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Abstract

The study of food pairing has evolved beyond
subjective expertise with the advent of machine
learning. This paper presents FlavorDiffusion,
a novel framework leveraging diffusion models
to predict food-chemical interactions and ingre-
dient pairings without relying on chromatogra-
phy. By integrating graph-based embeddings
[Perozzi et al., 2014], diffusion processes [Ho
et al., 2020, Song et al., 2021, Sun and Yang,
2023], and chemical property encoding [Azam-
buja et al., 2023], FlavorDiffusion addresses
data imbalances and enhances clustering qual-
ity. Using a heterogeneous graph derived from
datasets like Recipe1M [Marín et al., 2019]
and FlavorDB, our model demonstrates supe-
rior performance in reconstructing ingredient-
ingredient relationships. The addition of a
Chemical Structure Prediction (CSP) layer fur-
ther refines the embedding space, achieving
state-of-the-art NMI scores and enabling mean-
ingful discovery of novel ingredient combina-
tions. The proposed framework represents a sig-
nificant step forward in computational gastron-
omy, offering scalable, interpretable, and chem-
ically informed solutions for food science. The
source code and dataset used in this study are
publicly available at https://github.com/
Giventicket/FlavorDiffusion.

1 Introduction

Food pairing has traditionally relied on the intu-
ition and experience of chefs, yet scientific analy-
sis and optimization of food combinations remain
underexplored. Recent research has leveraged data-
driven approaches to model the relationships be-
tween food ingredients and chemical compounds
to predict novel food pairings.

Several computational approaches have been de-
veloped to model food pairings and ingredient re-
lationships. Kitchenette [Park et al., 2021], for

*Co-first authors.

instance, applies Siamese neural networks to pre-
dict and recommend ingredient pairings based on a
large annotated dataset. However, it suffers from
key limitations, such as a lack of chemical inter-
pretability and heavy reliance on labeled data, mak-
ing it less generalizable across different cuisines
and novel food combinations.

One of the key advancements in this domain is
FlavorGraph [Park et al., 2021], a large-scale food-
chemical deep neural network model comprising
6,653 ingredient nodes and 1,645 compound nodes.
This graph captures two primary relationships: (1)
ingredient-ingredient relations, representing co-
occurrence patterns in recipes, and (2) ingredient-
compound relations, indicating chemical composi-
tion links. These relationships are constructed us-
ing datasets such as Recipe1M [Marín et al., 2019],
FlavorDB, and HyperFoods. FlavorGraph incor-
porates food-chemical associations into a neural
network by leveraging the metapath2vec [Dong
et al., 2017] algorithm, which embeds ingredient-
compound relationships in a word2vec-like man-
ner. Expanding on this approach, WineGraph
[Gawrysiak et al., 2023] extends the framework
by integrating wine-related datasets to define opti-
mal food-wine pairings.

Despite progress in computational food sci-
ence, major challenges remain. Chromatography-
based methods, while precise, are costly and limit
the acquisition of large-scale chemical interaction
data. FlavorGraph effectively captures ingredient-
compound relationships using metapath-based em-
beddings, but its reliance on random-walk sam-
pling makes it difficult to incorporate edge weights
and spatial information within the graph structure.
These limitations hinder the full exploitation of
food-chemical associations, leading to suboptimal
ingredient relationship modeling. To address these
challenges, we introduce FlavorDiffusion, a Diffu-
sion Model-based framework that refines the rep-
resentation of food-chemical interactions and ele-
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vates the quality of food pairing predictions.

Contributions

• We propose a graph-based diffusion model-
ing approach that leverages DIFUSCO [Sun
and Yang, 2023] to capture richer and more
structured representations of food-chemical
interactions.

• We introduce a balanced subgraph sampling
strategy to address data imbalance issues,
ensuring fair representation across different
ingredient-chemical associations.

• Our experimental results demonstrate im-
provements in Normalized Pointwise Mutual
Information (NPMI) scores for node embed-
dings, facilitating more effective chemical in-
ference.

• We establish a foundation for predicting chro-
matography results for non-hub chemicals, ex-
tending the applicability of our model beyond
frequently occurring compounds.

• Our approach enables pairing inference us-
ing chemical properties, providing structured
and interpretable recommendations for novel
ingredient combinations.

