
LREC-COLING 2024, pages 10760–10776
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

10760

LoNAS: Elastic Low-Rank Adapters for Efficient Large Language
Models

J. Pablo Muñoz1∗, Jinjie Yuan2∗, Yi Zheng2, Nilesh Jain1

1Intel Labs, Santa Clara, CA, USA
2Intel Corporation, Beijing, CN

{pablo.munoz, jinjie.yuan, yi.zheng, nilesh.jain}@intel.com

Abstract
Large Language Models (LLMs) continue to grow, reaching hundreds of billions of parameters and making it
challenging for Deep Learning practitioners with resource-constrained systems to use them, e.g., fine-tuning these
models for a downstream task of their interest. Adapters, such as low-rank adapters (LoRA), have been proposed to
reduce the number of trainable parameters in a model, reducing memory requirements and enabling smaller systems
to fine-tune these models. Orthogonal to this work, Neural Architecture Search (NAS) has been used to discover
compressed and more efficient architectures without sacrificing performance compared to similar base models. This
paper introduces a novel approach, LoNAS, to use NAS on language models by exploring a search space of elastic
low-rank adapters while reducing memory and compute requirements of full-scale NAS, resulting in high-performing
compressed models obtained from weight-sharing super-networks. Compared to models fine-tuned with LoRA, these
models contain fewer total parameters, reducing the inference time with only minor decreases in accuracy and, in
some cases, even improving accuracy. We discuss the limitations of LoNAS and share observations for the research
community regarding its generalization capabilities, which have motivated our follow-up work.
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1. Introduction and Motivation

The emergence of foundation models (Bommasani
et al., 2021), i.e., large pre-trained models that have
motivated a paradigm shift in which users focus on
their adaptation and fine-tuning to a task/dataset
of interest (Raffel et al., 2020a), has had a signif-
icant impact in many domains, including Natural
Language Processing (NLP) and Computer Vision
(CV). However, the latest advances in these large
models come with a price in the form of a significant
increase in their number of trainable parameters,
e.g., the Pathways Language Model (PaLM) with
540 billion parameters (Chowdhery et al., 2022).
These models require substantial resources for
their training and inference stages. Researchers
have created alternative versions of large models
with fewer parameters to enable their use in more
constrained environments. For instance, LLaMA
has model versions with 7, 13, 33, and 65 billion
parameters (Touvron et al., 2023), reducing the re-
quirements to experiment with these models. How-
ever, the large number of parameters and the sig-
nificant demand for computational resources limit
many NLP practitioners from benefiting from LLMs.

To address some of the challenges and permit
the use of these large models, researchers have
developed Parameter-Efficient Fine-Tuning (PEFT)
methods that enable the adaptation of these large
models to custom datasets and tasks without hav-
ing to alter any of the trainable parameters of the
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original pre-trained model, but only update the pa-
rameters of the inserted adapters (more details in
Section 2). However, efficient fine-tuning is only
one of the challenges encountered when working
with large models. If their applications require de-
ployment in resource-constrained environments,
e.g., devices at the edge, many techniques for
model compression have to be explored, e.g., prun-
ing and quantization.

Orthogonal to developing sophisticated PEFT
adapters, Neural Architecture Search (NAS) tech-
niques have continued evolving, improving their
efficiency and reducing the cost of discovering high-
performing architectures. However, performing
NAS on a large model is still an expensive endeavor.
This paper attempts to address this challenge. It
proposes a framework for applying NAS techniques
to the trainable parameters of the PEFT adapters
and keeping the weights frozen in the original large
model while allowing them to be pruned based on
the decisions made in the adapters’ search space.
The proposed framework consistently manages the
dependencies between the changes made to the
adapters and the corresponding frozen weights.
In the following sections, we discuss the following
contributions:

1. A novel framework, LoNAS, for applying
weight-sharing NAS on a search space com-
posed of configurations of PEFT algorithms.
We demonstrate LoNAS using elastic low-rank
(LoRA) adapters and discuss its limitations.

2. LoNAS compresses language models, result-
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ing in Pareto frontiers of more efficient model
variants. These models save memory and
computation, allowing for faster inference and
increasing the range of devices to deploy these
models.

3. Extensive experiments are conducted to study
the performance and limitations of LoNAS on
various datasets and models.

2. Related Work

Transformers (Vaswani et al., 2017) are the foun-
dation of many recent large language models
(LLMs) that have achieved significant performance
in various tasks. Given an input X, the scaled
dot-product attention operator (Equation 1) in a
Transformer block produces linear projections us-
ing weight matrices WQ, WK , and W V , i.e., Q =
XWQ, K = XWK , and V = XW V . In this
formulation, a scaling factor,

√
dk, prevents the sat-

uration of the softmax function. Formally,

Attention(Q,K,V ) = softmax
(
QKT

√
dk

)
V , (1)

where multiple of these attention heads are con-
catenated to attend differently and in parallel to the
input sequence of the Transformer block.

A second component of the Transformer block
is a feed-forward network (FFN) that takes the out-
put of the attention layers and transforms it before
passing it to the next layer. Other elements often
present in these blocks include residual connec-
tions and layer normalization. The training stage
of Transformer-based models is highly paralleliz-
able, while generative inference is not (Pope et al.,
2022), presenting opportunities for new techniques
that make these models more efficient at inference
time. In this work, we tackle this challenge by dis-
covering smaller and more efficient models derived
from a large base model. For additional details on
Transformers, we refer the reader to the original
Transformer paper (Vaswani et al., 2017) or the
multiple surveys available on this topic (Lin et al.,
2022).

