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Abstract
Code summarization is the task of automatically generating natural language descriptions from source code.
Recently, pre-trained language models have gained significant popularity in code summarization due to their capacity
to capture richer semantic representations of both code and natural language. Nonetheless, contemporary code
summarization models grapple with two fundamental limitations. (1) Some tokens in the code are irrelevant to
the natural language description and damage the alignment of the representation spaces for code and language.
(2) Most approaches are based on the encoder-decoder framework, which is often plagued by the exposure bias
problem, hampering the effectiveness of their decoding sampling strategies. To address the two challenges, we
propose a novel pipeline framework named Reduce Redundancy then Rerank (Re3). Specifically, a redundancy
reduction component is introduced to eliminate redundant information in code representation space. Moreover, a
re-ranking model is incorporated to select more suitable summary candidates, alleviating the exposure bias problem.
The experimental results show the effectiveness of Re3 over some state-of-the-art approaches across six different
datasets from the CodeSearchNet benchmark.
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1. Introduction

Code summarization is essential to program com-
prehension and software maintenance vital in the
entire software life cycle. Due to the expense of
writing these summaries manually, a holy grail of
software engineering research has long been to
generate these summaries automatically (Haque
et al., 2023).

The state-of-the-art code summarization mod-
els tend to follow the encoder-decoder paradigm,
which first encodes the code into a distributed vec-
tor by pre-trained language models (PLMs) for
code intelligence and then decodes it into natu-
ral language summary (Wu et al., 2021; Son et al.,
2022). However, these code summarization mod-
els grapple with two fundamental limitations. The
first challenge is the presence of a surplus of re-
dundant tokens within the code, creating a sub-
stantial gap between the concise natural language
descriptions that need to be generated and the in-
tricate code. Bridging this gap and aligning the
representation spaces for code and language is
formidable. Figure 1 shows two examples where
redundant code tokens significantly affect the per-
formance of the code summarization model. When
the model begins decoding with a redundant token
in the wrong direction, the model will end up gener-
ating a short and low-quality summary. Although

† These authors contributed equally to this work.
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some works (Hu et al., 2018b; Gao et al., 2021)
implemented by function names or APIs attempt to
use more refined information to avoid the impact of
redundant tokens, the performance improvement
brought by these methods is always limited. Be-
cause redundant tokens will appear not only in the
function body but also in the function name, i.e.,
“safe” in the left code example. Therefore, we try
to reduce redundancy in the code representation
to deal with this challenge.

  def safe_infer(
      node: astroid.node_classes.NodeNG,
      context=None
      )> Optional[astroid.node_classes.NodeNG:
      try:
          inferit = node.infer(context=context)
          value = next(inferit)
      except astroid.InferenceError:
          return None
      try:
          next(inferit)
          return None
      except astroid.InferenceError:
          return None
      except StopIteration:
           return value

Generated:
Safely infer a node.                                         

Golden:
Return the inferred value for the given node. 

  def execute(self, context):
      hook=GoogleCloudStorageHook(
          self.google_cloud_storage_conn_id,
          self.delegate_to
      )
      hook.upload(
          bucket_name=self.bucket
          object_name=self.dst
          mime_type=self.mime_type
          filename=self.src
          gzip=self.gzip
      ) 

Generated:
Execute the hook.                                    

Golden:
Uploads the file to Google cloud storage.

Figure 1: Two examples of code summarization
models ending up generating low-quality sum-
maries due to redundant tokens. For the left ex-
ample, the redundant token is safe in the function
name; For the right example, the redundant token
is the variable name hook in the function body.
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The second challenge concerns the exposure
bias problem (Bengio et al., 2015; Ranzato et al.,
2016) in encoder-decoder based generative mod-
els. This issue hampers the effectiveness of de-
coding sampling strategies employed by prevalent
models, limiting their ability to generate accurate
and coherent summaries. In Figure 2, we illustrate
this phenomenon with the difference between top
beam search scores (the score of the first sum-
mary generated directly by beam search) and ora-
cle scores (the maximum score over all summary
candidates generated by beam search) on the Ruby
and Javascript dataset of CodeSearchNet (Husain
et al., 2019) with a UniXcoder (Guo et al., 2022)
model. As we can see, oracle scores are signifi-
cantly higher than top beam search scores, and the
gap further widens as the number of candidates in-
creases. This result suggests that current encoder-
decoder based code summarization models with
PLMs are not exploited to their total capacity, call-
ing for better methods to identify the best summary
candidate.
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Figure 2: Top Beam Search scores (the score
of the first summary generated directly by beam
search) and Oracle scores (the maximum score
over all summary candidates generated by beam
search) with different numbers of candidates for
UniXcoder on Ruby and Javascript dataset.

