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Abstract
The Relation Extraction (RE) task aims to extract the relation between two entities in a sentence. As the
performance of methods on RE task depends on datasets’ quantity and quality, in this paper, we propose to
use the Large Language Model (LLM) to do data augmentation. Moreover, compared to traditional fine-tuning
methods, more research focuses on prompt learning. However, all of their prompt templates ignore the relative
order of entities, which we believe will affect the prediction error. Due to that, we propose novel bidirectional
prompt templates for prompt learning and design a training strategy for utilizing the templates. Then we try
to fit the probability distributions of both prompt learning and fine-tuning methods into our model. To this end,
we propose Relation Classification via Bidirectional Prompt learning with data augmentation by LLM (RCBP)
and conduct experiments on four datasets: TACRED, RETACRED, TACREV and Semeval. The results show
that RCBP performs well on these datasets and outperforms the state-of-the-art in the TACREV, RETACRED datasets.
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1. Introduction

Relation Extraction (RE) is being deeply re-
searched in knowledge graph and other tasks, such
as question answering (Xu et al., 2016; Chen et al.,
2019) and text summarization (Shang et al., 2011;
Lu et al., 2022). The RE task takes a sentence
and two entities in the sentence as inputs and out-
puts a relation that is commonly recognized from a
predefined relation set.

Recent studies investigate RE task from two dif-
ferent aspects. Firstly, Data Augmentation (DA)
is widely used to improve performance, such as
Back Translation (BT), which leverages several ex-
isting pre-training models to translate sentences
from one language into another and then translate
back. BT implies a large number of DA operators,
such as synonym substitution, word deletion, word
addition and so on (Dai et al., 2023). However, in
back translation of RE task, there is no guarantee
that two input entities will appear in the sentence
after translation. For instance, given the sentence
That man has founded his own company, words
man and company are two entities, but after we
translate the sentence into Chinese and then trans-
late back into English, the sentence becomes That
person has founded his own company, and the sub-
ject entity man is replaced by the entity person. To
solve this issue, entities are recognized by compar-
ing their semantic similarity between the original
sentence and the sentence after back translation
(Yu et al., 2020). However, there are still lots of
errors in matching the corresponding entities. In
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order to further reduce such errors, we use Large
Language Models (LLM) such as ChatGLM2 (Zeng
et al., 2022) and Chinese-Alpaca (Cui et al., 2023)
to implement BT by requiring the original entities
to be kept in the answer of the queries.

Secondly, more attention has been paid to
prompt learning in Natural Language Processing
(NLP) task. Prompt learning opens up a new
paradigm (Liu et al., 2021) of fine-tuning Pre-
training Language Models (PLMs) with additional
learning prompt templates. For example, in Binary
Sentiment Classification (BSC), given the sentence
The movie was nice, to present positive sentiment,
we append the prompt template It was [MASK] to
this sentence with the label of [MASK] = great. In
this way, prompt templates designed based on a
specific task can be used to fine-tune parameters
of PLMs to adapt to the task. In RE task, Han
et al. (2022b) proposes Prompt Tuning with Rules
(PTR) for many-class text classification and applies
logic rules to construct prompts with several sub-
prompts. Based on it, more works about prompt
learning have been proposed (Cohen et al., 2020;
Yang and Song, 2022; Chen et al., 2022a,b,c; Ye
et al., 2022). However, in prompt learning, there
are still two issues to be addressed.

The first issue is that the order of two entities in
the sentence may affect the prediction error. Re-
cent researches (Han et al., 2022b; Yang and Song,
2022; Chen et al., 2022a,b,c; Ye et al., 2022) do
not consider the order and use only one order of
entities in prompt learning. But we argue that tem-
plates composed of different orders may result in
different label distributions, and using a prompt tem-
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plate with only one given order may not reach the
maximum probability of correct labels, which leads
to the prediction error. So we propose a novel tem-
plate in prompt learning for RE task to merge two
orders of both entities, we name such a method
bidirectional prompt learning. For instance, given
sentence x and its two entities e1 and e2, we de-
sign forward directional template e1 [MASK] e2 and
reverse directional template e2 [MASK] e1, these
two templates are jointed after the sentence x. For
each relation, we take the maximum probability of
two templates. In this way, the issue of prediction
error can be alleviated if the correct label has the
highest probability in one of these two templates.
Besides that, we consider that different label words
for these two templates’ masks have an impact on
the result due to the fact that different label words
may expand the scope of target semantics and
further alleviate the issue. So the novel template
in bidirectional prompt learning is our method to
alleviate the first issue of prediction error.

