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Abstract

Dialogue summarization involves summariz-001
ing long conversations while preserving the002
most salient information. Real-life dialogues003
often involve naturally occurring variations004
(e.g., repetitions, hesitations), and in this study,005
we systematically investigate the impact of006
such variations on state-of-the-art open dia-007
logue summarization models whose details are008
publicly known (e.g., architectures, weights,009
and training corpora). To simulate real-life010
variations, we introduce two types of pertur-011
bations: utterance-level perturbations that mod-012
ify individual utterances with errors and lan-013
guage variations, and dialogue-level perturba-014
tions that add non-informative exchanges (e.g.,015
repetitions, greetings). We perform our analy-016
sis along three dimensions of robustness: con-017
sistency, saliency, and faithfulness, which aim018
to capture different aspects of performance of019
a summarization model. We find that both fine-020
tuned and instruction-tuned models are affected021
by input variations, with the latter being more022
susceptible, particularly to dialogue-level per-023
turbations. We also validate our findings via hu-024
man evaluation. Finally, we investigate whether025
the robustness of fine-tuned models can be im-026
proved by training them with a fraction of per-027
turbed data and find that this approach does not028
yield consistent performance gains, warranting029
further research. Overall, our work highlights030
robustness challenges in current open models031
and provides insights for future research.032

1 Introduction033

Real-life conversations often exhibit a wide range034

of language variations, including typographical er-035

rors, grammatical mistakes, and certain exchanges036

such as repetitions and speaker interruptions, which037

are unrelated to the primary purpose of the con-038

versation (Sacks et al., 1974). However, existing039

dialogue summarization datasets, which are used040

to train current summarization models, do not ad-041

equately capture these variations, as they are typi-042

cally constructed by annotators simulating specific043

Any news on what happened to the 9.13am train? It was delayed, 
now it appears to have disappeared.

Hi there. There were animals on the line so the train had to
bypass the station at a reduce speed.

[....] How do I formally complain?

Sorry for the inconvenience. We always try to impact as few
customers as possible. Make a complaint by emailing __ email__

sorry, couldn’t hear you, can you repeat?

Sure, we try to impact as few customers as possible
and you can make a complaint by emailing  __ email__

Request to repeat 

Customer is complaining about the
delay in the train. Agent states that
there were animals on the line and

train had to bypass at reduced speed. 

Customer is complaining about the delay
in a train. Agent states that they always

try to impact as few customers as
possible and requests to make a

complaint by emailing 
Summary of the perturbed dialogue Summary of the original dialogue 

Summarize Summarize

Figure 1: An example dialogue drawn from the Tweet-
Sum dataset, with a repeated utterance introduced as
a perturbation. While the reference summary for the
original dialogue includes the agent’s explanation about
the train delay, the summary of the perturbed dialogue
includes information from the repeated utterance.

scenarios (Yuan and Yu, 2019) or extracted from 044

English-speaking practice websites (Gliwa et al., 045

2019). Even the datasets consisting of real-life 046

conversations (Feigenblat et al., 2021) can exhibit 047

only a limited range of variations owing to practi- 048

cal limitations posed by the data collection process 049

(e.g., high or low prevalence of conversations from 050

different social demographics). Consequently, dia- 051

logue summarization models deployed in business 052

scenarios encounter diverse variations not observed 053

during training. This raises a crucial question: Can 054

current dialogue summarization models effectively 055

handle conversations with naturally occurring vari- 056

ations that are legitimate inputs but not observed in 057

the training data? 058

In this work, we study the impact of naturally 059

occurring variations on the performance of the 060

state-of-the-art open dialogue summarization mod- 061

els (with publicly known architecture, weights, 062

and training corpus) using three publicly avail- 063
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able datasets. We examine the performance of064