Parameter-efficient fine-tuning (PEFT) tech-
niques have been recently proposed to confront the
challenges of fully fine-tuning large models, e.g.,
avoid having to update all the trainable weights
of the pre-trained model or even the large num-
ber of parameters in a few selected layers (Ding
et al., 2022). In addition to soft prompting (Lester
et al., 2021) and prefix-tuning techniques (Li and
Liang, 2021a), adapters have been proposed for
PEFT in the past few years, initially in the form
of residual adapters to allow convolutional neu-
ral networks to adapt to multiple visual domains

(Rebuffi et al., 2017), and later for efficiently fine-
tuning Transformer-based models (Houlsby et al.,
2019; Stickland and Murray, 2019) to downstream
NLP tasks. Using these adapters, we can freeze
the original weights of the model and only update
the parameters of the inserted adapters. There
are several types of adapters. Sequential or se-
rial adapters are placed between layers. These
adapters have some drawbacks, including mem-
ory inefficiency. Parallel adapters address the
limitations of sequential adapters (Pfeiffer et al.,
2020). A variation of parallel adapters uses low-
rank decomposition matrices for model adaptation,
taking the name of Low-Rank Adapters (LoRA)
(Hu et al., 2022). This paper integrates LoRA
adapters into Neural Architecture Search, but the
proposed framework could also integrate other
PEFT adapters. Using LoRA adapters, a linear
projection Y , resulting from multiplying the input
X and weights W (Equation 2), is extended by
adding two low-rank adapters, L1 and L2 (Equa-
tion 3). The input is scaled by s. L1 is initialized with
the standard Gaussian distribution, L1 ∼ N (µ, σ2),
with zero mean and unit variance, while L2 is ini-
tialized with all its entries equal to zero. The above
process is formulated as follows:

Y = XW , (2)

Y = XW + sXL1L2. (3)
The main benefits of LoRA adapters during fine-
tuning are obtained by freezing W and only up-
dating the small number of parameters (compared
to the number of the parameters of W ) in L1 and
L2, resulting in savings in memory consumption,
for instance, because there is no need to compute
gradients for the massive number trainable param-
eters in W . Using adapters often results in train-
able parameters that are fewer than 1% of the total
parameters of the model. More recently, QLoRA
(Dettmers et al., 2023) takes low-rank adapters
a step further by proposing quantizing the frozen
weights, resulting in additional savings in memory
and storage.

Neural Architecture Search (NAS) research
has increased significantly recently (Elsken et al.,
2019; White et al., 2023). Given a set of possible
architectures, NAS solutions attempt to find a high-
performing architectural configuration that is more
efficient than a baseline model. Initial proposals of
NAS algorithms require partial or complete train-
ing of candidate architectures (Zoph and Le, 2017),
which can be too costly. In the past few years,
one-shot weight-sharing approaches have proven
effective in discovering highly efficient architectures
(Cai et al., 2020; Yu et al., 2020; Muñoz et al., 2022)
that can be employed in complex deployment en-
vironments, e.g. (Yu et al., 2023). A benefit of the
weight-sharing technique is that a super-network
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Figure 1: LoNAS’ end-to-end workflow. Low-rank adapters are attached to Transformer blocks. LoNAS
applies elasticity to the original model’s frozen weights and the low-rank adapters.

composed of many subnetworks does not require
additional memory and storage compared to the
base model used to generate the super-network. In
some cases, the minimal overhead relates to keep-
ing track of the different values that can be used at
each layer to activate alternative subnetworks.

An existing challenge that prevents NAS algo-
rithms from being used with large models is that
they often have to search for high-performing ar-
chitectures in large design spaces, which would
require a tremendous amount of resources in the
case of large models. By incorporating PEFT,
this paper demonstrates how weight-sharing NAS
can discover smaller versions of relatively large
language models with around 7 billion parame-
ters. On a similar research path, AutoPEFT (Zhou
et al., 2023) has proposed using Bayesian op-
timization on a search space of PEFT building
blocks. Our approach, LoNAS, exploits the weight-
sharing paradigm by enabling elasticity at the LoRA
adapters and their dependent frozen weights. In
the following sections, we describe LoNAS and
present the results of generating super-networks
for several language models.

3. Methodology

This section will delve into LoNAS, which integrates
elastic LoRA adapters into NAS, resulting in high-
performing compressed language models. As il-
lustrated in Figure 1, LoNAS constructs a weight-
sharing super-network by applying elasticity to a
selection of layers (Section 3.1). The super-network
is then optimized (Section 3.2) to improve the per-
formance of its many subnetworks, and a subse-

quent search stage is conducted to discover high-
performing subnetworks. The final subnetwork can
be extracted resulting in a smaller model with fewer
storage and memory requirements. LoNAS’ end-
to-end workflow is discussed in the following sub-
sections.

3.1. Elasticity Alignment and
Weight-Sharing Super-Network

The goal of LoNAS is to discover high-performing
compressed models from larger models, which
means that for some arbitrary linear layer, li,
LoNAS attempts to obtain smaller weight tensors,
resulting in linear projections using a subset of
the original parameters, in this case of the layer’s
weights, Wi. For our purposes, elasticity means
that the selected layer, li, can have multiple val-
ues for a particular property, e.g., its width. For
instance, if Wi ∈ Rm×n, we might allow slicing this
tensor to create subnetworks in which li activates
k of its weights columns, s.t., k < n, resulting in an
alternative version of the layer with a smaller width.
As in other weight-sharing approaches, e.g., Once-
for-all (Cai et al., 2020), BigNAS (Yu et al., 2020),
LoNAS enables elasticity by masking the tensors of
selected elastic layers, resulting in the activation of
smaller subnetworks. However, different from these
previous approaches, LoNAS efficiently integrates
low-rank adapters into NAS, and since W remains
frozen during fine-tuning, the NAS search space
does not have to account for the possible configura-
tions of W directly but only the possible configura-
tions for the low-cost adapters. Formally, following
Equation 3, we want to find slices W δ,Lδ1,Lδ2