2 Dataset

Our study builds upon FlavorGraph [Park et al.,
2021] by utilizing the same large-scale datasets to
construct a robust food-chemical network. These
datasets provide a structured representation of in-
gredient relationships and chemical interactions.
In the following sections, we summarize the key
characteristics of these datasets and outline the pre-
processing steps applied to ensure data consistency
and usability in our framework.

Type Source Nodes Edges
I-I Recipe1M 6,653 111,355
I-FC FlavorDB 1,561 35,440
I-DC HyperFoods 84 386
Total - 8,298 147,181

Table 1: Summary of the heterogeneous food-
compound graph. I-I represents ingredient ingredient
co-occurrence from Recipe1M, I-FC denotes ingredient-
flavor compound associations from FlavorDB, and I-DC
refers to ingredient-drug compound relations

2.1 Data Sources

This study utilizes the same datasets as Flavor-
Graph [Park et al., 2021] to construct a structured
food-chemical network.

Recipe1M [Marín et al., 2019] contains 65,284
recipes with ingredient lists and cooking instruc-
tions, capturing ingredient co-occurrence patterns
in real-world culinary practices.

FlavorDB compiles chemical composition data
from multiple sources, including FooDB, Flavor-
net, and BitterDB. It originally includes 2,254 fla-
vor compounds linked to 936 food ingredients, but
only 400 commonly used ingredients were selected
to align with Recipe1M, resulting in 1,561 fla-
vor compound nodes and 164,531 ingredient-flavor
compound edges.

HyperFoods maps drug compounds to food in-
gredients using machine learning based on food-
gene interactions. From the original 206 food in-
gredients, 104 were selected, yielding 84 drug com-
pound nodes and 386 ingredient-drug compound
edges.

2.2 Data Processing

To construct a structured representation of food-
chemical relationships, we build upon FlavorGraph
[Park et al., 2021], a heterogeneous graph that in-
tegrates both culinary and chemical associations.
The graph construction process follows a structured
approach. First, an ingredient-ingredient graph
is built by extracting co-occurrence patterns from
Recipe1M [Marín et al., 2019], where edges be-
tween ingredients are established based on their
Normalized Pointwise Mutual Information (NPMI)
scores. Only statistically significant ingredient
pairs appearing together in a substantial number of
recipes are retained, resulting in a total of 111,355
edges. Second, an ingredient-chemical graph is
formed by linking ingredients to their correspond-
ing chemical compounds using FlavorDB and Hy-
perFoods, leading to 35,440 edges between food
ingredients and known chemical compounds. The
final graph structure comprises 6,653 ingredient
nodes and 1,645 compound nodes, forming a het-
erogeneous graph that encodes both culinary co-
occurrence relationships and chemical interactions.

2.3 Chemical Property Encoding

To ensure chemically informed ingredient repre-
sentations, each compound is characterized using
CACTVS chemical fingerprints, which are encoded
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as 881-dimensional binary vectors. These vectors
represent molecular descriptors such as molecular
weight, functional groups, and substructure pat-
terns, using a binary encoding scheme where each
bit indicates the presence or absence of a specific
chemical substructure.

3 Related Work

3.1 FlavorGraph

FlavorGraph [Park et al., 2021] is a heteroge-
neous graph G = (V,E) integrating ingredient co-
occurrence and molecular profiling to model food-
chemical interactions. By leveraging metapath-
based learning [Dong et al., 2017], it enables sys-
tematic ingredient discovery and predictive food
pairing through shared molecular properties.

3.1.1 Metapath2Vec
To learn chemically meaningful embeddings, we
employ Metapath2Vec, which captures high-order
relations via structured random walks. Ingredi-
ents are classified into hub ingredients (H), which
directly connect to chemical compounds, and non-
hub ingredients (N ), which lack direct chemical
links and rely on hub ingredients to acquire chemi-
cal insights.

The metapath sampling strategy follows:

N → H → C → H → N

where C represents chemical compounds. This
structured propagation ensures that non-hub ingre-
dients inherit chemical relevance, enhancing em-
bedding robustness and interpretability.

3.1.2 Architecture
The network, parameterized by θ, takes node pairs
(i, j) as input and outputs an edge score sθ(i, j),
normalized across all embeddings:

sθ(i, j) = σ(uT
i uj)

where ui and uj are the learned embeddings for
nodes i and j, ensuring consistency across culinary
co-occurrence and chemical similarity.