encoder-decoder Transformer models in two setups065

a) fine-tuned on specific dialogue summarization066

datasets (Lewis et al., 2020; Zhang et al., 2019;067

Raffel et al., 2020b), and b) instruction-tuned mod-068

els which have shown impressive zero-shot perfor-069

mance more recently (Gupta et al., 2022; Chung070

et al., 2022). Such models are often preferred071

in high-stakes business settings (e.g., medical, le-072

gal, and customer support) over proprietary models073

(e.g., ChatGPT), owing to user privacy concerns.074

To simulate variations we design two kinds of075

perturbations: (a) utterance-level perturbations,076

and (b) dialogue-level perturbations (defined in077

Section 3), which are inspired by common real-life078

interaction patterns from the Natural Conversation079

Framework (Moore and Arar, 2019). We evaluate080

the performance of summarization models along081

three conceptually distinct robustness dimensions—082

consistency, saliency, and faithfulness—and elabo-083

rate on their empirical relationship.084

Our analysis reveals that both fine-tuned and085

instruction-tuned models are impacted by utterance086

and dialogue-level perturbations. Instruction-tuned087

models are impacted more than fine-tuned models088

and are also more susceptible to dialogue-level per-089

turbations than utterance-level perturbations. Both090

types of models show a preference for information091

from repeated, long, and leading utterances in the092

dialogue. Figure 1 shows an example where the093

model includes repeated utterances in the summary,094

whereas the non-repeated original utterance wasn’t095

included in the summary before perturbation. We096

also validate our findings via human evaluation.097

Finally, we investigate whether fine-tuned mod-098

els improve by training with perturbed data. We099

find that this approach does not consistently en-100

hance performance, and different perturbations re-101

quire varying amounts of training examples for102

gains. Thus, further research is needed to address103

these robustness challenges.104

2 Related Work105

Prior work has investigated the robustness of lan-106

guage understanding models mainly focusing on107

classification tasks (Moradi and Samwald, 2021).108

Some dialogue-related classification tasks have109

also been explored, including dialogue act predic-110

tion (Liu et al., 2021), intent detection and slot111

tagging (Einolghozati et al., 2019; Sengupta et al.,112

2021), state tracking and dialogue modeling (Cho113

et al., 2022; Tian et al., 2021; Zhu et al., 2020; Kim114

et al., 2021; Peng et al., 2020).115

Some studies have also investigated the robust- 116

ness of neural language generation models, includ- 117

ing neural machine translation (Niu et al., 2020; 118

Karpukhin et al., 2019; Vaibhav et al., 2019), ques- 119

tion answering (Peskov et al., 2019), and open do- 120

main multi-document summarization (Giorgi et al., 121

2022). However, some of these studies consider 122

perturbations that are of extreme nature (e.g., ran- 123

dom shuffling and deletion of words) and may oc- 124

cur rarely in the real world. Ganhotra et al. (2020) 125

investigated the impact of natural variations on re- 126

sponse prediction tasks in goal-oriented dialogues. 127

For summarization task in particular, previous 128

studies focused on summarizing news articles and 129

documents (Jing et al., 2003; Meechan-Maddon, 130

2019; Krishna et al., 2022). However, the nature 131

of noise in a multi-party dialogue differs signifi- 132

cantly from noise in documents. While some types 133

of noise (e.g., spelling mistakes, grammatical er- 134

rors) could occur in both, the patterns such as rep- 135

etitions, reconfirmations, hesitations, and speaker 136

interruptions (Sacks et al., 1974; Feng et al., 2021; 137

Chen and Yang, 2021) are peculiar to dialogues, 138

posing unique challenges for accurate and robust 139

summarization. The focus of this work is to assess 140

the robustness of dialogue summarization models 141

in the presence of naturally occurring variations, 142

which has been understudied in the prior literature. 143

3 Simulating Naturally Occurring 144

Variations 145

To introduce naturally occurring variations in con- 146

versations, we consider two kinds of simulated 147

perturbations, utterance-level and dialogue-level. 148

We apply each perturbation individually to a dia- 149

logue to study its impact systematically. Our per- 150

turbations are inspired by the Natural Conversation 151

Framework (Moore and Arar, 2019), created after 152

analyzing real-world conversations across various 153

use cases and provides common interactive pat- 154

terns that occur in real life.1 Appendix A.1 lists 155

examples for each perturbation. 156

3.1 Utterance-level Perturbations 157

The utterance-level perturbations modify a single 158

utterance and are adapted from (Liu et al., 2021). 159

We perturb each utterance of the dialogue. For per- 160

turbations where multiple words in an utterance 161

can be perturbed (e.g., spelling mistake, character 162

casing), we consider only low-modification levels 163

(i.e., perturb a word with 0.2 probability), which 164

1Some examples include patterns such as C1.0 (opening
greeting agent), C4.6 (closing success check), B2.1.0 (repeat
request), A2.8 (hold request).
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also cause a considerable change in model perfor-165

mance.2166

Typographical Errors Typographical errors oc-167

cur when participants try to type quickly in chat-168

based interactions. We use simple regex-based per-169

turbations, e.g., punctuation marks removal, whites-170

pace removal or addition, changing letter casing,171

and substitutions of common expansions and con-172

tractions. We introduce spelling errors following173

the approach of Yorke as used in (Mille et al., 2021),174

replacing random letters with other letters closely175

co-located on the keyboard positions. We ensure176

that mistakes are not introduced in a proper-noun177

phrase (e.g., restaurant name) to avoid changes in178

important information.179

Grammatical Errors We focus on two frequent180

grammatical errors: dropping determiners and181

subject-verb disagreements. To drop determiners,182

we drop all the words in a sentence with the DET183

tag. To introduce subject-verb disagreement, we184

identify auxiliary verbs (via AUX tag) and convert185

between plural and singular forms as appropriate,186

keeping the tense unchanged.187

Language-use Variations Users can vary in their188

choices of dialect and vocabulary. We consider189

three language-use perturbations: substituting ad-190

jectives with synonyms, inflectional variations, and191

synthetic African American Vernacular English192

(AAVE) dialect. For synonym substitution, we sub-193

stitute adjectives in an utterance with their WordNet194

(Miller, 1998) synonyms. To introduce inflectional195

variations, we follow the approach proposed in196

Dhole et al. (2021), where we lemmatize each con-197

tent word in an utterance, randomly sample a valid198

POS category, and re-inflect the word according to199

the chosen category. To transform an utterance to200

synthetic AAVE dialect, we use the set of lexical201

and morphosyntactic transformation rules proposed202

by Ziems et al. (2022).203

3.2 Dialogue-level Perturbations204

We introduce new utterances that contribute no205

additional information, to test a model’s ability to206

focus on the overall meaning of a conversation and207

identify salient information.208

Repetitions Repeating and rephrasing occur209

commonly in real-life spoken conversations. In210

this perturbation, we randomly select an utterance211

2See Appendix A.5 for analysis with different perturbation
rates.

to repeat.3 We then inject a synthetic utterance 212

requesting the other participant to repeat the in- 213

formation (e.g., ‘Sorry, I couldn’t hear you, can 214

you repeat?’).4 Since humans tend to rephrase the 215

original message slightly instead of repeating it 216

verbatim, we paraphrase the original utterance be- 217

fore including it as a response to the request for 218

repetition. We use Qian et al. (2019)’s paraphraser 219

for this task. The rest of the dialogue remains un- 220

changed. This perturbation allows us to examine 221

repetition bias; i.e., does the model consider re- 222

peated utterances more significant, even when they 223

do not contain important information? 224

Time delays A participant may ask the other 225

party to wait while they gather information. To 226

simulate this, we add three synthetic utterances 227

consecutively: a request to wait (e.g., ‘Just give 228

me a few minutes.’), an acknowledgment from the 229

other participant (e.g., ‘Sure’), and an expression 230

of gratitude from the first participant (e.g., ‘Thanks 231

for waiting.’). These utterances are inserted after 232

a randomly selected utterance from the participant 233

being asked to wait. 234

Greeting and closing remarks It is also com- 235

mon to begin a conversation with a friendly greet- 236

ing and end with some closing remarks. For the 237

greetings perturbation, we insert a greeting as the 238

first utterance, such as ‘Hi! I am your customer 239

support assistant. How may I help you today?’ in 240

customer support dialogues and ‘Hey there!’ in 241

open-domain chit-chat. For the closing remarks 242

perturbation, we insert a final message: ‘Thank 243

you for contacting us.’ in customer support dia- 244

logues and ‘Cool, talk to you later!’ in open domain 245

chit-chat. Each perturbation is applied individually 246

to a dialogue. Both of these perturbations help 247

us investigate structural biases present in dialogue 248

summarization models, also known to impact news 249

summarization models (Xing et al., 2021; Jung 250

et al., 2019). For instance, the greeting perturba- 251

tion helps examine lead bias (preference for the 252

first utterance), and closing remarks perturbation 253

helps examine recency bias (preference for the last 254

utterance). 255

3See Appendix A.4 for targeted perturbations, where we
select an utterance to repeat based on its saliency.

4We use this utterance to operationalize the repetition per-
turbation, inspired by spoken dialogues. However, repetitions
can also appear in written dialogues (e.g., sending the same
message multiple times to ensure communication, emphasiz-
ing points, or dealing with technical issues.). Furthermore,
models trained on written dialogues are often deployed to sum-
marize transcripts of spoken dialogues, where such utterances
are more common.
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Split and combined utterances In chat-based256