from W ,L1, and L2 such that,
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W δ ∈ Rh×{p0,...,pm} ←W ∈ Rh×o, (4)
Lδ1 ∈ Rh×{s0,...,sn} ← L1 ∈ Rh×r, (5)
Lδ2 ∈ Rs×{p0,...,pm} ← L2 ∈ Rr×o, (6)

where pi ≤ o, si ≤ r and r ≪ o. There might be
several possible values for pi and si, resulting in
a rich search space of subnetwork configurations.
Memory consumption is reduced due to W remain-
ing frozen. The only trainable parameters explored
by LoNAS are the subsets of L1 and L2. However,
this requires the management of dependencies be-
tween the adapters’ elasticity and the correspond-
ing weights’ elasticity, which is discussed next.

Dependency Groups When activating a subnet-
work, the subset W δ ⊆W (Equation 4) is strictly
dependent on the subset Lδ2 ⊆ L2. When choos-
ing an elastic configuration, LoNAS maintains these
structures with consistent shapes. L1, on the other
hand, can be sliced arbitrarily without aligning with
the original model’s frozen weights. In the case of
the multi-attention heads, LoNAS enables elasticity
and the possibility of attaching adapters to the Q,
K, and V layers. We explore several configurations
in Section 4.

As illustrated in Figure 1, LoNAS also enables
elastic adapters in layers of the Multilayer Percep-
tron (MLP) that follow each multi-head attention
block. LoNAS enables elasticity directly on inter-
mediate layers of the MLP or in the adapters at-
tached to these layers. In both cases, the goal is to
obtain subnetworks with subsets of weights of the
larger model. These efficient subnetworks have a
reduced footprint compared to the original model.

3.2. Fine-Tuning the Weight-Sharing
Super-Network

Once elasticity has been enabled, resulting in a
fixed search space of possible configurations for
L1 and L2 at each of the selected layers, we need
to pay particular attention to super-network train-
ing. We sample random subnetworks for each data
batch at each iteration, as Yu et al. (2020) recom-
mended. We must consider the frozen weights, W ,
during the forward pass. However, during the back-
ward pass, we only need to compute the gradients
of the elastic adapters to update their parameters
in the super-network.

4. Evaluation

In this section, we conduct experiments by gener-
ating super-networks for multiple language models
and testing some of their subnetworks on several
datasets to evaluate the effectiveness of LoNAS.
Initially, we investigate the application of LoNAS

on a small-scale language model employed in the
early phases of our research. Subsequently, we
continue our exploration of LoNAS on larger lan-
guage models. The details of our setup and the
analysis of the results are discussed next.

4.1. Experimental Setup
4.1.1. Datasets

Regarding our experimentation with a small lan-
guage model, we utilized the General Language Un-
derstanding Evaluation (GLUE) benchmark (Wang
et al., 2019) to initiate our exploration of LoNAS.
The GLUE benchmark is a widely-used evalua-
tion framework in the field of NLP, including eight
tasks RTE (Dagan et al., 2005), MRPC (Dolan and
Brockett, 2005b), STS-B (Cer et al., 2017), CoLA
(Warstadt et al., 2018), SST-2 (Socher et al., 2013),
QNLI (Wang et al., 2019), QQP (Chen et al., 2017),
and MNLI (Williams et al., 2018).

In the context of our experimentation with large
language models, we compare our LoNAS results
with those reported in the LLM-Adapters paper
(Hu et al., 2023) for eight commonsense reason-
ing datasets: BoolQ (Clark et al., 2019), PIQA
(Bisk et al., 2020), SIQA (Sap et al., 2019), Hel-
laSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), ARC (Clark et al., 2018), and
OBQA (Mihaylov et al., 2018), as well as four math
reasoning datasets: GSM8K (Cobbe et al., 2021),
AQUA (Ling et al., 2017), MAWPS (Lan et al., 2022),
SVAMP (Patel et al., 2021). In our experiments,
we utilized the training data provided by the LLM-
Adapters group, which combines multiple training
datasets into a unified dataset for training one gen-
eral model and subsequently tests across each
dataset. Moreover, the unified datasets they gener-
ated are extracted with the help of Zero-shot Chain
of Thought (CoT) (Wei et al., 2022) and GPT-3 text-
davinci0031.

4.1.2. Models

In our initial experiments, we assess LoNAS
employing a small language model, the Bidirec-
tional Encoder Representations from Transformers
(BERT) (Devlin et al., 2019). We present these
findings in this section to demonstrate the impact
of LoNAS on smaller models, which are usually
employed to demonstrate other NAS and PEFT
frameworks, e.g., AutoPEFT (Zhou et al., 2023).
Regarding the application of larger language mod-
els, we generate LoNAS super-networks for the rep-
resentative open-source autoregressive text gen-
eration LLMs LLaMA7B and BLOOMz7.1B, boasting
a total of 6.7 and 7.1 billion parameters, respec-
tively. LLaMA was trained by Meta using data in 20

1https://platform.openai.com/docs/models/gpt-3-5
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Table 1: Results on GLUE tasks with BERTbase. We report the best development set performance.
Green and blue represent the best and second-best scores, respectively. The baseline results are

sourced from Zhou et al. (2023). Consistent with previous work, we present Spearman’s correlation
for STS-B, Matthew’s correlation coefficient for CoLA, and accuracy metrics for the remaining tasks.
Additionally, we provide the average GFLOPs of the discovered sub-network for each task.

