
most pertinent and relevant information specifically
related to a given question.

In the study conducted by (Gao et al., 2023)
the authors investigate ChatGPT’s capacity to per-
form human-like summarization evaluation. They
assess the model’s summarization outputs and com-
pare them against commonly used automatic eval-
uation metrics. The findings reveal that ChatGPT
exhibits superior performance compared to these
conventional metrics, suggesting that it is capable
of producing summaries that align more closely
with human-like quality and judgment.

3 Approach

Traditionally, medical writing experts transform
complex clinical data into structured narratives that
meet regulatory requirements. However, advance-
ments in AI-driven solutions are reshaping this pro-
cess. Generative AI models can now interpret in-
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Figure 1: Overall Architecture of CSR Summary Generation

tricate CSR tables and produce reliable summaries.
Our approach focuses on handling large and com-
plex tables that existing table-to-text summariza-
tion methods struggle to process (see Figure 2).

3.1 Task Description

Given a clinical trial table (See example Table 1),
the objective is to generate a concise and informa-
tive summary that captures all the factual informa-
tion depicted in the table while avoiding halluci-
nations. The task can be broken down into the
following key steps:

• Table Linearization: Convert the table into a
linearized structure that is easy for an LLM to
interpret. The linearized format is represented
as: |Cell1|Cell1|Cell2|.......|Celln|.

• Input Preprocessing and Strategy Selection:
Depending on the size of the table and its
compatibility with the model’s input capacity,
different strategies are employed to generate
summaries. These include:

– Zero-Shot Techniques: Directly prompt-
ing the LLM to summarize the linearized
table without prior examples

– Few-Shot Techniques: Providing the
LLM with curated examples of correctly
formatted summaries to guide its output.

– Selection Algorithms: Applying algo-
rithms to filter and prioritize the most
relevant data points from, ensuring that

the input to the LLM is both concise and
contextually significant

• Summary Generation: Using the processed
input, the LLM generates a summary that
encompasses all relevant factual information
while maintaining contextual coherence and
precision.

• User Feedback Integration: Incorporate
user feedback to refine and improve the gen-
erated summaries iteratively, ensuring align-
ment with specific use cases and requirements

3.2 Automatic Assessment of CSR Tables
A significant challenge in working with large and
complex tables is their size. Most tables are very
large, often exceeding the context length limita-
tions of large language models (LLMs). The com-
plexity is further compounded by hierarchical re-
lationships between system organ classes (SOCs),
and preferred terms (PTs), missing data, and the
need to ensure accuracy and completeness when
summarizing. Addressing these challenges re-
quired innovative strategies to preprocess and struc-
ture the data for effective summarization without
losing critical information.

3.2.1 Handling Large Tables
The novelty of this study lies in the approach to
handling large clinical trial tables. To ensure that
no critical information is missed while fitting the
data within the model’s context length, we explored
multiple approaches:
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Figure 2: Example of a Clinical Trial Table

• Dividing the Table into Smaller Chunks:
Large tables were segmented into smaller, log-
ically coherent sections based on SOCs or
study arms. However, this approach often led
to a loss of context and missed critical cross-
segment information.

• Mean-Based Thresholding: This method in-
volved calculating the mean of the data val-
ues as a threshold for selecting facts from the
tables. While this approach simplified the se-
lection process, it did not consistently capture
the most clinically relevant data points, partic-
ularly in cases where data distributions were
highly skewed. Mean SOC and PT is defined
as:

µSOC =
1

N

N∑

i=1

xi

where µSOC is the SOC threshold, xi are the
SOC values, and N is the total number of
SOCs.

µPT =
1

M

M∑

i=1

yi

where µPT is the PT threshold, yi are the PT
values, and M is the total number of PTs.