To address these persistent challenges, we
present a novel pipeline framework named Re-
duce Redundancy then Rerank (Re3). It consists
of two essential stages. (1) Reduce Redundancy:
it mainly involves implementing a covariance regu-
larization strategy to reduce redundant information
in the code representation space. By eliminating
the effect of redundant tokens, this strategy paves
the way for a better next stage of summary candi-
date selection. (2) Rerank: a re-ranking model is
introduced to learn and implement more effective
summary candidate selection strategies through
metric learning. This approach addresses the ex-

posure bias problem, enabling the model to make
better-informed decisions when generating code
summaries.

The main contribution of our work is the pro-
posal of a new pipeline code summarization frame-
work called Re3. In the first stage, the redun-
dancy reduction strategy removes unnecessary
information from the code representation space,
improving the quality of generated summary can-
didates. In the second stage, the re-ranking
model is incorporated to choose better summa-
rization candidates, thus mitigating the exposure
bias problem. Experiments of the SOTA perfor-
mance across six different programming language
datasets of CodeSearchNet show the effective-
ness of this framework. Our code is available at
https://github.com/maebymaeby/Re3.

2. Related Work

2.1. Code Summarization

Automatic code summarization mainly deployed
information retrieval techniques in the early stage
research (Haiduc et al., 2010a,b). With the ad-
vancements in deep learning and neural machine
translation, a shift occurred, and researchers began
to explore code summarization using sequence-to-
sequence neural networks, as demonstrated by
(Iyer et al., 2016; Hu et al., 2018a; Wan et al.,
2018; LeClair et al., 2020). Recently, the field
has witnessed the rise of PLMs for code intelli-
gence that has gained popularity, as highlighted
in Feng et al. (2020); Guo et al. (2021); Ahmad
et al. (2021); Wang et al. (2021); Guo et al. (2022).
These pre-trained models are typically trained on
extensive, multi-programming language datasets to
capture the semantic nuances of code better. At the
same time, there have also been some works with
large language models such as Wang et al. (2023).
Notably, the state-of-the-art code summarization
models generally adhere to the encoder-decoder
paradigm, where the code is first encoded into a
distributed vector by a PLM and then decoded into
a natural language summary, as exemplified by the
recent work (Wu et al., 2021; Son et al., 2022).

Based on our observations, there are two main
challenges in current code summarization mod-
els. First, code often contains redundant infor-
mation, making it challenging to connect code
and language. Second, these models struggle
with exposure bias, affecting their decoding accu-
racy. To tackle these issues, we propose a new
pipeline framework named Reduce Redundancy
then Rerank.

https://github.com/maebymaeby/Re3
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2.2. Redundancy Reduction of
Representation

Despite the significant progress that deep neural
networks have achieved, recent studies (Gururan-
gan et al., 2018; McCoy et al., 2019; Zhang et al.,
2021, 2024) have found that these models often rely
on spurious correlations between learned features
and prediction labels, leading to instability and poor
generalization to data with different distributions.
For example, previous studies (Gururangan et al.,
2018; McCoy et al., 2019) have demonstrated that
specific linguistic phenomena or syntactic heuris-
tics correlate highly with certain Natural Language
Inference (NLI) inference classes. Zbontar et al.
(2021) proposed an objective function that utilizes
the cross-correlation matrix between the outputs of
two identical networks that are fed with distorted
versions of a sample to minimize redundancy while
ensuring that the embedding vectors of distorted
versions of a sample are similar. Ermolov et al.
(2021) offered an alternative direction by introduc-
ing a new loss function based on whitening the
latent space features, which avoids degenerate
solutions where all the sample representations col-
lapse to a single point. Unlike Zbontar et al. (2021),
the method introduced by Ermolov et al. (2021)
does not require asymmetric networks and is con-
ceptually straightforward. To further prevent infor-
mational collapse, Bardes et al. (2022) proposed
VICReg. This method employs two regularization
terms to ensure that the variance of each embed-
ding dimension remains above a threshold and that
each pair of variables is de-correlated. Additionally,
VICReg attracts covariances over a batch between
every pair of centered embedding variables towards
zero, effectively preventing variables from varying
or highly correlated.

