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Abstract

As the number of language models has in-
creased, various benchmarks have been sug-
gested to assess the proficiency of the mod-
els in natural language understanding. How-
ever, there is a lack of such a benchmark in
Vietnamese due to the difficulty in accessing
natural language processing datasets or the
scarcity of task-specific datasets. ViGLUE 1,
the proposed dataset collection, is a Vietnamese
General Language Understanding Evaluation
benchmark developed using three methods:
translating an existing benchmark, generating
new corpora, and collecting available datasets.
ViGLUE contains twelve tasks and encom-
passes over ten areas and subjects, enabling
it to evaluate models comprehensively over a
broad spectrum of aspects. Baseline models
utilizing multilingual language models are also
provided for all tasks in the proposed bench-
marks. In addition, the study of the available
Vietnamese large language models is conducted
to explore the language models’ ability in the
few-shot learning framework, leading to the ex-
ploration of the relationship between specific
tasks and the number of shots.

1 Introduction

Since the introduction of the Transformer archi-
tecture (Vaswani et al., 2017) and its variations,
there has been significant progress in many natu-
ral language processing tasks. The expansion of
pre-trained language models leveraging that design,
such as BERT (Devlin et al., 2018), GPT (Radford
et al., 2018), and T5 (Raffel et al., 2020), is primar-
ily responsible for this progress. Besides that, the
need to evaluate such models for natural language
understanding has been raised. GLUE (Wang et al.,

*Both authors contributed equally to this research.
† Corresponding author.
1Source code is available at: https://github.com/

trminhnam/ViGLUE and the dataset is published at: https:
//huggingface.co/datasets/tmnam20/ViGLUE.

2018) and SuperGLUE (Wang et al., 2019) are in-
troduced as well-designed benchmarks to evaluate
English models in NLU, lacking the ability to an-
alyze models in other languages. Consequently,
particular benchmarks for other languages have
been proposed, such as the CLUE benchmark (Xu
et al., 2020) for Chinese, the FLUE benchmark
(Le et al., 2020) for French, the KLUE bench-
mark (Park et al.) for Korean, the RussianSuper-
GLUE (Shavrina et al., 2020) for Russian, or the In-
dicGLUE (Kakwani et al., 2020) for Indian. They
are developed for assessing the performance of
language-specific pre-trained language models.

While numerous benchmarks exist for examin-
ing the NLU capabilities of language models, there
is a lack of comparable benchmarks in Vietnamese,
particularly those that are openly accessible for
instant usage. Therefore, this study aims to ad-
dress this gap by developing and introducing a
comprehensive benchmark designed to evaluate
the NLU capabilities of language models in Viet-
namese. Creating such benchmarks is crucial for
assessing the performance of language models in
Vietnamese and fostering advancements in natural
language processing specific to this language. To
establish such a benchmark, it is necessary to care-
fully choose and organize a wide range of tasks that
encompass different linguistic features, contextual
complexities, topic diversity, and domain variety.

This study introduces ViGLUE as an evalua-
tion framework over twelve NLU tasks, detailed
in Table 1. The creation of ViGLUE involves uti-
lizing three methods: the translation of existing
benchmarks, the collection of publically available
datasets, and the building of new corpora. Eight
of the nine tasks of GLUE (Wang et al., 2018) are
initially translated into Vietnamese and thereafter
gone under back-translation to verify the trans-
lation quality. Furthermore, two publicly avail-
able Vietnamese datasets, namely VSFC (Nguyen
et al., 2018) and VSMEC (Ho et al., 2020a), have
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Corpus Train Validation Test Method Metric Domain

Natural Language Inference Tasks

MNLI 392,702 9,815 9,796 Semi-translating Acc. Miscellaneous
QNLI 104,743 5,463 5,463 Semi-translating Acc. Wikipedia
RTE 2,490 277 3,000 Semi-translating Acc. Miscellaneous
VNRTE 12,526 3,137 - Constructing Acc. News
WNLI 635 71 146 Semi-translating Acc. Fiction books

Sentiment Analysis Tasks

SST2 67,349 872 1,821 Semi-translating Acc. Movie reviews
VSFC 11,426 1,538 3,166 Collecting Acc. Student feedback
VSMEC 5,548 686 693 Collecting Acc. Social media

Similarity and Paraphrase Tasks

MRPC 3,668 408 1,725 Semi-translating Acc./F1 News
QQP 363,846 40,430 390,965 Semi-translating Acc./F1 Quora QA

Single-Sentence Tasks

CoLA 8,551 1,043 1,063 Semi-translating MCC Miscellaneous
VToC 7,293 1,831 - Constructing Acc. News

Table 1: Task statistics of ViGLUE. NLI stands for natural language inference. Acc is for accuracy, and MCC stands
for Matthews correlation coefficient. Column “Method” points out the method to obtain the corresponding corpus.

been collected to broaden the evaluation scope of
ViGLUE to include students’ feedback and multi-
media comments, respectively. Finally, two new
tasks are created based on the Vietnamese news
documents with the help of the GPT model. The ob-
jective of creating additional corpora is to broaden
the topic coverage of the ViGLUE benchmark.