3.1.3 Loss Function
Embeddings are optimized using Skip-Gram with
Negative Sampling (SGNS):

Jθ =
∑

(i,j)∈D
log σ(uT

i uj)+
∑

(i,j′)∈D′
log σ(−uT

i uj′)

where D and D′ are positive and negative sam-
ple pairs. To enforce chemical relevance, an addi-
tional Chemical Structure Prediction (CSP) loss
is introduced:

LCSP,θ =
D∑

d=1

[yd log fθ,d(i)

+(1− yd) log (1− fθ,d(i))]

where fθ,d(i) predicts the presence of the d-th
molecular substructure yd, refining embeddings
with molecular fingerprints.

3.2 DIFUSCO

Graph-based diffusion models have proven effec-
tive for combinatorial optimization. We apply the
Gaussian diffusion framework to reconstruct struc-
tured graphs, enhancing the predictive accuracy of
food-chemical interactions while preserving inter-
pretability. By integrating diffusion-driven embed-
dings into a heterogeneous network, our approach
seamlessly incorporates molecular insights into in-
gredient pairing research, advancing computational
gastronomy.

4 Proposition: FlavorDiffusion

4.1 Sub-Graph Sampling

FlavorDiffusion is built upon the DIFUSCO Gaus-
sian noise-based diffusion model, extending its ca-
pabilities to structured food-chemical graphs. The
core objective is to train a model capable of recon-
structing subgraphs sampled from the full hetero-
geneous graph G = (V,E) while leveraging node
attributes as guidance.

The full graph consists of a diverse set of nodes
V , including hub ingredients, non-hub ingredi-
ents, flavor compounds, and drug compounds, with
edges E encoding the strength of their relationships
as continuous values in [0, 1]. We define a dataset
of subgraphs, where each sample contains m nodes
selected from G. These subgraphs are denoted as:

Dm = {Gi = (Vi, Ei)}Ni=1,

where each subgraph Gi has |Vi| = m nodes and
an adjacency matrix Ei of size m×m, representing
pairwise edge scores. The dataset is partitioned into
training (Nt) and validation (Nv) subsets.
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4.2 Forward Diffusion Process
For a single data point Gi = (Vi, Ei) sampled from
the dataset, we define the diffusion process over
its edge set Ei. By convention, we denote the cor-
rupted version of Ei at timestep t as xt, aligning
with standard diffusion formalisms. The node rep-
resentations, encompassing all vertex features, are
denoted as Emb.

The forward diffusion process follows a Marko-
vian Gaussian noise injection, progressively per-
turbing the edges xt while preserving node repre-
sentations:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),

where βt is a predefined noise variance at
timestep t. Given an initial clean edge matrix
x0 = Ei, we can analytically express the direct
corruption of x0 at any timestep t as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I),

where ᾱt =
∏t

s=1(1 − βs) represents the cu-
mulative noise effect over time. This formulation
allows direct sampling of xt from x0, bypassing
iterative updates.

In this framework, the edge structure is progres-
sively degraded into Gaussian noise, while node
representations Emb remain unchanged, ensuring
that denoising relies on learned node attributes.

4.3 Reverse Denoising Process
The reverse process seeks to recover x0 from the
fully corrupted state xT , learning to remove noise
in a stepwise manner. The key assumption is that
the forward process follows a Gaussian transition,
enabling an analytically derived reverse process.

Given the Markovian nature of the diffusion pro-
cess, we define the true posterior:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI),

where the posterior mean and variance are de-
rived as:

µ̃t(xt, x0) =

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt,

β̃t =
1− ᾱt−1

1− ᾱt
βt.

Since x0 is unknown, we train a model pθ(x0|xt)
to approximate it. Substituting the predicted x0, the
learned reverse process is modeled as:

pθ(xt−1|xt,Emb) =

N
(
xt−1;µθ(xt, t,Emb),Σθ(xt, t)

)
,

where µθ is the learned estimate for µ̃t(xt, x0),
and the variance term is fixed as Σθ(xt, t) = β̃tI ,
avoiding the need for explicit learning. The func-
tion µθ is now conditioned on the node representa-
tions (Emb) of the two vertices forming the edge.

Using the DDPM convention, we parameterize
µθ as:

µθ(xt, t,Emb) =
1√
αt

(
xt

− βt√
1− ᾱt

ϵθ(xt, t,Emb)

)
,

where ϵθ(xt, t,Emb) is the learned noise esti-
mate, which is now explicitly conditioned on the
representations of the two nodes forming the edge.
The node representations provide additional con-
text for denoising by leveraging node-specific fea-
tures.