conversations, participants can have varying prefer-257

ences for either conveying information over multi-258

ple consecutive utterances or sending one long mes-259

sage. To simulate split utterance perturbation, we260

divide a randomly sampled utterance into consec-261

utive utterances by splitting it at every five words.262

Conversely, to simulate combined utterance per-263

turbation, we identify sequences of consecutive264

utterances from a single participant in a dialogue265

and concatenate them. We combine consecutive ut-266

terances from only one participant at a time. Each267

perturbation is applied individually to a dialogue.268

Both these perturbations allow us to examine long269

bias (the model’s preference to include a long utter-270

ance over shorter utterances, even when multiple271

short utterances include salient information).272

3.3 Quality evaluation of perturbed dialogues273

We conduct a human validation of the perturbed274

dialogues. The goal of this evaluation is to ensure275

that our perturbations do not alter the dialogue’s276

meaning or introduce new information, thereby277

validating the quality of our perturbed test set. We278

sample 20 dialogues and their summaries from each279

of the three datasets (§5.1) and perturb each dia-280

logue with all of the utterance and dialogue-level281

perturbations, resulting in a total of 480 dialogues.282

Two annotators are asked to determine whether283

the reference summary for the original dialogue re-284

mains valid for all the perturbed dialogues (see Ap-285

pendix A.2 for details on annotation guidelines). In286

cases of disagreement, a third annotator breaks the287

tie. The annotators marked 97.5% of the perturbed288

dialogues as being reasonably summarized by the289

summary of the original dialogue, thus validating290

the use of proposed perturbations to investigate the291

robustness of dialogue summarization models. Our292

human evaluation also suggests that our perturba-293

tions do not drastically alter the dialogue and the294

dialogues remain readable and semantically con-295

sistent. Otherwise, for an altered dialogue, the296

original summary would have been marked invalid.297

4 Quantifying Robustness298

For tasks involving text generation, such as di-299

alogue summarization, measuring robustness in-300

volves determining the relationship between differ-301

ent pairs of natural language texts. As a result, the302

robustness of generative tasks is less well-defined,303

compared to a classification task (Liu et al., 2021)304

and can manifest in several ways. We consider305

three dimensions for measuring robustness issues306

that can arise in dialogue summarization.307

Let x denote the original dialogue, yr be the 308

reference summary of the original dialogue, f be 309

the summarization model trained on (x, yr) ∼ D, 310

and f(x) be its prediction over x. Let x′ = x + 311

δ denote the perturbed dialogue and f(x′) be its 312

predicted summary. 313

Consistency A model is consistent (and hence 314

robust) under a perturbation (δ) if the two sum- 315

maries, f(x) and f(x′ = x+ δ), are semantically 316

similar, resulting in minimal change. We quantify 317

the change in model-generated output as follows, 318

∆zc =
|SCORE(f(x), f(x))− SCORE(f(x), f(x′))|

SCORE(f(x), f(x))
(1) 319

further simplified as, 320

∆zc = 1− SCORE(f(x), f(x′)) (2) 321

where SCORE is any text similarity metric (e.g., 322

BERTScore) that assigns a value of 1 for identical 323

inputs and 0 for dissimilar inputs. By definition, 324

∆zc ∈ [0, 1]. Note that consistency is sufficient but 325

not necessary for robustness: a good summary can 326

be expressed in diverse ways, which leads to high 327

robustness but low consistency. 328

Saliency Assuming that the reference summary 329

includes the most salient information conveyed 330

in the input dialogue, we compute the change 331

in salient information captured by the model- 332

generated summaries (before and after perturba- 333

tion) w.r.t the reference summary as follows: 334

∆zs =
|SCORE(yr, f(x))− SCORE(yr, f(x

′))|
SCORE(yr, f(x))

(3) 335

where SCORE is any text similarity metric (e.g., 336

BERTScore). Since ∆zs measures the normalized 337

change in similarity scores, ∆zs ∈ [0, 1]. 338

Faithfulness Faithfulness refers to the extent 339

to which the generated summary is supported by 340

the content of the input dialogue, thus accurately 341

reflecting the information without introducing spu- 342

rious or fabricated details, commonly termed as 343

hallucinations. We compute the change in faithful- 344

ness as follows: 345

∆zf =
|SCORE(x, f(x))− SCORE(x, f(x′))|

SCORE(x, f(x))
(4) 346

where SCORE is any text-based precision met- 347

ric measuring the fraction of information in the 348

summary (f(x)) supported by the input dialogue 349
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(x) (e.g., BERTScore-Precision). Since ∆zf mea-350

sures the normalized change in precision scores,351

∆zf ∈ [0, 1]. Note that, the second term in the352

numerator compares x with f(x′) since we are353

interested in measuring the fraction of summary354

information supported by the ‘original dialogue.’355

Furthermore, since our added perturbations do not356

add any new information to the dialogue, x and357

x′ would essentially contain the same information.358

Clearly, for all three dimensions, the higher the ∆z,359

the lower the robustness of the model.360

5 Evaluating Robustness361

We present our key observations on how various362

perturbations impact the model performance.363

5.1 Implementation Details364

Datasets We consider two task-oriented dia-365

logues, TWEETSUMM (Feigenblat et al., 2021) and366

TODSum (Zhao et al., 2021), both consisting of367

conversations between an agent and a customer.368

TODSum comprises dialogues from multiple sub-369

domains (restaurants, movies, etc), collected via370

crowdsourcing where annotators are tasked to gen-371

erate dialogues based on a given scenario. In con-372

trast, TWEETSUMM focuses solely on customer sup-373

port conversations occurred at Twitter. We also374

include SAMSUM (Gliwa et al., 2019), a corpus of375

chit-chat dialogues between two or more friends.376

Models We analyze the robustness of three Trans-377

former based encoder-decoder models for dialogue378

summarization, Pegasus-large (568M parame-379

ters) (Zhang et al., 2019), BART-large (400M380

parameters) (Lewis et al., 2020) and T5-base381

(220M parameters) (Raffel et al., 2020a), whose382

details are publicly available. All models have383

a comparable number of parameters. We fine-384

tune each model on the train split of the respec-385

tive dataset. We use beam search5 with size 5 to386

generate summaries. We also investigate the robust-387

ness of instruction-tuned versions of two of these388

models, DIAL-BART0 (406M parameters) (Gupta389

et al., 2022) and FLAN-T5-large (783M parame-390

ters) (Chung et al., 2022), used as zero-shot sum-391

marizers, without fine-tuning on the three dialogue392

summarization datasets considered in this work.393

Metrics We evaluate summaries using394

BERTScore (Zhang et al., 2020), which has395

been shown to better correlate with human judg-396

ment (Fischer et al., 2022). BERTScore calculates397

precision, recall, and F1 scores by comparing a398

5Nucleus sampling omitted to avoid sampling variance.

model-generated summary to a reference summary. 399

We use F1 to compute consistency and saliency, 400

and precision to compute faithfulness. To 401

validate observed trends, we additionally evaluate 402

summaries using ROUGE-L metric (Lin, 2004), 403

which measures lexical overlap, and SummaC 404

metric (Laban et al., 2022), which measures 405

factual consistency. For all the reported results, we 406

observe similar trends via ROUGE-L and SummaC 407

(Tables 11,12,13 in Appendix A.8). While we 408

report results using these metrics, the three 409

robustness dimensions can be computed using 410

any evaluation metric. For each reported result, 411

we use a non-parametric bootstrap (Wasserman, 412

2004, ch. 8) to infer confidence intervals (CIs). We 413

utilize 104 bootstrap samples of the dialogues to 414

report 95% bootstrap CIs via the normal interval 415

method (Wasserman, 2004, ch. 8.3). 416

5.2 How robust are fine-tuned models? 417

Fine-tuned dialogue summarization models are 418

affected by both utterance and dialogue level 419

perturbations Table 1 shows the change in con- 420

sistency, saliency, and faithfulness owing to utter- 421

ance and dialogue level perturbations on all three 422

datasets. All three models are equally impacted by 423

various perturbations. Models trained on TweetSum 424

and SAMSum are impacted equally by both utterance- 425

level and dialogue-level perturbations. TODSum 426

is the least impacted, since this dataset contains 427

template-based summaries where only entities from 428

the dialogue are required to be filled. We see a ma- 429

jor impact on faithfulness, with the highest impact 430

on the model trained on the TODSum dataset. 431

Impact of utterance perturbations Table 2 432

shows that these perturbations have a compara- 433

ble impact (shown averaged over all three models). 434

Models trained on TODSum exhibit little change in 435

consistency and saliency, but a significant change 436

in faithfulness. This is expected since the TODSum 437

summaries are extractive, following a pre-defined 438

template, and only require substituting entity infor- 439

mation extracted from the dialogue. Since the tem- 440

plate is fixed and the summaries can only change 441

in entity information before and after perturbation 442

and w.r.t reference summary, we see a small change 443

in consistency and saliency. However, we observe 444

a large change in faithfulness, as this dimension 445

focuses on the factual correctness of the summary. 446

Impact of dialogue perturbations: Table 3 re- 447

ports the impact of dialogue-level perturbations 448

(averaged over all models) and shows significant 449

changes for repetition, time delays, greetings, and 450

5
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Dataset Model Utterance Perturbations Dialogue Perturbations
∆zc% ∆zs% ∆zf% ∆zc% ∆zs% ∆zf%