Besides constructing the benchmark, several
large Vietnamese language models have been stud-
ied on the proposed benchmark with zero-, one-,
and few-shot learning to explore their ability to
understand Vietnamese. The larger the model’s
capacity is, the more beneficial the model receives
under the few-shot evaluation. Meanwhile, the
performance of small pre-trained language models
decreased when the number of shots increased.

In conclusion, the contributions are:

• First, a public Vietnamese general language
understanding evaluation benchmark is pro-
posed with twelve tasks clustered into four
groups covering several domains.

• Second, the baseline models leveraging multi-
lingual language models are proposed to pro-
vide a comparison of the pre-trained models

in Vietnamese language understanding tasks.

• Finally, an empirical study is demonstrated
with few-shot learning on the Vietnamese
large language models and multilingual large
language models incorporating Vietnamese
knowledge on the proposed benchmark.

2 Related Work

In natural language processing, evaluating the abil-
ity of the language models on natural language
understanding is necessary. With the birth of pre-
trained Transformer-architecture modes such as
BERT (Devlin et al., 2018) and GPT (Radford et al.,
2018), GLUE (Wang et al., 2018) and SuperGLUE
(Wang et al., 2019) appear as standard benchmarks
to test the methods on different aspects. The GLUE
(Wang et al., 2018) dataset focuses on text genres
and degrees of difficulty. At the same time, Super-
GLUE (Wang et al., 2019) is an extended version
of GLUE (Wang et al., 2018) with improvement in
difficulty and novel tasks. However, while GLUE
and SuperGLUE focus on English, using them to
evaluate large language models that are created for
other languages would be a noticeable problem.
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In response to this need, many research groups
spent effort on creating comparable datasets in dif-
ferent languages, utilizing the building pipeline
of GLUE and SuperGLUE, while these evalua-
tion frameworks just assessed models in English.
Consequently, plenty of benchmarks for language-
specific natural language understanding were de-
veloped. The CLUE benchmark (Xu et al., 2020)
was designed with nine various Chinese NLU tasks,
constructed from multiple resources (Chinese news,
app description, etc.). The FLUE benchmark (Le
et al., 2020) was developed for the French language.
The specialty of this dataset is that it includes three
over six tasks from cross-lingual datasets. More-
over, the KLUE benchmark (Park et al.) is created
with two goals: covering diverse aspects of NLU in
Korean and minimizing redundancy among tasks.

To construct those benchmarks, techniques such
as data gathering (KLUE (Park et al.), CLUE (Xu
et al., 2020)), re-using existing datasets (FLUE
(Le et al., 2020)) are employed. An alternative
approach is to create new multilingual variances
of the original dataset with human and machine
translation. XNLI (Conneau et al., 2018), XCOPA
(Ponti et al., 2020), XTREME (Hu et al., 2020),
and the RussianSuperGLUE (Shavrina et al., 2020)
are constructed in this way. However, this method
depends on the quality of the translation tools (Con-
neau et al., 2018) and may not maintain the context
of specific tasks. Despite this problem, the trans-
lation method offers the advantage of utilizing the
reliable pool of workers employed in the original
datasets (Conneau et al., 2018). Furthermore, it has
been observed that the hypotheses and semantic as-
pect of the samples remain consistent when applied
to different languages (Conneau et al., 2018).

Having such datasets like GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019) without
any restrictions, free to access, and convenient to
use for Vietnamese would be crucial to evaluate
large language models such as PhoGPT (Nguyen
et al., 2023), Vietcuna. Even though there are some
Vietnamese datasets, such as the Vietnamese Stu-
dents’ Feedback Corpus (VSFC) (Nguyen et al.,
2018), the Vietnamese Social Media Emotion Cor-
pus (VSMEC) (Ho et al., 2020b), and the COVID-
19 named entity recognition dataset for Vietnamese
(Truong et al., 2021). However, the availability of
additional resources is restricted from direct open
access due to the necessity of obtaining user ap-
proval, which is a significant inconvenience for re-
searchers working with Vietnamese NLP datasets.

Hence, a new Vietnamese NLU benchmark is
introduced. This dataset is constructed by utiliz-
ing the translating method, building from news
sources, and collecting the existing datasets. Never-
theless, the back-translation process is proposed to
assure the translation quality of the translated texts
in terms of both lexical and semantic elements.