4.4 Optimization via Variational Lower
Bound

To train the reverse model, we maximize the varia-
tional lower bound (ELBO), decomposed as:

LELBO = Eq

[
log pθ(x0|x1,Emb)

−
T∑

t=1

DKL
(
q(xt−1|xt, x0)∥pθ(xt−1|xt,Emb)

)
]
.

Here, T represents the total number of diffu-
sion steps, defining the depth of the forward and
reverse process. The KL divergence encourages
the learned transitions to match the true posterior.
Since q(xt|x0) is Gaussian, minimizing DKL is
equivalent to predicting the noise component ϵ
added during diffusion. Thus, the training objective
simplifies to:

Lrecon = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t,Emb)∥2

]
.
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This loss ensures that ϵθ effectively estimates
the noise introduced in the forward process while
incorporating node representations. By iteratively
refining the denoising function, FlavorDiffusion re-
constructs the original ingredient-ingredient graph
from noisy subgraphs, leveraging both the struc-
tural edge information and node attributes to en-
hance predictive modeling for food pairing analy-
sis.

4.5 Inference
Graph reconstruction follows Denoising Diffusion
Implicit Models (DDIM) for efficient and deter-
ministic sampling. Unlike DDPM, DDIM removes
noise via a non-Markovian update, accelerating
inference.

Starting from xT ∼ N (0, I), the reverse process
iterates:

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1 · ϵθ(xt, t,Emb),

where the predicted clean graph is:

x̂0 =
xt −

√
1− ᾱtϵθ(xt, t,Emb)√

ᾱt
.

Iterating from T to 0, the model refines xt to
recover ingredient-ingredient relationships. DDIM
ensures fast, stable, and chemically meaningful
reconstructions.

4.6 Model Architecture
The noise prediction network ϵθ(xt, t,V) employs
an anisotropic GNN to iteratively refine node and
edge embeddings. Let hℓi ∈ Rd and eℓij ∈ Rde

denote the node and edge features at layer ℓ, re-
spectively. The refinement process updates both
edge and node embeddings through the following
operations:

Edge Refinement The initial edge embeddings
e0ij are set as the corresponding values from the
noisy edge representation xt. At each layer ℓ, the
intermediate edge embeddings êℓij are updated as:

êℓij = P ℓeℓij +Qℓhℓi +Rℓhℓj ,

where P ℓ, Qℓ, Rℓ ∈ Rde×de are learnable pa-
rameters. The refined edge embedding eℓ+1

ij is then
computed as:

eℓ+1
ij = eℓij + MLPe

(
BN(êℓij)

)
+ MLPt(t),

where MLPe is a 2-layer perceptron and MLPt

embeds the diffusion timestep t using sinusoidal
features.

Node Refinement The node embeddings hℓi are
refined by aggregating information from neighbor-
ing nodes and their associated edges. The update
rule for hℓ+1

i is given by:

hℓ+1
i = hℓi+α·BN

(
U ℓhℓi+

∑

j∈N (i)

σ(êℓij)⊙V ℓhℓj

)
,

where U ℓ, V ℓ ∈ Rd×d are learnable parameter
matrices, σ is the sigmoid activation function used
for edge gating, ⊙ denotes the Hadamard (element-
wise) product, N (i) represents the set of neighbors
for node i, and α is the ReLU activation applied
after aggregation.

Final Prediction After L GNN layers, the final
refined edge embeddings E(L) ∈ RN×N×de are
passed through a ReLU activation and a multi-layer
perceptron (MLP) to predict the noise:

ϵθ(xt, t,V) = MLP
(
ReLU(E(L))

)
.

This formulation ensures that both node and
edge embeddings are iteratively refined to capture
local and global graph structure, enabling robust de-
noising and reconstruction of ingredient-ingredient
relationships.

5 Experimental Results

The evaluation consists of two primary experi-
ments: (1) reproducing the NMI-based clustering
performance evaluation originally conducted in Fla-
vorGraph, and (2) assessing the generalization abil-
ity of our proposed Flavor Diffusion framework by
testing on subgraphs of different sizes.

Subgraphs of size 25, 50, 100, and 200 nodes
were sampled while maintaining an equal propor-
tion of hub and non-hub ingredients. The number
of subgraphs used for training and testing at each
scale is shown in Table 2.