While redundancy reduction techniques have
demonstrated notable success in various domains,
scant attention has been devoted to this matter in
code summarization undertakings. Our objective
is to address the issue of code representation re-
dundancy.

2.3. Re-ranking in Natural Language
Generation

Re-ranking has long been adopted in several Natu-
ral Language Generation (NLG) branches. In neu-
ral machine translation, Bhattacharyya et al. (2021)
uses an energy-based model on top of BERT (De-
vlin et al., 2019) to select translation candidates with
higher BLEU scores. In text-to-SQL generation, Xi-
ang et al. (2023) presents a knowledge-enhanced
re-ranking mechanism proposed to introduce do-
main knowledge to choose the best SQL query
from the beam output. Recently, two-stage pipeline
approaches with a re-ranking model have been

widely used in abstract summarization. These ap-
proaches work based on the generate-then-rerank
framework, which generates some candidate texts
with a first-stage generator and then reranks them
with a second-stage reranker. SimCLS (Liu and
Liu, 2021), RefSum (Liu et al., 2021) and Sum-
maReranker (Ravaut et al., 2022) train re-ranking
models separately to re-rank the outputs of summa-
rization models such as BART (Lewis et al., 2020).
Furthermore, some works tried to compress the
two-stage pipeline to one single model using extra
training objectives, such as Colo (An et al., 2022)
and BRIO (Liu et al., 2022).

Although re-ranking techniques have been ex-
plored sufficiently in various domains of NLG, scant
attention has been devoted to this matter in code
summarization undertakings. We aim to mitigate
the exposure bias in the encoder-decoder paradigm
based on a second-stage re-ranking model.

3. Methodology

3.1. Overview
We propose a pipeline framework named Re3

(Reduce Redundancy then Rerank), which ad-
dresses redundancy and exposure bias problems
through the two-stage models. Figure 3 illustrates
the overall architecture of Re3, which consists of
an encoder-decoder based code summarization
model (the first stage model) and a re-ranking
model (the second stage model). The first stage
model is optimized during the training time by com-
bining the neural code summarization framework
of Maximum Likelihood Estimation (MLE) and re-
dundancy reduction of code representation, then
generating summary candidates in the inference
time. The second stage model re-ranks the nat-
ural language summary candidates from the per-
spective of the relationship between source code
and gold summary, which is trained through metric
learning methods to learn and implement a more
compelling candidate selection strategy.

3.2. Stage I: Reduce Redundancy
Neural Code Summarization Given a code snip-
pet C and its corresponding golden summary Ŝ,
the neural code summarization model aims to train
a model Gθ parameterized by θ that takes a source
code C and generates an appropriate summary S.

S ← Gθ(D) (1)

In practice, the MLE algorithm is employed for
the encoder-decoder based neural code summa-
rization model to maximize the likelihood of the
golden summary. For a specific training sample
{C, Ŝ}, the training objective is to minimize the sum
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Figure 3: The architecture of Re3.

of Negative Log-Likelihoods (NLL) of the golden
summary tokens Ŝ = {ŝ1, . . . , ŝl}

LNLL = −
l∑

j=1

l∑
i

P (si|Ŝ<j)logPGθ
(si|C, Ŝ<j ; θ)

P (si|Ŝ<j , S) =

{
1 si = ŝj

0 si ̸= ŝj
(2)

where S = {s1, . . . , sl} is the generated summary
tokens. Ŝ<j denotes the partial previous ground
truth from golden summary{ŝ1, . . . , ŝj}

Redundancy Reduction of Code Representa-
tion Our target is to eliminate potential redundant
information in the code representation, which also
means that the feature vectors corresponding to
different code fragments should have more con-
siderable differences at the representation level.
Inspired by previous work (Zbontar et al., 2021;
Bardes et al., 2022), we encourage diversity and
reduce redundancy by enforcing minimal covari-
ance between different code representations.

Here, we describe a batch of code snippets
C = {C1, . . . , Cm} whose length is m. We use
the encoder of the encoder-decoder based summa-
rization model to obtain the code representation:

HCi
= Encoder

C̃i∈C̃
(Ci) (3)

where HCi
∈ RN×D denotes the code representa-

tion feature matrix of code snippet Ci with length
N and feature shape D.