3 ViGLUE Overview

ViGLUE contains twelve tasks obtained by three
methods: collecting, constructing, and translating.
The task statistics are shown in Table 1. The li-
censes are discussed in the Appendix A.

3.1 Tasks
In ViGLUE, tasks are clustered into four groups:
natural language inference tasks, sentiment anal-
ysis tasks, similarity and paraphrase tasks, and
single-sentence tasks. Each part below lists the
tasks in each cluster and describes them.

3.1.1 Natural Language Inference Tasks
MNLI, originated from MultiNLI (Williams et al.,
2017), is a corpus of multi-genre texts. It is built
to assess natural language models’ performance in
sentence comprehension. The objective is to de-
termine the relationship between a given premise
and hypothesis, namely whether the hypothesis log-
ically implies the premise, contradicts the premise,
or has no logical connection between them.

QNLI is constructed from the Stanford Ques-
tion Answering Dataset (Rajpurkar et al., 2016). It
contains multiple questions and paragraphs, where
a single in each section serves as a solution to the
corresponding question. The GLUE benchmark
modified the original dataset to introduce a new
task of determining whether the context sentence
is a proper answer to the provided question.

RTE (recognizing textual entailment) is simi-
lar to a natural language inference task since it
evaluates the ability of machine models to compre-
hend the semantic meaning of sentences (Dagan
et al., 2010). Following GLUE, this corpus com-
prises three datasets, including RTE1 (Dagan et al.,
2005), RTE2 (Bar-Haim et al., 2006), RTE3 (Gi-
ampiccolo et al., 2007), and RTE5 (Bentivogli et al.,
2009). Furthermore, it is worth noting that there
are two distinct labels, entailment and not entail-
ment, because the GLUE authors merged neutral
and contradiction labels into “not entailment” class.

VNRTE, short for Vietnamese News Recogniz-
ing Textual Entailment, is built on online news doc-
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uments crawled from VnExpress, an official Viet-
namese online news webpage. This includes about
16,000 Vietnamese sentences being separated to en-
tail and not entail labels, roughly 8,000 sentences
for each label. This task is specially designed by
leveraging two tools, semantic similarity search
and the GPT model to create the samples.

WNLI comes from the Winograd Schema Chal-
lenge (Levesque et al., 2012). The original dataset
evaluates the machine learning models for under-
standing the meaning of the ambiguous pronoun
inside the sentence and choosing the correct refer-
ence from a list of options. The task WNLI in the
GLUE benchmark is converted into a classification
problem, where the sentence containing the proper
pronoun is classified as entail or not entail.

3.1.2 Sentiment Analysis
SST2, also known as the Stanford Sentiment Tree-
bank (Socher et al., 2013), contains individual sen-
tences extracted from movie reviews and annotated
by humans. In this task, the models must recognize
the sentence’s sentiment as positive or negative, a
binary classification problem.

VSFC, known as Vietnamese Students’ Feed-
back Corpus (Van Nguyen et al., 2018), contains
more than 16,000 student responses about lectures,
curriculum, facilities, etc. For each text piece in
this task, the model has to predict whether that
response is positive, negative, or neutral.

VSMEC, which is the Vietnamese Social Media
Emotion Corpus (Ho et al., 2020a). This dataset in-
cludes nearly 7,000 sentences labeled with six fun-
damental emotions (enjoyment, disgust, sadness,
anger, fear, surprise) or "other" for the sentence
with an emotion not belonging to the six above.

3.1.3 Similarity and Paraphrase Tasks
MRPC, short for Microsoft Research Paraphrase
Corpus (Dolan and Brockett, 2005), is a collection
of sentence pairs extracted from internet newswire
articles. The task requires the model to recognize
the semantic equivalence between two sentences.

QQP is a paraphrase-based problem that in-
volves question pairs sourced from the Quora web-
site (Iyer et al., 2017). The task is to decide whether
two questions are semantically equivalent or have
the same answer even if the questions are different.

3.1.4 Single-sentence Tasks
CoLA, introduced by Warstadt et al. (2019), pro-
vides annotated samples for the language accept-
ability task (or grammar error detection task). The

corpus is constructed using literary publications
and scholarly articles within linguistic theory.

VToC, stands for Vietnamese Topic Classifica-
tion. This dataset is just another variance of the
VNRTE dataset, where each sentence is labeled
with the article’s topic. VToC covers 15 topics, in-
cluding Automobile, Business, Digital, Education,
Entertainment, Health, Law, Life, News, Perspec-
tive, Relax, Science, Sports, Travel, and World.