Table 2: Subgraph Composition for Training and Testing

Nodes per Subgraph Train Set Size Test Set Size
25 256,000 256
50 128,000 128
100 64,000 64
200 32,000 32
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Generalization Ability To assess the general-
ization ability of the proposed framework, models
trained on one subgraph size were tested on all sizes
to observe performance across different scales. The
results in Table 3 indicate that models trained on 25-
node subgraphs generalize poorly to larger graphs,
with an MSE of 0.025078 when tested on 100-node
subgraphs. In contrast, the 100-node trained model
demonstrates the most stable generalization across
different test sizes, showing minimal MSE varia-
tion. The 200-node trained model, while excelling
on large graphs with an MSE of 0.003692, exhibits
difficulties in adapting to smaller structures, with
a high error of 0.059557 when tested on 25-node
subgraphs.

Table 3: Generalization Performance: Validation MSE
Loss

Train Size Test (25) Test (50) Test (100) Test (200)
25 0.004589 0.010965 0.025078 0.019477
50 0.025235 0.005884 0.004420 0.004123
100 0.003964 0.003678 0.004232 0.003953
200 0.059557 0.007837 0.003992 0.003692

These results highlight that subgraph size signif-
icantly impacts both intra-subgraph clustering and
cross-subgraph generalization performance. The
Flavor Diffusion (100 nodes) model provides the
best balance between clustering accuracy and scal-
ability, demonstrating the ability to generalize well
across varying ingredient graph structures. On the
other hand, training on extremely small subgraphs
limits generalization, while models trained on large
subgraphs struggle when applied to smaller ingre-
dient sets. These findings suggest that a mid-sized
subgraph training approach (e.g., 100 nodes) is op-
timal for robust ingredient representation learning.

NMI-based Evaluation To construct the clus-
tering test dataset, nine representative food cate-
gories were defined: Bakery/Dessert/Snack, Bev-
erage Alcoholic, Cereal/Crop/Bean, Dairy, Fruit,
Meat/Animal Product, Plant/Vegetable, Seafood,
and Others. From these, 416 chemical hub ingre-
dients with strong connections were selected to en-
sure diverse and well-defined clustering labels, en-
abling fair comparisons across models commonly
used in related studies.

The NMI-based evaluation results in Table 4
demonstrate the clustering quality of different mod-
els. Among the non-CSP variants, the Flavor Dif-
fusion (50 nodes) model achieves the highest NMI
score of 0.3236, surpassing the baseline Flavor-

Graph model without CSP. The best overall per-
formance is observed in the Flavor Diffusion_CSP
(200 nodes) model, which achieves an NMI score
of 0.3410, indicating that the CSP layer signifi-
cantly improves the learned ingredient embeddings.
Smaller subgraphs, such as the 25-node configu-
ration, show the greatest improvement when us-
ing CSP (0.2970 vs. 0.2167), suggesting that the
chemical structure prediction enhances clustering,
particularly in more limited ingredient sets.

Table 4: Performance Comparison Using NMI Metric.
*CSP shorts for chemical structure prediction.

Model NMI Mean NMI Std
FlavorGraph [Park et al., 2021] 0.2995 0.0403
FlavorGraph_CSP [Park et al., 2021] 0.3102 0.0407

Flavor Diffusion (25 nodes) 0.2167 0.0319
Flavor Diffusion (50 nodes) 0.3236 0.0134
Flavor Diffusion (100 nodes) 0.3170 0.0207
Flavor Diffusion (200 nodes) 0.2935 0.0300

Flavor Diffusion_CSP (25 nodes) 0.2970 0.0144
Flavor Diffusion_CSP (50 nodes) 0.2862 0.0152
Flavor Diffusion_CSP (100 nodes) 0.3169 0.0257
Flavor Diffusion_CSP (200 nodes) 0.3410 0.0150

6 Discussion

The visualization results highlight the impact of the
proposed Flavor Diffusion framework on embed-
ding quality, particularly with the CSP (Chemical
Structure Prediction) layer, as shown in Figures 1
and 2.

Dynamic Reconstruction for Novel Insights
The iterative reconstruction process visualized in
Figure 1 showcases the Flavor Diffusion frame-
work’s ability to refine ingredient-ingredient re-
lationships progressively. Starting from random
initialization (Step 0), the edge scores evolve over
diffusion steps, ultimately converging towards the
ground truth structure by Step 10. The color inten-
sity of the edges reflects their normalized scores,
with higher values indicating stronger relation-
ships. This gradual alignment with the ground truth
demonstrates the model’s capacity to encode mean-
ingful relational patterns in a structured manner.