The second issue is that research shows that
both prompt learning and fine-tuning methods have
their own advantages in RE tasks (Liu et al., 2021)
and finding a method to combine both of them on
RE task has been a recent research direction. In
RE task, the fine-tuning method (Liu et al., 2019;
Peters et al., 2019; Park and Kim, 2021; Wang et al.,
2023) adds an extra structure (e.g. classification)
after PLMs, both of the extra structure’s and PLMs’
parameters are fine-tuned to adapt to datasets.
While prompt learning only utilizes pre-training task
(e.g. masked language modeling) in PLM without
adding additional parameters. Due to the limited
number of parameters to be adjusted, researches
(Han et al., 2022b; Chen et al., 2022b; Liu et al.,
2019) show that prompt learning performs better
than fine-tuning in few-shot datasets and is not as
good as fine tuning in large datasets. On the other
hand, research shows that prompt learning utilizes
semantic information from labels (Yenicelik et al.,
2020), while fine-tuning does not. Because prompt
learning preserves the semantics of labels by con-
verting labels into label words of [MASK]s that need
to be predicted in templates, while fine-tuning re-
gards labels as numbers and trains connections
between entities’ embeddings and the numbers. In
order to better adapt to large datasets and make
use of the semantics of labels, we add an addi-
tional MultiLayer Perceptron (MLP) to adaptively
fit the final probability distribution of each label in
this paper. Compared to the method proposed by
Yang and Song (2022) which takes weighted sum
of probability distributions of each label as the final
probability distribution, our method uses more pa-
rameters to control the final probability distributions,
and our parameters can be optimized adaptively.
Overall, we propose our model named Relation

Classification via Bidirectional Prompt learning with
data augmentation by LLM (RCBP).

The main contributions of this paper are summa-
rized as follows:

• We implement back translation by using large
language models, which is able to alleviate the
issue that entities can’t be kept in the sentence
after back translation.

• We design bidirectional prompt learning for
RE task and select maximum similarity of both
directions to reduce the prediction errors of a
single direction.

• In order to better adapt to large datasets and
make use of labels’ semantics, we add a Multi-
Layer Perceptron to combine prompt learning
with fine-tuning methods to adaptively fit the
final probability distribution.

2. Preliminaries

Before introducing our method RCBP, we first for-
malize the problem of the RE task.

Formally, given several quintuples (x, s, o, ts, to)
and a relation set R, where x is a sentence, s and o
are subject and object entities and s, o ∈ E, where
E is a set of all entities, ts is type of s while to is
type of o. The RE task is to predict relation r ∈ R
between s and o. All these quintuples make up the
instance set X .

3. Method

Our Relation Classification via Bidirectional Prompt
learning (RCBP) method is illustrated in Figure 1,
which includes three parts: Back Translation, Bidi-
rectional Prompt Learning and MLP-Driven Proba-
bility Distribution Fusion. In Back Translation, we
firstly translate our initial training data from English
to Chinese by Large Language Model (LLM), then
we translate them back to English, so we obtain a
new set of data, and then we merge them with ini-
tial data into our new training data. In Bidirectional
Prompt Learning part, firstly, we add special tokens
and entities’ types into sentences. For example, in
the sentence shown in Figure 1, we change Ap-
ple to @ * organization * Apple @. And we also
add a bidirectional prompt after the sentence. Sec-
ondly, we compute the probability distribution over
each label through both Masked Language Mod-
eling (MLM) in pre-training model and MultiLayer
Perceptron (MLP). In MLP-Driven Probability Distri-
bution Fusion part, we feed both probability distri-
butions into another MLP to fit the final probability
distributions.
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Figure 1: The overview of RCBP. The [Forward template] means a forward directional template while
the [Reverse template] means a reverse directional template. P in the charts indicates probability, PLM
represents a pre-training model, MLM represents masked language modeling, and MLP represents
multilayer perceptron.

3.1. Back Translation
To enhance RE datasets, we use back translation
to do data augmentation.

Our Back Translation can be concluded into 3
steps, and the input is a dataset D.

Firstly, for each instance d of dataset D, denoting
its sentence by x, we construct a query q1(·) as
Equation (1):

q1(x) = “Translate into Chinese: ” ⊕ x, (1)

where ⊕ is an operation of string concatenation.
Then the query string q1(x) is sent to a Large Lan-
guage Model (LLM) for completing the task that
“Translate the sentence x into Chinese”, as indi-
cated by Equation (2):

x′ = f(q1(x)), (2)

where f(·) is the translation function of the LLM
and x′ is the translated Chinese sentence from x.

Secondly, similar to the first step, we construct
a query q2(·) and send it to LLM for translating
Chinese sentence x′ back into English sentence
x′′, by Equation (3) and (4):

q2(x
′) =“Translate the sentence into

English, and use phrases ” ⊕ s⊕
“ and ” ⊕ o⊕ “: ” ⊕ x′,

(3)

x′′ = f(q2(x
′)), (4)

where s, o are two entities of instance d, x′′ is the
English sentence after back translation and may
be different from the original English sentence x.