3.2 Dataset Construction

The target is to create a high-quality benchmark
that is easily accessible and freely available to
all individuals. To build the ViGLUE bench-
mark, all three mentioned methods to construct
the NLU benchmarks are utilized, including trans-
lating source benchmarks to Vietnamese, gathering
available datasets, and making new corpora. The
following information outlines the process of creat-
ing ViGLUE by employing these techniques.

3.2.1 Semi-Translating
The translation approach, as utilized in previous
studies (Conneau et al., 2018; Ponti et al., 2020), is
employed to transform eight subsets of the GLUE
benchmark from English to Vietnamese. These
subsets include CoLA, MNLI, MRPC, QNLI, QQP,
RTE, SST2, and WNLI, as outlined in Table 1. To
mitigate the potential for interdependence across
features while translating, we handle them individu-
ally. By utilizing the GLUE dataset and employing
the Google Translate API, the output dataset effec-
tively inherits the contributions of the worker pool,
as well as the varying levels of task complexity and
diversity (Williams et al., 2017). Furthermore, the
meanings of the premises and hypotheses remain
unchanged, which is useful for inference tasks.

Instead of using human verification similar to
XCOPA (Ponti et al., 2020), XNLI (Conneau et al.,
2018) and XGLUE (Liang et al., 2020), the back-
translation (Edunov et al., 2018) method is used.
For each translated task, we sampled one hundred
examples and translated all of them back into the
original language (English in particular). Then,
the original and back-translated sentences are com-
pared by calculating BLEU, METEOR, and seman-
tic similarity scores to judge the translation quality.

Semantic similarity is used to ensure the con-
sistency of the meaning through the translating
process. It is computed by calculating the co-
sine similarity score between the semantic rep-
resentations of original and back-translated sen-
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Figure 1: The VNRTE creation pipeline has three stages, including (1) article crawling and preprocessing, (2)
generating entailment sentences, and (3) semantic searching inside articles for non-entailment sentences.

tences. First, the representation is obtained by
using a pre-trained Siamese BERT (Reimers and
Gurevych, 2019) network f(x; θ) with pre-trained
parameters θ. In this case, the network (or em-
bedding model) transforms input text x into a k-
dimensional dense embedding vector e = f(x; θ).
Then, the semantic similarity between sentences
x1 and x2 is determined by cosine similarity, cal-
culated as score(x1, x2) =

e1 · e2
||e1|| · ||e2||

, where

e1, e2 are embedding vectors obtained by feeding
x1, x2 through the embedding model, respectively.

The lexical aspect is also guaranteed by comput-
ing BLEU (Papineni et al., 2002) and METEOR
(Banerjee and Lavie, 2005) metrics between the
original and back-translated sentences. BLEU is
a common evaluation metric for comparing trans-
lation results, while METEOR extends the ability
of BLEU by matching the candidates based on the
surface form, stemmed form, and meaning.

The quality checking results by back translation
are provided in Table 2. Except for SST2 and
CoLA, The BLEU metric of all subsets over 50
scores, and the METEOR value of all tasks encom-
pass 70. The semantic similarity score also gets
high results, all larger than 90 except SST2. On
average, the translated corpora maintain the mean-
ing of the text, which is the most important aspect
when the task of GLUE focuses on inference or
semantic meaning between two sentences.

3.2.2 Constructing

Besides the translated tasks from the GLUE bench-
mark, two corpora are constructed based on the
Vietnamese online articles. The creation pipeline
of VNRTE is visualized in Figure 1.

Subset BLEU METEOR Semantic Similarity

CoLA 46.53 76.38 93.40
MNLI 50.51 77.28 93.22
MRPC 60.03 83.40 95.46
QNLI 57.97 81.37 95.44
QQP 58.46 83.14 95.90
RTE 60.23 83.38 96.74
SST2 39.74 68.72 88.52
WNLI 50.06 77.07 94.04

Avg 53.50 79.41 94.30

Table 2: Results of backtranslation evaluation using
BLEU, METEOR, and Semantic similarity metrics. The
Semantic Similarity is the average cosine similarity
score between original GLUE sentence embeddings and
back-translated GLUE sentence embeddings obtained
from a pre-trained Siamese BERT network (Reimers
and Gurevych, 2019). All the metrics are scaled to 100.

First, the raw documents were obtained by crawl-
ing through the VnExpress Online Newspaper, an
official Vietnamese online news platform. After
performing the preprocessing step, including re-
moving unnecessary components like URLs and
HTML tags, a clean document set is created.