Method Parameter GFLOPs GLUE Benchmark AVG
Ratios RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI

FFT 100% 11.2 71.12 85.74 89.00 59.32 92.57 91.50 91.52 84.43 83.15

Prefix 0.17% 11.2 70.54 85.93 88.76 58.88 91.93 90.76 89.12 82.78 82.33
LoRA 0.27% 11.2 65.85 84.46 88.73 57.58 92.06 90.62 89.41 83.00 81.46
Serial 0.81% 11.2 68.01 84.75 88.61 59.73 91.93 91.06 90.52 84.18 82.35
AdaMix 0.81% 11.2 70.11 86.86 89.12 59.11 92.06 91.52 90.22 84.25 82.91
UniPELT 1.25% 11.2 67.07 84.22 88.84 60.13 92.52 91.09 90.69 84.28 82.35
Parallel 6.46% 11.2 68.52 86.52 88.90 58.72 92.13 90.83 90.74 73.93 81.29
MAM 6.97% 11.2 69.10 87.16 89.01 47.87 83.94 90.85 90.76 83.31 80.25
AutoPEFT 1.40% 11.2 72.35 87.45 89.17 60.92 92.22 91.12 90.64 84.01 83.49
LoNAS 0.27% 8.0 70.76 88.97 88.28 61.12 93.23 91.21 88.91 82.00 83.06
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Figure 2: Search progression on the super-network trained with BERTbase + LoNAS on four tasks of the
GLUE benchmark. Subnetworks are sampled from the super-network by the Non-Dominated Sorting
Genetic Algorithm (NSGA-II) (Deb et al., 2002), resulting in a Pareto front of efficient configurations.

languages, but most of the text is in English. The
data used for training LLaMA primarily originates
from the CCNet (Wenzek et al., 2019) and C4 (Raf-
fel et al., 2020b) datasets making up ≈82% of the
training data. The remaining data includes other
sources like GitHub and Wikipedia. LLaMA7B has
32 layers and 32 heads in each multi-head atten-
tion layer. BLOOMz7.1B was trained by Scao et al.
(2022) using the ROOTS corpus (Laurençon et al.,
2022) across 59 languages, featuring 30 Trans-
former blocks and 32 heads in each multi-head
attention layer. Further details are available on the
Hugging Face model cards 2,3.

4.1.3. Baselines

We compare LoNAS subnetworks with other mod-
els using several representative types of adapters:
(1) Prefix-tuning (Li and Liang, 2021b) integrates
soft prompts into the hidden states across all layers.

2https://huggingface.co/yahma/llama-7b-hf
3https://huggingface.co/bigscience/bloomz-7b1

(2) Series adapter (Houlsby et al., 2019) integrates
additional learnable modules sequentially within
a specific sublayer. (3) Parallel adapter (Pfeiffer
et al., 2020) is placed at the level of the MHA or
MLP layers. (4) LoRA (Hu et al., 2022) is the low-
rank parallel adapter placed at the same level of the
linear layers of the Transformer block while keep-
ing the original weights W of the Transformer block
frozen. To compare LoNAS to other complex PEFT
adapters, we incorporate the results of more com-
plex frameworks, including AdaMix (Wang et al.,
2022), UniPELT (Mao et al., 2021), MAM (Liao
et al., 2023), AutoPEFT (Zhou et al., 2023), and
full fine-tuning (FFT).

4.1.4. Implementation Details

LoNAS is implemented utilizing OpenVINO’s Neu-
ral Network Compression Framework4 and its Boot-
strapNAS solution (Muñoz et al., 2022). We mod-
ified this library to enable hooks in the frozen

4https://github.com/openvinotoolkit/nncf
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Table 2: Results on eight commonsense reasoning tasks with LLaMA7B. We compare LoNAS’ efficiency
and test accuracy(%) with other LLM-Adapter approaches using the 15k unified commonsense reasoning
data (Hu et al., 2023) for training. LoNAS-M represents the maximal subnetwork and LoNAS-H is a
subnetwork obtained with the midpoint heuristic (Equation 7).

Method Total TFLOPs Commonsense Reasoning - Accuracy (%) Average
Params. BoolQ PIQA SIQA HellaSwag WinoG Arc-e Arc-c OBQA

ChatGPT - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

Prefix 6.7B 1.7 55.2 57.5 49.4 34.5 36.2 60.0 47.8 41.2 47.7
Series 6.7B 1.7 62.2 71.8 66.3 39.2 58.5 73.3 54.4 67.8 61.7
Parallel 6.7B 1.7 62.2 72.6 66.3 47.9 57.4 75.1 56.2 67.6 63.2
LoRA 6.7B 1.7 62.6 75.3 67.9 52.9 58.6 79.2 58.3 71.2 65.8
LoNAS-M 6.7B 1.7 65.8 77.3 72.2 57.0 67.6 79.0 61.9 77.4 69.8
LoNAS-H 5.6B 1.4 62.9 73.0 68.7 51.4 63.9 72.3 58.5 71.0 65.2

weights and their alignment with the correspond-
ing inserted low-rank adapters in LoNAS. We also
patch Hugging Face’s PEFT library5 to enable elas-
ticity at the low-rank adapters. More details about
the hyperparameters and experiments with other
search spaces are included in the supplementary
material.