Finally, if the two English sentences x and x′′

are not the same, we append x′′ to dataset D, and
update dataset D with Equation (5) :

D = D ∪ {x′′, s, o, ts, to}, (5)

where ts and to are the types of s and o. After all
instances in the dataset D have been augmented,
we denote the augmented dataset by D′.

3.2. Bidirectional Prompt Learning
In this section, we introduce Bidirectional Prompt
Learning part in two steps: building bidirectional
prompts and computing bidirectional prompt learn-
ing probability.

Building Bidirectional Prompts To consider the
relative order of two entities and reduce the sim-
ilarity error of one single order, with the inputting
instance x, we build two types of prompt tem-
plates: forward prompt template T1(s, o) and re-
verse prompt template T2(s, o).
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Forward prompt template T1(s, o) is built accord-
ing to the given relative order of two entities, which
can be formalized as Equation (6):

T1(s, o) =The m1 s m2 m3 m4 the m5 o, (6)

where mi(1 ≤ i ≤ 5) is what we expect the pre-
training model to predict. In Equation (6), mask
m1 is predicted as the type of s, mask m5 is pre-
dicted as the type of o while masks mi(i = 2, 3, 4)
are predicted as a predicate phrase that is re-
lated to relation class. For instance, in Figure 1,
T1(Apple, Jobs) = “The m1 Apple m2 m3 m4 the
m5 Jobs,”, the label words for these masks are
organization, is, founded, by, person separately.

Similarly to forward prompt template, reverse
prompt template T2(s, o) is built based on the re-
versed relative order of two entities, which can be
formalized as Equation (7):

T2(s, o) =The m6 o is the m7 s’s m8 m9, (7)

where m6 is predicted as the type of o, m7 is pre-
dicted as the type of s while m8 and m9 are pre-
dicted as noun phrases related to relation class.
For example, in Figure 1, T2(Apple, Jobs)=“The m6

Jobs is the m7 Apple’s m8 m9.”, the label words for
these masks are person, organization, one, origi-
nator separately.

Computing Bidirectional Prompt Learning Prob-
ability Distribution After building the bidirec-
tional prompt templates, we can compute the prob-
ability distribution over the relation set R to predict
the most possible relation class for each instance.
And the way to compute probability distribution of
bidirectional prompt learning can be summarized
into the following three steps.

The first step is to calculate probability distribu-
tion of each mask mi(i = 1, 2, ..., 9) over its label
word set Vi, which is formalized as Equation (8):

p(mi = v|Tj(s, o)) =
exp(hv · hmi

)∑
v̂∈V exp(hv̂ · hmi)

, (8)

where hmi
is the embedding of mi, v is a label word

in Vi and Tj(s, o) denotes one directional prompt
template. Equation (8) denotes calculating the simi-
larity between each label word’s embedding hv and
predicted embeddings of corresponding mask hmi .

The second step is to merge the result of sev-
eral masks’ probabilities in two directional prompts
Tj(s, o) separately and obtain a probability distribu-
tion pj(·) for each prompt template, which can be
formalized as Equation (9):

pj(r|x) =
∏

i,mi∈Tj(s,o)

p(mi = vi|Tj(s, o)), (9)

where r is one of the relation classes in the relation
set R and its prompt template’s label words are

{v1, v2, ..., v9}. Here in Equation (9) we use the
multiplication to merge all the masks’ probabilities
into one single directional probability of relation
class r.

The last step is to calculate the maximum prob-
ability pBPL(·) of both directions for each relation
class r, which can be calculated as Equation (10):

pBPL(r|x) =
max{p1(r|x), p2(r|x)}∑

r′∈R

max{p1(r′|x), p2(r′|x)}
. (10)

An additional normalization was added to the equa-
tion (10) to guarantee that the sum of all probabili-
ties is equal to 1.

Based on Equation (10) and Cross Entropy
Loss, our learning objective for Bidirectional Prompt
Learning is to minimizeLossBPL, which is calculated
as Equation (11):

LossBPL = − 1

D

∑
x∈D

log[pBPL(rx|x)], (11)

where rx is the relation class of instance x.

3.3. MLP-Driven Probability Distribution
Fusion

After computing the probability distribution
pBPL(R|x) in section 3.2, we add MLP-Driven
Probability Distribution Fusion part to fit probability
distributions by combining bidirectional prompt
learning with fine-tuning methods, thus our model
can better adapt to large datasets and make use of
relation classes’ semantics. The MLP-Driven Prob-
ability Distribution Fusion part can be concluded in
the following two steps.

Firstly, we need to compute fine-tuning’s prob-
ability distribution pFT(r|x) over the relation set R,
which can be formalized as Equation (12):

pFT(r|x) = g(WFTh[CLS] + bFT), r ∈ R, (12)

where g(·) represents the softmax function, and
WFT and bFT are parameters to be fine-tuned.