• Percentile-Based Thresholding: Ultimately,
we adopted a percentile-based thresholding
method, which proved most effective. By se-
lecting data points based on predefined per-
centiles, this approach ensured that significant
facts were consistently included while main-
taining a manageable context length for the
model. For the p-th percentile, where p is
the desired percentile (e.g., 90 for the 90th

percentile), threshold Tp is defined as:

Tp =x(⌈ p
100

·n⌉)+( p

100
· n−

⌈ p

100
· n

⌉)
·

(
x(⌈ p

100
·n⌉+1) − x(⌈ p

100
·n⌉)

)

where:

– Tp is the threshold corresponding to the
p-th percentile,

– x1, x2, . . . , xn are the data points sorted
in ascending order,

– n is the number of data points,
– p is the desired percentile (e.g., p = 90

for the 90th percentile),
– ⌈·⌉ denotes the ceiling function.

Using above formula, threshold can be cal-
culated for SOCs and PTs, based on desired
percentile.

3.3 Automatic Extraction of Important Facts
Our fact selection algorithm aims to extract the
most important facts from large and complex CSR
tables. One example for extracting facts from ad-
verse events table is shown in Algorithm 1. The
fact selection algorithm plays a crucial role in our
pipeline. It is capable of handling very large tables
that usually fail to fit within the input constraints
of the LLMs.It is designed to extract the most perti-
nent facts from the tables, significantly reducing the
size of large tables. The algorithm handles all the
table types, regardless of their complexity or size.
It determines the threshold based on the percentile
and selects the relevant facts accordingly. By focus-
ing on relevant facts, the algorithm enhances both
the efficiency and reliability of the summarization
process.
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Algorithm 1: Fact selection Algorithm for
Adverse Events

For each table type T = 1,2,3,....N
while T < N do

For each table t = 1,2,3,....M
while t < M do

Identify SOCs and PTs ;
Remove the empty values;
Extract SOC and PT values;
Apply percentile-based thresholding;

Select the SOCs and PTs using
threshold;

Reconstruct the table using selected
SOCs and PTs;

end
end

4 Experiments

4.1 Dataset
We could not find any publicly available datasets
for this specific task, nor could we identify prior
work that addresses the summarization of clini-
cal trial tables using LLMs. While some clin-
ical trial reports are available on public por-
tals (NLM), (GSK) the data they provide is limited.
The clinical trial tables used in this study are pro-
prietary data from a large pharmaceutical company.
Due to confidentiality agreements, the name of the
company and the dataset cannot be disclosed. Ta-
ble 1 summarizes the number and types of tables
used in the generation process. The table types are
described as follows:

• Subject Disposition: Provides a summary
of the participants included in each analysis
group and the reasons for any exclusions.

• Subject Demography: Displays demographic
and other relevant baseline characteristics of
study participants, either categorized or by
descriptive statistics.

• Medical History: Presents a summary of
participants’ medical history, ordered by fre-
quency of occurrence.

• Overall Summary: Summarizes adverse
events (AEs) across various categories.

• AEs by SOC and PT: Lists AEs by treat-
ment group, categorized by system organ class

(SOC, highest level) and preferred term (PT,
second-highest level), ordered by frequency.

• AEs by Maximum Intensity: Categorizes
AEs by treatment group, based on the maxi-
mum intensity of each event, in descending
order of frequency.

• AEs by Worst Outcome: Categorizes AEs by
treatment group, with classification based on
the worst outcome, and further categorized by
SOC and PT.

• AEs by Common % or more by SOC and PT:
Lists AEs that exceed a predefined frequency
threshold, organized by SOC and PT.

These tables present structured data on adverse
events (AEs), system organ classes (SOCs), and
preferred terms (PTs), along with numeric sum-
maries like incidence rates and percentages for each
study arm. The size of the tables varies, with some
large enough to exceed the context length of large
language models (LLMs). For example, the tables
for Medical History, AEs by SOC/PT, AEs by Max-
imum Intensity, and AEs by Worst Outcome are
especially large.

