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Abstract
Due to the lack of parallel data, the mainstream fine-tuning-based domain adaptation methods have the overfitting
problem in the translation of low-resource domains, and it is difficult for the model to learn the in-domain generalization
knowledge. To address the above issue, in this work, we propose a novel Reinforcement Learning Domain Adaptation
method for Neural Machine Translation (RLDA-NMT) in the low-resource domain. RLDA-NMT utilizes in-domain
source monolingual data to make up for the lack of parallel data, and reinforces domain features learning to make the
translation model learn the domain-specific knowledge more fully. Specifically, we first train a ranking-based model
with a small-scale in-domain parallel corpus, and then adopt it as the reward model to select higher-quality generated
translations for reinforcement when fine-tuning pre-trained NMT model using in-domain source monolingual data.
We conduct experiments on Education, Laws, Thesis, and Patent domains of Chinese<-English translation tasks.
Experimental results demonstrate that RLDA-NMT can alleviate overfitting and reinforce the NMT model to learn
domain-specific knowledge. Additionally, the results also show that RLDA-NMT and back-translation (BT) are nicely

complementary to each other, where combining RLDA-NMT with BT can further improve translation quality.

Keywords: Low-Resource Machine Translation, Reinforcement Learning, Domain Adaptation

1. Introduction

General neural machine translation (NMT) models
often perform poorly on specific domains (Koehn
and Knowles, 2017; Chu and Wang, 2018; Saun-
ders, 2022), while some low-resource domains do
not have enough parallel training data. Domain
adaptation is one of the promising solutions for the
NMT task to deal with data scarcity in low-resource
domains (Koehn and Schroeder, 2007; Daumé lii
and Jagarlamudi, 2011; Yang et al., 2018), which
uses a large-scale out-of-domain parallel corpus
and a small-scale in-domain parallel corpus to im-
prove in-domain translation performance. A basic
and mainstream domain adaptation method is con-
tinuous training, also known as fine-tuning, using
in-domain parallel data (Luong and Manning, 2015)
or a mixture of in-domain and out-of-domain paral-
lel data (Chu et al., 2017) to continue training the
model pre-trained with out-of-domain data. On this
basis, some studies have explored modifying the
optimization objectives (Khayrallah et al., 2018) or
model architecture (Thompson et al., 2019; Shao
and Feng, 2022) to further optimize the utilization
of in-domain data.

However, for those domains with fewer resources,

* Contribution during internship at Beijing Lanzhou
Technology Co., Ltd., Beijing, China.
fCorresponding author.

only using bilingual data to fine-tune the model is
prone to forgetting and overfitting (Chu et al., 2017,
Saunders, 2022), and it is difficult for the model to
learn the generalization knowledge of the domain.
Compared with the scarcity of bilingual data, do-
main monolingual corpus is much easier to obtain
(Sun et al., 2019; Zhang et al., 2022). Therefore,
research on improving domain translation perfor-
mance using domain monolingual data has been
extensive in the recent literature (Gulcehre et al.,
2015; Sennrich et al., 2016; Dou et al., 2019a).
The mainstream approach in these studies is to
augment the training data with synthetic in-domain
corpora generated through back-translation (BT;
Sennrich et al., 2016), copying (Currey et al., 2017),
or word-by-word translation (Hu et al., 2019). The
problem faced by the above schemes is that the
generated data is usually noisy, and they only use
the target monolingual data, without fully exploring
the knowledge of the source monolingual data.

In this work, we propose a Reinforcement
Learning Domain Adaptation method for Neural
Machine Translation (RLDA-NMT), which explores
mining the knowledge of in-domain source monolin-
gual data to improve domain adaptation through re-
inforcement learning (RL). Specifically, RLDA-NMT
is a self-supervised learning method that can auto-
matically enhance high-quality domain translations
with a reward-based mechanism. Firstly, we use
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the out-of-domain parallel data to pre-train an NMT
model and in-domain parallel data for preliminary
fine-tuning to get the base NMT model. Secondly,
we train a translation quality estimation (QE) model
with the ranking dataset constructed by in-domain
parallel data, where high-quality translations are
associated with high scores predicted by the QE
model. Finally, we further fine-tune the base NMT
model with domain source monolingual data using
the Proximal Policy Optimization (PPO; Schulman
et al., 2017), where the output of the QE model is
used as a reward score.