TweetSum
BART 17.48±0.32 13.37±0.68 24.68±1.98 16.77±0.40 10.25±2.04 14.48±1.98
Pegasus 16.73±0.42 17.18±1.04 29.51±5.20 16.67±0.42 11.33±1.97 21.03±5.20
T5 17.89±0.37 14.44±0.82 16.67±2.94 17.02±0.38 11.78±1.35 9.81±2.94

TODSum
BART 7.26±0.24 3.87±0.16 51.71±17.09 5.85±0.24 2.70±0.42 19.07±15.06
Pegasus 5.20±0.21 3.50±0.17 37.85±10.74 3.26±0.17 1.74±0.32 22.92±19.33
T5 7.19±0.26 3.86±0.17 35.25±11.46 5.12±0.23 2.11±0.34 28.13±29.91

SAMSum
BART 13.06±0.36 6.57±0.25 11.39±0.73 22.05±0.52 5.11±0.65 6.62±1.28
Pegasus 14.21±0.39 6.59±0.26 8.21±2.05 20.59±0.54 4.35±0.5 6.74±5.52
T5 13.58±0.36 6.72±0.28 4.08±2.77 21.18±0.49 4.5±0.48 4.78±2.22

Table 1: Robustness scores of fine-tuned models using BERTScore. Higher the score, the lower the robustness.

Dimension Dataset Typographical Grammar Language Use

∆zc%
TweetSum 24.65±0.54 23.32±0.87 20.43±0.69
TODSum 9.97±0.30 5.82±0.38 5.73±0.28
SAMSum 16.27±0.36 16.93±0.71 17.78±0.48

∆zs%
TweetSum 16.27±1.93 16.93±2.7 17.78±1.96
TODSum 5.59±1.32 3.12±1.04 2.96±0.89
SAMSum 7.38±2.23 7.44±1.54 7.38±1.13

∆zf%
TweetSum 28.01±6.43 26.13±9.42 19.55±8.14
TODSum 36.73±6.76 25.30±9.81 30.31±8.82
SAMSum 11.17±1.75 9.98±1.83 8.97±1.57

Table 2: Impact of utterance perturbations. Models are
equally impacted by different perturbations.

split utterances. For instance, when subjected to451

repetitions, the models tend to include repeated452

utterances in the summary, even if they were pre-453

viously deemed unimportant (repetition bias; Fig-454

ure 1). Additionally, the models demonstrate a455

preference for the first utterance in a dialogue (lead456

bias), rendering them susceptible to greetings per-457

turbation. This observation aligns with prior find-458

ings for news summarization, where sentences at459

the beginning of an article are more likely to con-460

tain summary-worthy information. Similarly, in461

customer-support conversations, the first utterance462

frequently addresses the primary issue faced by the463

customer. Consequently, models trained on such464

datasets exhibit lead bias. Finally, the models pre-465

fer lengthy utterances in the summary (long bias),466

by being more affected by split perturbations, and467

less affected by short utterances combined.468

5.3 Effect of model size on robustness469

Table 4 shows the change in consistency for models470

with different number of parameters: BART-base,471

BART-large, T5-base, and T5-small. The mod-472

els are almost equally affected by perturbations,473

irrespective of size, suggesting that robustness is-474

sues cannot be mitigated by scaling the model size.475

5.4 How robust are instruction-tuned models476

when used as zero-shot summarizers?477

DIAL-BART0 and FLAN-T5-large are instruction-478

tuned on multiple tasks, with DIAL-BART0, in479

particular, is instruction-tuned on dialog-specific480

tasks. However, neither model was trained on the481

TweetSum dataset, providing a zero-shot setting482

to evaluate their dialogue summarization capabil- 483

ities. As depicted in Table 5, both DIAL-BART0 484

(∆zc=30.37% for utterance and 34.30% for dia- 485

logue) and FLAN-T5 (∆zc=38.23% for utterance 486

and 44.12% for dialogue) are much more sensitive 487

to perturbations compared to their fine-tuned coun- 488

terparts (∆zc=17.36% for utterance and 16.82% 489

for dialogue, averaged over three models). 490

In contrast to fine-tuned models, the zero-shot 491

models are affected more by the dialogue-level 492

perturbations (∆zc=34.30% for DIAL-BART0 and 493

∆zc=44.12% for FLAN-T5) than utterance-level 494

perturbations (∆zc=30.37% for DIAL-BART0 and 495

∆zc=38.23% for FLAN-T5). Among utterance-level 496

perturbations, similar to the fine-tuned models, 497

zero-shot models are also impacted equally by all 498

perturbations. Among dialogue-level perturbations 499

as well, similar to the fine-tuned models, zero-shot 500

models are most impacted by repetitions, greetings 501

and split utterances (Appendix A.6). 502

We additionally consider a recent instruction- 503

tuned large language model, Llama-2-70B, with 504

only publicly available weights. This model is also 505

significantly larger (70B) than the other models 506

(<0.9B). Our results show high sensitivity to per- 507

turbations for this model (∆zc=47.10% for utter- 508

ance and ∆zc=54.53% for dialogue perturbations), 509

though we leave detailed human evaluation of the 510

outputs of this model for future work. 511

5.5 Validity of findings with human evaluation 512

We conduct another human evaluation to con- 513

firm the trends observed with automatic similar- 514

ity metrics. Specifically, we collect similarity 515

scores between summary pairs using human an- 516

notations instead of automated similarity metrics 517

(e.g., BERTScore). The goal is to ensure that ro- 518

bustness trends observed with automated metrics 519

are similar to those from human evaluation. 520

We use the consistency dimension for this eval- 521

uation for two main reasons: 1) Empirically, the 522

three robustness dimensions exhibit a strong cor- 523

relation (Table 10). Thus, using any of the three 524
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Dimension Dataset Repetitions Time Delays Greetings Closing Remarks Split Combine

∆zc%
TweetSum 18.04±0.59 14.15±0.85 20.01 ±1.34 9.80±1.0 16.71±0.83 6.77±0.36
TODSum 5.96±0.39 4.31±0.4 6.61±0.59 2.02±0.4 4.38±0.36 -
SAMSum 27.32±0.46 22.19±0.67 32.89±0.99 16.29±0.89 11.63±0.59 7.80±0.52

∆zs%
TweetSum 12.49±3.45 10.53±1.47 15.23±5.98 6.03±2.23 11.13±1.45 5.40±1.34
TODSum 3.31±0.98 2.20±0.67 3.48±0.88 1.10±0.66 2.19±1.11 -
SAMSum 10.87±0.23 8.38±0.98 12.63±0.95 6.04±1.14 14.65± 0.96 7.05±1.26

∆zf%
TweetSum 19.34±5.91 15.81±1.2 18.31±9.23 6.99±8.28 15.11±7.47 8.65±1.42
TODSum 64.74±6.67 22.74±1.66 50.98±9.51 10.52±9.89 23.37±8.23 -
SAMSum 17.99±8.91 12.76±2.44 21.25±0.91 10.28±0.95 16.05±5.91 10.21±1.91

Table 3: Robustness to dialogue perturbations. Models are most susceptible to repetitions and time delays (repetition
bias), greetings (lead bias), and split utterances (long bias). TODSum dataset has no consecutive utterances from the
same speaker, thus we do not perform combine utterance perturbation on this dataset.