Secondly, we add an additional MultiLayer Per-
ceptron (MLP) to adaptively fit the final probability
distribution p(r|x), shown by Equation (13):

p(r|x) = g(W [pBPL(r|x), pFT(r|x)]+b), r ∈ R, (13)

where p(r|x) ∈ R|R|×1, [·] is a function to concate-
nate two vectors of probability distribution, and W
and b are parameters that are fine-tuned to maxi-
mize the cross entropy loss function as Equation
(14):

Loss = − 1

D

∑
x∈D

log(p(rx|x)), (14)

where rx is the relation class of instance x.
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Statistics Numbers Numbers Numbers Numbers
in TACRED in RETACRED in TACREV in Semeval

Sentences 106264 106264 91467 10717
labeled relations 42 42 40 19
entity pair types 27 27 25 -

Table 1: The Detailed Statistics in TACRED, RETACRED, TACREV and Semeval datasets. RETACRED
and TACREV are datasets that correct data with annotation errors in TACRED dataset.

Model Method TACRED RETACRED TACREV Semeval
Test F1 Test F1 Test F1 Test F1

TYP Marker‡(Liu et al., 2019) Fine-tuning 74.6 91.1 83.2 89.9
QA†(Cohen et al., 2020) Fine-tuning 74.8 - - 91.9
LUKE†(Yamada et al., 2020) Fine-tuning 72.7 90.3 - 90.3
RECENT‡(Lyu and Chen, 2021) Fine-tuning 74.6 90.2 83.5 89.7
FPC†(Yang and Song, 2022) Fine-tuning 76.2 91.6 84.9∗ 90.4
GenPT†(Han et al., 2022a) Fine-tuning 75.3 91.1 84.0 -
DeepStruct†(Wang et al., 2023) Fine-tuning 76.8 - - -

PTR†(Han et al., 2022b) Prompt learning 72.4 90.9 83.9 89.9
KnowPrompt†(Chen et al., 2022c) Prompt learning 72.4 91.3 82.4 90.3
RetrievalRE†(Chen et al., 2022b) Prompt learning 72.7 91.5 82.7 90.4
OntoPrompt†(Ye et al., 2022) Prompt learning - - 78.2 89.1
RCBP(ours) both 76.41∗(0.13) 91.95(0.22) 85.49(0.06) 91.43∗(0.20)

Table 2: Test F1 on TACRED, RETACRED, TACREV and Semeval datasets. We report mean (and
standard deviation) results of RCBP. Method represents whether the model is based on fine-tuning,
prompt learning or both. The bold number is the best F1 result for each dataset and the scores with an *
indicate the second best results. † indicates results collected from paper and ‡ indicates results collected
from code we re-implement.

4. Experiments

To verify the performance of our Relation Classifica-
tion via Bidirectional Prompt learning with data aug-
mentation by LLM (RCBP), we compare it with the
state-of-the-art on four widely used datasets: TA-
CRED, RETACRED, TACREV and Semeval. And
then, more studies are conducted to investigate
the effectiveness of Back Translation, Bidirectional
Prompt Learning and MLP-Driven Probability Distri-
bution Fusion. Finally, we perform analysis on the
remaining prediction errors to gain further insights
into our RCBP.

4.1. Dataset
We evaluate our RCBP on the following four Rela-
tion Extraction tasks: TACRED (Zhang et al., 2017),
RETACRED (Stoica et al., 2021), TACREV (Alt
et al., 2020) and Semeval (Hendrickx et al., 2019).
The detailed dataset statistics are shown in Table
1 and the evaluation index over all these datasets
is the micro F1.

4.2. Experimental Setup
Compared methods To verify the effectiveness
of our model, we compare it with the following meth-

ods:

• TYP Marker (Zhou and Chen, 2021) It creates
an entity marking method and produces a new
baseline model.

• QA (Cohen et al., 2020) It reduces each RE
sample to a series of binary spanprediction
tasks.

• LUKE (Yamada et al., 2020) It proposes new
contextualized representations based on a bidi-
rectional transformer.

• RECENT (Lyu and Chen, 2021) It partitions
dataset into sub-datasets by entity pair types.

• FPC (Yang and Song, 2022) It proposes Fine-
tuning with Prompt Curriculum for RE.

• GenPT (Han et al., 2022a) It generates
prompts to reformulate RE as an infilling prob-
lem.

• DeepStruct (Wang et al., 2023) It pretrains on
a large task-agnostic corpora.

• PTR (Han et al., 2022b) It applies logic rules to
construct prompts with several sub-prompts.



13890

• KnowPrompt (Chen et al., 2022c) It proposes
knowledge-aware prompt learning.

• RetrievalRE (Chen et al., 2022b) It proposes
a new retrieval-enhanced prompt learning.