We evaluate the proposed method on four do-
mains of the Chinese<English translation tasks,
namely Education, Laws, Thesis, and Patent. Ex-
perimental results demonstrate that RLDA-NMT
can improve translation performance, alleviate over-
fitting, and strengthen the learning of domain fea-
tures in low-resource domains. In addition, we
also explore and prove the complementarity of our
method with the mainstream back-translation (BT)
method. Combining the proposed method with BT
can further improve the performance of the model.

In summary, our contributions can be summa-
rized as follows:

» We propose an RL method for domain adapta-
tion of NMT (RLDA-NMT), leveraging domain
source monolingual data to improve translation
performance in low-resource domains through
a reward-based mechanism.

» We conduct extensive experiments on four do-
mains of Chinese<English translation tasks.
Experimental results show that our method im-
proves in all domains.

» We demonstrate the complementarity of the
proposed method to the mainstream back-
translation (BT) method. The combination
of RLDA-NMT and BT can make the model
achieve the optimal effectiveness.

2. Related work

2.1.

Domain adaptation is a significant approach for im-
proving the performance of machine translation in
low-resource domains (Wu et al., 2018; Uc-Cetina
et al., 2023). The most basic approach to domain
adaptation is to fine-tune a general pre-trained
model using small-scale in-domain parallel data
(Chu et al., 2017; Freitag and Al-Onaizan, 2016; Lu-
ong and Manning, 2015). Some have also investi-
gated improvements based on fine-tuning: Khayral-
lah et al. (2018) propose a solution that minimizes
the cross-entropy between the output word distri-
bution of the model and the out-of-domain model.
Thompson et al. (2019) address the catastrophic

Domain Adaptation of NMT

forgetting problem in domain adaptation for NMT
via Elastic Weight Consolidation. And Shao and
Feng (2022) solve the problem of unbalanced train-
ing through Complementary Online Knowledge Dis-
tillation. Although the above schemes have been
proven to be effective, for low-resource domains
with fewer corpora, the method of fine-tuning only
using bilingual data is prone to overfitting, and it is
difficult for the model to learn a common represen-
tation of the domain.

Existing mainstream works on domain adaptation
in the aforementioned scenarios are data-centric
approaches (Wu et al., 2018), which explore select-
ing training data from out-of-domain parallel data
(Cuong and Sima’an, 2014; Durrani et al., 2015) or
constructing pseudo-parallel data using in-domain
monolingual corpora (Sennrich et al., 2016; Hu
et al., 2019) to fine-tune pre-trained NMT models.
Sennrich et al. (2016) use back-translation to con-
struct in-domain pseudo-parallel sentence pairs,
and similarly, Chinea-Rios et al. (2017) use forward-
translation approach to generate them, but it has
been proven to introduce noise to the decoder in
low-resource scenarios (Haddow et al., 2022a). To
further improve the quality of pseudo-parallel data,
Hoang et al. (2018) introduce an iterative process
to continuously optimize the NMT model and gen-
erated data. On this basis, Kumari et al. (2021)
apply classifiers to filter the synthetic data, and
Zhang et al. (2022) proposed lterative Constrained
Back-Translation to incorporate in-domain lexical
knowledge. In addition, there are also some model-
centric studies that modify the objective function
(Dou et al., 2019a; Wei et al., 2020) and model
architecture (Gulcehre et al., 2015; Cheng et al.,
2016; Dou et al., 2019b) to improve the adaptability
of the NMT model.

2.2. Reinforcement Learning for NMT

Recently, some researchers have explored the ap-
plication of reinforcement learning (RL) in natural
language processing (NLP) tasks, such as dialogue
systems (Crook et al., 2014; Zhao et al., 2019;
Chen et al., 2020), text generation systems (Shi
et al., 2018; Keneshloo et al., 2020; Ouyang et al.,
2022), text summarization (Stiennon et al., 2020),
machine translation (Wu et al., 2018; Lam et al.,
2019; Keneshloo et al., 2020) and so on.