Model Parameters Utterance Perturbations Dialogue Perturbations
∆zc% ∆zs% ∆zf% ∆zc% ∆zs% ∆zf%

BART-large 440 17.48 ±0.33 13.37±0.68 24.68±0.85 16.77±0.40 10.25±2.01 14.48±1.98
BART-base 140 18.2 ±0.30 16.42±0.58 25.78±0.89 18.2±0.30 13.28±1.84 15.6±2.29
T5-base 220 17.89 ±0.37 14.44±0.82 16.67±2.94 17.02±0.38 11.78±1.35 9.81±2.94
T5-small 60 19.15 ±0.32 14.18±0.53 25.31±2.16 19.15±0.32 8.03±2.72 18.64±5.69

Table 4: Evaluating robustness of different sized fine-tuned models on the TweetSum dataset.

dimensions would suffice for human evaluation,525

and (2) Among the three dimensions, consistency526

is easiest to use for human evaluation since it only527

requires the comparison of two summaries.528

We collected annotations via the Appen platform529

(https://appen.com/), asking annotators to com-530

pare summaries of the perturbed and unperturbed531

dialogue, ranking their similarity on a Likert scale532

of 1 (dissimilar) to 4 (identical or paraphrases). To533

collect annotations, we used the same set of 20 dia-534

logues as in §3.3 from the TweetSum dataset. Each535

dialogue was perturbed with one of the eight cate-536

gories (utterance- and dialogue-level), yielding 160537

summary pairs to be annotated.538

We collected 3 annotations per summary pair,539

totaling 480 annotations; after filtering out noisy540

annotations, we conducted our analysis on the re-541

maining 314 examples (Appendix A.3 provides an-542

notation procedure and guidelines). We aggregate543

annotations using majority voting to get similar-544

ity scores. To compute consistency scores (equa-545

tion 1), we map the Likert scale to continuous nu-546

meric scores from 0 to 1. We compute mean scores547

across all pairs for a given dataset and perturbation.548

As shown in Figure 2, we observe similar trends,549

with models exhibiting repetition, long, and lead550

biases, and that models are affected nearly equally551

by all utterance perturbations. While the absolute552

values of ∆zc differ between calculations using au-553

tomatic metrics and human annotations, the relative554

impact of different perturbations on the model is555

similar. For instance, combined utterances and clos-556

ing remarks have the least impact than repetition,557

greetings, and split utterance perturbations.6558

6Except time delays, owing to noise in human annotations.

Figure 2: Comparison of consistency scores obtained
via human annotations of similarity and the automatic
metric on the TweetSum dataset. While the absolute
values of ∆zc differ, the relative impact of different
perturbations on the model is similar.

5.6 Relationship among dimensions 559

While theoretically, three dimensions (§4) measure 560

different aspects of robustness, empirically they ex- 561

hibit a strong correlation of > 84% across datasets 562

and models (details in Table 10 in Appendix). 563

This observation can be conceptually explained 564

to some extent. For instance, high saliency implies 565

high consistency: if summaries before and after per- 566

turbation are similar to the reference summary, they 567

will be similar to each other, leading to low ∆zs 568

and thus low ∆zc. Similarly, high saliency implies 569

high faithfulness: if the model-generated summary 570

is similar to the reference summary, it will also be 571

factually consistent with the input dialogue, lead- 572

ing to low ∆zs and thus low ∆zf . However, if 573

∆zs is large, the model could remain faithful un- 574

der perturbation (small ∆zf ): summaries can be 575

different from the reference summary yet consis- 576

tent with the input dialogue. Thus, conceptually, 577
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Utterance Perturbations Dialogue PerturbationsModel
∆zc% ∆zs% ∆zf% ∆zc% ∆zs% ∆zf%

DIAL-BART0 30.37±0.39 21.80±3.54 37.09±2.57 34.30±0.44 26.44±8.31 47.13±7.51
FLAN-T5 38.23±0.57 41.36±9.10 46.80±14.53 44.12±0.71 39.89±9.09 48.23±11.44
LLAMA-2-70B 47.10±0.17 35.16±0.01 33.19±0.09 54.53±0.48 33.59±0.03 31.69±0.02

Table 5: Robustness of zero-shot summarizers on the TweetSum dataset.

the relation can be explained in only one direction,578

but empirically the dimensions are highly corre-579

lated. Nevertheless, our findings are insightful in580

their own right, suggesting that the high correlation581

among all dimensions could be valuable for future582

robustness studies. For instance, the consistency583

or faithfulness dimension can serve as reference-584

free measures of robustness. Consistency is also585

the easiest to use for human evaluation, as it only586

requires comparing two summaries.587

6 Improving Robustness588

One solution to address robustness issues could be589

to employ reverse heuristics to remove perturba-590

tions from dialogues. However, not all perturba-591

tions can be easily discovered and removed. For592

example, in repetition or time delay perturbations,593

the repeated utterance may include less information594

or be paraphrased compared to the original. While595

greetings and closing remarks might be simpler596

to remove, we include these perturbations as they597

offer a systematic approach to investigating model598

behavior, such as potential lead and recency biases.599

Another potential solution to address robustness600

issues can be to use recent large language models to601

pre-process dialogues by removing errors and rep-602

etitions. However, this approach suffers from two603

challenges: (1) During deployment, additional pre-604

processing could increase latency, and (2) language605

models may hallucinate content, posing the risk of606

introducing factual errors in the input dialogue.607

Finally, we examine if training with perturba-608

tions can help to mitigate robustness issues. We609

fine-tune BART on the training data augmented with610

perturbations and re-evaluate its performance. We611

create multiple training datasets, each modified by612

a specific kind of perturbation (typographical errors613

and language use variations for utterance level; rep-614

etitions, split utterances, and greetings for dialogue615

level), using TweetSum’s training split. These mod-616

ified datasets, with 5-50% of dialogues perturbed,617

are used to fine-tune BART, which we then test on a618

similarly altered TweetSum’s test split.7 We hypoth-619

esize that training with more perturbed dialogues620

7We experimented with training and evaluating a single
model on data with all perturbations. However, since different
perturbations can have varied impacts on model performance,
we found perturbation-wise analysis more interpretable.
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Figure 3: Impact of fine-tuning with perturbations.