To effectively aggregate the code representation
feature matrix, instead of the traditional pooling
approaches like maximum pooling or mean pooling,
the Generalized Pooling Operator (GPO) (Chen
et al., 2021) is employed to get feature vector

Hi = GPO
C̃i∈C̃

(HCi
) (4)

where Hi ∈ R1×D represents the dimensionally
reduced feature vector after GPO aggregation.

We propose to define the covariance matrix of the
batch of code feature vectors H = {H1, . . . ,HM}
as:

Cov(H) =
1

M − 1

M∑
i=1

(Hi − H̄i)(Hi − H̄i)
T

H̄i =
1

M

M∑
i=1

(Hi)

(5)

We then define the covariance regularization c(H)
as the sum of the squared off-diagonal coefficients
of Cov(H), and introduce the dimension scaling
factor 1

D to construct the covariance loss:

c(H) =
∑
i̸=j

[Cov(H)]2i,j

LCOV =
c(H)

D

(6)

Minimizing the covariance loss encourages the
off-diagonal coefficients of c(H) to be close to 0,
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decorating the different feature vectors and pre-
venting them from encoding similar information, ul-
timately having a decorrelation effect at the repre-
sentation level.

The final training objective of the first stage model
achieves a minimal two losses mentioned above:

L = LNLL + LCOV (7)

Candidates Generation For generating a single
summary, given a decode sampling strategy D, the
decoder maintains a list of top-k best summary can-
didates and outputs the best candidate based on
D and the last (k−1) candidates are discarded. To
generate multiple summary candidates for the sec-
ond stage model training, we modify the above strat-
egy of the first stage model decoder and retain the
complete list of top-k best candidates S1, . . . , Sk.

3.3. Stage II: Rerank
Metric Learning After Stage I, we get a pool of
k summary candidates S = {S1, . . . , Sk}. In the
training time of the first model, the Teacher-Forcing
algorithm (Williams and Zipser, 1989) is used for
the encoder-decoder based code summarization
model training and parallel loss calculation under
the MLE framework. The model uses an autore-
gressive decoding sampling strategy (such as the
beam search algorithm) to generate the output sum-
mary in the inference time. That means the model
generates the token of step j according to Ŝ<j in
the training stage and generates the token of step j
by autoregressive generation in the inference stage,
which leads to an inherent discrepancy called ex-
posure bias. It may result in the first summary S1

generated by a simple decoding sampling strategy
being far different from the golden summary Ŝ.

Inspired by the previous work (Liu and Liu, 2021;
Liu et al., 2021; Ravaut et al., 2022), we try to train
a second stage model to re-rank summary can-
didates S from the perspective of the relationship
between source code snippet C and golden sum-
mary Ŝ. We introduce a PLM for code intelligence
as a re-ranking model, as it shows good perfor-
mance in code retrieval, which can help us coor-
dinate the relationship between code and natural
language summaries at the semantic level. How-
ever, code retrieval focuses on pairing between
different code and natural language, and our target
is to pair source code and natural language sum-
maries corresponding to the same code. Therefore,
we further fine-tune the second model by metric
learning.

Given an evaluation metricM(·), We get a new
pool of k summary candidates S̃ = {S̃1, . . . , S̃k},
where S̃i is sorted in descending order byM(Si, Ŝ)
and the position index i indicates the quality of the

candidates. The intuitive idea is that a better can-
didate should be pulled closer to the source code
in the representation space, and a worse candi-
date should be pushed further away. Specifically,
in the training time, we use the re-ranking model to
encode C, Ŝ, and S̃i separately:

HC = Encoder(C)

HŜ = Encoder(Ŝ)

HS̃i
= Encoder

S̃i∈S̃
(S̃i)

(8)

Here, we define a function F(·) to obtain the sim-
ilarity between the source code and the summary.
We introduce a ranking loss with F(·) to optimize
the re-ranking model:

L =
∑
i

max(F(HC , HS̃i
)−F(HC , HŜ), 0)

+
∑
i

∑
j>i

max(F(HC , HS̃j
)−F(HC , HŜ) + λij , 0)

(9)
Where λij = λ × s(j − i) is a margin hyper-

parameter associated with the candidates’ rank
difference.