We focus on the application of reinforcement
learning in NMT, which is originally proposed to
solve these two problems (Keneshloo et al., 2020):
(1) the token-level maximum likelihood estimation
(MLE) objective function during training is incon-
sistent with the sequence-level evaluation metrics
(such as BLEU (Papineni et al., 2002)) at test time,
and (2) exposure bias, where inference during train-
ing relies on the input golden sentences, while dur-
ing the test it relies on the outputs of the model.
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Figure 1: The main pipeline of the proposed method (RLDA-NMT), which mainly includes 3 steps: (1)
pre-training and preliminary fine-tuning of the NMT model (§ 3.1), (2) training of the quality estimation
model with ranking dataset constructed by in-domain parallel data (§ 3.2), and (3) fine-tuning of the NMT
model with in-domain source monolingual data using reinforcement learning (§ 3.3). In Step 3, Actorgyg
and Actorey are initialized by NM T, -pase, Criticolg and Criticpew are initialized by the QE model.

Shen et al. (2016) propose a minimume-risk train-
ing method to directly optimize model parameters
for any evaluation metric. Wu et al. (2017) apply
policy optimization methods to sequence predic-
tion tasks including NMT. Wu et al. (2018) are the
first to explore the practical application of RL in
NMT in real-world systems based on transformer-
based NMT models and huge datasets. The above
studies focus on general-domain translation, for
which a large amount of parallel data is available.
In contrast, this work focuses on the application of
reinforcement learning when transferring transla-
tion models to low-resource domains. We delve
into the utilization of monolingual data when fine-
tuning NMT, while paying attention to terminological
translation accuracy, domain-style translation, etc.,
which are not available in previous studies.

3. Our Approach

In this work, we propose a Reinforcement Learn-
ing Domain Adaptation method for Neural Machine
Translation (RLDA-NMT), which mainly consists of
three steps (Figure 1). We start with a pre-trained
NMT model (§ 3.1), use the available small-scale
in-domain parallel data as the seed data to train
a ranking-based QE model (§ 3.2), and reinforce
domain-specific translations when fine-tuning the
NMT model with domain source monolingual data

(§ 3.3), so as to improve the translation perfor-
mance of the NMT model in low-resource domains.

3.1. Train a Base NMT Model

As shown in Figure 1, in the beginning, out-of-
domain parallel data (Doyt-para) iS Used to train a
baseline NMT model (NMT,.;). We follow the neu-
ral machine translation architecture proposed by
Vaswani et al. (2017), which builds an encoder-
decoder architecture based on attention mecha-
nism. The parameters of the NMT model are opti-
mized by maximizing the objective function:

K Nk-,

Lome =YY logp (yilyt,,x*:0) (1)

k=1i=1

where (z*,y*) € Dout—para, K is the number of
out-of-domain parallel sentence pairs, and N* is
the number of tokens in y*.

After pre-training, a small-scale in-domain par-
allel corpus (Din-para) is used to initially fine-tune
the pre-trained NMT model (NMT,,) through the
objective function in Equation 1. We define the
fine-tuned model as NM T}, -pase-
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Figure 2: The structure of the quality estimation
(QE) model. It is based on the encoder-decoder
architecture, and a linear layer Value Head is con-
nected after the Decoder layer to generate the
score of each token of the target sentence. The
score of the translation pair is the average of the
scores of tokens.

3.2. Train a Ranking-Based Model for
Translation Quality Estimation

The quality estimation (QE) model is used to score
translated sentence pairs. It learns the ability that
more domain-specific translations should be scored
higher. We utilize the small-scale in-domain par-
allel corpus (Din-para) mentioned in Section 3.1 to
construct ranking dataset to train the QE model.