4.2. Initial Experimentation on a Small
Language Model

To explore the benefits of LoNAS, we initially exper-
imented with a small language model, BERT. Ta-
ble 1 compares a discovered LoNAS subnetwork,
full fine-tuning (FFT), and other PEFT adapters on
the GLUE benchmark. As LoRA adapters, LoNAS
yields subnetworks with fewer trainable parameters,
i.e., only 0.27% of the total number of parameters.
However, among all evaluated adapters, only the
Prefix adapter approach exhibits a lower count of
trainable parameters (0.17% of the total number
of parameters). Among the methods with fewer
trainable parameters (Prefix, LoRA, and LoNAS),
our approach achieves smaller and more efficient
models compared to LoRA and prefix (GFLOPs 8.0
vs. 11.2), with higher average (83.06 vs. 81.46 and
82.33). Compared to other more advanced PEFT
methods, LoNAS distinguishes itself for its fewer
trainable parameters, more efficient models, and
the ability to maintain comparable accuracy perfor-
mance. Moreover, we present some visualization
results depicting the progression of the search in
Figure 2, illustrating the presence of optimal sub-
networks within the trained super-network that are
smaller and more efficient and deliver accuracy
levels surpassing those of larger subnetworks.

5https://github.com/huggingface/peft.git

4.3. Performance on Large Language
Models

Based on the previous BERT experimental results,
we can observe the benefits of LoNAS on small-
scale models. In this section, we will explore the
performance of LoNAS on larger models. In gen-
eral, once a super-network has been trained, we
could utilize the Non-Dominated Sorting Genetic Al-
gorithm II (NSGA-II) (Deb et al., 2002) or any other
alternative search algorithm to discover a Pareto
frontier of high-performing subnetworks, and finally
a subset of subnetworks that enhance both accu-
racy and efficiency while satisfying user-defined
requirements can be selected. However, employ-
ing NSGA-II becomes expensive when dealing with
larger models. To quickly estimate the quality of
the smaller subnetworks, we employ a heuristic
approach (Muñoz et al., 2024a) in which from all
the n possible configurations of an elastic layer
li, this method selects a configuration indexed at
c, close to the midpoint of the range of possible
configurations, formulated as follows:

LoNAS-Hli ← LoNAS-Mli [c], s.t. c =
⌊n
2

⌋
. (7)

LoNAS-M is the configuration of the maximal sub-
network, which is equivalent in its architecture to the
original base model. LoNAS-H is the subnetwork
configuration obtained by the heuristic. Section 4.4
compares this heuristic to the evolutionary search
and discusses the trade-offs in selecting each ap-
proach.

4.3.1. Commonsense Reasoning with LLaMA

As Table 2 shows, LLaMA7B + LoNAS-M outper-
forms all baselines in all datasets, while LLaMA7B +
LoNAS-H uses fewer parameters and TFLOPs with
a minor drop in accuracy compared to LoRA. Based
on the initial results using the heuristic, the find-
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Figure 3: Search progression on the super-network
trained with LLaMA7B + LoNAS on the unified
commonsense reasoning dataset. Additional high-
performing subnetworks are available from the
Pareto frontier based on the desired performance
in the accuracy/TFLOPs multi-objective space.

ings of LLaMA on commonsense reasoning demon-
strate the benefits of LoNAS on large-scale models,
indicating its capability to achieve more efficient
models while maintaining accuracy. Section 4.4
presents a comprehensive analysis of the evolution-
ary search conducted with the LLaMA7B + LoNAS
super-network in this setting. Further search re-
sults illustrate the discovery of better subnetworks
within the super-network facilitated by advanced
search algorithms. Notably, these subnetworks ex-
hibit enhanced efficiency with superior performance
metrics.

4.3.2. Math Reasoning with BLOOMz

To further explore the performance of LoNAS on
other LLMs and tasks, we extended our inves-
tigation to another prominent open-source LLM,
BLOOMz, and delved into a distinct downstream
task within the field of math. The performance met-
rics of BLOOMz7B + LoNAS across four math rea-
soning tasks are presented in Table 3. Notably, the
results demonstrate that LoNAS can produce the
model (LoNAS-H) of heightened efficiency while
maintaining competitive accuracy within this ex-
perimental setting. It is important to emphasize
that our experimentation encompassed a broader
range of evaluations on the math dataset, reveal-
ing instances where LoNAS’ performance does not
perform well in other LLMs, exposing inherent lim-
itations within our approach. More details can be
found in Appendix D.

4.4. Analysis of Subnetwork
Evolutionary Search

To better illustrate the subnetwork search stage,
Figure 3 shows the search progression with NSGA-
II in which the performance of sampled subnetwork
configurations from the LLaMA7B super-network
are plotted in a multi-objective space of accuracy
and TFLOPs. As described in section 4.1, we de-
vise a midpoint heuristic (Equation 7) to quickly ex-
plore the quality of our fine-tuned super-networks
and discover a smaller subnetwork at an approx-
imately central region of the search space. How-
ever, considering accuracy and efficiency, the sub-
network obtained with this approach is not likely
the best. LoNAS can discover better subnetworks
from the one discovered using the midpoint heuris-
tic by applying the more advanced evolutionary
search using the NSGA-II algorithm to explore our
trained super-network further. This figure illustrates
the search progression on the LLaMA7B + LoNAS
super-network trained with the unified common-
sense reasoning dataset. We use the accuracy on
the validation set as a metric to guide the search
process. After conducting an evolutionary search,
we select a few subnetworks with reasonable ac-
curacy on the validation set to further investigate
their performance on the test dataset. As shown
in Table 4, we can obtain smaller, more efficient
models with higher test accuracy than LLaMA7B +
LoNAS-H and LLaMA7B + LoRA, e.g., Subnet-B
and Subnet-D.