Candidate Selection In the inference time, given
the source code snippet C, we use the re-ranking
model to select the best candidate from the sum-
mary candidates pool S according to the function
F(·):

S∗ = argmax
Si∈S

{F(HC , HS1), . . . ,F(HC , HSk
)}

(10)
In practice, we instantiate F(·) as the cosine sim-

ilarity between the first tokens of source code em-
bedding HC and summary candidate embedding
HSi

.

4. Experiment and Analysis

4.1. Datasets
We chose the CodeSearchNet (Husain et al., 2019)
benchmark dataset as our training and evaluation
dataset. CodeSearchNet is a large-scale dataset
mined from popular GitHub projects, which con-
tains code-comment pairwise data from six pro-
gramming languages, including Ruby, Javascript,
Go, Python, Java, and PHP. The detailed statistics
of each dataset are listed in Table 1. For each lan-
guage, the table lists the number of examples in
each category. We use the version provided by the
CodeXGLUE team (Lu et al., 2021).

4.2. Baselines
We choose a variety of related PLMs with strong per-
formance for code intelligence as baselines. Code-



13727

Language Training Dev Testing
Go 167,288 7,325 8,122
Java 164,923 5,183 10,955
Javascript 58,025 3,885 3,291
PHP 241,241 12,982 14,014
Python 251,820 13,914 14,918
Ruby 24,927 1,400 1,261

Table 1: Data statistics about CodeSearchNet.

BERT (Feng et al., 2020) is a bimodal PLM en-
coder for programming languages and natural lan-
guage, which is pre-trained with Mask Language
Modeling (MLM) and Replaced Token Detection
(RTD). GraphCodeBERT (Guo et al., 2021) is a
PLM encoder pre-trained with MLM, data flow edge
prediction, and node alignment. PLBART (Ahmad
et al., 2021) and CodeT5 (Wang et al., 2023) are
sequence-to-sequence PLMs. The former is pre-
trained through denoising autoencoding, and the
latter is pre-trained through three identifier-aware
pre-training tasks. CodeT5+ (Wang et al., 2023) is
a large language model (LLM) for code intelligence
initialized from the existing LLM and fine-tuned
through a mixture of training target fine-tuning and
instruction tuning. UniXcoder (Guo et al., 2022) is a
multi-modal contrastive pre-training PTM, which is
pre-trained with MLM, unidirectional language mod-
eling, denoising autoencoder, and two contrastive
learning-related tasks. Specifically, we use UniX-
coder to implement our framework.

4.3. Evaluation Metric
We use the Smoothed BLEU-4 (Lin and Och, 2004)
as the evaluation metric recommended by the
CodeXGLUE team (Lu et al., 2021). BLEU (Bilin-
gual Evaluation Understudy) is a percentage num-
ber between 0 and 100, calculated by matching
the n-grams between the candidate and the golden
summary. BLEU-4 is commonly used to evaluate
the quality of the generated text. However, the orig-
inal BLEU is designed for the corpus level. When
any n-gram is zero, the final geometric mean will
be zero. Smoothed BLEU indicator usually uses
methods such as adding one smoothing or additive
smoothing to adjust the count of n-gram matching
so that the n-gram denominator is not zero, reduc-
ing uncertainty and errors in the evaluation results.

SmoothedBLEU = BP × exp(

N∑
n=1

WnlogPn)

Pn =
Count(S) + 1

Count(Ŝ) + 1

Where the N is the maximum base element of
n-gram, Wn is the weight of n-gram, BP is the
brevity penalty factor, and Count(·) is the minimum

n-gram number in candidate or golden summary.
In Smoothed BLEU-4, the N is 4, and Wn is 1

N .

4.4. Experimental Setup
Hyperparameter We use the pre-trained lan-
guage model UniXcoder to initialize all the encoder-
s/decoders of the two-stage models. Therefore, we
follow the same hyperparameter settings of UniX-
coder as much as possible to produce the perfor-
mance of Re3. For Stage I, we train our model on
batch 48 and learning rate 5e−5 (same as UniX-
coder). For Stage II, we train our model on batch
24 and learning rate 2e−4. Two-stage models are
trained in 10 epochs using the AdamW optimizer.
The max sequence length of code and summary is
256 and 128, respectively.