For the VNRTE corpus, there are two stages to
design the task, which are described as follows:

• The first flow (or the upper flow in Figure 1)
uses the abstract sentences of the articles, fol-
lowed by rewriting by GPT model to obtain
sentences with similar meanings. To avoid the
error of the generative model, such as gener-
ated output having a different meaning to the
original sentence, semantic similarity filtering
is applied. The method is to compute the co-
sine similarity score between the embedding
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vector of the abstract statement and the gen-
erated text, then filter out which pairs have a
score less than 0.9 to feed the corresponding
abstract into the model for rewriting the en-
tailment sentence. This stage loops four times
and removes all the sentence pairs having a
score less than 0.9 at the end.

• For the second flow, the abstract statement
of the article is used with its corresponding
news content. In this stage, the objective is to
utilize the entire document content to identify
the combination of sentences that do not en-
tail each other. Using the abstract statement
as the anchor text, similarity search scores are
computed between the anchor and the content
sentences. Subsequently, a sentence is ran-
domly selected, with a similarity score falling
within the range of 0.3 to 0.4, to designate it
as the sentence that still has the same topic
with the anchor text but does not entail it.

Concerning the VToC corpus, it utilizes the ab-
stract sentence from each article as the input data
for the Vietnamese topic classification task. The ab-
stract sentence is selected from the clean document
along with the document’s topic, which serves as
the label for this problem. Because VnExpress is
an official Vietnamese online news platform, the
quality of the abstract statement, document topic,
and article content is asserted before publication.

3.2.3 Collecting
The collecting approach utilizes the pre-existing
Vietnamese datasets to assess tasks. With this
method, two Vietnamese datasets, including VSFC
(Van Nguyen et al., 2018) and VSMEC (Ho et al.,
2020a), are collected and preprocessed by remov-
ing emoticons and emojis. Ultimately, the two
datasets are regarded as the tasks for assessing
large language models. ViGLUE has expanded its
range of tasks and benefits from the previously well-
constructed datasets by employing this method.

3.3 Dataset Analysis

The statistics of each task in the ViGLUE dataset,
including the number of sentences, the number of
tokens, vocabulary size, and the average number
of tokens per sentence, are provided in Table 3. To
measure these statistics, Underthesea2 library is
used for sentence and word tokenization.

2https://github.com/undertheseanlp/underthesea

According to the data in Table 3, it is evident that
QQP has the largest vocabulary size, with 69,796
unique tokens, surpassing the second largest, QNLI,
which has 50,759 unique tokens. Despite MNLI
having the highest token count, its vocabulary size
ranks third, with 41,701 unique tokens. The aver-
age sentence length, measured in tokens per sen-
tence (tps), is highest for VNRTE, with an average
of 30.24 tps. VToC, MRPC, RTE, and QNLI fol-
low with average sentence lengths of 29.72, 28.80,
27.26, and 26.70 tps respectively. The average sen-
tence length of other assignments is less than 25.

Corpus #Sents #Tokens #Vocab Avg#TpS

CoLA 9,621 102,290 3,819 10.63
MNLI 848,739 17,989,715 41,701 21.20
MRPC 11,970 344,761 10,714 28.80
QNLI 227,513 6,073,566 50,759 26.70
QQP 903,686 13,287,371 69,796 14.70
RTE 7,982 217,599 9,980 27.26
SST2 68,569 959,762 7,319 14.00
VNRTE 6,436 194,595 8,366 30.24
VSFC 1,583 21,647 1,157 13.67
VSMEC 878 9,573 1,785 10.90
VToC 1,916 56,940 5,471 29.72
WNLI 1,767 26,190 1,426 14.82

Avg 174,221 3,273,667 17,691 20.22

Table 3: ViGLUE task statistics. #Sents denotes the
number of sentences; #Tokens denotes the number of to-
kens; #Vocab denotes the vocabulary size, and Avg#TpS
denotes the average number of tokens per sentence.

4 Experiments

This section describes the baseline models used in
the experiments conducted on the ViGLUE bench-
mark and the analysis of evaluation results in the
model’s language understanding capability.

4.1 Baselines

The ViGLUE benchmark utilizes two types of base-
line models: the non-trained technique and the fine-
tuning of pre-trained language models.

4.1.1 Majority Baseline

For each task, the class label with the highest pro-
portion is taken as a prediction over the entire test
set. This algorithm is also known as the ZeroR
classifier (Aher and Lobo, 2012). Even lacking pre-
dictive capabilities, it offers a strong baseline for
the classification tasks (Nasa and Suman, 2012).
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Natural Language Inference Sentiment Analysis Similarity/Paraphrase Single-sentence Tasks

Model MNLI QNLI RTE VNRTE WNLI SST2 VCSFC VSMEC MRPC QQP CoLA VToC
Metric Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc./F1 Acc./F1 MCC Acc.

