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Abstract

This paper introduces Robust Spin (R-Spin), a
data-efficient domain-specific self-supervision
method for speaker and noise-invariant speech
representations by learning discrete acoustic
units with speaker-invariant clustering (Spin).
R-Spin resolves Spin’s issues and enhances
content representations by learning to predict
acoustic pieces. R-Spin offers a 12X reduction
in computational resources compared to previ-
ous state-of-the-art methods while outperform-
ing them in severely distorted speech scenarios.
This paper provides detailed analyses to show
how discrete units contribute to speech encoder
training and improving robustness in diverse
acoustic environments.

1 Introduction

Self-supervised learning (SSL) for encoder pre-
training has emerged as a foundational element in
speech processing, outperforming conventional ap-
proaches across various applications (Mohamed
et al., 2022; Liu et al., 2022). Given the substantial
cost associated with human annotation of speech
data, SSL methods leverage unlabeled audio data
to pre-train encoders, generating good representa-
tions for downstream tasks like automatic speech
recognition (ASR) and speaker identification (Yang
et al., 2021; Tsai et al., 2022). The application
of SSL models has notably concentrated on ASR,
aiming to mitigate the dependence on large tran-
scribed corpora (Hsu et al., 2021a; Baevski et al.,
2022; Liu et al., 2023). Thus, extracting con-
tent representations has become a crucial aspect
of speech SSL research (Tjandra et al., 2021; Chan
and Ghosh, 2022; Peyser et al., 2022; Williams,
2022). Prior studies have devised objective func-
tions to disentangle content from speech, foster-
ing the ability of SSL models to generate speaker-
invariant representations through domain-specific
self-supervision (DS). In DS, a pre-trained SSL
model is fine-tuned with unlabeled data for spe-

cific applications. Qian et al. (2022) propose Con-
tentVec by disentangling speaker and content infor-
mation, demonstrating promising results. However,
ContentVec suffers from the requirement of a voice
conversion model and substantial computational
costs exceeding 600 GPU hours. Alternatively,
Chang et al. (2023) propose Speaker-invariant Clus-
tering (Spin) to produce content representations
with minimal fine-tuning resources. Nonetheless,
Spin is constrained to fine-tuning only the top lay-
ers, thereby lacking the flexibility to adapt to di-
verse acoustic domains.

Parallel to modeling content information in
speech, numerous studies are dedicated to investi-
gating the robustness of speech SSL. While current
methods perform well on clean speech datasets,
they are vulnerable to out-of-domain data like dis-
torted audio signals (Hsu et al., 2021b). To miti-
gate this vulnerability, researchers have proposed
noise-invariant training techniques. Huang et al.
(2022a) proposes HuBERT-MGR via domain ad-
versarial training to render the fine-tuned HuBERT
model (Hsu et al., 2021a) invariant to domain shifts.
WavLM (Chen et al., 2022) integrates denoising
with the HuBERT pre-training framework, achiev-
ing state-of-the-art performance in many speech
processing downstream tasks. Similarly, Zhu et al.
(2023) propose Robust data2vec, introducing per-
turbations to the input to predict the exponential
moving average teacher model’s representations.
In deHuBERT (Ng et al., 2023), the Barlow Twins
loss (Zbontar et al., 2021) is applied to encour-
age representation invariability to input perturba-
tions. Although many methods have shown success
in noisy speech recognition (Wang et al., 2022;
Zhu et al., 2022; Huang et al., 2022b; Hu et al.,
2023), to our knowledge, none have concurrently
addressed the disentanglement of speaker and noise
while enhancing content information. Furthermore,
these approaches exhibit inefficiency, often requir-
ing high computation costs and iterating large cor-
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Figure 1: The proposed R-Spin domain-specific self-supervision framework. The input utterance is perturbed into
a different voice and distorted with random noise. Both the original and perturbed views are fed into an encoder
initialized with an SSL pre-trained model. The model is optimized with Speaker-invariant Clustering (Spin) (Chang
et al., 2023) objective (LSpin) and frame-wise pseudo-label prediction loss (LAux).

pora over numerous epochs.
To effectively acquire high-quality content and

robust representations for real-world applications,
this paper extends Spin with noise-invariant train-
ing and acoustic piece pseudo-label learning,
coined Robust Spin (R-Spin). During training, two
utterances of the same content with different distor-
tions are fed into a speech SSL encoder. The out-
puts are frame-wise vector-quantized with a learn-
able codebook via online clustering, as in Spin.
The model is trained to match cluster ID distribu-
tions between the utterances. To prevent codebook
collapse, an additional pseudo-label prediction loss
is introduced. The pseudo-labels are generated by
learning acoustic pieces (Ren et al., 2022) on top
of the discrete units produced by a pre-trained Spin
model, offering better training targets that closely
align with phonemes and characters. Within this
framework, the speech encoder learns speaker and
noise-invariant representations, benefiting robust-
ness and content extraction simultaneously. The
contributions are summarized as follows:

1. We integrate predicting acoustic pieces into
Spin, enabling fine-tuning all parameters with-
out collapsing, which allows the processing
of more complex speech recordings.

2. R-Spin inherits the benefit of low training
costs from Spin, requiring 12X less computa-
tion than prior art.

3. With noise-invariant training, R-Spin out-
performs other DS approaches in distorted
speech and phoneme recognition tasks like
the CHiME-4 challenge (Vincent et al., 2017).

4. We inspect the hidden representations of
speech SSL models to quantify the speaker

and noise invariability.
5. We offer in-depth analyses of discrete acous-

tic units to understand how these units help
speech encoder training.

2 Method

2.1 Overview
The proposed R-Spin framework is shown in Fig. 1.
R-Spin is based on Speaker-invariant Cluster-
ing (Spin) (Chang et al., 2023), a domain-specific
self-supervision method with online clustering and
swapped prediction for capturing content represen-
tations (Sec. 2.2). We introduce noise-invariant
training by perturbing inputs to improve robust-
ness (Sec. 2.3). Moreover, an auxiliary pseudo-
label prediction loss enables fine-tuning the en-
tire model without collapsing (Sec. 2.4). Acoustic
Piece is incorporated with the auxiliary loss to im-
prove performance further (Sec. 2.5).