• OntoPrompt (Ye et al., 2022) It explores
knowledge injection with pre training language
models and proposes ontology-enhanced
prompt-tuning.

Experimental Configurations Our model is im-
plemented based on the PTR (Han et al., 2022b).
The pre-training model we select is Roberta (Liu
et al., 2019). Our adam (Kingma and Ba, 2014)
rate is 1e-8 with a linear warmup for the first 10%
steps. The weight decay is set to 1e-2. For all the
datasets, we fine-tune our model for 4 epochs with
a batch size of 16 and the learning rate is set to
3e-5. We take the average of F1 based on three
different random seeds as the final result.

We provide the prompt learning templates on
TACRED dataset in Appendix A.

4.3. Comparison with State-Of-The-Art
The experimental results of our method with other
comparison methods are represented in Table 2.

As shown in Table 2, the first column contains
the names of the State-Of-The-Art models and our
method RCBP, the second column represents the
method used by the models, like fine-tuning, prompt
learning and both. While the third to fifth columns
contain the results of test F1 on TACRED, RETA-
CRED, TACREV and Semeval datasets, respec-
tively. Our RCBP is tested on Roberta pre-training
language models (PLMs).

From Table 2, we draw three conclusions.
Firstly, our model RCBP achieves significant im-

provements over all baselines of prompt learning.
Compared to the best prompt learning methods,
RCBP performs 3.7 higher than REtrievalRE on
TACRED, 0.5 higher than REtrievalRE on RETA-
CRED, 1.6 higher than PTR on TACREV and 1.0
higher than REtrievalRE on Semeval. Even com-
paring with fine-tuning models, RCBP still outper-
forms these models on TACREV, RETACRED. Al-
though on TACRED, the performance is 0.4 less
than the first leader DeepStruct, RCBP’s result is
0.2 higher than the second model and 1.1 higher
than the third model. While on Semeval, the perfor-
mance is 0.5 less than the first model QA, RCBP’s
result is 1.0 higher than the second model.

Secondly, our model RCBP does not perform as
effectively as DeepStruct model in TACRED dataset
and QA model in Semeval dataset. There are two
reasons in TACRED dataset. Firstly, the huge lead
of DeepStruct is attributed to the fact that it fur-
ther adds a large amount of text unrelated to RE

task into the PLMs for fine-tuning before simply
continuing with fine-tuning in downstream tasks.
So another perspective towards certification is that
richer knowledge of PLMs from large-scale unla-
beled data will perform better in final results. Sec-
ondly, excessive noise influences our model. TA-
CRED has lots of manual annotation errors, while
RETACRED and TACREV correct some of these
error data, so our model reaches high performance
on these two datasets. In Semeval dataset, though
we both design templates for RE task, QA model
aims at answering the span of one entity under
each constructed question template, while RCBP
predicts the embedding of relations under the bidi-
rectional prompts. We argue that due to the differ-
ences between datasets, predicting entities may be
more efficient than predicting relations in Semeval
dataset, while it’s not in TACRED dataset, as RCBP
performs better than QA model in TACRED.

The last is that most fine-tuning methods do
better than prompt learning methods, especially
in TACREV and TACRED datasets. Because re-
cent PLMs have achieved effective results, sim-
ply fine-tuning in downstream tasks can capture
the rich knowledge of PLMs from large-scale unla-
beled data. Also, because fewer parameters can be
fine-tuned, prompt learning doesn’t have much ad-
vantage on large datasets compared to fine-tuning
methods.

To understand the insides of our RCBP and find
the causes of these improvements, we further inves-
tigate our contributed components in the following
empirical studies.

4.4. Ablation Studies

Model TD RTD TV Semeval
Test F1 Test F1 Test F1 Test F1

RCBP 76.41(0.13) 91.95(0.22) 85.49(0.06) 91.43(0.20)

-BT 76.18(0.03) 91.82(0.20) 85.41(0.10) 90.85(0.16)

-BPL 74.89(0.43) 90.91(0.14) 83.90(0.19) 91.38(0.24)

-MPD 76.16(0.26) 91.67(0.10) 85.22(0.12) 90.42(0.38)

-all 74.17(0.42) 90.88(0.06) 82.76(0.25) 89.63(0.29)

Table 3: The mean (and standard deviation) re-
sults of our ablation experiments on RCBP. The
bold number is the best F1 result. RTD denotes
RETACRED, TV denotes TACREV and TD denotes
TACRED dataset. BT represents Back Translation,
BPL represents Bidirectional Prompt Learning and
MPD represents MLP-Driven Probability Distribu-
tion Fusion.

Effectiveness of three Parts In order to verify
the effectiveness of Back Translation, Bidirectional
Prompt Learning and MLP-Driven Probability Dis-
tribution Fusion in RCBP, we conduct the ablation
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experiments on the four datasets. The experimen-
tal results are tested after removing each one of
them from our model and they are shown in Table 3.
The first column represents the models, the second
to fifth columns are test F1 on each dataset.