We notice an interesting observation: the perfor-
mance on the validation set does not consistently
correlate with that on the test set, which implies
the validation set might not provide accurate guid-
ance in identifying the optimal subnetwork for per-
formance on the test set. We attribute this diver-
gence to two factors. Firstly, the validation set is ran-
domly sampled from the unified dataset comprising
eight individual commonsense reasoning datasets,
leading to inherent randomness in the distribution
of datasets within the validation set. Employing
a validation set tailored to each specific dataset
could yield improved results, and we plan to inves-
tigate this hypothesis in future research. Secondly,
the generalization capacity of a subnetwork should
also be related to its size rather than solely consid-
ering performance metrics derived from a limited
number of validation samples. To strike a balance,
it is important to weigh the validation set accuracy
against efficiency metrics, such as FLOPs, to align
with our objectives. Notably, in the LoNAS method,
users do not need to retrain different models when
facing diverse demands. Instead, extracting sub-
networks from a once-trained super-network that
meets various requirements suffices.
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Table 3: Results on four math reasoning tasks with BLOOMz7.1B. The results from Prefix, Series, Parallel,
and LoRA baseline are those reported by Hu et al. (2023). LoNAS-M denotes the maximal subnetwork,
while LoNAS-H refers to a subnetwork derived using the midpoint heuristic approach.

Method Total TFLOPs Math Reasoning - Accuracy (%) Average
Params. GSM8K AQuA MAWPS SVAMP

Prefix 7.1B 1.8 13.8 12.5 47.5 24.1 24.5
Series 7.1B 1.8 14.3 20.5 62.2 38.1 33.8
Parallel 7.1B 1.8 18.5 18.9 70.6 36.4 36.1
LoRA 7.1B 1.8 17.4 21.3 70.2 41.0 37.5
LoNAS-M 7.1B 1.8 20.8 6.3 76.9 32.2 34.0
LoNAS-H 6.1B 1.5 18.6 22.0 76.5 31.8 37.2

Table 4: Efficiency and accuracy comparison of multiple selected LLaMA7B + LoNAS subnetworks,
corresponding to the points shown in Figure 3. The validation set is randomly sampled from the unified
training data set, which is used to guide the search process. The test accuracy is the average accuracy
on eight commonsense reasoning datasets. Inference speedup is relative to the maximal subnetwork
with the same configuration as the base model LLaMA7B. We use an Intel Xeon Platinum 8480L with Intel
Extension for PyTorch (IPEX) enabled to collect the average token latency (100 generation iterations).

Search Method Subnetwork TFLOPs Validation Test Inference Speedup
Accuracy(%) Accuracy(%) FP32 BF16 INT8

Maximal LoNAS-M 1.72 90.8 69.8 1.00× 2.84× 4.20×
Heuristic LoNAS-H 1.44 90.2 65.2 1.23× 3.14× 4.74×

Subnet-A 1.41 91.2 67.1 1.26× 3.17× 4.81×
Subnet-B 1.40 91.3 67.1 1.28× 3.18× 4.83×

Evolutionary Subnet-C 1.39 91.0 66.9 1.29× 3.19× 4.85×

(NSGA-II) Subnet-D 1.38 91.2 67.0 1.30× 3.21× 4.88×
Subnet-E 1.37 91.0 66.6 1.31× 3.22× 4.90×
Subnet-F 1.36 91.0 65.9 1.32× 3.23× 4.92×
Subnet-G 1.29 91.1 65.6 1.41× 3.32× 5.09×

Cost of Evolutionary Search Although we ob-
tained a more efficient model with good validation
accuracy in the unified dataset, running an evo-
lutionary search for LLMs is significantly costlier.
In our experiments, the number of samples in the
validation set is 1000, and the number of subnet-
works evaluated is 200 (i.e., Except for LoNAS-
M and LoNAS-H, there are 200 points in Figure
3.). Each evaluation for one LLaMA7B + LoNAS
subnetwork took approximately 10 minutes, and
completing the search stage using a single GPU
typically requires 1 to 2 days. However, the cost of
the search progression can be amortized by all the
savings related to having a smaller model during
the inference stage. The user should decide be-
tween the approach using the proposed heuristic or
an expensive evolutionary search based on the re-
quirements and optimization budgets and consider
the trade-off between search cost and subnetwork
quality.

4.5. Inference Benefit Analysis of LoNAS

LoRA provides benefits during training/fine-tuning
since the weights W of the large model are frozen,
and the number of trainable parameters and mem-
ory requirements are reduced. LoNAS takes these
benefits further during inference by obtaining com-
pressed models with lower latency than the original
model while having similar or even better accuracy
in the validation and test datasets. As described in
Table 4, the subnetwork obtained using our heuris-
tic LoNAS-H and the subnetworks obtained after
evolutionary search have fewer total parameters
than the base model, which has the same architec-
ture as the subnetwork LoNAS-M. The compressed
subnetworks result in a speedup during inference of
up to 1.41, 3.32, and 5.09 times the inference time
of the base model for FP32, BF16, and INT8 preci-
sion types, respectively. We enable Intel Extension
for PyTorch (IPEX)6 to accelerate inference in CPU.

6https://github.com/intel/intel-extension-for-pytorch
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The results show that further speedup is obtained
by quantizing the discovered subnetworks.

5. Discussion and Future Work

More Efficient Applications of Elasticity in
Adapters We have observed that LoNAS fails
to generalize to other architectures, e.g., GPT-J
(Wang and Komatsuzaki, 2021) and datasets, e.g.,
unified math reasoning (Hu et al., 2023), and re-
quires costly training and subnetwork discovery
stages. As a follow-up to this work, we are further
improving LoNAS by applying elasticity only at the
adapter level and leaving the original weights of the
model untouched (Muñoz et al., 2024a). Although
this variation of LoNAS does not obtain a signifi-
cant reduction in the model size, it preserves or
improves the accuracy.