2.2 Speaker-invariant Clustering
Spin is an efficient DS method for improving con-
tent representations inspired by Swapping Assign-
ments between Views (SwAV) (Caron et al., 2020).
We briefly introduce Spin and suggest readers refer
to the original paper for further details.

For each utterance in a mini-batch, the F0 fre-
quency and the relative ratio between formant fre-
quencies are randomly perturbed to mimic the same
sentence spoken by a different speaker (Choi et al.,
2021; Qian et al., 2022). The original and perturbed
views are fed into a transformer encoder (Vaswani
et al., 2017) initialized with an SSL model like
HuBERT (Hsu et al., 2021a). The output rep-
resentations H = [h1 . . .hB]

T of the original
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view are linearly projected and L2-normalized to
Z = [z1 . . . zB]

T, where B is the number of frames
in a batch. We then use the representations to com-
pute a probability distribution over a learnable code-
book as p (·|zb). We perform the same operations
to the perturbed utterance, resulting in another dis-
tribution q (·|z̃b), where ·̃ denotes features from the
speaker-perturbed view. Next, q is smoothed by
solving an optimal transport problem to enforce
full codebook usage. Finally, the model is trained
to perform swapped predictions between views by
minimizing the cross-entropy loss

LSpin =− 1

2B

∑

b∈[B]

∑

k∈[K]

q (k|z̃b) log p (k|zb)

− 1

2B

∑

b∈[B]

∑

k∈[K]

q (k|zb) log p (k|z̃b) ,

(1)
where K is the size of the learnable codebook, and
the second term emerges from the interchangeabil-
ity of the role of the perturbed and original speech.1

Under this DS framework, the fine-tuned model
produces speaker-invariant representations, mak-
ing the content of speech signals more accessible
to downstream applications.

2.3 Noise-invariant Training
To improve the robustness of SSL models, we in-
troduce noise-invariant training by including audio
distortions to both views of the input. We anticipate
the model will be able to concurrently eliminate
noise and speaker-related information, thereby en-
abling the trained model to generate robust content
representations.

2.4 Auxiliary Pseudo-label Prediction Loss
As noted by Chang et al. (2023), Spin is constrained
to fine-tuning solely the top layers of pre-trained
SSL encoders. Otherwise, the model converges to-
wards a trivial solution, yielding outputs irrelevant
to the corresponding inputs. This limitation may
not be problematic when the application domain
closely aligns with the pre-training data. However,
given that the bottom layers are associated with
low-level signal processing like denoising (Chang
et al., 2021; Gong et al., 2023), subjecting these lay-
ers to fine-tuning is imperative. This adjustment is
particularly beneficial in enhancing the model’s ro-
bustness to out-of-domain data. Consequently, we
propose a pseudo-label prediction loss to prevent
models from collapsing.

1[N ] = {1, 2, . . . , N} for any positive integer N .

The pseudo-label prediction is a frame-wise clas-
sification problem with a loss function of

LAux =− 1

2B

∑

b∈[B]

log p (yb|hb)

− 1

2B

∑

b∈[B]

log p
(
yb

∣∣∣h̃b

)
,

(2)

where yb is the pseudo-label at frame b. The prob-
ability distributions are computed by projecting h
with a fully connected layer followed by a softmax.
The choice of pseudo-labels is flexible, including K-
means clusters of acoustic features and codewords
produced by Spin. With this loss, the fine-tuned
models are expected to preserve content even when
all layers are fine-tuned. Combining Eqs. 1 and 2,
the overall loss function is

L = LSpin + λLAux, (3)

where λ > 0 is a hyper-parameter. LAux has learn-
ing targets independent of the model, regularizing
and stabilizing the training process. Meanwhile,
LSpin optimizes on varying labels from a dynam-
ically changing codebook, offering flexibility to
improve upon the pseudo-labels in LAux. There-
fore, the combined loss function is expected to
enhance pre-trained speech SSL encoders and miti-
gate Spin’s limitations.

2.5 Acoustic Piece

This section introduces acoustic pieces (Ren et al.,
2022) to LAux to further improve R-Spin. APs are
learned by applying byte-pair encoding (BPE) (Sen-
nrich et al., 2016) to discrete acoustic units like
K-means clusters of HuBERT representations. AP
captures high-level units close to phonemes and
characters, useful for pre-training (Wu et al., 2023)
and generation (Shen et al., 2024). Hence, we pro-
pose to set AP as the target of LAux to extract better
content representations.

Following Ren et al. (2022), we first merge iden-
tical consecutive units in time for each utterance.
The BPE algorithm is then applied to the reduced
sequences to learn acoustic pieces. Next, we en-
code the entire training corpus into APs and du-
plicate the encoded units to the original utterance
length. The encoded corpus is then used as the
pseudo-labels for Eq. 2, expecting to encourage the
fine-tuned SSL model to encode better phoneme
and character representations.
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3 Experiments

3.1 Data

The 960 hours of unlabeled English speech in Lib-
riSpeech is used for R-Spin training (Panayotov
et al., 2015).2 Audio distortions are generated
with torch-audiomentations.3 Following Zhu et al.
(2023), background noises are sampled from MU-
SAN (Snyder et al., 2015) and CHiME-4 (Vincent
et al., 2017), covering music, speech, and outdoor
noise.4 Signal-to-noise ratios (SNR) are uniformly
sampled from [−10, 10] during training. We add
distortions to each utterance during evaluation, in-
cluding Gaussian noise, MUSAN noise, and rever-
beration (Appendix A.5).

3.2 Implementation

The DS experiments are mostly based on
WavLM (Chen et al., 2022) because WavLM is pre-
trained with a denoising objective, offering a good
initialization. HuBERT (Hsu et al., 2021a) is also
considered to demonstrate R-Spin’s generalizabil-
ity to SSL models trained with clean speech. We
follow the implementations by Chang et al. (2023),
which uses PyTorch (Paszke et al., 2019), PyTorch-
Lightning (Falcon, 2019), and torchaudio (Yang
et al., 2022).5 The acoustic pieces are generated
by learning BPE tokens on top of a HuBERT +
Spin2048 model (Appendix A.2). Further details
can be found in Appendix A.3.6

3.3 Notations

We denote an SSL model X fine-tuned with Spin
and K codewords with X + SpinK . In X + R-
SpinK1,K2 , K1 and K2 are respectively the code-
book size of LSpin and the number of classes of
pseudo-labels for LAux. If the pseudo-labels are
acoustic pieces, “AP” is added to K2. Unless spec-
ified otherwise, R-Spin denotes R-Spin32, AP40k.