Device We conducted experiments on a worksta-
tion on Ubuntu 22.04 with four Nvidia RTX3090
GPUs (24GB). The version of CUDA and cuDNN
for GPU usage are 11.7 and 8.5, respectively.

4.5. Experiment Results and Analysis

Effectiveness of Re3 We implement Re3 based
on the baseline model UniXcoder, which further
improved its performance, as shown in Table 2.

Table 2 shows the overall performance of the ex-
perimental methods. Re3 raises the performance of
UniXcoder with an average improvement of 38% on
the CodeSearchNet of six programming language
datasets. Notably, the performance improvement
of Re3 in UniXcoder has exceeded that of the cur-
rent state-of-the-art LLM CodeT5+ (770B). Such
a gap is more significant than the progress made
by research in the whole field of code summariza-
tion over the five years. At the same time, even
without the redundancy reduction strategy (-w/o Re-
duce Redundancy) and just using the second-stage
model to re-rank the summary candidates gener-
ated from UniXcoder, its performance improvement
will also reach 32%. It suggests that the potential
of current code summarization models based on
pre-trained models and encoder-decoder architec-
tures is completely underutilized due to exposure
bias problems, calling for better methods to identify
the best summary candidates.

Effectiveness of Redundancy Reduction This
section aims to explain the effectiveness of the
redundancy reduction strategy. That is to say, why
do we need to train the first stage model based
on the redundancy reduction strategy before re-
ranking in Stage II.

As shown in Table3, we illustrate this phe-
nomenon with the difference in output on Code-
SearchNet with a baseline model UniXcoder and
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Model Ruby Javascript Go Python Java PHP Overall
CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16 17.83
GraphCodeBERT 12.39 14.81 18.41 18.06 19.00 25.59 18.04
PLBART 14.11 15.56 18.91 19.30 18.45 23.58 18.32
CodeT5-base 15.24 16.16 19.56 20.01 20.31 26.03 19.55
CodeT5+ (220M) 15.51 16.27 19.60 20.16 20.53 26.78 19.81
CodeT5+ (770M) 15.63 17.93 19.64 20.47 20.83 26.39 20.15
UniXcoder 14.87 15.85 19.07 19.13 20.31 26.54 19.30
Re3+UniXcoder 21.03 21.28 26.66 25.62 27.96 37.36 26.65
-w/o Reduce Redundancy 18.62 19.78 26.32 26.45 26.54 35.79 25.58
-w/o Rerank 14.67 15.71 19.14 18.95 20.13 26.50 19.18

Table 2: Code summarization results on CodeSearchNet. The best scores are in bold.

our first stage model, where "Oracle" denotes the
maximum Smooth BLEU-4 scores over the pool of
summary candidates. Notably, for the result that
usually uses beam search for decoding sampling,
the redundancy reduction strategy shows an aver-
age performance of 0.63% lower than the baseline
model. However, for the result calculated in Oracle,
the redundancy reduction strategy shows an aver-
age performance of 0.96% better than the baseline
model. In other words, a redundancy reduction
strategy improves the potential performance of the
code summarization model. However, due to prob-
lems such as exposure bias, summaries that are
directly generated based on existing decoding sam-
pling strategies cannot reflect this potential increase
in performance. Therefore, training a second-stage
model is needed because it can refine this part of
the performance improvement by rethinking the re-
lationship between source code, golden summary,
and summary candidates.

We hope to further discuss the necessity of re-
dundancy reduction strategy through the results in
Table 2 and Table 3. According to Table 2, after
adding a re-ranking model to both Re2+UniXcoder
and UniXcoder (i.e., w/o Reduce Redundancy),
the average difference of performance on the five
datasets (except for the Python dataset) is 1.44.
According to Table 3, the average difference of
oracle scores on the same five datasets is 0.31,
significantly lower than the difference between their
performance. We suggest that the redundancy
reduction module has two advantages: (1) The
redundancy reduction module could help reduce
redundancy at the representation level to obtain
better code representation, reflected by better po-
tential summary output quality (i.e., oracle score).
(2) The redundancy reduction strategy increases
the diversity of code representation feature vectors,
allowing the re-ranking model to learn representa-
tion space more effectively.