Quantization of the Frozen Weights Quantiza-
tion can also benefit LoNAS’ training efficiency. Re-
cently, QLoRA (Dettmers et al., 2023) proposed
an extension to the classical LoRA formulation (Hu
et al., 2022), in which the frozen weights, W , are
quantized to 4-bit NormalFloat (NF4) precision tore-
duce memory consumption further (Equation 8).
QLoRA also quantizes the quantization constants,
ci, further reducing the memory footprint during
training. QLoRA can be formulated as follows:

Y α = XαD(cβ1 , c
k-bit
2 ,W γ) +XαLα

1L
α
2 (8)

D(cβ1 , c
k-bit
2 ,W γ) = d(d(cβ1 , c

k-bit
2 ),W γ) = W α,

(9)
where α, β, and γ indicate BF16 precision, FP32
precision, and NF4 precision, respectively. D is
the Double Dequantize operation that first dequan-
tizes (d in Equation 9) constants c1, and c2 and
then dequantizes W γ . Quantization of the frozen
weights is out of the scope of this paper. However,
our future plans are to improve LoNAS’ efficiency
further. Quantization and other techniques will help
LoNAS continue reducing its footprint during train-
ing, QLoRA has done.

Weight reordering Weight reordering strategies
are often used in weight-sharing NAS to improve
the quality of the super-networks (Muñoz et al.,
2024b). This step can be costly when working with
LLMs. We are interested in investigating efficient
approaches to weight reordering for large models.

6. Conclusion

This paper demonstrates a novel approach, LoNAS,
to integrate Parameter-Efficient Fine-Tuning (PEFT)
techniques and low-rank (LoRA) adapters, in par-
ticular, into Neural Architecture Search (NAS)

for LLMs. LoNAS enables elasticity in low-rank
adapters and their corresponding frozen weights
in the base model. The generated super-network
is then efficiently fine-tuned with fewer than 1%
of the total parameters. A subsequent search
stage discovers smaller compressed subnetworks
that reduce the resource requirements for deploy-
ing these models. Hence, LoNAS demonstrates
that we can increase the deployment range of
the original larger models. LoNAS subnetworks
have several implications for improving the infer-
ence stage, e.g., less memory consumption and
speedup when using smaller models. As indi-
cated above in the future work discussion, there
are many research paths we plan to explore to
improve further the efficiency of the discovered
subnetworks during inference. In the following
section, we include a discussion of the limitations
that we have observed in LoNAS. The code is
available at https://github.com/IntelLabs/Hardware-
Aware-Automated-Machine-Learning.

Limitations

LoNAS is an initial exploration of the combination
of NAS and PEFT. We have observed that the ap-
proach struggles to generalize to other models and
datasets. For instance, LoNAS-LLaMA struggles to
obtain good results in the math reasoning dataset,
while LoNAS-BLOOMz struggles in the common-
sense dataset. To address these and other issues,
as a follow-up of this work, we propose a modifica-
tion of LoNAS that applies NAS only to the adapters
and that benefits from a pre-fine-tuning stage in
which the given model is sparsified (Muñoz et al.,
2024a). Another limitation that should be explored
further in future work is the high cost of searching
for the subnetworks when using approaches such
as evolutionary search. Although this high cost can
be amortized with the gains in a more efficient infer-
ence stage due to the discovered smaller models
(Section 4.4), it requires more investigation, mainly
when working with LLMs.

Ethics Statement

Large language models (LLMs) are relatively new
technologies with challenges and limitations. De-
spite all the success that LLMs have had and their
integration into popular applications, we must be
aware of the risks and harm that LLMs might bring
upon some people, e.g., by producing inaccurate re-
sponses and misinformation that could negatively
impact them. These limitations are outside the
scope of this paper. LoNAS aims to deliver com-
pressed models that can run efficiently on resource-
constrained devices. However, the limitations men-
tioned above (and others omitted here) must be

https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning
https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning
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taken into account when designing real-world sys-
tems and applications that use large language mod-
els. Before deploying these models, it is imperative
to conduct exhaustive testing and identify risks and
vulnerabilities to prevent any potential harm.
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A. Hyperparameters

The hyperparameters of our experiments for sev-
eral language models are listed in Table 5 and Table
6.

B. Search Spaces

The search spaces for the super-networks across
different language models is shown in Table 7 and
Table 8.

C. More Latency Comparison

More latency comparisons of different precisions,
first token generation and second token generation
are shown in Table 9.

D. Other Experiments with the
Unified Math Dataset

From the main paper, we have observed some
benefits of the LoNAS approach. However, in our
exploration of LoNAS, we have also encountered
limitations. Specifically, we have investigated the
performance of the LLaMA-series model + LoNAS
on math datasets. As illustrated in Table 10, it can
be observed that the combination of LLaMA-series
models with LoNAS does not exhibit good perfor-
mance in the math domain - as the scale of the
subnetwork models decreases, the performance of
the models also decreases. This observation ex-
poses some drawbacks and limitations of LoNAS,
indicating a lack of generalizability. As stated in the
LLM-pruner (Ma et al., 2023) paper, compressing
large language models under high compression
rates remains a significant challenge. This paper
initiates an exploration of PEFT + NAS on LLMs,
hoping to provide some insights to the research
community.
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Table 5: Hyperparameters for the experiments with BERTbase. For all experiments, we use LoRA with a
value of 8 for low rank and 16 for alpha. The target modules for LoRA are query and value.