3.4 Noisy Phoneme Recognition

We compare the phoneme recognition performance
of SSL and DS methods under noisy conditions.
The training setup is similar to the SUPERB
phoneme recognition task (Yang et al., 2021),
where the SSL models are frozen and only a

2Released under CC BY 4.0
3https://github.com/asteroid-team/torch-audiomentations
4MUSAN: CC BY 4.0 / CHiME-4: CC BY-NC-SA 2.0
5https://github.com/vectominist/spin
6We employ GitHub Copilot for implementation assistance

and ChatGPT for writing refinement.
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Figure 2: Phoneme error rates (PER) under different
noise types and SNRs. R-Spin32, AP40k is used here.

lightweight prediction head is fine-tuned (Ap-
pendix A.5).7 We apply some classes of dis-
tortions only to testing data to obtain phoneme
error rates (PER). We divide results by budget,
which is the amount of speech processed during
DS, proportional to the computational resources
required (Sec. 3.6).

As shown in the middle columns of Table 1, R-
Spin outperforms low and high-budget methods
in all conditions. WavLM + R-Spin has the best
overall PERs because WavLM is pre-trained with
a denoising task, showing that model initialization
contributes largely to the recognition performance
after DS. Next, R-Spin improves unseen tasks like
Gaussian noise and reverberation, indicating that
noise-invariant training generalizes to some out-
of-domain perturbations. Furthermore, comparing
Robust data2vec with R-Spin is unfair since the
training costs are 12 times apart, so we train a low-
budget Robust data2vec (Appendix A.4). The no-
ticeable performance drop in the low-budget model
implies Robust data2vec requires high computa-
tion resources, but our approach offers competitive
results with fewer training data.8

We plot PERs under different SNRs in Fig. 2 for
a detailed comparison. Overall, R-Spin achieves
the lowest PERs even when the SNR is high.

7https://github.com/s3prl/s3prl
8The low-budget version reduces the number of GPUs to

match the amount of training data processed with R-Spin, but
the hyperparameters are difficult to tune, leading to signifi-
cantly degraded performance.
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Processed
Speech
(hours)

LibriSpeech test-other
Phoneme Recognition (PER↓)

CHiME-4
ASR (WER↓)

Method Clean Gaussian† MUSAN Reverb† Real Sim

No DS Baselines
HuBERT (Hsu et al., 2021a) 0 10.7 74.5 50.2 23.2 72.7 63.1
WavLM (Chen et al., 2022) 0 10.3 59.9 45.1 19.4 52.4 46.4

DS Baselines
HuBERT + Spin2048 (Chang et al., 2023) 0.4k 8.4 70.8 47.8 18.4 71.3 62.0
WavLM + Spin2048 (Chang et al., 2023) 0.4k 8.2 59.2 41.2 16.7 52.1 46.6
Robust data2vec (Low-budget) 10.4k 38.8 68.2 52.9 53.7 80.9 78.2

Proposed
HuBERT + R-Spin32, AP40k 8.2k 8.3 36.4 18.2 16.3 34.3 34.1
WavLM + R-Spin32, AP40k 8.2k 8.2 33.7 16.7 14.9 26.4 26.6

High-budget DS Toplines
ContentVec500 (Qian et al., 2022) 76k 8.7 71.4 47.2 16.8 61.4 55.1
HuBERT-MGR (Huang et al., 2022a) 78k 9.5 37.1 36.3 18.3 49.7 44.3
Robust data2vec (Zhu et al., 2023) 105k 6.5 56.7 27.7 19.2 17.5 20.1

Supervised Toplines
Whisper Base (Radford et al., 2022) – – – – – 17.9 23.3
Whisper Small (Radford et al., 2022) – – – – – 10.8 14.3

†Unseen perturbation types for R-Spin and Robust data2vec.

Table 1: Phoneme recognition on LibriSpeech and ASR on CHiME-4 test sets. Gaussian noise, MUSAN background
noise, and reverberation (Reverb) are respectively added to simulate noisy conditions, where the SNRs are fixed to
0dB. The calculation of the number of hours of processed speech during DS follows Chang et al. (2023).

HuBERT-MGR excels in Gaussian noise because
it is the only model trained with this noise type.
Nevertheless, R-Spin offers a similar performance
in Gaussian noise across different SNRs, aligning
with the results in Table 1.

3.5 Noisy Speech Recognition

This section assesses R-Spin with a noisy ASR
task. We adopt the SUPERB ASR setup with the
CHiME-4 corpus (Vincent et al., 2017) to eval-
uate the models in more realistic noisy record-
ings (Appendix A.6). The results in the right
columns of Table 1 reveal that R-Spin surpasses
low-budget baseline models. While R-Spin demon-
strates commendable performance on CHiME-
4, this method falls short compared to Robust
data2vec, which benefits from training with a sub-
stantially higher budget. Furthermore, we set Whis-
per Base and Small as toplines due to their ro-
bustness demonstrated through large-scale weakly-
supervised learning (Radford et al., 2022). R-
Spin successfully mitigates the performance gap
between WavLM and the Whisper toplines by over
60%. Combining phoneme and speech recognition
findings, we conclude that R-Spin effectively en-
hances pre-trained SSL models in capturing robust
content representations.

3.6 Data Efficiency

Developing R-Spin aims to enhance speech SSL
models with minimal resources, including improv-
ing data efficiency. Following Chang et al. (2023),
an analysis of the duration of speech data processed
during training is undertaken to quantify the compu-
tational expenses associated with each method. As
depicted in the second column of Table 1, these val-
ues are derived by multiplying the number of train-
ing updates and the effective batch size for each up-
date. Compared with the high-budget methods, R-
Spin requires significantly lower training costs, con-
currently exhibiting superior performance across
diverse conditions. A complete comparison of the
costs can be found in Appendix C.

3.7 Representation Invariability

This section explores the robustness of models re-
garding representation invariability by examining
their characteristics under diverse perturbations.