Construct the ranking data. As shown in Step
2 of Figure 1, for each sentence pair (x,y, ) in
Din-para, W CONstruct a poor sentence pair (x,y_)
for it. Considering domain adaptation, we focus on
two aspects when constructing data: translation
style and terminological translation accuracy. First,
NMT,,; is used to translate = into 4’ to construct
(x,y'). The ground truth (z,y, ) is an in-domain
style translation pair, compared to (x, y’) which is
out-of-domain translation style. Ranking data struc-
tured in this way can strengthen domain-style trans-
lation. Considering to strengthen the translation of
domain-specific terms, we substitute corresponding
terms with generic expressions in the target sen-
tences of translation pairs, i.e., (z,y, ) and (z,y’).
In particular, we utilize an in-domain terminological
bilingual dictionary' to match the translation pairs.
For each matched term pair, we replace its position
in the target sentence with a generic expression,

"The in-domain terminological bilingual dictionary
used in this work is internal unpublished data.

generated by NMT,;. In this manner, we gener-
ate negative translation pairs (x,y,) and (x,y..)
for domain-specific terms by operating on (z,y_ )
and (z,y’), respectively. Overall, the final negative
translation pairs (x,y_) consist of three parts, i.e.,
(z.9), (z.y,), and (z,y}).

Train the quality estimation model. The struc-
ture of the QE model is shown in Figure 2. Unlike
Ouyang et al. (2022) who build with a language
model, we choose the encoder-decoder architec-
ture to build our QE model, which is more suit-
able for translation tasks. The Encoder layer and
Decoder layer of the QE model are initialized by
NMT,yu, and the Value Head layer is randomly ini-
tialized. For an input translation pair (x,y, ) or
(x,y_), the model first generates its hidden rep-
resentation (hq, hs, ..., h,) through the Encoder
and Decoder layers. Then, a linear layer Value
Head with a latitude of (hidden_size, 1) is used to
map the hidden representation (hq, hs, ..., h,)into
the reward score (r1,r2,...,r,). Finally, T(z,y,) O
T(x,y_) IS Obtained by averaging the reward scores
of each token. Following Stiennon et al. (2020), we
optimize the QE model with the preference loss:

Lge = —log (0’ (r(w’y” — T(fmy,))) (2)

where ¢ is the sigmoid function.

3.3. Fine-Tune the NMT Model with
Domain Source Monolingual Data
Using PPO

We use the QE model to generate reward scores for
translation pairs, and use in-domain source mono-
lingual data (Din-mono) 10 fine-tune NM T, -pase With
the PPO (Schulman et al., 2017). PPO includes two
optimization networks, namely: 1) ActorNet, which
predicts the probability of actions in each state, and
2) CriticNet, which predicts the score of each state
and participates in calculating the scores of actions.
In this work, the NMT;,-1asc Model is used as the
ActorNet, and the CriticNet is initialized by the QE
model.

Specifically, as shown in Step 3 of Figure 1, for
each input sentence * € Diy-mono, the Actorggy
model generates its translation y’, and the QE
model outputs the score r of the translation pair
(x,vy’). The process of fine-tuning the NMT model
using the PPO algorithm is shown in Algorithm 1.
The objective function of optimizing ActorNet pa-
rameters through PPO is:

Lopg =E, [min (ratio; - A,

. , (3)
clip (ratiog, 1 — e, 1 +€) - Ay)].

Pnew (at |St)

Potd(at|st)
of the new ActorNet to the old ActorNet, and A, is

where ratio, = is the probability ratio
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Algorithm 1 Fine-Tuning NMT model using PPO

Input: base NMT model NMTjy-pase, in-domain source
monolingual data Din-mono, QE model, collect size
N.

Output: fine-tuned translation model

1: Actornew  NMTin-base; Criticnew — QE;

2: foriter =1,2,3...do

3: Actorglq < Actorpew; Criticolq < Critichew

4 forn < N do

5: sample an source sentence x

6: translate = to y’

7 get the probability pold(al ‘81)7p01d(a2|52),
.y Pota(ar|sT) from Actoroia

8: get the state value v1, va, . .., vr from Criticea

9: get reward score 1,73, ..., rr from QE

10: experience = (xz,y’, P14V, T)

11:  end for
12:  for mini-batch in experience batches do

13: calculate Aq, Ao, ..., Ar for each experience
14: getp,,.,, from Actorpew and v? from Criticpew
15: optimize Actorpew and Critichew