Task RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI

Epoch 80 35 60 80 60 80 60 40
Batch size 32 32 64 64 64 64 64 64
Learning rate 3e-4 5e-4 5e-4 3e-4 3e-4 4e-4 3e-4 4e-4
Max length 128 128 128 128 128 256 128 128

Table 6: Hyperparameters for the experiments with LLaMA7B and BLOOMz7B.

Model LLaMA7B BLOOMz7B

Epoch 6 8
Batch size 16 16
Learning rate 3e-4 3e-4
LoRA r 32 32
LoRA alpha 64 64

LoRA target modules q_proj, k_proj, v_proj, query_key_value,
up_proj, gate_proj, down_proj dense_h_to_4h, dense_4h_to_h

Table 7: Search spaces for the BERTbase super-network.

Layer Q & K & V Q-LoRAL1 & V-LoRAL1 Intermediate Dense
& Q-LoRAL2 & V-LoRAL2

0 [768, 384] [8, 4, 2] [3072, 2634, 216]
1 [768, 320] [8, 4, 2] [3072, 2634, 181]
2 [768, 256] [8, 4, 2] [3072, 2627, 208]
3 [768, 512] [8, 4, 2] [3072, 2676, 226]
4 [768, 512] [8, 4, 2] [3072, 2628, 179]
5 [768, 704] [8, 4, 2] [3072, 2662, 175]
6 [768, 576] [8, 4, 2] [3072, 2706, 182]
7 [768, 576] [8, 4, 2] [3072, 2687, 169]
8 [768, 640] [8, 4, 2] [3072, 2616, 165]
9 [768, 192] [8, 4, 2] [3072, 2400, 160]
10 [768, 704, 192] [8, 4, 2] [3072, 2198, 163]
11 [768, 320] [8, 4, 2] [3072, 1940, 150]

Table 8: Search spaces for the LLaMA7B and BLOOMz7B super-networks. All layers share the same
search space.

Model Q-LoRAL1 & K-LoRAL1 & V-LoRAL1
Up & Gate Up-LoRAL1 & Gate-LoRAL1& Up-LoRAL2 & Gate-LoRAL2

LLaMA7B [32, 28] [11008, 9632, 8256, 6880, 5504] [32, 28]

Model QKV-LoRAL1
Dense_h_to_4h Dense_h_to_4h-LoRAL1& Dense_h_to_4h-LoRAL2

BLOOMz7B [32, 28] [16384, 14336, 12288, 10240, 8192] [32, 28]
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Table 9: Further latency comparison beyond Table 4. We test the inference speedup on FP32, BF16,
INT8 and INT4, and also test the latency for first token generation. We use an Intel Xeon Platinum 8480L
with Intel Extension for PyTorch (IPEX) enabled to collect the avarage latency (100 generation iterations).

Search Method Subnetwork TFLOPs First Token Latency Second Token Latency
FP32 BF16 INT8 INT4 FP32 BF16 INT8 INT4

Maximal LoNAS-M 1.72 1.00× 3.41× 3.63× 5.04× 1.00× 2.84× 4.20× 5.29×
Heuristic LoNAS-H 1.44 1.11× 3.87× 4.38× 5.27× 1.23× 3.14× 4.74× 5.97×

Subnet-A 1.41 1.13× 3.92× 4.48× 5.30× 1.26× 3.17× 4.81× 6.05×
Subnet-B 1.40 1.13× 3.94× 4.51× 5.31× 1.28× 3.18× 4.83× 6.08×

Evolutionary Subnet-C 1.39 1.14× 3.96× 4.55× 5.32× 1.29× 3.19× 4.85× 6.11×

(NSGA-II) Subnet-D 1.38 1.14× 3.98× 4.58× 5.32× 1.30× 3.21× 4.88× 6.14×
Subnet-E 1.37 1.15× 4.00× 4.62× 5.33× 1.31× 3.22× 4.90× 6.17×
Subnet-F 1.36 1.15× 4.02× 4.65× 5.34× 1.32× 3.23× 4.92× 6.20×
Subnet-G 1.29 1.19× 4.16× 4.92× 5.40× 1.41× 3.32× 5.09× 6.41×

Table 10: Results on four math reasoning tasks with LLaMA7B and LLaMA13B. The results from the
Prefix, Series, Parallel, and LoRA baselines are those reported by Hu et al. (2023). LoNAS-M denotes
the maximal subnetwork, while LoNAS-H refers to a subnetwork derived using a heuristic approach.

LLM Method TFLOPs Total Math Reasoning - Accuracy(%) Average
Params. GSM8K AQuA MAWPS SVAMP

GPT-3.5 Zero-shot CoT - - 56.4 38.9 87.4 69.9 70.4

LLaMA7B

Prefix 1.7 6.7B 24.4 14.2 63.4 38.1 35.0
Series 1.7 6.7B 33.3 15.0 77.7 52.3 44.6
Parallel 1.7 6.7B 35.3 18.1 82.4 49.6 46.4
LoRA 1.7 6.7B 37.5 18.9 79.0 52.1 46.9
LoNAS-M 1.7 6.7B 36.7 19.7 81.9 47.8 46.5
LoNAS-H 1.4 5.6B 30.2 20.5 81.1 43.2 43.7

LLaMA13B

Prefix 3.3 12.9B 31.1 15.7 66.8 41.4 38.8
Series 3.3 12.9B 44.0 22.0 78.6 50.8 48.9
Parallel 3.3 12.9B 43.3 20.5 81.1 55.7 50.2
LoRA 3.3 12.9B 47.5 18.5 83.6 54.6 51.1
LoNAS-M 3.3 12.9B 46.9 20.9 83.2 53.0 51.0
LoNAS-H 2.8 10.8B 40.0 19.7 82.8 51.9 48.6
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