3.7.1 Speaker Invariability
We first inspect each model’s invariability to
speaker changes by computing the speaker identifi-
cation (SID) accuracy with different hidden layer
representations. The SID task follows SUPERB’s
setup but with 50k training updates. As shown
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CNN (Layer 0)
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Best Layer (9)
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Figure 3: t-SNE (Van der Maaten and Hinton, 2008) visualization of the CNN and the layer with the lowest speaker
identification rate given the same clean utterance spoken by three speakers from TIMIT (Garofolo, 1993). Each color
represents a speaker, while each label visualizes a frame and the corresponding phoneme label. The transcription is
“Don’t ask me to carry an oily rag like that.” The silence frames are omitted for clarity.
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Figure 4: Layer-wise perturbation invariability analyses with Linear CKA, where higher values indicate higher
invariability to perturbations. The zeroth layer denotes the CNN feature extractor.
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Figure 5: Layer-wise speaker identification accuracy.

in Fig. 5, R-Spin has a significantly lower SID
accuracy for the top layers, demonstrating the ef-
fect of fine-tuning the whole model with a speaker-
invariant objective. Moreover, requiring 9X less
training costs, our method produces representations
with less speaker information than ContentVec.
Therefore, the proposed method outperforms prior
speaker-invariant self-supervision approaches in
removing speaker ID.

Next, we use t-SNE (Van der Maaten and Hinton,
2008) to visualize representations articulated by
distinct speakers. We show the layer with the low-
est SID rate according to Fig. 5. In Figs. 3a and 3b,
there is a discernible clustering of frames uttered by
the same speaker, suggesting that lower layers re-

tain more speaker-specific information. Conversely,
Figs. 3c and 3d illustrate that top layer features are
grouped according to phonemes rather than speak-
ers. Moreover, the top layer representations are
context-dependent, as exemplified by the spatial
arrangement of phonemes such as “carry” (k eh
r iy) and the same phoneme /iy/ in the word
"oily" (oy l iy). Besides, a comparative anal-
ysis between Figs. 3c and 3d reveals that R-Spin
features exhibit a more prominent overlap among
speakers than HuBERT. As a result, this section
substantiates the speaker-invariability of R-Spin.
Detailed visualization can be found in Appendix D.

3.7.2 Noise Invariability

We examine the response of continuous represen-
tations to input distortions. We compute linear
centered kernel alignment (CKA) similarities (Ko-
rnblith et al., 2019) of frame-wise features with
and without noisy inputs, where a higher similarity
indicates a higher invariability to distortions. The
evaluation involves building datasets derived from
the LibriSpeech dev-clean and dev-other sets aug-
mented with various distortions. Fig. 4 illustrates
that R-Spin exhibits superior noise invariability for
the upper layers than other models, indicating the
efficacy of noise-invariant training even if the noise
types are unseen. Lower layers tend to have lower
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Figure 6: WavLM + R-Spin with different (a) codebook and (b)(c) AP vocabulary sizes. (b) and (c) depict the
phoneme and character segmentation R-values, where the dotted curves are the baselines by segmenting each
utterance with equal-length segments given the number of boundaries obtained by the APs. The PERs are calculated
by averaging over different noise conditions on LibriSpeech test-other. The WERs are the averaged scores of the
real and simulated evaluation sets of CHiME-4.
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Figure 7: t-SNE visualization of hidden representations
of the same utterance in Fig. 3 with different distortions
indicated by colors, where SNR = 0dB.

similarities, suggesting a higher sensitivity to per-
turbations. This observation aligns with existing re-
search discussed in Sec. 2.4, which associates lower
layers with fundamental signal processing func-
tions. In contrast, Robust data2vec has a greater
noise invariability starting from the bottom layers
because of the data2vec training strategy.

We employ t-SNE to explore representations un-
der distortions. As shown in Fig. 7, the R-Spin
features exhibit a more pronounced overlap than
HuBERT, suggesting that R-Spin improves robust-
ness to noise, aligning with the observations in
Fig. 4. Fig. 7b reveals that R-Spin features exposed
to MUSAN noise exhibit a high degree of over-
lap with unperturbed ones, whereas the other two
perturbation types diverge slightly because Gaus-
sian noise and reverberation are unseen for R-Spin.
Overall, the analysis underscores the notable noise
invariability offered by R-Spin.

3.8 Importance of Discrete Units

This section analyzes the efficacy of APs and their
relation to phonemes and characters.

3.8.1 Codebook and Acoustic Pieces Size
We inspect the importance of the codebook size in
Spin. As highlighted by Chang et al. (2023), the
codebook size positively correlates with phoneme
recognition. A similar trend can be found in Fig. 6a
but has an inverted trend for ASR. However, the
observed performance discrepancy is less than 1%
absolute, suggesting that codebook size’s impact
on R-Spin is marginal. In contrast, substantial im-
provements in ASR are observed with more APs,
but not in phoneme recognition, as evidenced by
Figs. 6c and 6b. To analyze this phenomenon, we
investigate R-Spin’s phoneme and character seg-
mentation capabilities using discrete units.

3.8.2 Phoneme and Character Segmentation
We segment speech with acoustic pieces and show
the R-values in Figs. 6b and 6c. R-value, a met-
ric for evaluating word or phoneme segmentation
quality (Räsänen et al., 2009), is robust to over-
segmentation, an issue that plagues F1. The bound-
aries are predicted by locating differing adjacent
discrete units. We evaluate on force-aligned Lib-
riSpeech dev-clean and dev-other sets (Lugosch
et al., 2019; McAuliffe et al., 2017).9 The charac-
ter boundaries are obtained by dividing each force-
aligned word segment into equal-length segments
corresponding to individual characters within the
word. More accurate boundaries can be computed
with character-based aligners, but we only need a
rough estimation of the segmentation quality.

As depicted in both Figs. 6b and 6c, larger AP vo-
cabulary sizes have superior segmentation, indicat-
ing that more APs form units that closely resemble
linguistic units. The baseline, which involves uni-
formly segmenting utterances based on the number

9https://zenodo.org/record/2619474 (CC-BY 4.0)
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Figure 8: An example of phoneme alignment of an utterance “This had some effect in calming him.” from
LibriSpeech dev-clean. The black lines indicate the force-aligned boundaries, while the red dashed lines are the
predicted boundaries with AP40k.