16: end for

17: end for

18: return fine-tuned NMT model

the advantage of the action a;. When A; > 0, the
ratio ratio, is strengthened, otherwise it is weak-
ened. clip is used to limit the update range of ratio,
to enhance the stability of reinforcement learning.
Following Schulman et al. (2017), we define A; as:

A =8+ (WN)0e1 + -+ ()T oy (4)

where §; = r; + yvi11 — YU, vy IS the value score
generated by Critic,q, and r; is the reward score
generated by the QE model. The CriticNet is opti-
mized through a squared-error loss function:

o= (] =)’ (5)

where v! is the value predicted by the Critic,cyw,
and v/ represents the real return value, which is
calculated by:

v = Ay + vy (6)

In order to further stabilize the RLDA-NMT train-
ing process, we combine the NMT supervised train-
ing objective and PPO objective (Wu et al., 2018).
We maximize the following combined objective func-
tion to optimize the ActorNet:

Ecom = Epg + a£7v,mt (7)

where «a is a hyperparameter that controls the
weight of £,,,,¢-

4. Experiments

4.1.

Datasets. We evaluate the proposed approach
on Chinese<English (Zh<En) translation tasks.

Data and Setup

Domain Train Dev Test Mono
UN 17731615 - - -

Education 29989 3000 790 208500
Laws 29832 3000 456 415893
Thesis 29973 3000 625 133500
Patent 30000 3000 4382 282751

Table 1: Corpus Statistics for our experiments.

The UN Parallel Corpus V1.0 (Ziemski et al., 2016)
is used as the out-of-domain training dataset. For
in-domain parallel corpus, we use the Laws, Edu-
cation, and Thesis domain data from UM-corpus
(Tian et al., 2014), and use the Patent domain data
from ParaPat (Soares et al., 2020)?. To simulate
NMT in the low-resource scenario, for each domain,
we randomly sample 30K parallel sentence pairs
as a training set, and 3K pairs as a validation set,
and the rest are used to construct the monolingual
dataset. The data similar to the test set are filtered
out for fair comparison. Note that there is no public
test dataset in the Patent domain, so we sample
4K test data that does not overlap with the training
and validation datasets.

We follow Hu et al. (2019) to construct the non-
parallel monolingual datasets. Specifically, for each
domain, the rest of the parallel data is randomly
divided into two equal parts. Then, the source
sentences of the former part and the target sen-
tences of the latter part are taken as our monolin-
gual datasets. In addition, for the Laws domain, we
extract some monolingual data from the general
data using a publicly available similarity retrieval
algorithm?® because of its small size. After clean-
ing and filtering, the statistics of the data we finally
used are shown in Table 1.

Implementation Details. We implement the pro-
posed method on OpenNMT-py (Klein et al., 2017).
We adopt the Transformer model with Transformer-
base setting as defined by Vaswani et al. (2017).
All data is pre-processed through SentencePiece li-
brary (Kudo and Richardson, 2018). The optimizer
used for both NMT training and RL training is Adam
(Kingma and Ba, 2015), with initial learning rate is
2, decay _method is Noam, and warmup_steps is
15000. The /label_smoothing and dropout are set
to 0.1. During pre-training, the batch size is set to
8192 x 8 x 16, where 8192 is the maximum number
of tokens on each GPU, 8 is the number of GPUs,
and 16 is the accumulative count of the gradient.
The NMT model in each direction is trained for 20K
steps (about 30 epochs). For fine-tuning of NMT in

2We choose these domain based on the quality of the
data.
3https ://github.com/shibing624/text2vec
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Zh-En