Compared with full model RCBP, we draw the
following three conclusions.

The first is that Back Translation and MLP-
Driven Probability Distribution Fusion parts have
not shown much improvement on TACRED and
TACREV datasets. Removing Back Translation
only decreases the result by 0.16 on TACRED
and TACREV datasets on average, and removing
MLP-Driven Probability Distribution Fusion only de-
creases by 0.26 on TACRED and TACREV datasets
on average, which indicates that both parts have
poor handling of noise as TACREV has the same
training data as TACRED which has around 25%
manual annotation error rate.

Secondly, Bidirectional Prompt Learning part al-
most has the highest improvement among these
three parts. Bidirectional Prompt Learning in-
creases F1 result by 0.91 on average, which in-
dicates that the sequential order of two entities in
the prompts has a significant impact on the results.

Lastly, we draw the conclusion that Back Transla-
tion, Bidirectional Prompt Learning and MLP-Driven
Probability Distribution Fusion parts all have posi-
tive effects.

Effectiveness of Back Translation by Large Lan-
guage Model In order to verify the effectiveness
of using Large Language Model (LLM) to do back
translation, we conduct the following three exper-
iments. We use two LLMs with queries: Chat-
GLM2 (Zeng et al., 2022), Chinese-Alpaca (Cui
et al., 2023) to compare with the common transla-
tion method without queries: Google translation.

Dataset CG CA Google None
test F1 test F1 test F1 test F1

TD 76.41(0.13) 76.31(0.11) 75.53(0.07) 76.18(0.03)

RTD 91.95(0.22) 91.87(0.28) 91.76(0.30) 91.82(0.20)

TV 85.49(0.06) 85.06(0.08) 85.01(0.12) 85.41(0.10)

Semeval 91.43(0.20) 90.92(0.26) 90.66(0.27) 90.85(0.16)

Table 4: The mean (and standard deviation) results
of comparison with LLMs and common translation.
The bold number is the better F1 result. RTD de-
notes RETACRED, TV denotes TACREV and TD
denotes TACRED dataset. CG denotes ChatGLM2,
CA denotes Chinese-Alpaca and None denotes
without doing back translation.

The first experiment is the RE results of two LLMs
and Google translation which are shown in Table 4.
From the table, we can observe that the enhanced

data improvement of ChatGLM2 is the most sig-
nificant which can generate higher quality corpora.
And compared to the common translation, it fur-
ther explains that the LLMs perform better in back
translation under the guidance of our queries in RE
task.

Dataset ChatGLM2 CA Google
TACRED 68.33% 72.00% 51.19%
RETACRED 69.29% 66.50% 51.63%
TACREV 68.33% 72.00% 51.19%
Semeval 57.83% 62.30% 37.09%

Table 5: The table shows the rates of including both
entities after back translation. The bold number is
the highest inclusion rate for each dataset. CA
denotes Chinese-Alpaca.

The second experiment is about the rates of in-
cluding both entities after back translation, the re-
sults are shown in Table 5. Because TACREV and
TACRED have the same training data, they have
the same rate of including both entities. From Ta-
ble 5, we can observe that Chinese-Alpaca has
the highest rate of including both entities after back
translation. Also, we can observe that the common
translation’s rates are around 20% less than LLMs’
rates which indicates that our queries help guide
LLMs to preserve two entities. Because of less
data enhanced, the results of common translation
are not higher than those of LLMs.

Dataset ChatGLM2 CA Google
TACRED 76.09 71.64 74.83
RETACRED 75.73 72.05 77.96
TACREV 76.09 71.64 74.83
Semeval 76.11 73.26 78.81

Table 6: The table shows the back translation qual-
ity of each model and the evaluation metric is BLEU.
The bold number is the highest inclusion rate for
each dataset. CA denotes Chinese-Alpaca.

The third experiment shows the translation qual-
ity of each model, the results are shown in Table
6. Here we use the BLEU (Papineni et al., 2002)
metric to evaluate the quality of back translation,
and the n-gram parameter is set to 3. From Table 6,
we can observe that ChatGLM2 has higher transla-
tion quality than Chinese-Alpaca, even though the
latter have slightly higher inclusion rate of entities,
ChatGLM2 still performs better in results. Though
the common translation has the highest translation
quality in RETACRED and Semeval datasets, its
inclusion rate of entities is too low, which influences
its results in RE task. Overall, we conclude that
queries in LLMs can alleviate the issue of keeping
entities after back translation.
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Effectiveness of Bidirectional Prompt Learning
In order to verify that Bidirectional Prompt Learning
(BPL) reduces the prediction errors of one single
direction and the design of bidirectional prompts
has an impact on the result, we conduct the fol-
lowing two experiments. The Back Translation and
MLP-Driven Probability Distribution Fusion parts
are not applied to these experiments.