Table 1: CSR Table Types

Table Types Number of Tables
Subject Disposition 14
Subject Demography 16
Medical History 14
Overall Summary 13
AEs by SOC and PT 7
AEs by Maximum intensity 7
AEs by Worst Outcome 4
AEs by Common % or more by SOC and PT 4

4.2 Experimental Setup

We conducted experiments with the following mod-
els:

• GPT-4o-mini: A state-of-the-art model
known for its robust summarization capabil-
ities and large token limit (Achiam et al.,
2023).

• DeepSeek (Chat window): DeepSeek is a
Chinese artificial intelligence company that
develops open-source large language models
(LLMs) (Liu et al., 2024). We used the lat-
est advanced language model comprising 671
billion parameters.
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• Llama 3.1 70B Instruct: An open source
model fine-tuned for instruction following
task (HuggingFace, a).

• Nous Hermes 2 Mixtral 8x7B DPO: A
model further fine-tuned on Mixtral 8x7B
MOE with reinforcement learning via direct
preference optimization (DPO), also featuring
a 32k token limit (HuggingFace, b).

Due to cost constraints, we could not do exper-
iments with some of the latest LLMs with higher
capabilities. However, a variety of architectural
and assessment capabilities are offered by the cho-
sen models. Some clinical trial tables in our dataset
exceeded the context length of the largest models
tested such as GPT-4o-mini, due to which models
were unable to process the entire table leading to
incomplete outputs. This limitation further high-
lights the importance of fact selection algorithm
for handling large tables effectively.

4.3 Quantitative Evaluation

To evaluate the quality of generated summaries, we
used the following metrics.

4.3.1 Claim Recall and Claim Precision
• This framework, introduced by (Xie et al.,

2024) as DOCLENS: Multi-aspect Fine-
grained Evaluation for Medical Text Genera-
tion, is specifically tailored to assess medical
text generation tasks.

• Claim Recall: This metric evaluates the com-
pleteness of the generated text. The refer-
ence summary is segmented into individual
sub-claims or facts using GPT-4, with each
sub-claim representing a single fact. The gen-
erated text is then analyzed by an evaluator
model to determine whether it entails each
sub-claim from the reference summary.

• Claim Precision: This metric evaluates the
conciseness of the generated text. The gen-
erated summary is divided into sub-claims.
The reference summary is then analyzed to
determine if it entails each sub-claim from the
generated summary.

We utilized GPT-4o to create the sub-claims for
both the reference text and the generated text. Ad-
ditionally, we employed the same model as an eval-
uator.

4.4 Human Evaluation

For human evaluation, we sought assistance from
our organization’s internal medical writers. They
devised a set of rules tailored to the evaluation of
summaries generated for clinical trial tables. The
rules guaranteed a consistent and clinically suitable
evaluation of the generated outputs. for example,
for adverse events table type (under the safety eval-
uation section)some rules are:

• Threshold for SOCs and PTs: A proper cut-
off should be decided for both System Or-
gan Classes (SOCs) and Preferred Terms
(PTs). Above this threshold, all SOCs and
PTs should be selected and included in the
summary to maintain relevance and complete-
ness.

• Template Adherence: Summaries should fol-
low a consistent and predefined template, en-
suring clarity and alignment with organiza-
tional or regulatory standards. For example,
as shown in Table 3

Medical writer manually evaluated all the gener-
ated summaries to verify that the summaries adhere
to the following criteria.

• Rule Compliance: Whether the summary fol-
lows the rules and templates specific to the
table type.

• Accuracy: Ensuring there are no hallucina-
tions, incorrect interpretations, missing data,
or data mismatches.

• Conciseness: Exclusion of irrelevant or re-
dundant details.

• Fluency: Readability and coherence of the
summary.

5 Results and Discussion

The performance of various models was assessed
using the metrics outlined in the Evaluation sec-
tion, including Claim Recall, Claim Precision, and
manual evaluation. The detailed results are shown
in Table 4 and Table 5, which emphasizes the ef-
fectiveness of our fact selection algorithm and the
overall quality of the generated summaries.