CHiME-4
Method Real Sim

Spin2048 (Chang et al., 2023) 52.1 46.6
R-Spin32, AP40k (Proposed) 26.4 26.6
no LAux 47.8 45.6
no LSpin 31.9 32.4
no speaker perturbation 28.3 28.0
no additive noise 49.4 46.8

Pseudo Label for LAux
Spin2048 codebook♠ 28.3 29.1
MFCC (K-means 512) 46.9 45.4
MFCC (K-means 2048) 48.5 45.5
HuBERT L9 (K-means 512)♠ 28.8 29.1
HuBERT L9 (K-means 2048)♠ 28.2 28.4

♠Pairwise t-tests between these results all have p > 0.05.

Also, p < 0.05 when they are compared with R-Spin32, AP40k.

Table 2: CHiME-4 ASR results for ablation studies
based on fine-tuned WavLM models.

of boundaries derived from APs, underscores the
non-random nature of AP boundaries. Although
the segmentation capability of APs is incompara-
ble with other unsupervised speech segmentation
algorithms (Kreuk et al., 2020), they present sig-
nificantly improved targets for LAux, consequently
enhancing the accuracy of ASR. A full compari-
son of unsupervised phoneme segmentation can be
found in Appendix B.3.

Furthermore, we provide an example of segment-
ing an utterance with 40k APs in Fig. 8. The red
dashed stripes depict that the boundaries of APs
are mostly aligned with phoneme boundaries. No-
tably, the predicted boundaries occasionally exhibit
a slight temporal lag compared to the ground truth,
like the first /ah/ and /m/. We suspect the 50Hz
framerate of HuBERT or the Spin training objective
causes this phenomenon since they could reduce
time resolution and introduce temporal shifts. Still,
the actual cause remains a subject for future inves-
tigation. To summarize, APs effectively learn dis-
crete acoustic units that benefit ASR performance.

3.9 Ablation Studies
Under the same CHiME-4 ASR setup in Sec. 3.5,
we conduct ablation studies to analyze the pro-

posed methods. As shown in Table 2, the WERs
increase significantly without LAux), showing that
the auxiliary loss helps ASR performance and miti-
gates collapsing. Second, WERs increase by about
5% without LSpin, indicating the necessity of this
loss for achieving perturbation-invariant represen-
tations. Speaker perturbation also plays an im-
portant role in offering good content representa-
tions according to the degraded WERs. Moreover,
the fine-tuned model exhibited suboptimal perfor-
mance when trained without noise, emphasizing
the importance of noise-invariant training for im-
proving robustness. The above findings verify the
necessity of the proposed approaches.

We inspect the effect of choosing different
pseudo-labels for LAux. First, APs are helpful
for R-Spin since learning from the original Spin
model’s codeword labels increases WERs by over
2%. Next, we replace the pseudo-labels with the
more commonly used K-means clustered represen-
tations (Hsu et al., 2021a). Clustered MFCC fea-
tures degrade R-Spin the most, no matter the num-
ber of clusters used. In contrast, clustered HuBERT
representations from layer 9 (L9) yield results com-
parable to Spin2048, and the t-test suggests the dis-
parities between pseudo-labels are statistically in-
significant. Thus, using clustered features from
an SSL model is a viable alternative. Additional
ablation studies are available in Appendix B.1.

4 Conclusion

This paper proposes R-Spin, a domain-specific
self-supervision method with speaker and noise-
invariant clustering for robust content representa-
tions. Results illustrate the efficacy and broad ap-
plicability of R-Spin across various acoustic scenar-
ios, even within constrained computation budgets.
The acoustic analyses presented in this study offer
insights into the characteristics of discrete units
of this nature and strategies for their utilization.
Future directions involve scaling to larger models
and exploring its application in diverse downstream
tasks like robust voice conversion.

649



Acknowledgements

We thank Alexander H. Liu, Saurabhchand Bhati,
Nauman Dawalatabad, and Yuan Gong for their
insightful feedback.

Limitations

This paper faces four primary limitations due to
constrained computation resources and available
data. First, we consider background noises includ-
ing human speech, music, and natural noises, and
evaluate the proposed methods with similar noise
types and reverberation, covering many real-world
conditions. However, the trained models may en-
counter challenges in processing more severely dis-
torted audio data, such as air traffic control commu-
nications. Second, the dataset employed consists
of English utterances spoken by native speakers,
predominantly of North American dialects, leaving
the performance in other languages and accents
unexplored. Third, the experiments are conducted
on 95M-parameter models, so the scalability of R-
Spin remains unknown. Last, to fully comprehend
the capabilities of the proposed method, further
analyses and extensions to other applications are
recommended for future exploration (Sicherman
and Adi, 2023). These questions can be answered
by experimenting with diverse datasets and more
computation resources.

Ethics Statement

Our models inherit the biases of SSL models (Hu-
BERT and WavLM) pre-trained on the LibriSpeech
corpus. This corpus contains read English au-
dio recordings derived from audiobooks. Limita-
tions arise when confronted with accents and topic
domains outside the corpus scope, potentially di-
minishing the effectiveness of the proposed meth-
ods. Thus, the direct application of our models
to real-world scenarios may result in increased
speech recognition error rates. These errors, if
unaddressed, can propagate through downstream
applications like natural language processing sys-
tems, leading to potential risks for users, such as
the misinterpretation of voice commands.
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A Implementation Details

A.1 Speech SSL Models

Each SSL model used in this paper has a 7-layer
CNN feature extractor and a 12-layer transformer
encoder (Vaswani et al., 2017), having roughly
95M parameters in total. All SSL models are pre-
trained with 960 hours of unlabeled speech in the
LibriSpeech corpus. HuBERT (Hsu et al., 2021a)
is pre-trained in two iterations. In the first iter-
ation, the encoder model learns to predict each
masked frame’s K-means cluster ID of MFCC fea-
tures. The second iteration model has learning tar-
gets obtained by clustering hidden representations
of the first iteration model. WavLM (Chen et al.,
2022) follows the second iteration of HuBERT, but
the training process involves a denoising task by
adding random noises to the input to increase ro-
bustness. ContentVec (Qian et al., 2022) is fine-
tuned on top of a pre-trained HuBERT model, but
the inputs are augmented with speaker perturbation
so that the model learns to produce representations
invariant of the speaker. ContentVec’s learning
targets are obtained by converting all LibriSpeech
data into the same speaker with a voice conversion
model and then applying K-means clustering to the
hidden features of HuBERT, given the converted
inputs. HuBERT-MGR (Huang et al., 2022a) con-
tinues the HuBERT pre-training process with noisy
speech and an auxiliary domain adversarial training
objective to enhance robustness. HuBERT-MGR
is trained with a mix of clean and distorted speech,
where the distortions include MUSAN background
noise, Gaussian noise, and reverberation. Robust
data2vec (Zhu et al., 2023) fine-tunes a pre-trained
data2vec model. Unlike data2vec, the inputs to the
student model include background noise so that the
model learns denoising. An additional contrastive
learning objective is incorporated to enhance ro-
bustness. The pre-trained model weights are ob-
tained from the s3prl toolkit.10