will initially improve performance until a threshold, 621

after which overfitting may reduce effectiveness. 622

Figure 3 shows the change in model consistency 623

when fine-tuned with perturbations. The lower the 624

change in consistency, the higher the model robust- 625

ness to the perturbations. One takeaway is that 626

different perturbations necessitate varying amounts 627

of perturbed examples in the training set to achieve 628

maximum performance gain. For example, typo- 629

graphical errors and language use variations yield 630

the largest drop in ∆zc when approximately 40% 631

and 45% of the dialogues are perturbed during train- 632

ing. In contrast, dialogue-level perturbations re- 633

quire significantly less perturbed data during train- 634

ing, with approximately 30% split-utterances, 15% 635

greetings, and only 5% repetitions being sufficient. 636

Overall, the results demonstrate that fine-tuning 637

with perturbed data does not yield consistent per- 638

formance improvements, warranting more detailed 639

exploration as part of future work. 640

7 Conclusion 641

We investigate the impact of naturally occurring 642

variations on state-of-the-art dialogue summariza- 643

tion models using three publicly available datasets. 644

To simulate variations, we introduce utterance-level 645

and dialogue-level perturbations. We conduct our 646

analysis using three dimensions of robustness: con- 647

sistency, saliency, and faithfulness, which capture 648

different aspects of the summarization model’s per- 649

formance. Our results show that both fine-tuned 650

and instruction-tuned models are affected by pertur- 651

bations, with instruction-tuned models being more 652

susceptible, particularly to dialogue-level perturba- 653

tions, spurring the need for future research. 654
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8 Limitations655

We list some of the limitations of our study which656

researchers and practitioners would hopefully ben-657

efit from when interpreting our analysis. 1) Our658

analysis uses automatic metrics to measure seman-659

tic similarity. Established metrics such BERTScore660

are imperfect (Deutsch et al., 2022). However, they661

are widely used in the summarization literature,662

and also correlate with human judgements of sum-663

mary quality, and thus are useful for comparing664

system-level performance. To validate our findings,665

we also conduct a human evaluation to better under-666

stand trends observed due to various perturbations.667

The investigation of better-automated metrics for668

natural language generation is an active field of re-669

search, and we hope to integrate novel performance670

metrics in future work. (2) While our perturbations671

are motivated by real-life scenarios, they are still672

synthetic in nature. However, we take care wher-673

ever possible to avoid unrealistic changes to the di-674

alogues. (3) Our study limits to only open-sourced675

models and does not investigate the robustness of676

proprietary LLMs (e.g., ChatGPT), which may be677

more robust. We decided to limit our study to open-678

sourced models as it allows us to carefully control679

what is in the training data, which is not possible680

with proprietary LLMs and the possibility of data681

contamination also makes it hard to draw conclu-682

sions. (4) Our study mainly focuses on text-based683

dialogue summarization datasets and does not in-684

clude spoken conversations, which would bring in685

very different and diverse nuances of spoken con-686

versations compared to text-based conversations,687

and is currently out of the scope of this paper. (5)688

Our study proposes one possible method to mea-689

sure robustness, and we acknowledge that there690

can be many other viable ways to quantify robust-691

ness. However, quantifying the robustness of tasks692

involving text generation (e.g., summarization) is693

an active area of research (Wang et al., 2022) and694

we hope our work will spur further investigation695

as part of future work. (6) We did not investigate696

the robustness of models under both utterance and697

dialogue level perturbations occurring together in698

a single dialogue, as that would result in a large699

number of possible combinations to consider. We700

leave this for future work.701

9 Ethics Statement702

All annotators in our human evaluation were re-703

cruited via Appen platform and were presented704

with a consent form prior to the annotation. They705

were also informed that only satisfactory perfor-706

mance on the screening example will allow them 707

to take part in the annotation task. None of the ma- 708

terial/examples they looked at had any hateful or 709

abusive content. We also ensured that the annota- 710

tors were paid fair amount of wages using Appen’s 711

Fair Pay Price Per Judgment which equates to an 712

hourly rate matching a little over the minimum 713

wage of annotators in their respective countries. 714

All the datasets used in this work are publicly avail- 715

able under the CDLA-Sharing license and do not 716

contain any private information. 717

References 718

Jiaao Chen and Diyi Yang. 2021. Simple conversa- 719
tional data augmentation for semi-supervised abstrac- 720
tive dialogue summarization. In Proceedings of the 721
2021 Conference on Empirical Methods in Natural 722
Language Processing, pages 6605–6616, Online and 723
Punta Cana, Dominican Republic. Association for 724
Computational Linguistics. 725

Hyundong Cho, Chinnadhurai Sankar, Christopher Lin, 726
Kaushik Sadagopan, Shahin Shayandeh, Asli Celiky- 727
ilmaz, Jonathan May, and Ahmad Beirami. 2022. 728
Know thy strengths: Comprehensive dialogue state 729
tracking diagnostics. In Findings of the Association 730
for Computational Linguistics: EMNLP 2022, pages 731
5345–5359, Abu Dhabi, United Arab Emirates. As- 732
sociation for Computational Linguistics. 733

Hyung Won Chung, Le Hou, Shayne Longpre, Bar- 734
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi 735
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 736
2022. Scaling instruction-finetuned language models. 737
arXiv preprint arXiv:2210.11416. 738

Daniel Deutsch, Rotem Dror, and Dan Roth. 2022. Re- 739
examining system-level correlations of automatic 740
summarization evaluation metrics. In Proceedings of 741
the 2022 Conference of the North American Chap- 742
ter of the Association for Computational Linguistics: 743
Human Language Technologies, pages 6038–6052, 744
Seattle, United States. Association for Computational 745
Linguistics. 746

Kaustubh D. Dhole, Varun Gangal, Sebastian 747
Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Ma- 748
hamood, Abinaya Mahendiran, Simon Mille, Ashish 749
Srivastava, Samson Tan, Tongshuang Wu, Jascha 750
Sohl-Dickstein, Jinho D. Choi, Eduard Hovy, On- 751
drej Dusek, Sebastian Ruder, Sajant Anand, Na- 752
gender Aneja, Rabin Banjade, Lisa Barthe, Hanna 753
Behnke, Ian Berlot-Attwell, Connor Boyle, Car- 754
oline Brun, Marco Antonio Sobrevilla Cabezudo, 755
Samuel Cahyawijaya, Emile Chapuis, Wanxiang 756
Che, Mukund Choudhary, Christian Clauss, Pierre 757
Colombo, Filip Cornell, Gautier Dagan, Mayukh Das, 758
Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Su- 759
chitra Dubey, Tatiana Ekeinhor, Marco Di Giovanni, 760
Rishabh Gupta, Rishabh Gupta, Louanes Hamla, 761
Sang Han, Fabrice Harel-Canada, Antoine Honore, 762

9
64

https://doi.org/10.18653/v1/2021.emnlp-main.530
https://doi.org/10.18653/v1/2021.emnlp-main.530
https://doi.org/10.18653/v1/2021.emnlp-main.530
https://doi.org/10.18653/v1/2021.emnlp-main.530
https://doi.org/10.18653/v1/2021.emnlp-main.530
https://doi.org/10.18653/v1/2022.findings-emnlp.391
https://doi.org/10.18653/v1/2022.findings-emnlp.391
https://doi.org/10.18653/v1/2022.findings-emnlp.391
https://doi.org/10.18653/v1/2022.naacl-main.442
https://doi.org/10.18653/v1/2022.naacl-main.442
https://doi.org/10.18653/v1/2022.naacl-main.442
https://doi.org/10.18653/v1/2022.naacl-main.442
https://doi.org/10.18653/v1/2022.naacl-main.442