Dataset Bidirectional F R
TACRED 76.00(0.26) 74.17(0.42) 74.05(0.73)

RETACRED 91.06(0.48) 90.88(0.06) 91.56(0.21)

TACREV 84.82(0.21) 82.76(0.25) 84.09(0.18)

Semeval 90.28(0.24) 89.63(0.29) 89.97(0.43)

Table 7: The table shows the mean (and standard
deviation) results of bidirectional prompt learning
and each single direction. The bold number is the
highest result for each dataset. F denotes forward
direction while R denotes reverse direction.

The first experiment is to verify that BPL can re-
duce the prediction errors of one single direction,
which are shown in Table 7. The second column
indicates using bidirectional prompt templates, the
third and fourth columns indicate only using the for-
ward templates and reverse templates respectively.

We draw the following two conclusions from the
table.

Firstly, bidirectional prompts perform better than
single directional prompts in three datasets except
RETACRED. But in RETACRED, the effect of re-
verse is better than bidirectional , with 0.5 point
difference, and both of them do better than the for-
ward templates. So overall, BPL can really reduce
the prediction errors in both directions.

Secondly, it’s not possible to just choose one
effective single direction simply, because forward
templates do better than reverse templates on TA-
CRED datasets, but it’s opposite on RETACRED,
TACREV and Semeval datasets. So both of them
have varying degrees of prediction errors on differ-
ent datasets.

The second experiment is to verify the effective-
ness of designing the bidirectional prompts. We
test it from the following three points:

• Setting of label words for masks in two direc-
tional prompts, like different label words or
same label words.

• Different ways of calculating probability dis-
tribution of two directions, like maximum or
multiplication.

• Different conjunctions of two directional
prompts, like conversely, and or nothing.

We verify the above three points on TACRED and
the experimental results are shown in Table 8. From
the table, we draw the following three conclusions.

Points Model TACRED
test F1

Label words Different 76.00(0.26)
Same 75.05(0.28)

Calculating ways Maximum 76.00(0.26)
Multiplication 75.38(0.33)

Conjunction

conversely 76.00(0.26)
and 75.56(0.41)
, 75.73(0.54)
(nothing) 75.25(0.61)

Table 8: The mean (and standard deviation) results
of three points in designing bidirectional prompts.

Firstly, different label words for two prompts help
improve result by 0.95. We consider different label
words for MASKs can expand the semantic range
which will make it easier for PLMs to predict label
words.

Secondly, the maximum calculation is better than
the multiplication. This is because the maximum
probability distribution chooses the most possi-
ble direction which ignore another direction’s error,
while multiplication will take that part of error into
account.

Last is that conjunctions expressing turning point
is needed to connect two directional prompts, such
as conversely, which is straightforward for PLMs
to learn that two directional prompts do not repre-
sent exactly the same semantics, others like and
or else do not display the differences between two
directional prompts.

Comparison of Probability Distribution Fusion
In order to verify the effectiveness of our probabil-
ity distribution fusion method, we conduct an ex-
periment to compare our MLP-Driven method with
the weighted sum method (Yang and Song, 2022).
Here, we remove the Back Translation part and the
experimental results are shown in Table 9. The
weighted sum method is formalized as Equation
(15):

p(r|x) = pBPL(r|x) + αpFT(r|x), r ∈ R, (15)

where pBPL(r|x) and pFT(r|x) are probability dis-
tributions output by bidirectional prompt learning,
p(r|x) is the final probability distribution and α is
the only hyper-parameter that needs to be set man-
ually.

We can summarize the following two points.
The first is that on RETACRED, TACREV and

Semeval datasets, MLP-Driven method does better
than weighted sum method. This is due to the fact
that compared to the weighted sum, MLP-Driven
has more parameters that can be fine-tuned while
the weighted sum has only one parameter. MLP-
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Dataset MLP-Driven weighted sum
Test F1 Test F1

TACRED 76.18(0.03) 76.45(0.11)
RETACRED 91.82(0.20) 91.53(0.13)
TACREV 85.41(0.10) 84.83(0.29)
Semeval 90.85(0.16) 90.25(0.44)

Table 9: The mean (and standard deviation) results
of a comparison between MLP-Driven and weighted
sum methods. The bold number is the better F1
result.

Driven learns to fit the final probability distribution
more deeply than the weighted sum.

Secondly, however, in TACRED dataset, the
weighted sum does better than MLP-Driven. Be-
cause there are too many manual annotation errors
in TACRED, MLP-Driven learns too much noise dur-
ing training, so it performs worse in predicting. This
also indicates that our MLP-Driven method will be
affected by datasets that have lots of noise.

4.5. Analysis on the error

We argue that the errors can be classified into the
annotation errors in TACRED and the multi-relation
errors in all datasets.