Education Laws Thesis Patent
BLEU COMET BLEU COMET BLEU COMET BLEU COMET
_Unadapted =~ 27.92 0603 46.06 0.604 1815 0.072 26.55 0.232
Fine-Tuning 29.22 0.614 50.81 0.685 21.12 0.114 38.08 0.327
Forward-Translation  29.33 0.611 50.20 0.676 19.10 0.103 30.31 0.270
_RLDA-NMT=)  30.81 0633 51.12 0712 21.96 0.137 3857  0.364
Back-Translation 29.48 0.615 51.68 0.712 21.67 0.141 38.94 0.328
RLDA-NMT+BT(©wrs)  30.92 0.656 51.58 0.716 22.22 0.152 39.41 0.330
En-Zh
Education Laws Thesis Patent
BLEU COMET BLEU COMET BLEU COMET BLEU COMET
_Unadapted =~ 3426 0712 5410 0867 2919 0229 3314 0.276
Fine-Tuning 36.77 0.745 63.58 0.959 34.48 0.425 47.43 0.469
Forward-Translation 35.76 0.725 59.74 0.933 31.70 0.336 37.98 0.348
_RLDA-NMT(O¥®)  36.92 0.757 6340 0971 3450 0427 47.68 0478
Back-Translation 36.70 0.767 64.87 0.968 36.29 0.452 49.02 0.484
RLDA-NMT+BT(©urs)  37.02 0.786 64.91 0.975 36.53 0.465 49.01 0.488

Table 2: Experimental results for Zh-En and En-Zh translation tasks on four low-resource domains.

each domain, the batch size is set to 4096 x 1 x 44,
and the model in each domain is trained for 10K
steps with the learning rate is 0.0002. We save
the intermediate checkpoints every 1K steps and
choose the best-performing model as a baseline
for comparison. The checkpoint model after fine-
tuning 3K steps is used as the NMT,,-pase- We train
the QE model for 10 epochs in each domain with a
learning rate of 0.000005. And for RLDA-NMT train-
ing, we set the collection size N to 5K, the threshold
e of the clip functionto 0.2, the -y in Equation 410 1.0,
A in Equation 4 to 0.95, and « in Equation 7 to 15
in all experiments. We train Education RLDA-NMT
models with the learning rate is 0.000005 and train
the other RLDA-NMT models with 0.00005. Differ-
ent learning rates are set to stabilize the training
process. SacreBLEU® python package is used to
calculate the BLEU score. For Chinese, we calcu-
late the BLEU at the character granularity. We also
report COMET (Rei et al., 2020) scores, which are
shown to have higher correlation with human judg-
ment, to further evaluate translation quality. The
eamt22-cometinho-da model (Rei et al., 2022) is
used to generate the COMET scores.

Experimental Comparison. Our goal is to em-
pirically test whether the proposed reinforcement
learning method is effective for translation in low-

“Compared to pre-training, we reduced the batch size
to slow down the fitting.
5https://github.com/mjpost/sacrebleu

resource domains and explore its complementarity
with data-centric approaches. Therefore, we com-
pare the following methods:

* Unadapted. The NMT model is trained with
the out-of-domain parallel corpus and directly
evaluated with the in-domain test dataset.

* Fine-Tuning (Chu et al., 2017). The NMT
model is fine-tuned by mixing the out-of-
domain parallel data and in-domain parallel
data in equal proportions after pre-training.

» Forward-Translation (Chinea-Rios et al,
2017). A method that fine-tunes pre-trained
NMT model using synthetic in-domain parallel
data generated by translating source monolin-
gual data with a source-to-target NMT model.

+ Back-Translation (Sennrich et al., 2016). A
method similar to Forward-Translation, but us-
ing synthetic in-domain parallel data generated
by translating target monolingual data with a
target-to-source NMT model.

* RLDA-NMT. The proposed method that fine-
tunes the pre-trained NMT model using in-
domain source monolingual data through rein-
forcement learning.

* RLDA-NMT+BT. Combination of the proposed
method with BT to evaluate the complemen-
tarity of RLDA-NMT and data-centric methods.
The data synthesized by BT is added as su-
pervised training when fine-tuning NMT using
reinforcement learning.
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4.2. Main Results

Table 2 shows the performance of the baseline
methods and our methods on Zh-En and En-Zh
translation tasks on four domains. We have the
following observations.

Firstly, compared with Fine-Tuning, RLDA-NMT
has improved the BLEU scores of most translation
tasks, especially in Education of the Zh-En trans-
lation direction, which has improved by 1.59 com-
pared with the Fine-Tuning method. There is also
a 0.2~0.7 improvement in most other tasks. For
the COMET scores, RLDA-NMT achieves the best
performance in all translation tasks, and most of
them have observable improvements. It proves that
introducing reinforcement learning into the domain
adaptation of NMT is effective.