A.2 Spin

Since R-Spin is trained with 960 hours of speech in
LibriSpeech, the pseudo-labels for LAux should be
generated for all those data with Spin. To avoid la-
beling unseen data with Spin, we train another Hu-
BERT + Spin2048 model with the same data (origi-
nally 100 hours in Chang et al., 2023). Each mini-
batch before data perturbation has 2560 seconds

10https://github.com/s3prl/s3prl/tree/main/s3prl/upstream

of speech, equivalent to 32k frames after down-
sampling. The learning rate first linearly increases
from 10−6 to 10−4 in the first 2.5k updates, then
linearly decreases to 10−6 in the last 7.5k updates.
The implementation of the Spin loss follows Caron
et al. (2020).11 This model takes four hours of
training time on four RTX A6000 GPUs. Models
trained with all 10k updates are used to generate
pseudo-labels. In total, roughly 7.1k hours of unla-
beled speech data are processed. Compared with
the model in Chang et al. (2023), a similar perfor-
mance is achieved on phoneme recognition.

A.3 R-Spin

Each mini-batch before perturbation has 384 sec-
onds of speech, equivalent to 19.2k frames in each
view. Each utterance is first speaker-perturbed to
generate a second view. All utterances are added
with noise from MUSAN and CHiME-4 with an
SNR in [−10, 10] dB. The noise for each view is in-
dependent. The learning rate first linearly increases
from 10−6 to 10−4 in the first 4k updates, then lin-
early decreases to 10−6 in the last 6k updates. λ
in Eq. 3 is set to 5. Each R-Spin DS training takes
less than eight hours on two RTX A6000 GPUs.
Models trained with all 10k updates are used for
evaluation. For the R-Spin training, 1.1k hours of
unlabeled speech data are processed. Combined
with the Spin training in Appendix A.2, 8.2k hours
of data are used during DS.

A.4 Low-budget Robust data2vec

We follow the implementation of Zhu et al. (2023)
with fairseq (Ott et al., 2019).12 We changed the
training data from CHiME-4 to LibriSpeech for
a fair comparison with our method. Because we
found a long training schedule is necessary for Ro-
bust data2vec converge, the number of updates is
the same as the original implementation (100k).
Meanwhile, the mini-batch size is reduced from
63 to 6.25 minutes so that the amount of speech
data processed is similar to R-Spin. The rest of the
hyperparameters remain the same since we found
the original ones are sufficiently good. As shown in
Table 1, the low-budget Robust data2vec model has
a significant performance degradation compared
with the fully-trained version, implying the neces-
sity to train this model with a large batch size. Con-
currently, R-Spin achieves superior results under

11https://github.com/facebookresearch/swav
12https://github.com/zqs01/data2vecnoisy
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the same budget, indicating that our approach is
more data-efficient.

We found that the low-budget Robust data2vec
is particularly difficult to train. First, Hsu et al.
(2021a) has shown that large batch sizes favor
speech SSL model training, which applies to Ro-
bust data2vec. Second, we found that the low-
budget model fails when trained with CHiME-4,
indicating the training corpus highly affects model
convergence. Third, we did not have the resources
to find the optimal hyperparameters. However, the
hyperparameters for data2vec must be carefully de-
termined to let the model converge (Baevski et al.,
2022), which is amplified when the training scale
is reduced. In conclusion, we were unable to find
a setup where a comparable computational bud-
get is used for both R-Spin and Robust data2vec.
Nonetheless, the results demonstrate that the pro-
posed R-Spin is much easier to operate under low-
budget scenarios.

A.5 Phoneme Recognition

We follow the setup in SUPERB (Yang et al., 2021),
which freezes each SSL model and uses a set of
learnable weights to weighted-sum hidden features
of all layers. The aggregated frame-wise features
are fed into a lightweight linear prediction head
to perform downstream tasks. Only the prediction
head and the weighted-sum mechanism are fine-
tuned with clean and labeled speech data to reveal
the capabilities of SSL models. The LibriSpeech
train-clean-100 and the test-other subsets are used
as the training and evaluation datasets, respectively.
The prediction head projects features to phoneme
labels. Unlike the SUPERB setup, the learning rate
is 5 × 10−4 (originally 10−2) to obtain a better
performance, and the number of training updates is
30k (originally 100k). The noise and perturbation
data sources are listed as follows.

1. Gaussian Noise: The Gaussian noises are
generated with PyTorch.

2. Background Noise: The background noises
are sampled from the MUSAN dataset. We
duplicate the noise recording when it is shorter
than the input. Otherwise, we randomly crop
the recording to match the utterance length.

3. Reverberation: We filter waveforms with real
and simulated impulse responses in RIRS (Ko
et al., 2017).13 The scores for the real and
simulated reverberation are averaged.

13Released under Apache 2.0
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Figure 9: AP size vs. actual vocabularies used.

A.6 CHiME-4 ASR
We follow the ASR task of SUPERB, but the
prediction heads (two-layer BLSTM) are trained
with the clean portion of the CHiME-4 speech
corpus obtained from the WSJ0 corpus (Paul and
Baker, 1992), consisting of 14 hours of clean En-
glish speech. The number of training updates is
100k (originally 200k). The trained ASR models
are evaluated on the 1-channel track of the CHiME-
4 challenge. We report the averaged WERs over
each subset (real and simulated data). We apply
Whisper normalization to all ASR results for a fair
comparison with the Whisper toplines.14

A.7 Acoustic Pieces
We implemented the BPE algorithm in Python. The
AP vocabulary sizes vs. the actual APs used are
shown in Fig. 9. Since some merging operations
in BPE replace previously learned BPE vocabular-
ies with new ones, the number of used BPEs in
the encoded LibriSpeech corpus is smaller than the
learned BPE vocabularies. E.g., we have a sentence
“a a b b a” and the learned BPE vocabularies
a, b, aa, bb, and aabb. Then, the encoded sen-
tence is “aabb a,” eliminating the intermediate
vocabularies b, aa, and bb. Thus, the number of
classes in the linear prediction head for LAux is
adjusted accordingly. E.g., the prediction head’s
output for R-Spin32, 40k is 19857 instead of 40000.