Because of the annotation errors in TACRED, the
final F1 is limited to around 76.4. Although RETA-
CRED modifies 23.9% of TACRED data, we still
find some errors and deficiencies in RETACRED.
For example, to those data with two entities’ type
(person, country), some relations are labeled as
per:city_of_death, the relation and entity pair type
are not relevant, which is one of the reasons lead-
ing to the error. The deficiency is that for those
data with two entities’ type (person, location), lo-
cation is too generalized which results in that the
labeled relations may be related to city, country or
stateorprovince. We consider if location is specif-
ically refined into city, country or stateorprovince,
the result of such data will be improved.

We observe that there may exist multiple labeled
relations between the given two entities. For exam-
ple, in sentence John was born and passed away in
New York, there are relations per:city_of_birth and
per:city_of_death between two entities John and
New York. We call such errors as multi-relation
errors. In our model, we deal with this error by
choosing one relation with the maximum probabil-
ity computed through our model, as the RE task
requires model to output only one single relation.
But when encountering multiple relations with simi-
lar high probabilities, our model is difficult to predict
the same relation as the labeled relation.

5. Conclusion and Future Work

In this paper, we propose a new method for RE
tasks called Relation Classification via Bidirectional
Prompt learning with data augmentation by large
language models (RCBP). We use large language
models to do back translation to enhance data,
which alleviate issue of keeping two entities in an-
swers to queries. Based on this, we propose bidi-
rectional prompt learning and design a strategy for
utilizing its templates. Otherwise, we add an addi-
tional MultiLayer Perceptron to adaptively fit final
probability distribution to combine prompt learning
with fine-tuning. The experimental results on RE
datasets demonstrate that RCBP outperforms ex-
isting prompt learning methods and reaches high
performance.

In the future, we’ll strengthen our model’s ro-
bustness to reduce the impact of noise and ap-
ply more large language models (such as Chat-
GPT, Xinghuo, etc.) to more languages to do back
translation. Moreover, in order to better solve multi-
relation errors, we define another different field in
RE task, which is called multi-relation RE task. In
this task, we need to output a subset of the given
relation set rather than just outputting one relation,
and the completeness and correctness of the out-
put set become the evaluation metrics. We will also
consider this task in our future work.
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A. Prompt learning templates

In this section, we list all the detailed prompt learn-
ing templates on TACRED dataset in Table 10, the
first column contains all the relation labels, and the
following columns are label words of masks.
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Relation Label m1 m2m3m4 m5 m6 m7 m8m9

per:date_of_birth person was born in date date person birth time
per:city_of_birth person was born in city city person birth city
per:cause_of_death person was died of event event person dead causation
per:city_of_death person was died in city city person dead city
per:spouse person ’s spouse was person person person own partner
per:charges person was charged with event event person accusatory crime
per:date_of_death person was died on date date person dead time
per:country_of_death person was died in country country person dead country
per:state_of_death person was died in state state person dead state
per:state_of_birth person was born in state state person birth state
per:other_family person ’s relative is person person person one relative
per:country_of_birth person was born in country country person birth country
per:title person ’s title is title title person one title
per:countries_of_residence person was living in country country person residence country
per:state_of_residence person was living in state state person residence state
per:cities_of_residence person was living in city city person residence city
per:religion person was member of religion religion person belief religion
per:schools_attended person ’s school was organization organization person graduated university
per:employee_of person ’s employee was organization organization person work place
per:age person ’s age was number number person year old
per:siblings person ’s sibling was person person person one sibling
per:parents person ’s parent was person person person own parent
per:children person ’s child was person person person one child
per:alternate_names person ’s alias was person person person alternate name
per:origin person ’s nationality was country country person nationality country
org:website organization ’s website was url url organization website url
org:founded_by organization was founded by person person organization one founder
org:founded organization was founded in date date organization establish time
org:shareholders organization was invested by person person organization one shareholder
org:dissolved organization was dissolved in date date organization dissolution time
org:state_of_headquarters organization was located in state state organization headquarter state
org:country_of_headquarters organization was located in country country organization headquarter country
org:city_of_headquarters organization was located in city city organization headquarter city
org:member_of organization was member of organization organization organization one number
org:political organization was member of religion religion organization belief religion
org:top_members organization ’s employer was person person organization one boss
org:number_of_employees organization ’s employer has number number organization boss number
org:alternate_names organization ’s alias was organization organization organization alternate name
org:members organization ’s member was organization organization organization one member
org:parents organization ’s parent was organization organization organization higher organization
org:subsidiaries organization ’s subsidiary was organization organization organization subordinate organization
org:website organization ’s website was url url organization website url
NA entity is irrelevant to entity entity entity unrelated entity

Table 10: The prompt learning templates on TACRED dataset. mi indicates the i-th mask in templates
and NA represents no relation.
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