To verify the second proposed advantage, we
designed preliminary experiments for verification
on the Ruby and Javascript datasets. We use
UniXcoder as the encoder and calculate the av-

erage Euclidean distance between the summary
candidates and the golden summary generated by
Re3+UniXcoder and UniXcoder respectively. As
Table 4 shows, the average Euclidean distance be-
tween golden summary and summary candidates
generated by our method has a higher mean and
lower variance than UniXcoder. Evidence shows
that reducing redundancy could increase the di-
versity of summary candidates and improve their
distribution in the feature space, finally helping the
rethinking module through metric learning.

Effectiveness of Different Pre-trained Models
This section aims to show the effectiveness of trans-
fer setting in Re3 and explore whether it could be
applied to different code intelligence PLMs.

Table 5 shows the outcomes of an experiment
that evaluated the impact of three distinct PLMs
on six programming language datasets of Code-
SearchNet. Experiments are conducted on three
PLMs: CodeBERT, GraphCodeBERT, and UniX-
coder. When training the first-stage models, we
follow the same hyperparameter settings of these
models, which are used to fine-tune the code sum-
marization downstream task. As expected, we
found that Re3 is a PTM-independent framework,
which achieves an average performance of 35%,
31%, and 38% better with CodeBERT, GraphCode-
BERT, and UniXcoder, respectively. The experi-
mental results provide compelling evidence of the
transfer ability of Re3.

4.6. Ablation Study
Table 2 shows the performance difference of UniX-
coder when using the redundancy reduction strat-
egy (w/o Rethink) or the rethink model (w/o De-
Redundancy). As we analyzed above, the perfor-
mance of the first stage model trained with a re-
dundancy reduction strategy is not ideal. It may be
because the redundancy reduction strategy further
increases the diversity of the code representation
feature vectors encoded by the encoder, and cur-
rent decoding sampling strategies are not good at
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Model Ruby Javascript Go Python Java PHP Overall
UniXcoder 14.87 15.85 19.07 19.13 20.31 26.54 19.30
UniXcoder (Oracle) 21.08 22.81 26.80 26.60 27.98 37.76 27.17
Re2+UniXcoder 14.67 15.71 19.14 18.95 20.13 26.50 19.18
Re2+UniXcoder (Oracle) 22.04 23.03 26.78 26.59 28.23 37.92 27.43
Re3+UniXcoder 21.03 21.28 26.66 25.62 27.96 37.36 26.65

Table 3: Comparison of UniXcoder, Re2+UniXcoder (the first stage model), and Re3+UniXcoder (complete
two-stage models). Oracle means the maximum score over all generated candidates.

Model Ruby Javascript
Mean Std Mean Std

All candidates
UniXcoder 23.28 7.51 22.28 7.55
Re3+UniXcoder 23.57 7.30 23.82 6.91

Candidates except for top-1
UniXcoder 23.53 7.37 22.61 7.37
Re3+UniXcoder 23.79 7.18 24.02 6.81

Table 4: Euclidean-distance calculation results.
All candidates means calculating the average
Euclidean distance between the golden summary
and all candidates. Candidates except for top-1
means calculating the average Euclidean distance
between the golden summary and filtered candi-
dates, which removes the first candidate with the
highest score after sorting.

searching within a more extensive solution space
due to the exposure bias problem. The perfor-
mance of only using the rethink model decreases
compared to the Re3, consistent with the changing
trend of the Oracle score reported in Table 3.

In addition, we also conducted ablation ex-
periments on the GPO strategy used in the de-
redundancy method, as shown in Table 6. To ex-
plore the impact of GPO, we adopted two other
different pooling strategies: maximum pooling
(i.e., using the representation of [CLS] token
as the representation of the source code) and
mean pooling. Experimental results on Ruby and
Javascript datasets show that the performance of
the Re3+UniXcoder decreased when using other
pooling strategies, proving GPO’s effectiveness.

4.7. Qualitative Evaluation

Case Study We present the result of our case
studies in Figure 4. Specifically, we demonstrate
the significantly better quality of generated sum-
maries of Re3 over the baseline model UniXcoder.
For the first case on the Ruby dataset, it may be that
the first word of the golden summary, “Decrease”
does not appear in the code. Both Re3 and UniX-
coder occur errors in the first step. Due to the
exposure bias problem and the weakness of beam
search, the mistakes made in the previous steps

will accumulate. UniXcoder has no way of knowing
that it should adjust the decoding and finally end by
generating a short summary with three words. In
contrast, Re3 performs better while beginning de-
coding with a wrong step and ultimately generates
a more extended summary, which captures the key
sentence "the priority of one or more torrents." For
the second case on the Javascript dataset, UniX-
coder may be confused by “delete” and “remove”
appearing in the code snippet, and an error oc-
curred in the first step. Re3 can correctly catch the
critical information in the code through the redun-
dancy reduction strategy.