Ishan Jindal, Przemyslaw K. Joniak, Denis Kleyko,763
Venelin Kovatchev, Kalpesh Krishna, Ashutosh Ku-764
mar, Stefan Langer, Seungjae Ryan Lee, Corey James765
Levinson, Hualou Liang, Kaizhao Liang, Zhexiong766
Liu, Andrey Lukyanenko, Vukosi Marivate, Gerard767
de Melo, Simon Meoni, Maxime Meyer, Afnan Mir,768
Nafise Sadat Moosavi, Niklas Muennighoff, Timo-769
thy Sum Hon Mun, Kenton Murray, Marcin Namysl,770
Maria Obedkova, Priti Oli, Nivranshu Pasricha, Jan771
Pfister, Richard Plant, Vinay Prabhu, Vasile Pais,772
Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas773
Raunak, Roy Rinberg, Nicolas Roberts, Juan Diego774
Rodriguez, Claude Roux, Vasconcellos P. H. S.,775
Ananya B. Sai, Robin M. Schmidt, Thomas Scialom,776
Tshephisho Sefara, Saqib N. Shamsi, Xudong Shen,777
Haoyue Shi, Yiwen Shi, Anna Shvets, Nick Siegel,778
Damien Sileo, Jamie Simon, Chandan Singh, Ro-779
man Sitelew, Priyank Soni, Taylor Sorensen, William780
Soto, Aman Srivastava, KV Aditya Srivatsa, Tony781
Sun, Mukund Varma T, A Tabassum, Fiona Anting782
Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn,783
Athena Wang, Zijian Wang, Gloria Wang, Zijie J.784
Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata,785
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A Appendix 1011

A.1 Details/Examples of Perturbations 1012

See Table 6. 1013

A.2 Details of annotation guidelines of quality 1014

validation in §5.2 1015

For annotation collection, we only allowed anno- 1016

tators proficient in English from a small group of 1017

the most experienced annotators adjudicated by the 1018

Appen platform; from any country. We also used 1019

hidden test questions for quality control and re- 1020

quired annotators to maintain at least 80% accuracy 1021

throughout the job on these hidden test questions. 1022

These test questions are pre-labeled and are used 1023

before and during the task to quiz the annotator. We 1024

selected 15 test questions from the validation split 1025

of each dataset ensuring that these questions do not 1026

overlap with questions seen by the annotators for 1027

the actual annotation task. Figure 4 shows the an- 1028

notation guidelines and Figure 5 shows examples 1029

provided for this task. 1030

A.3 Details of annotation guidelines for the 1031

validity of trends in §5.6 1032

Quality Control: For this task, as well we only 1033

allowed annotators proficient in English from a 1034

small group of the most experienced annotators 1035

adjudicated by the Appen platform; from any coun- 1036

try. We also used hidden test questions for quality 1037

control and required annotators to maintain at least 1038

80% accuracy throughout the job on these hidden 1039

test questions. Figure 6 shows the annotation guide- 1040

lines, and Figure 7 shows examples provided for 1041

this task. 1042

Number of annotations: In the main task, each 1043

annotator was shown 5 examples per page with one 1044

hidden test example. For each example, we col- 1045

lected three annotations. In cases where there was 1046

no agreement among the initial three annotations, 1047

we obtained additional annotations. A maximum 1048

of five annotations was considered. 1049

Noise Filtering: Before computing consistency 1050

scores, we took several steps to filter out noisy an- 1051

notations. The Appen platform estimates the trust 1052

score for each worker (by calculating accuracy on 1053

hidden test examples) and also marks examples 1054

as tainted if it is annotated by an annotator whose 1055

accuracy score has fallen below the minimum accu- 1056

racy threshold. To retain only the highest quality an- 1057

notations, we remove annotations that were marked 1058

as tainted and only keep annotations from workers 1059
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Perturbation Type Perturbation Category Perturbation Name Examples

Utterance Level

Typographical Errors

remove punctuation great!→ great
remove/add whitespace Customer → Custo mer
change letter casing action→ actIon
common substitutions expansions n’t → not
common substitutions contractions I am → I’m

Grammatical Errors dropping determiners a, the, an
subject-verb disagreements She likes apples. → She like apples.

Spoken Language Errors

homophone swaps their → there

filler words and disfluencies

uhm, uh, erm, ah, er, err,
actually, like, you know
I think/believe/mean, I would say
maybe, perhaps, probably, possibly,
most likely

Dialogue Level

Repetitions N/A ‘Sorry, I couldn’t hear you, can you repeat?’

Time Delays N/A
‘Just give me a few minutes..’
‘sure’, ‘yup!’
‘Thanks for waiting.’

Greeting and closing remarks

greeting (Customer Support) ‘Hi! I am your customer support assistant. How may I help you today?’
greeting (friends) ‘Hi!’ or ‘Hey there!’

closing (Customer Support) ‘Thank you for contacting us. Have a nice day!’
closing (friends) ‘Cool, talk to you later!’, ‘Bye.’

Table 6: Examples of each perturbation

Figure 4: Annotation guidelines for quality validation of perturbed dialogue-summary pairs.

whose trust score is 100%. On qualitatively exam-1060

ining the annotations we also found cases where1061

the two summaries were word-by-word the same,1062

yet the annotator did not give a rating of 4 (highly1063

similar or exact match). Since this is a case of ob-1064

vious noise, we remove such cases. If an example1065

has less than 3 annotations left after the filtering1066

step, we drop the example. After this filtering, we1067

finally use 314 annotations to conduct our analysis.1068

A.4 Targeted dialogue perturbations to1069

investigate the repetition bias1070

To delve deeper into the repetition bias observed in1071

the models, we conducted targeted perturbations,1072

where we repeat utterances based on whether the in-1073

formation conveyed in those utterances was consid-1074

ered important by the reference summary. Specif-1075

ically, we identify utterances that are highly rele-1076

vant and least relevant to the reference summary.1077

To measure relevance, we compute semantic simi-1078

Dataset Model Repeated Utterance
Most Relevant Least Relevant Random

TweetSum
BART 12.40 14.53 14.46
Pegasus 13.49 16.68 14.22
T5 9.26 11.46 10.84

TODSum
BART 1.94 4.32 3.52
Pegasus 2.05 2.05 2.92
T5 1.85 3.66 3.50

Table 7: Saliency scores of fine-tuned models with tar-
geted perturbations. Perturbing the least relevant utter-
ance results in the highest change in saliency, suggesting
that the model exhibits repetition bias.

larity8 between each utterance and each sentence 1079

in the reference summary. For each summary sen- 1080

tence, we then determine the most (least) relevant 1081

utterance by selecting the one with the highest (low- 1082

est) similarity with the summary sentence. When 1083

perturbing the most relevant utterance, we perturb 1084

the utterances that were identified as relevant to 1085

at least one summary sentence. When perturbing 1086

8using sentence transformers [CITE]
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Figure 5: Examples provided as part of annotation guidelines for quality validation of perturbed dialogue-summary
pairs