Secondly, the performance of the Forward-
Translation method has mostly declined compared
to the Fine-Tuning method, especially in the Patent
domain, where there has been a significant decline.
This phenomenon can be attributed to the reason
that large amounts of forward-translated data intro-
duce noise to the decoder in low-resource settings,
as Haddow et al. (2022b) have described. In con-
trast, our method introduces reinforcement learn-
ing to automatically score the current translation
generation and judge whether it should be strength-
ened or weakened, which will filter the noisy data.
Therefore, the benefits of RLDA-NMT come from
RL rather than the expansion of data volume.

Finally, the combination of RLDA-NMT and BT
brings further improvements, which validates the
complementarity of RLDA-NMT and data-centric
approaches. As we analyzed earlier, data-centric
methods usually only utilize the target monolin-
gual data, without mining the rich information in
the source monolingual data. In contrast, RLDA-
NMT+BT utilizes both source and target domain
monolingual data at the same time, thus bringing
further improvements.

5. Analysis

In this section, we conduct several interesting anal-
yses and controlled experiments to explore the
substantial improvement of applying reinforcement
learning to the domain adaptation of NMT.

5.1.

During the experiment, we found that it is difficult to
get a satisfactory model when fine-tuning only us-
ing in-domain bilingual data. When we try smaller
learning rates, the model hardly converges and the
performance is low. When trying a larger learning
rate, the model is prone to overfitting. Our expecta-
tion is that reinforcement learning can alleviate this
problem to some extent.

Alleviation of Overfitting

FT-zh2en

—e— RLNMT-zh2en

—— FT-en2zh

RLNMT-en2zh
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Figure 3: BLEU scores of different methods accord-
ing to the number of training steps on the test sets
of four domains. *-zh2en and *-en2zh represent
Zh-En and En-Zh translation tasks respectively.

We save the checkpoint model every 1000 steps
when fine-tuning the pre-trained NMT model with
or without reinforcement learning. We evaluate the
performance of each model on the test set, and the
evaluation results are shown in Figure 3. It can be
seen that in each translation task, the performance
of Fine-Tuning (FT) models on the test set tend
to increase first and then decrease. In the later
stages of training, the model overfits the training
set, leading to a decrease in generalization ability.
In contrast, RLDA-NMT models do not appear to
be overfitting in most cases. Even if there is a
slight decrease, it can stabilize at a relatively high
performance. It is in line with our expectation that
using reinforcement learning to fine-tune the NMT
model can alleviate the overfitting phenomenon and
improve the generalization ability of the model.

5.2. Effect of the Quality of the QE Model

The scores generated by the QE model for trans-
lation pairs guide the process of fine-tuning using
reinforcement learning (§ 3.3). Therefore, the qual-
ity of the QE model is crucial to the quality of the
final NMT model. To explore the relationship be-
tween the performance of the two models®, we
used the underperforming QE model to guide the
reinforcement learning process and recorded the
performance of the final NMT model. Specifically,
we conduct experiments in the Education domain
of the Zh-En translation task. We take the QE mod-
els of the 2nd, 4th, 6th, 8th, and 10th epochs in
the QE training process to guide the RL fine-tuning

®We measure the performance of the QE model using
the accuracy of the model on the validation set, which
is identically distributed and non-overlapping with the
training set.
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Epoch QE (ACC%) NMT(BLEU)
2 57.39 29.05
4 79.59 30.18
6 87.31 30.53
8 92.17 30.76
10 93.13 30.81

Table 3: Correlation between QE model perfor-
mance and final NMT performance. ACC% refers
to the accuracy of the QE model in scoring the rank-
ing data of the validation dataset.

Data Size BLEU
FT RLDA-NMT A
10K 29.17 30.74 +1.57
30K 29.22 30.81 +1.59
50K 29.58 30.93 +1.35
100K 29.81 30.98 +1.17

Table 4: Comparison of BLEU scores of Fine-
Tuning (FT) and RLDA-NMT in Zh-En Education
translation tasks under scenarios with different
amounts of in-domain parallel data. A represents
the difference between the BLEU score of RLDA-
NMT method and Fine-Tuning method.

process. The obtained results are shown in Table 3.