Embedding Space Analysis Figure 2 compares
embedding spaces across model configurations.
The baseline embeddings (left) show poor sepa-
ration, forming diffuse clusters dominated by non-
hub ingredients.

Flavor Diffusion (200 nodes) without CSP (cen-
ter) improves clustering by grouping chemical com-
pounds and hub ingredients, though some overlap
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Figure 1: Progression of edge scores over diffusion
steps for a 25-node subgraph. The color intensity rep-
resents edge scores normalized between 0 and 1. The
reconstructed graph increasingly aligns with the ground
truth structure.

remains. Adding the CSP layer (right) further re-
fines the structure, yielding anisotropic clusters that
better capture ingredient-compound relationships.

Potential for Ingredient Innovation To evaluate
the predictive capacity of Flavor Diffusion, we ran-
domly sampled 100 nodes and computed the mean
edge score over 100,000 inferred edges. This large-
scale evaluation ensures that the model captures
both established and novel ingredient relationships,
supporting its ability to reconstruct known pairings
while suggesting unexplored flavor synergies.

Table 5: Top 5 High-Confidence Ingredient Pairings

Ingredient 1 Ingredient 2 Mean Score Std Dev

Red Chili Powder Turmeric Powder 0.7114 0.0882
Coriander Powder Turmeric Powder 0.6057 0.0827
Asafoetida Powder Turmeric Powder 0.5930 0.0846
Garam Masala Powder Turmeric Powder 0.5178 0.1055
Cumin Powder Turmeric Powder 0.4663 0.1525

These pairings align with traditional spice
blends, frequently observed in Indian and Southeast
Asian cuisine. Their strong co-occurrence validates
Flavor Diffusion’s ability to model established in-
gredient relationships. Beyond known pairings, the
model also proposes conceptually novel combina-
tions, potentially inspiring new culinary applica-
tions.

Table 6: Top 5 Creative Ingredient Pairings Suggested
by Flavor Diffusion

Ingredient 1 Ingredient 2 Mean Score Std Dev

Soy Sauce Vanilla Extract 0.0006 0.0001
Garlic Paste Dark Chocolate 0.0005 0.0001
Cumin Powder Coffee Beans 0.0004 0.0002
Green Cardamom Parmesan Cheese 0.0003 0.0002
Olive Oil Black Tea 0.0004 0.0001

These unconventional combinations introduce
potential for umami-sweet fusion (Soy Sauce,
Vanilla Extract), savory-bitter contrast (Garlic
Paste, Dark Chocolate), and aromatic synergies
(Cumin Powder, Coffee Beans and Green Car-
damom, Parmesan Cheese). Such findings demon-
strate that Flavor Diffusion extends beyond known
ingredient interactions, offering a data-driven ap-
proach for novel flavor discovery and AI-assisted
recipe development.

Alignment with Culinary and Chemical Proper-
ties The reconstructed graphs closely align with
ground truth structures, demonstrating the model’s
fidelity in capturing both culinary and chemical re-
lationships. As diffusion progresses, the model
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Figure 2: Embedding space comparison under different configurations, where each color represents a different
category: Yellow (Non-hub Ingredient), Green (Food-like Compound), Pink (Drug-like Compound), and Orange
(Hub Ingredient). (Left) Baseline embeddings show poor separation between ingredients and compounds. (Center)
Flavor Diffusion (200 nodes) without CSP achieves improved clustering of chemical compounds and hub ingredients.
(Right) Flavor Diffusion (200 nodes) with CSP results in well-defined clusters, leveraging chemical fingerprints to
enhance separation.

effectively balances local (ingredient-level) and
global (chemical-based) interactions, enhancing
clustering quality and enabling meaningful exten-
sions of ingredient networks.

7 Conclusion

This study presents FlavorDiffusion, a diffusion-
based framework for predicting ingredient pairings
and chemical interactions. By integrating chemical
fingerprints and optimizing graph embeddings, the
model enhances clustering quality and predictive
accuracy. The CSP layer significantly improves
food-chemical representations, achieving top NMI
scores. The diffusion process enables generaliza-
tion, inferring novel ingredient combinations. Fla-
vorDiffusion aligns culinary and chemical proper-
ties, advancing flavor discovery with applications
in computational gastronomy. Future work will
expand datasets, integrate multi-modal data, and
refine graph-sampling techniques to further food
science research.
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