B Additional Experiments

B.1 Ablation Studies
B.1.1 Hyperparameters
To examine the impact of the auxiliary loss, we
change the value of λ in Eq. 3. As shown in Table 3,

14https://github.com/openai/whisper
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CHiME-4
Method Real Sim

Spin2048 (Chang et al., 2023) 52.1 46.6
R-Spin32, BPE40k 26.4 26.6

Hyperparameters
λ = 1 26.3 27.7
λ = 0.5 26.6 27.3

Layer to Apply LAux
Layer 11 28.1 28.8
Layer 10 34.7 33.8

Layer to Apply LSpin
Layer 11 27.2 27.9
Layer 10 27.0 27.8

Fine-tuned Layers
Top 10 Layers 29.7 30.0
Top 6 Layers 39.4 37.5

Dataset
LibriSpeech 100h 27.2 27.6
LibriSpeech 360h 26.6 27.6

Noise SNR Range
0 – 20dB 29.0 28.6

Table 3: CHiME-4 ASR results for additional ablation
studies based on fine-tuned WavLM models.

the differences of ASR WERs between different
λ’s are negligible. We can conclude that combining
LSpin and LAux is necessary, and the ratio between
the two objectives is robust.

B.1.2 Layer to Apply LAux

In the R-Spin design, LAux is applied to the last
layer. Here, we apply LAux to other hidden layers
to verify that our approach leads to the best over-
all result. When we move the auxiliary loss LAux
to lower layers, the performance degrades signifi-
cantly, showing that this loss should regularize the
entire model. Otherwise, the Spin loss still makes
the codebook collapse.

B.1.3 Layer to Apply LSpin

Similar to the previous experiments, we apply LSpin
to lower layers to find the optimal design. The
ASR performance degrades slightly when we move
the Spin objective function to lower layers. With
the results of LAux, we conclude that a relatively
good strategy for applying the two proposed loss
functions is adding both to the top layer.

B.1.4 Fine-tuned Layers

Here, we inspect the benefits of fine-tuning SSL
models entirely in contrast to Spin, which fine-
tunes only the top two layers. Hence, we reduce
the number of fine-tuned layers. The results indi-
cate that the model cannot adapt to noisy scenarios
by fine-tuning fewer top layers. Thus, R-Spin is
beneficial since we can now fine-tune the entire
model for noisy conditions.

B.1.5 Data

We further changed the data for R-Spin DS to re-
veal the impact of training corpora on performance.
We found that WERs degrade slightly when the
training corpus size is reduced. Moreover, the ASR
performance degrades prominently by increasing
the SNRs of the background noise for the noise-
invariant training. Hence, the choice of noise data
and SNRs has a greater impact on the downstream
performance than that of the clean speech corpus.

B.2 Importance of Hidden Representations

We visualize the weighted sum mechanism for
phoneme and speech recognition to understand
the importance of each layer. The weights form a
probability distribution over all layers (including
the CNN feature extractor). The features of each
layer are weighted and summed with these weights.
However, the scale of the embedding spaces differs
between layers. Suppose the weight of a layer is
small, but the norm of the corresponding hidden
vectors is large. That layer might contribute sig-
nificantly to the downstream task. Consequently,
we normalize each weight by multiplying with the
averaged L2 norm of the corresponding layer em-
bedding, which is written as

ŵl = wl · E
[∥∥∥h(l)

∥∥∥
2

]
,

where wl and h(l) are respectively the unnormal-
ized weight and hidden features of layer l, and E
is the expectation over all samples from the Lib-
riSpeech dev-clean and dev-other sets (Chang et al.,
2022). Next, the new set of weights ŵl is normal-
ized to sum to one. As shown in Fig. 10, the last
layer of R-Spin has the least speaker and noise in-
formation, but the second last layer offers the best
phoneme representations. In contrast, when R-Spin
is applied, the best ASR layers tend to shift towards
the last layer.
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0 1 2 3 4 5 6 7 8 9 10 11 12
layer

HuBERT

HuBERT + Spin

HuBERT + R-Spin

WavLM

WavLM + Spin

WavLM + R-Spin

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.13 0.36 0.40 0.01

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.13 0.23 0.43 0.14

0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.10 0.31 0.41 0.10

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.10 0.22 0.52 0.04

0.03 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.08 0.16 0.37 0.30

0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.03 0.08 0.22 0.45 0.15

(a) Phoneme Recognition

0 1 2 3 4 5 6 7 8 9 10 11 12
layer

HuBERT

HuBERT + Spin

HuBERT + R-Spin

WavLM

WavLM + Spin

WavLM + R-Spin

0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.08 0.20 0.26 0.33 0.04 0.01

0.06 0.01 0.01 0.01 0.01 0.01 0.02 0.08 0.18 0.24 0.30 0.06 0.02

0.05 0.01 0.01 0.01 0.01 0.01 0.02 0.09 0.19 0.21 0.18 0.04 0.16

0.02 0.01 0.01 0.02 0.01 0.02 0.05 0.04 0.08 0.20 0.34 0.18 0.04

0.17 0.02 0.03 0.03 0.03 0.03 0.04 0.05 0.07 0.12 0.16 0.13 0.12

0.10 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.07 0.12 0.22 0.10 0.27

(b) Automatic Speech Recognition

Figure 10: Normalized weights of the weighted sum mechanism in the SUPERB PR and ASR.