ZeroR 35.45 50.54 52.71 53.11 56.34 50.92 50.85 31.20 68.38/81.22 63.38/0.00 0.00 6.77
mBERT 79.66 89.11 70.76 99.97 56.34 88.42 93.62 53.64 85.29/88.85 89.12/85.16 14.13 81.43
XLM-Rbase 81.61 88.17 62.45 100.00 56.34 89.45 94.95 55.25 83.82/88.26 89.46/85.87 3.64 83.07
XLM-Rlarge 35.45 91.23 67.51 100.00 54.93 90.14 95.39 37.9 88.24/91.64 90.48/87.22 0.0 87.82
mDeBERTaV3 83.34 89.99 69.31 99.97 56.34 89.79 95.07 55.39 86.52/90.05 89.98/86.69 19.62 80.88

Table 4: Evaluation results of the baseline models on the validation subset. MNLI uses the validation_matched. All
tasks use the accuracy metric, except that CoLA uses the Matthews correlation coefficient (MCC). All the results
are multiplied by 100 and rounded to two decimal places. The best result of each task is shown in bold.

4.1.2 Pre-trained Models
To get the baseline models, the following pre-
trained encoder-only Transformer models incor-
porating Vietnamese knowledge are used:

• mBERT is the multilingual variant of BERT
(Devlin et al., 2018), which is one of the
first pre-trained language models trained with
two self-supervised learning tasks, namely
masked language modeling and next sentence-
prediction, on the multilingual unlabeled data.

• XLM-RoBERTa (or XLM-R) (Conneau et al.,
2020) is a masked language model trained on
2.5TB of data in 100 languages to boost per-
formance on multilingual downstream tasks.

• mDeBERTa V3 (He et al., 2021a) refers to a
collection of DeBERTa V3 models that have
been trained using CC100 data. In addition,
it employs ELECTRA-Style pre-training with
Gradient Disentangled Embedding Sharing
(He et al., 2021b) to effectively perform unsu-
pervised learning on unlabeled corpora.

The mentioned pre-trained models are selected
due to their multilingual ability, providing good
weight initialization for the baseline models and
comprehensive coverage of the tokenizer’s vocabu-
lary to prevent out-of-vocabulary phenomena. In
addition, mBERT and mDeBERTaV3 are utilized
in their basic variants, whilst XLM-RoBERTa is
employed in its base and large configurations.

4.1.3 Fine-tuning
Although all the tasks in ViGLUE are different re-
garding the specific task (sentiment analysis, para-
phrase, natural language inference), they are se-
quence classification problems. Consequently, the
output of the Transformer at the first index in the
sequence is fed into a classifier and optimized via

cross-entropy loss. The training configuration con-
sists of 3 epochs each session, utilizing a learning
rate 2e-5 and employing the Adam optimizer. For
every task, each model undergoes three times fine-
tuning, and the best performance checkpoint on the
validation set is selected to be reported.

4.2 Benchmark Results

Evaluation results of baseline models for each task
in ViGLUE are reported in Table 4. The evaluate3

library is used to load and compute the metric.
XLM-Rlarge surpasses all models on seven over

twelve tasks: QNLI, VNRTE, VSFC, MRPC, QQP,
SST2, and VToC. It is noticeable that XLM-Rlarge
has superior performance in similarity and para-
phrase tasks, surpassing all other models in this
group. In addition, XLM-Rlarge achieves the great-
est performance compared to the different models
in two out of three single-sentence tasks. How-
ever, its accuracy drops significantly in task VS-
MEC, at 37.9% compared to around 53% to 55% of
other fine-tuned models. When comparing XLM-
Rlarge to XLM-Rbase, XLM-Rbase performance does
not exceed its large version on any task. It indi-
cates that increasing model capacity enhances the
model’s performance on most tasks.

The mDeBERTaV3 model ranks second on the
ViGLUE benchmark, outperforming other models
in MNLI, VSMEC, and CoLA tasks. Nevertheless,
in tasks where mDeBERTaV3 does not outperform
other models, the gap in performance between them
is negligible, with a margin of less than 1%.

On the task WNLI, all models achieve the same
accuracy, 56.34%, equal to the ZeroR classifier
(majority model), except XLM-Rlarge. It’s because
the task is too challenging for the model to rec-
ognize the entailment relationship between the
premise and the hypothesis of the WNLI samples.
The GLUE benchmark explained a difference be-

3https://github.com/huggingface/evaluate
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Figure 2: Evaluation results of BLOOM-7B1 and PhoGPT on twelve ViGLUE tasks (multiplied by 100). All tasks
are reported with accuracy, except for CoLA using Matthews correlation coefficient.

tween the distribution of the train set and the test
set, indicating that the baseline models overfit the
train subset of WNLI in this finetuning schema.

