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Abstract
This paper introduces the system submit-
ted for EvaHan 2025, focusing on the
Named Entity Recognition (NER) task for
ancient Chinese texts. Our solution is
built upon two specified pre-trained BERT
models, namely GujiRoBERTa_jian_fan
and GujiRoBERTa_fan, and further en-
hanced by a deep BiLSTM network with
a Conditional Random Field (CRF) decod-
ing layer. Extensive experiments on three
test dataset splits demonstrate that our
system’s performance, 84.58% F1 in the
closed-modality track and 82.78% F1 in
the open-modality track, significantly out-
performs the official baseline, achieving no-
table improvements in F1 score.

1 Introduction
Named Entity Recognition (NER) is one of the
most fundamental tasks in natural language
processing (NLP), playing a crucial role in un-
derstanding ancient Chinese corpus. In an-
cient Chinese texts, identifying entities such
as person names, geographical locations, offi-
cial titles, book names, and time expressions is
particularly challenging due to the archaic lan-
guage, estoteric grammar, ambiguous bound-
aries, and diverse annotation schemas. In
this work, we present a solution that lever-
ages domain-specific pre-trained BERT mod-
els combined with a BiLSTM+CRF architec-
ture. Our approach is designed to effectively
capture both the semantic representations pro-
vided by the pre-trained language models and
the sequential dependencies inherent in the
text, which are critical for accurate and effec-
tive entity boundary detection.

2 Related Works
Named Entity Recognition (NER) refers to the
task of tagging entities in text with their cor-

responding type. Early studies in NER mainly
relied on using hand-crafted rules (Zhang and
Elhadad, 2013) and dictionaries (Pomares-
Quimbaya et al., 2016) to capture entity
patterns, which obtained satisfiable perfor-
mance on specific fields, while suffering from
suboptimal generality and poor scalability
on broader use cases. Statistical machine
learning techniques, including Hidden Markov
Models (HMM) (Baum and Petrie, 1966)
and Conditional Random Fields (CRF) (Laf-
ferty et al., 2001) were widely adopted for
NER, incorporating contextual features and
further improved the NER systems’ perfor-
mance. Recent advancements, including the
application of BiLSTM-CRF (Huang et al.,
2015) and pre-trained language models such
as BERT (Devlin et al., 2019), GPT (Radford
and Narasimhan, 2018), ELMo (Peters et al.,
2018) and RoBERTa (Liu et al., 2019).

Specifically, BERT-based models utilize at-
tention mechanisms (Vaswani et al., 2017),
which allows models to dynamically focus on
relevant parts of the input sequence, thereby
mitigating the limitations of fixed-size hid-
den representations in RNN-based models,
achieving human-comparable results on En-
glish NER benchmarks.

Prior work in modern Chinese NER, such
as (Huang et al., 2015), has demonstrated the
benefits of integrating contextualized embed-
dings with CRF for structured prediction. The
CRF layer refines predictions by modeling la-
bel dependencies and enforcing valid output
sequences, a feature that is particularly benefi-
cial when dealing with the complex annotation
schemes often encountered in ancient texts.

Ancient Chinese texts pose additional chal-
lenges due to significant linguistic differ-
ences from modern Chinese, sparse annotated
data, and heterogeneous tag schemes. Some
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Figure 1: Visualization of our architecture.

works have addressed these issues by building
domain-adapted pre-trained models and em-
ploying data augmentation or active learning
strategies. Our work builds on these advances
while specifically tailoring the model and train-
ing pipeline for ancient Chinese NER.

3 Model Architecture
We strictly follow the competition require-
ments by only using the provided pre-trained
model: “GujiRoBERTa_jian_fan” (Wang
et al., 2023) in the closed-modality track. Our
solution is based on a two-branch setting:

Close-Modality. The pre-trained model:
GujiRoBERTa_jian_fan (Wang et al., 2023)
is applied as the backbone for extracting in-
formation from the corpus. Its output repre-
sentations are fed into a 4-layer Bidirectional
LSTM (BiLSTM) with a hidden dimension of
1024 to capture long-range dependencies. A
fully connected layer maps the BiLSTM out-
puts to the label space, and finally, a CRF
layer is employed to model the structural con-
straints among labels, as shown in Figure 1.

Open-Modality. For the open modal-
ity track, we adopted the same architec-
ture, and the only difference is the use of
the GujiRoBERTa_fan model. Key hyper-
parameters in our architecture are shown in
table Table 1, which is also shared with the
close-modality model training.