Method Precision↑ Recall↑ F1↑ OS→0 R-val↑
Baseline
Oracle Uniform 56.49 62.99 59.56 11.50 63.47

Unsupervised
CPC (Kreuk et al., 2020) 83.89 83.55 83.71 86.02
SCPC (Bhati et al., 2021) 84.63 86.04 85.33 87.44
HuBERT readout (Strgar and Harwath, 2022) 90.98 88.48 89.71 90.98

Spin Codebook
HuBERT + Spin128 (Chang et al., 2023) 64.76 87.87 74.56 35.69 64.25
HuBERT + Spin256 (Chang et al., 2023) 61.71 90.84 73.49 47.22 56.02
HuBERT + Spin512 (Chang et al., 2023) 60.78 95.46 74.27 57.07 49.60
HuBERT + Spin1024 (Chang et al., 2023) 59.93 97.95 74.36 63.44 45.11
HuBERT + Spin2048 (Chang et al., 2023) 58.58 99.46 73.73 69.77 40.26
HuBERT + Spin2048 (for AP) 61.31 96.87 75.09 58.00 49.34
HuBERT + R-Spin32, AP40k 64.73 71.47 67.93 10.41 71.05
WavLM + R-Spin16, AP40k 60.73 68.22 64.26 12.32 67.36
WavLM + R-Spin32, AP40k 65.12 73.76 69.17 13.28 71.33
WavLM + R-Spin64, AP40k 63.02 73.63 67.91 16.83 69.08
WavLM + R-Spin128, AP40k 61.44 72.42 66.48 17.88 67.49
WavLM + R-Spin256, AP40k 60.80 78.61 68.57 29.28 63.95
WavLM + R-Spin512, AP40k 59.66 82.94 69.40 39.01 58.89
WavLM + R-Spin1024, AP40k 59.03 89.09 71.01 50.94 52.09
WavLM + R-Spin2048, AP40k 58.47 94.19 72.15 61.08 45.67

Acoustic Pieces
HuBERT + Spin2048 AP5k 60.80 71.64 65.77 17.83 66.92
HuBERT + Spin2048 AP10k 61.37 68.51 64.74 11.64 67.97
HuBERT + Spin2048 AP20k 61.76 68.74 65.06 11.29 68.34
HuBERT + Spin2048 AP40k 62.10 68.54 65.16 10.37 68.65

Table 4: Unsupervised phoneme segmentation on TIMIT test set. OS and R-val respectively denote the over-
segmentation rate and R-value (Räsänen et al., 2009). Oracle uniform is a segmentation method that splits speech
into equal-length segments, given the ground truth number of phoneme boundaries. Unknown results are left blank.

B.3 Unsupervised Phoneme Segmentation

This section inspects the phoneme segmentation
capability of the proposed methods. As shown
in Table 4, segmenting speech with Spin code-
book or acoustic pieces is inferior to prior methods
specifically designed for phoneme segmentation
because no explicit constraints are added to encour-

age phoneme boundary detection. Still, some R-
Spin discrete units like R-Spin32, AP40k surpass the
oracle uniform baseline, indicating that the discrete
unit boundaries are close to phoneme boundaries.
The results align with the findings in Fig. 6b.
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Batch
Size

(minutes)

Processed
Speech
(hours)

GPU
Hours

Open
ModelModel Init Updates #GPUs

Self-supervised Pre-training (Clean Speech)
wav2vec 2.0 (Baevski et al., 2020) – 400k 96 640k 64 2458 !

HuBERT (Hsu et al., 2021a) – 250k + 400k 47 505k 32 1976 !

data2vec (Baevski et al., 2022) – 400k 63 420k 16 !

DinoSR (Liu et al., 2023) – 400k 63 420k 16 2880 !

Self-supervised Pre-training (Noisy Speech)
WavLM (Chen et al., 2022) – 250k + 400k 187 1439k 32 !

wav2vec-Switch (Wang et al., 2022) – 400k 96 640k 32 %

SPIRAL (Huang et al., 2022b) – 200k 100 333k 16 499 !

Domain-specific Self-supervision
ContentVec (Qian et al., 2022) HuBERT 100k 46 76k 36 684 !

HuBERT-MGR (Huang et al., 2022a) HuBERT 400k 12 78k 8 768 !

Robust data2vec (Zhu et al., 2023) data2vec 100k 63 105k 16 !

deHuBERT (Ng et al., 2023) HuBERT 250k %

Spin2048 (Chang et al., 2023) HuBERT 5k 43 0.4k 1 1 !

This Paper
Robust data2vec (low budget) data2vec 100k 6.3 10.4k 2 44 △
Spin2048 (for AP40k) HuBERT 10k 43 7.1k 2 8 △
R-Spin32, AP40k HuBERT 10k 6.4 1.1k 2 16 △

Table 5: SSL and DS costs of models with 95M parameters. The “Init” column shows the pre-trained models used
for initialization. △ denotes models in this paper, which will be made publicly available in the near future.15 Note
that duplicate input utterances by data augmentation are not included when calculating the hours of speech processed.
The number of GPU hours required for training is roughly estimated, so the true values might differ slightly. The
availability of the models listed was updated in March 2024. Unknown data are left blank.

Task Updates Hours GPU

(A.2) Spin 10k 4 A6000×2
(A.3) R-Spin 10k 8 A6000×2
(A.4) Robust data2vec 100k 22 A6000×2
(A.5) SUPERB PR 30k 10 2080 Ti
(A.6) SUPERB ASR 100k 20 A5000
(3.7.1) SUPERB SID 50k 4 A6000

Table 6: Computation resources used in the experiments.

C Computation Resources

The costs of self-supervised pre-training and
domain-specific self-supervision methods are
shown in Table 5. The required computation re-
sources for each training task in this paper are listed
in Table 6. Note that all results in this paper are
obtained with a single run.

D t-SNE of Hidden Representations

We plot more t-SNE visualization of hidden repre-
sentations in Figs. 11, 12, 13, 14, 15, and 16.

15The model checkpoints will be made public on
https://github.com/vectominist/spin
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Figure 11: t-SNE visualization of three speakers with different English dialects (see Fig. 3 for details).
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Figure 12: t-SNE visualization of eight speakers with different English dialects (see Fig. 3 for details).
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Figure 13: t-SNE visualization of HuBERT representations of the same utterance spoken by three speakers (see
Fig. 3 for details).
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(l) Layer 12

Figure 14: t-SNE visualization of HuBERT + R-Spin representations of the same utterance spoken by three
speakers (see Fig. 3 for details).
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Figure 15: t-SNE visualization of HuBERT representations of the same utterance under different distortions (see
Fig. 7 for details).
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Figure 16: t-SNE visualization of HuBERT + R-Spin representations of the same utterance under different
distortions (see Fig. 7 for details).

662