Among the models tested, without the fact se-
lection algorithm, GPT-4o-mini in a 1-shot setting
achieved a claim recall of 0.67 and claim precision
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“Reference Summary”: In total 37/63 children (58.7%) were reported with at least one
TEAE. Most frequently reported primary system organ classes affected by TEAEs were:
Gastrointestinal disorders (13/63, 20.6%) , general disorders and administration site conditions (11/63,

17.5%), musculoskeletal and connective tissue disorders (8/63, 12.7%) , nervous system disorders
(9/63, 14.3%) as well as infections and infestations (7/63, 11.1%). Overall, there was a similar
distribution of TEAEs across both age cohorts, treatments and formulations, with the exception of
menorrhagia, which was more frequently reported in adolescents of the Drug A o.d. tablet group (n =
4) than in the comparator group (n = 0)."

“Claims”:

Claim 2: The most frequently reported primary system organ class affected by TEAEs was gastroin-
testinal disorders (20.6%, 13/63).

Claim 4: Musculoskeletal and connective tissue disorders were reported in 12.7% (8/63) of children.

“GPT-4o-mini(1-shot)”:{
“claim 2”: "The most frequently reported primary system organ class affected by TEAEs was gastroin-
testinal disorders (20.6%, 13/63).",
"explanation": "The clinical summary provides that gastrointestinal disorders were the most common
system organ class, and the percentage (20.6%) is also included. The specific number of subjects
affected (13/63) is also consistent.",
"entailment_prediction": 1
},
{
"claim 4": "Musculoskeletal and connective tissue disorders were reported in 12.7% (8/63) of chil-

dren.",
"explanation": "The clinical summary does not mention musculoskeletal and connective tissue disorders
as a common adverse event. Therefore, this claim cannot be fully entailed.",
"entailment_prediction": 0

}

“Our Approach”: {
"claim 2": "The most frequently reported primary system organ class affected by TEAEs was gastroin-
testinal disorders (20.6%, 13/63).",
"explanation": "The summary lists Gastrointestinal Disorders as 20.6% of patients, but it does not
explicitly confirm the number of children affected (13/63). However, the percentage matches, so the
claim can be inferred.",
"entailment_prediction": 1
},
{
"claim 4" : "Musculoskeletal and connective tissue disorders were reported in 12.7% (8/63) of chil-

dren.",
"explanation": "The clinical summary mentions Musculoskeletal and Connective Tissue Disorders as
12.7% of patients but does not give the exact number (8/63). However, the percentage supports the
claim.",
"entailment_prediction": 1

}

Table 2: Example of Claim Recall evaluation for GPT-4o-mini and Nous-Research. The summary generated by
GPT-4o-mini fails to include an important fact, "Claim 4," resulting in lower claim recall. In contrast, applying
the fact selection algorithm to Nous-Research improves claim recall by ensuring all critical facts are present in the
generated summary
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“AEs By SOC and PT” :
X (%) Number of subjects reported at least one such adverse event......,. The most common adverse
events (AEs) by System Organ Class (SOC) were SOC Fact 1 (in Drug A X% of patients, in Drug B
Y%,........so on), SOC Fact 2 (in Drug A X% of patients, in Drug B Y%,........so on), and SOC Fact 3 (
Z%)................., and SOC Fact n (n % of patients)............ The most common AEs by Preferred Term
(PT) were PT Fact 1 (a% of patients), PT Fact 2 (in Drug A X% of patients, in Drug B Y%,........so on),
PT Fact 3 (in Drug A X% of patients, in Drug B Y%,........so on),...........and PT Fact n (n% of patients).