Figure 6: Annotation guidelines for the validity of trends; to collect similarity annotations for pair of summaries.

the least relevant utterance, we perturb the utter-1087

ances that were identified as least relevant to all the1088

summary sentences.1089

As shown in Table 7, we observe that the model1090

exhibits the highest change in saliency scores when1091

we perturb the least relevant utterance, which fur-1092

ther demonstrates the model’s tendency to consider1093

repeated information as important, even though it1094

was not considered important as per the reference1095

summary. In contrast, repetition of the most rele-1096

vant utterance shows the least change in the scores,1097

since the model already focuses on the most rele-1098

vant information before perturbation and after re-1099

peating that utterance, it still remains important to1100

be included in the summary.1101

A.5 Sensitivity to perturbation rate 1102

A.6 Perturbation-wise impact on zero-shot 1103

models 1104

See Table 8 and Table 9 1105

A.7 Correlation analysis 1106

Table 10 shows the Pearson correlations between 1107

pairs of dimensions on the TweetSum dataset. Cor- 1108

relations scores are also visualized in Figures 10, 1109

11, 12. Similar correlation are also observed on 1110

SAMSum (Figures 14, 15, 13) and TODSum datasets 1111

(Figures 17, 18, 16). 1112

A.8 Analysis using ROUGE-L and SummaC 1113

scores 1114
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Figure 7: Examples provided as part of annotation guidelines to collect similarity annotations for pair of summaries.

Model Perturbation
repetitions time_delays greetings Closing remarks split_utterances combined_utterances

DIAL-BART0 35.30 31.15 35.02 23.07 35.10 18.31
FLAN-T5 45.65 32.88 60.10 48.11 41.45 20.34

Table 8: Change in consistency scores due to dialouge-level perturbations on instruction-tuned models when used as
zero-shot summarizers. Models are more affected due to repetitions, time-delays, greetings, and split utterances
compared to closing remarks and combined utterances.

Figure 8: Consistency scores for spelling error perturba-
tion, when varying the percentage of words perturbed
per utterance. We perturb all utterances in a dialogue.
A perturbation rate of 20% also causes a considerable
drop in model performance.

Figure 9: Consistency scores for spelling error perturba-
tion, when varying the percentage of words perturbed
per utterance. We also vary the number of utterances
being perturbed. Perturbing more than 30% utterances
also causes a considerable drop in model performance.

Figure 10: Correlation between consistency and saliency
dimensions on TweetSum dataset.

Figure 11: Correlation between faithfulness and
saliency dimensions on TweetSum dataset (Outliers ex-
cluded for the purpose of visualization).
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Model Perturbation
typographical grammar language_use speech_recognition

DIAL-BART0 33.74 32.26 27.53 30.33
FLAN-T5 42.60 48.03 39.75 33.86

Table 9: Change in consistency scores due to utterance-level perturbations on instruction-tuned models when used
as zero-shot summarizers. Models are equally affected due to all perturbations.

Model Pair of dimensions
(∆zc, ∆zs) (∆zc, ∆zf ) (∆zf , ∆zs)

BART 0.89 0.91 0.85
T5 0.94 0.93 0.89
Pegasus 0.86 0.85 0.84

Table 10: Pearson correlations between pairs of dimen-
sions on the TweetSum dataset. Similar correlation ob-
served on SAMSum and TODSum (Appendix A.7).

Figure 12: Correlation between faithfulness and consis-
tency dimensions on TweetSum dataset.

Figure 13: Correlation between consistency and saliency
dimensions on SAMSum dataset.

Figure 14: Correlation between faithfulness and
saliency dimensions on SAMSum dataset (Outliers ex-
cluded for the purpose of visualization).

Figure 15: Correlation between faithfulness and consis-
tency dimensions on SAMSum dataset.

Figure 16: Correlation between consistency and saliency
dimensions on TODSum dataset.

Figure 17: Correlation between faithfulness and
saliency dimensions on TODSum dataset (Outliers ex-
cluded for the purpose of visualization).

Figure 18: Correlation between faithfulness and consis-
tency dimensions on TODSum dataset.
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Model Utterance Perturbations Dialogue Perturbations
Consistency Saliency Faithfulness Consistency Saliency Faithfulness

BART Large 14.00±0.22 10.91±0.01 9.18±0.01 14.37±0.37 10.37±0.01 8.97±0.01
BART Base 14.18±0.29 10.65±0.01 9.60±0.01 15.40±0.31 9.74±0.01 9.04±0.09
Pegasus 13.50±0.46 13.24±0.01 11.29±0.02 14.78±0.39 12.14±0.02 9.80±0.01
T5 Base 14.72±0.36 13.43±0.01 11.01±0.01 13.88±0.42 12.27±0.02 9.79±0.01
T5 Small 14.66±0.33 14.40±0.01 10.11±0.01 15.75±0.31 10.99±0.01 8.72±0.08
DIAL-BART0 29.72±0.36 22.70±0.01 20.53±0.01 34.09±0.30 26.3±0.02 23.29±0.01
FLAN-T5 34.06±0.55 34.63±0.01 36.67±0.02 39.84±0.53 36.98±0.03 40.82±0.06
LLAMA-2 47.1±0.17 35.16±0.01 33.19±0.09 54.53±0.48 33.59±0.03 31.69±0.02

Table 11: Results on TweetSum using ROUGE-L

Model Utterance Perturbations Dialogue Perturbations
Consistency Saliency Faithfulness Consistency Saliency Faithfulness

BART Large 19.18±0.35 6.66±0.01 3.37±0.01 20.85±0.60 7.70±0.02 2.11±0.01
BART Base 19.35±0.41 6.67±0.01 4.23±0.02 21.08±0.47 5.34±0.02 3.07±0.01
Pegasus 19.67±0.50 8.33±0.02 3.75±0.01 21.70±0.53 7.43±0.03 3.67±0.03
T5 Base 19.20±0.50 7.81±0.03 3.87±0.03 21.40±0.58 7.76±0.04 3.44±0.01
T5 Small 20.77±0.55 8.44±0.06 3.69±0.01 21.17±0.63 5.93±0.01 2.38±0.04
DIAL-BART0 43.05±0.52 12.8±0.03 4.55±0.01 51.75±0.47 16.05±0.02 6.32±0.03
FLAN-T5 39.54±0.64 14.96±0.00 5.95±0.01 45.93±0.65 15.35±0.04 7.72±0.02
LLAMA-2 45.05±0.44 20.51±0.04 18.06±0.02 56.32±0.43 20.58±0.11 12.79±0.06

Table 12: Results on TweetSum using SummaC

Dimension Repetitions Time Delays Greetings Conclusion Split Utterances Combine Utterances
Consistency 31.03±0.52 25.73 ±0.77 36.89±1.07 18.17±0.95 13.34±0.75 8.7±0.62
Saliency 12.16±0.66 9.64±0.97 16.72±2.36 5.62±0.73 11.63±1.05 6.62±0.77
Faithfulness 10.17±0.45 7.54±0.58 10.84±0.93 5.3±0.69 8.96±0.6 5.33±0.49

Table 13: Impact of Dialouge Perturbations on TweetSum using ROUGE-L
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