Specifically, we set the maximum sentence
length to 256, as over 98% of sentences fall
within this length, according to our anal-

Parameter Value
Maximum Sentence Length 256
Model Training Batch Size 16
BiLSTM’s Hidden Dimension 1024
Number of BiLSTM Layers 4
Optimizer AdamW
Learning Rate Scheduler CASwithW
Dropout (in BiLSTM layers) 0.1
Gradient Clipping 5

Table 1: Model and training configuration of our
system. “CASwithW” refers to Cosine annealing
schedule with warmup.

ysis of both training and testing datasets.
AdamW (Loshchilov and Hutter, 2019) is
specifically selected to speed up model train-
ing and improve the model’s generalization ca-
pability. Its base learning rate is set as 2e− 5,
along with weight decay being set as 0.01. The
gradient clipping is set to 5 to stabilize the
model training.

4 Feature Preprocessing

Our preprocessing pipeline involves the follow-
ing components:

Sentence Splitting. During Explorative
Data Analysis, we observed that multiple non-
standard Unicode characters are present in the
training corpus. Specifically, we observed that
quotation marks contain multiple types. To ac-
commodate the dataset, we utilize the Chinese
period as the only splitting character. This en-
sures that the sentences fed to the model are
coherent and that over 98% of sentences are
within the maximum length.

Tokenization. We use the tokenizer pro-
vided by GujiRoBERTa, which has been pre-
trained on an ancient Chinese corpus.

Label Mapping. The label vocabulary is
constructed based on the training set with
splits: A, B, and C. The training set splits are
curated from three ancient documents: Shiji,
Twenty-Four Histories, and Traditional Chi-
nese Medicine Classics. Each dataset refers
to a distinct NER task, whose tags of interest
are shown in Table 2.

As the training data from datasets A, B, and
C have heterogeneous tag schemes, we ensure
that the mapping covers all tags (including
prefixes such as B-, M-, E-) for non-“O” to-
kens. To ensure the existence of “O” label, we
specifically set it as the first element in the
label-to-id and id-to-label mappings, where it
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corresponds to the id 0.

Dataset Annotation Meaning
Split A NR Person Name

NS Geographical Location
NB Book Title
NO Official Title
NG Country Name
T Time Expression

Split B NR Person Name
NS Geographical Location
T Time Expression

Split C ZD Disease
ZZ Syndrome
ZF Medicinal Formula
ZP Decoction Pieces
ZS Symptom
ZA Acupoint

Table 2: Combined Tagset for Named Entities in
Datasets A, B, and C (without examples).

5 Experiments

In this section, we demonstrate the experiment
results that we conducted while determining
the model’s architecture design.

5.1 Experimental Setup
We choose overall F1 as the metric for eval-
uating the model’s performance, the met-
ric is compared with the one produced by
the baseline model, which is constructed by
the committee. The baseline is a simple
“SikuRoBERTa-BiLSTM-CRF” model, whose
hyperparameters for constructing the BiLSTM
and CRF module are not disclosed.

We split the training data with a 90%/10%
ratio for the training and validation dataset
split. Each model is trained for 40 epochs.
During model training, we evaluate the cur-
rent model at each epoch on the separate test
sets of Split A, B, and C. For each split, we
evaluate the model’s performance on each split
using the F1 score metric and update the best
F1 that we obtained so far for this dataset split.
The best-performed model will be saved and
will be used for testing dataset inference after
the model training.

The model is trained on a single NVIDIA
A6000 40G card. Detailed model training hy-
perparameter settings are revealed as Table 1.

5.2 Model Architecture Ablation
We compared several configurations regarding
the model’s architecture. Apart from our final

design, ‘RoBERTa + BiLSTM + CRF‘ (where,
for simplicity, we refer to the “GujiRoBERTa”
model used in both close and open modality
as “RoBERTa”), we also experimented multi-
ple configurations. Using the same RoBERTa
model, we experimented the use of a single
CRF layer or SPAN layer. Due to the con-
straints of time and computational resources,
experiments on model architecture are con-
ducted after the submission deadline.

As Table 3 shows, directly applying a CRF
layer on top of the RoBERTa output yielded
an F1 score of 79.68%, which is slightly lower
than the baseline. By replacing the CRF
layer with a double-pointer SPAN layer, an F1
score of 80.62% is achieved, which is similar
to the baseline. While such simple combina-
tions do not yield substantial improvements,
the combination of RoBERTa + BiLSTM +
CRF achieved significant improvement, indi-
cating that the incorporation of a deep BiL-
STM layer is crucial for capturing sequential
context and dependencies.

Model Arch. Precision Recall F1 Score
Baseline 81.41% 79.82% 80.61%
R+C 78.62% 80.78% 79.68%
R+S 84.65% 76.96% 80.62%
R+B+C 85.92% 83.28% 84.58%

Table 3: Different model architecture’s perfor-
mance comparison (transposed). The highest met-
ric values in each column are highlighted in bold.
Acronyms: “R”, “C”, “B”, “S” refers to RoBERTa
Model, CRF, BiLSTM and SPAN, respectively.