Table 3: An Example Template for AEs by SOC and PT

Table 4: Comparison of Claim Recall and Precision Across Different Models and Approaches

Model Claim Recall Claim Precision
Nous-Hermes-2-Mixtral-8x7B DPO (with fact selection algorithm) Our Approach 0.72 0.44
GPT 4o-mini (0-shot) 0.58 0.38
GPT 4o-mini (1-shot) 0.67 0.47
DeepSeek (0-shot) 0.5 0.36
DeepSeek (1-shot) 0.55 0.44
Llama-3.1-70B-Instruct (0-shot) 0.18 0.15
Llama-3.1-70B-Instruct (1-shot) 0.22 0.18
Nous-Hermes-2-Mixtral-8x7B DPO (0-shot) 0.27 0.22
Nous-Hermes-2-Mixtral-8x7B DPO (1-shot) 0.23 0.29

of 0.47. DeepSeek performed similarly to GPT-
4o-mini, while Llama-3.1-70B-Instruct showed the
weakest performance. We tested the fact-selection
algorithm with Nous-Hermes-2-Mixtral, which at-
tained the highest claim recall of 0.72, though its
claim precision was 0.44. Additionally, Table 5
demonstrates that the summary generated using the
fact selection algorithm outperformed the propri-
etary models in terms of informativeness, consis-
tency, fluency, and conciseness. Unfortunately, we
could not apply the fact selection algorithm to pro-
prietary models due to API costs. However, the
superior performance of the open-source models
after applying the algorithm suggests that applying
it to the proprietary models would yield even better
results.

A medical expert from our internal team evalu-
ated the generated summaries. They observed that
the output from open-source models, such as Llama
3.1 Instruct 70B, is not acceptable. These models
tend to hallucinate, exhibit data mismatches, and
fail to adhere to the correct output template. In con-
trast, proprietary models like GPT-4o-mini produce
significantly better results. While hallucinations
are less frequent and the model largely presents
accurate information from the tables, it still strug-
gles with maintaining the proper output template

and occasionally overlooks key facts. As shown
in Table 2, GPT-4o-mini misses an important fact
(‘claim 4’). However, when a fact-selection algo-
rithm is applied and a well-defined output format
is provided, the performance of the LLM improves,
producing outputs that closely resemble those of a
human writer.

The reason for this improved performance lies
in the fact that without a fact selection algorithm,
the LLM is tasked with both selecting the relevant
facts from the provided table and generating the
summary. We observed that LLMs struggle with
determining an appropriate threshold based on data
trends and applying that threshold for fact selec-
tion. In contrast, when the fact selection algorithm
is used, the generation task is divided into two dis-
tinct steps: first selecting the relevant facts, then
generating the summary. With the fact selection
algorithm in place, the LLM no longer needs to
perform fact selection itself. Instead, the selected
facts are provided to the LLM along with the nec-
essary template, making it easier for the model to
generate the output by simply filling in the blanks
of the template. With this approach, both recall
and precision can be improved by adjusting the
threshold.
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Table 5: Overall Evaluation

Type Model Informative Conciseness Fluency Consistency Score
1-shot Llama-3.1-Instruct-70B 2.8 1.5 3.5 3.1 2.73
1-shot Nous-research-Mixtral 3.1 2.2 3.8 3.4 3.13
1-shot DeepSeek 4.2 3.8 4.6 4.5 4.28
1-shot GPT-4o-mini 4.4 3.8 4.6 4.5 4.33
Algo Nous-reseaarch-Mixtral 4.7 4.5 4.7 4.5 4.6

6 Conclusions and Future Work

In this work, we developed an end-to-end pipeline
that automates the generation of clinical table sum-
maries from large complex tables. Complexities
may be there because of size, density and domain-
specific knowledge, that make it difficult for LLMs
to consistently generate accurate and relevant sum-
maries. The proposed pipeline enables the LLMs
to produce more concise and accurate summaries.
Additionally, we incorporated a feedback mecha-
nism within the pipeline, allowing users to refine
the output and improve the quality of summaries
iteratively.

7 Limitations

Due to some constraints, we could not perform ex-
tensive experiments in diverse domains. Our future
work aims to address this by experimenting in other
complex domains and at a larger data scale. More-
over, we can also perform a comparison with the
latest LLMs, particularly those with larger context
windows and improved summarization capabilities.
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