It can be seen that when the QE model perfor-
mance is poor, especially in Epoch 2, the NMT
model after fine-tuning using RL drops by 0.2 BLEU,
which shows that the poor-performing QE model
will introduce noise into the final NMT model. As
the performance of the QE model improves, the fi-
nal NMT performance also gradually improves and
tends to saturation. It is in line with our expecta-
tions that a better QE model can lead to a better
NMT model, but as QE performance gradually im-
proves, the increase in NMT performance gradually
decreases and tends to saturation.

5.3. Effect of the In-Domain Parallel Data
Size

We explore the utility of RLDA-NMT in scenarios
with different sizes of in-domain parallel data to fur-
ther explore the improvements brought by reinforce-
ment learning. Concretely, we conduct experiments
in the Education domain of the Zh-En translation
task. We compare RLDA-NMT and Fine-Tuning in
scenarios where the size of in-domain parallel data
is [10K, 30K, 50K, 100K]. We conduct experiments
in each scenario and evaluate each fine-tuned NMT
model with the test set. The experimental results
are shown in Table 4.

As we can see, the performance of both Fine-
Tuning (FT) and RLDA-NMT improves as the size of

31.04 30.81

30.72

BLEU

a=0 a=5 a=10 a=15 a=20 a=25

Figure 4: BLEU scores of RLDA-NMT with different
weights « of NMT supervised training objective
Enmt-

in-domain parallel data increases, and RLDA-NMT
consistently outperforms FT. It proves that RLDA-
NMT can bring improvement both in scenarios with
little or some in-domain parallel data. Furthermore,
RLDA-NMT shows greater improvement over FT in
lower-resource scenarios (+1.57 BLEU in the 10K
scenario and +1.59 BLEU in the 30K scenario vs.
+1.17 BLEU in the 100K scenario), which proves
that the application of RLDA-NMT in lower-resource
scenarios can obtain greater benefits. Thisisin line
with our expectations. If there are fewer parallel
resources in the domain, the overfitting problem
is more serious, and RLDA-NMT can alleviate this
problem and improve translation performance.

5.4. Effect of the weight of NMT
supervised training objective

As shown in Equation 7, the hyperparameter « con-
trols the contribution of the NMT supervised training
objective (L) to RL training. For comparison,
we set a to be [0, 5, 10, 15, 20, 25] in Zh-En Ed-
ucation translation experiments. The results are
presented in Figure 4.

The results show that when o« = 0 (i.e. not com-
bined with the NMT supervised training objective
Lnmt), RLDA-NMT does not bring improvement,
even weaker than the Fine-Tuning model. We be-
lieve that it is because of the instability of RL, with-
out the participation of £,,,,,;, RL may cause dam-
age to the original training. When a < 15, the
performance of the RLDA-NMT model increases
as the weight of the NMT supervised training ob-
jective increases, which indicates that the £,
can help stabilize the RL training and improve the
performance of the RLDA-NMT models. However,
when « > 15, the performance of the RLDA-NMT
model decreases as a increases, we speculate that
the overfitting problem of NMT supervised training
impairs the improvement brought by RL because
of the large weight of £,,,+.
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6. Conclusion

In this work, we propose a Reinforcement Learn-
ing Domain Adaptation method for Neural Ma-
chine Translation (RLDA-NMT) in low-resource do-
mains, which leverages domain source monolin-
gual data to fine-tune the pre-trained NMT model
through a reward-based mechanism. We use
small-scale in-domain parallel data as seed data
to train a quality estimation model, and then use
the model to automatically score the generated
translations, thereby using monolingual data to self-
supervised fine-tune the initially trained NMT model
and strengthen domain-specific translations. We
conduct extensive experiments on four domains
of Chinese<English translation tasks. The experi-
mental results show that RLDA-NMT can improve
the translation quality and alleviate overfitting, and
can further supplement back-translation method.
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