5.3 Model Hyperparameter Ablation
To determine the optimal model configuration,
we performed ablation experiments on two key
hyperparameters: “hidden_dim”, controlling
the hidden dimension size of both the BiL-
STM and CRF modules in our system, and
“num_layer”, setting the depth of the BiL-
STM module. Experiment results are summa-
rized in Table 4 and Table 5.

Hidden Dimension 512 1024 1536
Precision 80.67% 85.92% 81.87%
Recall 83.71% 83.28% 84.45%
F1 Score 82.16% 84.58% 83.14%

Table 4: Ablation on Model Width (with 4 BiL-
STM layers), highest values are in bold.

As the results shown in both Table 4 and
Table 5, an appropriate configuration of both
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the size of hidden dimension and the number
of layers is critical for achieving optimal per-
formance. On NER task. In the ablation
on model width (with the number of layers
fixed at 4), increasing the hidden dimension
from 512 to 1024 results in a substantial im-
provement in the F1 score (from 82.16% to
84.58%). However, further increasing the hid-
den dimension to 1536 causes a slight drop
in performance (83.14%), suggesting that an
excessively large hidden dimension may intro-
duce redundancy or overfitting.

Depth 4 Layers 8 Layers 12 Layers
Precision 85.92% 81.79% 82.20%
Recall 83.28% 83.37% 81.65%
F1 Score 84.58% 82.57% 81.93%

Table 5: Ablation on BiLSTM Module’s depth,
each layer’s hidden dimension are fixed as 1024.

Similarly, in the ablation on model depth
(hidden dimension fixed at 1024), the best per-
formance is achieved with 4 layers (84.58%).
Increasing the number of layers to 8 and 12
leads to a decrease in the F1 score to 82.57%
and 81.93%, indicating that although a deeper
model might capture more complex patterns,
it may also become prone to overfitting or suf-
fer from optimization difficulties.

Overall, these experiments demonstrate
that a balanced configuration, a hidden dimen-
sion of 1024, and 4 layers provide the most ef-
fective trade-off between model capacity and
generalization performance.

6 Performance of Close and Open
Modality Track

Following the finding of the above experiments,
we utilized the most optimal model architec-
ture design that we came up with: RoBERTa
+ BiLSTM + CRF, along with BiLSTM hid-
den dimension: 1024 and depth set as 4.

For the Closed Modality Track, we uti-
lize “GujiRoBERTa_jian_fan” as requested
by the competition, reporting an F1 of 84.58%
as our final score in this track.

For the Open Modality Track, we reused
the model configuration and hyperparameter
settings while utilizing an external RoBERTa
model: “GujiRoBERTa_fan”, which is being
pre-trained on ancient Chinese corpus only.
We report the F1 as 82.78% as our final score.

7 Future Work
Despite our system’s performance on both
close and open modality significantly outper-
forms the baseline: 80.61% F1, there remain
avenues for further improvement which were
not fully discovered in this work due to time
and resource constraints:

Data Augmentation. Employing aug-
mentation strategies such as synonym re-
placement (with domain-specific ancient Chi-
nese synonym dictionaries) or back-translation
could increase data diversity and improve the
model’s tagging accuracy.

Adversarial Training. Integrating tech-
niques such as the Fast Gradient Method
(FGM) during finetuning BERT models could
potentially improve the model’s robustness.

Model Ensembling. Combining multi-
ple models with diverse architectures (e.g.,
BERT+Attention+CRF) could further boost
performance and improve the F1.

Open-Modality Exploration. For the
open-modality track, leveraging Large Lan-
guage Models (LLMs) and prompt-based ap-
proaches to transform the NER task into
the generative task or utilizing ModernBERT
to develop an ancient Chinese-specific BERT
could lead to much stronger models that excel
in ancient Chinese NER tasks.

Future work could explore these directions
to further push the boundaries of ancient
Chinese NER, especially under the challenges
posed by heterogeneous tag schemes and lim-
ited annotated data.

8 Summary
To conclude, our system is built on strong
foundations provided by domain-specific pre-
trained models and is enhanced by a BiL-
STM+CRF architecture with optimal depth
and width. Our solution achieves an F1
score of around 84.6% in the closed-modality
track and around 82.8% in the open-modality
track, significantly outperforms the baseline of
80.61% F1, and demonstrates our design’s ef-
fectiveness.

9 Limitations
While our system demonstrates strong perfor-
mance on the EvaHan 2025 NER task, there
are several limitations. Firstly, our system



116

is built around the provided pre-trained “Gu-
jiRoBERTa” models, which may limit gener-
alization to texts beyond the training domain
or unseen linguistic variations in ancient Chi-
nese corpuses. Secondly, due to time and com-
putational resource constraints, we were un-
able to perform more comprehensive hyper-
parameter tuning or explore alternative archi-
tectures such as Transformer-CRF models in
greater depth. Lastly, the diversity in anno-
tation schemes across datasets A, B, and C
poses challenges for unified modeling, which
were only partially addressed in our current
implementation.
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