In short, XLM-Rlarge is a multilingual language
model that outperforms mBERT and mDeBER-
TaV3 through the evaluation results in seven out of
twelve tasks. In addition, it has been shown that
expanding the model size enhances the model’s
ability to understand general language.

5 Few-shot Learning with Vietnamese
Large Language Models

Besides finetuning the pre-trained encoder-only
Transformer models, several Vietnamese large lan-
guage models, also known as autoregressive lan-
guage models, are evaluated on ViGLUE to com-
pare their language understanding ability.

This experiment applies the few-shot learning
framework (Brown et al., 2020), also referred to
as in-context learning, to the BLOOM model fam-
ily (Workshop et al., 2022) and PhoGPT model
(Nguyen et al., 2023). The advantage of this ap-
proach is eliminating the need for model finetuning,
thereby reducing the hardware requirements asso-
ciated with LLMs. Additionally, the notation k
denotes the number of samples in the context.

From Figure 2 in Appendix C.1, PhoGPT out-
performs BLOOM-7B1 on a small number of tasks.
When using zero-shot learning (k = 0), PhoGPT
demonstrates superior performance compared to
BLOOM-7B1 on six out of twelve tasks. Similarly,
BLOOM-7B1 gets better performance compared
to PhoGPT on five out of twelve tasks for k = 1,
seven out of twelve tasks for k = 2, and five out
of twelve tasks for k = 4. Furthermore, it is ev-
ident that increasing the number of examples in
the prompts adversely affects the model’s efficacy,
namely on CoLA, MNLI, MRPC, and WNLI. It
is noticeable that zero-shot learning achieves the
highest scores in CoLA, MNLI, MRPC, QQP, and
WNLI, to other values of k even though it does not
offer any task-specific instruction. Nevertheless,
the concept of increasing the number of examples
resulting in a performance improvement remains
valid for QNLI and VNRTE. The statistics for QQP,
SST2, VSFC, and VSMEC exhibit uneven fluctua-
tions when the number of shots changes.

Figure 3, in Appendix C.2, visualizes the few-
shot learning performance of the BLOOM model
family. It is obvious that increasing k benefits the
models on QNLI for any model size. In contrast,
it also shows that CoLA, MNLI, MRPC, and QQP
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do not benefit from few-shot learning since the
performance at k = 0 always gets the highest
values among all k values. Regarding the model
size, the largest model, BLOOM-176B, achieves
roughly identical performance to other configura-
tions on most workloads (CoLA, MNLI, MRPC,
and VToC). It outperforms models with lower ca-
pacities only on QNLI, RTE, and SST2, while
for other tasks, it cannot beat them. When the
model size increases from 560M to larger, the per-
formance also increases on several tasks, such as
QNLI, QQP, RTE, SST2, VSFC, and VSMEC. Nev-
ertheless, the BLOOM-560M model, which is the
smallest in size, outperforms the other models in
the BLOOM family in both VNRTE and WNLI
tasks. On inference tasks, raising the number of
parameters in multilingual language models some-
times fails to increase the performance.

6 Conclusion

By providing ViGLUE, the issue of missing a Viet-
namese natural language understanding benchmark
is tackled. ViGLUE is built using three methods,
including translating available benchmarks, con-
structing new corpora, and gathering available Viet-
namese datasets. The baseline models finetuned
on multilingual language models are provided for
all ViGLUE tasks and XLM-RoBERTalarge achieve
the best performance on seven over twelve tasks
compared to mBERT and mDeBERTaV3. Besides
exploring the encoder architecture, large language
models are also examined using few-shot learning.
We observe that on CoLA, MNLI, MRPC, QQP,
and WNLI, the models perform better without any
task instruction. In contrast, models achieve greater
performance on QNLI and VNRTE when increas-
ing the number of samples in the context.

The number of shots employed in the experi-
ments is restricted to only four values (0, 1, 2, and
4). For further investigation, experimenting with
different and large values of the number of exam-
ples in the context is considered. In addition, tasks
in ViGLUE focus on short sentences or sentence
pairs. Future work should focus on long sentences
or text at a higher level. Finally, ViGLUE covers
news, Wikipedia, textbooks, and publication do-
mains. Therefore, expanding the scope of ViGLUE
to medical, law, and education is a good direction.

Limitation

Despite the benchmark spread over twelve corpora,
ViGLUE still has some limitations as follows.