    def minimize_priority torrent_hashes
        torrent_hashes=Array(torrent_hashes)
        torrent_hashes=torrent_hashes.join(’|’)
        options={body:"hashes=#{torrent_hashes}"}
        self.class.post(’/command/bottomPrio’,options)
    end

UniXcoder Generated:
Minimizes torrent priorit.                                             

Golden:
Decrease the priority of one or more torrents             
to the minimum value.

  function remove(repoState,driver,branch){
      return driver.deleteBranch(
          branch)..then(()=>{
              return repoState.updateBranch(
                  branch, null);
              });
          }

UniXcoder Generated:
Delete a branch.                                      

Golden:
Remove the given branch                       
from the repository.

Re3+UniXcoder Selected:
Minimizes the priority of one or more torrents.           

Re3+UniXcoder Selected:
Remove a branch from the repository.    

Ruby Javascript

Re2+UniXcoder Generated:
Minimizes the priority of one or more torrents.
Minimizes the priority of one or more torrent hashes.
Minimizes the priority of the torrents.
Minimizes the priority of a set of torrent hashes.
Minimizes the priority of a list of torrent hashes. 

Re2+UniXcoder Generated:
Remove a branch from the repository.     
Removes a branch from a repository.
Remove a branch from a repo.
Remove a branch.
Removes a branch.

Figure 4: Two examples for case study on Ruby
and Javascript datasets, respectively. We com-
pare the golden summary and summaries gener-
ated/selected by UniXcoder, Re2+UniXcoder, and
Re3+UniXcoder.

Human Evaluation We also conduct a human
evaluation. The metric reported here is the number
of human evaluators’ preference for summaries.
We asked four human evaluators to evaluate 50
summaries randomly sampled from the test dataset
for the Ruby and Javascript datasets of Code-
SearchNet. Human evaluators are shown the
source code, the top beam search summary from
UniXcoder, and the corresponding summary can-
didate selected by Re3. We filter samples where
UniXcoder and Re3 obtained Smoothed BLEU-4
scores above 80. Human evaluators are asked to
choose which one they believe is more faithful and
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Model Ruby Javascript Go Python Java PHP Overall
CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16 17.83
Re3+CodeBERT 17.13 19.93 22.94 24.74 25.55 34.04 24.06
GraphCodeBERT 12.39 14.81 18.41 18.06 19.00 25.59 18.04
Re3+GraphCodeBERT 15.29 18.61 24.54 23.37 26.23 34.16 23.70
UniXcoder 14.87 15.85 19.07 19.13 20.31 26.54 19.30
Re3+UniXcoder 21.03 21.28 26.66 25.62 27.96 37.36 26.65

Table 5: Code summarization results of different pre-trained models.

Model Ruby Javascript
Re3+UniXcoder (GPO) 21.03 21.28
Re3+UniXcoder (Max) 19.67 20.47
Re3+UniXcoder (Mean) 19.84 20.88

Table 6: Ablation study results for GPO. Max rep-
resents the maximum pooling strategy and Mean
represents the average pooling strategy.

Model Ruby Javascript
Mean Std Mean Std

UniXcoder 8.75 0.83 10.25 2.49
Re3+UniXcoder 27.25 3.34 23.75 2.77

Table 7: Human evaluation results.

can choose a tie cause we found that some sum-
maries have lower Smoothed BLEU-4 scores but
meet the requirements from the semantic perspec-
tive. As shown in Table 7, we see that, on average,
human evaluators are likelier to pick the summary
that Re3 selects.

5. Conclusion

In this work, we introduce Re3, a novel pipeline
framework that aims to enhance the performance
of the code summarization model. To tackle two
main challenges in current code summarization,
our framework involves two steps: The redundancy
reduction strategy constrains the code represen-
tation, which is used to generate better summary
candidates. A re-ranking model is incorporated to
choose a better candidate, thus mitigating the expo-
sure bias problem. The experimental results show
the effectiveness of Re3 over some state-of-the-art
approaches across six distinct test datasets from
the CodeSearchNet benchmark.
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