In the GLUE benchmark, CoLA requires the
models to classify if the input sentence is gram-
matically correct or not. However, the machine
translator sometimes corrects the translated text,
leading to the wrong label in the translated CoLA
tasks. The way to fix this is to sophisticate the trans-
lated sentence where the label is unacceptable.
Furthermore, using a human translator instead of a
machine translator is an alternative approach.

The number of shots used in the few-shot learn-
ing contexts is limited due to the high hardware
requirements when increasing the number of shots.
Therefore, the observation above is only true for
cases where k ∈ {0, 1, 2, 4}. Investigating more
values of k is a direction for future research.

Potential Risks

The ViGLUE benchmark contains datasets for sen-
timent analysis tasks, which may include negative-
feeling sentences. Hence, users of ViGLUE should
be aware of this negative aspect and avoid develop-
ing such an unethical model based on sentences ex-
pressing a negative emotion. We guarantee that any
biases present in the benchmark are inadvertently
introduced, and our objective is not to cause harm
to any individual or entity. We strongly advocate
for the proper utilization of the datasets to drive
advancements in natural language processing.
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Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020.
XCOPA: A multilingual dataset for causal common-
sense reasoning. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2362–2376, Online. As-
sociation for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Tatiana Shavrina, Alena Fenogenova, Emelyanov An-
ton, Denis Shevelev, Ekaterina Artemova, Valentin
Malykh, Vladislav Mikhailov, Maria Tikhonova, An-
drey Chertok, and Andrey Evlampiev. 2020. Rus-
sianSuperGLUE: A Russian language understand-
ing evaluation benchmark. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4717–4726,
Online. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Cong Dao Tran, Nhut Huy Pham, Anh Tuan Nguyen,
Truong Son Hy, and Tu Vu. 2023. ViDeBERTa: A
powerful pre-trained language model for Vietnamese.
In Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 1071–1078, Dubrovnik,
Croatia. Association for Computational Linguistics.

Thinh Hung Truong, Mai Hoang Dao, and Dat Quoc
Nguyen. 2021. COVID-19 Named Entity Recog-
nition for Vietnamese. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

Kiet Van Nguyen, Vu Duc Nguyen, Phu XV Nguyen,
Tham TH Truong, and Ngan Luu-Thuy Nguyen.
2018. Uit-vsfc: Vietnamese students’ feedback cor-
pus for sentiment analysis. In 2018 10th interna-
tional conference on knowledge and systems engi-
neering (KSE), pages 19–24. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

4184

https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.1109/KSE.2018.8573337
https://doi.org/10.1109/KSE.2018.8573337
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.381
https://doi.org/10.18653/v1/2020.emnlp-main.381
https://doi.org/10.18653/v1/2020.emnlp-main.381
https://doi.org/10.18653/v1/2023.findings-eacl.79
https://doi.org/10.18653/v1/2023.findings-eacl.79


Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

BigScience Workshop, Teven Le Scao, Angela Fan,
Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
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Appendix

A Licenses and Terms of Use

Since ViGLUE uses tasks translated from the
GLUE benchmark, it inherits all of the licenses
available in the GLUE. Furthermore, information
about licenses of two collected datasets, VSFC and
VNRTE, is also provided in Table 5.

Task License

CoLA CC BY 4.0
MLNI CC BY 4.0
MRPC CC BY 4.0
QNLI CC BY-SA 4.0
QQP CC BY 4.0
RTE CC BY-SA 3.0
SST2 CC BY 4.0
VNRTE CC BY-NC-ND 4.0
VSFC -
VSMEC -
VToC CC BY-NC-ND 4.0
WNLI CC BY 4.0

Table 5: Licenses of tasks in ViGLUE. Notation “-”
denotes that there is no information about the license.

For CoLA, MRPC, QQP, SST2, and WNLI, they
do not provide licenses for these tasks so the li-
cense of the GLUE benchmark, which is CC BY
4.0, is used instead. The two task VNRTE and
VToC, which are created from the content of VNEx-
press website, are published under CC BY-NC-ND
4.0 and do not serve for commercial use. Finally,
ViGLUE is published under a CC BY 4.0 license,
and we highly recommend that ViGLUE should be
used only for academic purposes only.

B Training Setup

B.1 Hardware Requirements

All the training sessions are run on a single
NVIDIA A100-PCIE-40GB, with 64GB of RAM
and 12 CPU cores. For inference and few-shot
learning runs, the same hardware setting is applied.

B.2 Training Hyperparameters

For finetuning the baseline models, the AdamW
optimizer is used with β1 = 0.9, β2 = 0.999, ϵ =
1e−8. For a single training session, the model is
trained for three epochs with a global batch size
of 32, a learning rate of 2e−5, and fp32 precision.
The model undergoes finetuning for each task in
three sessions, each using a different seed value:
1, 10, and 100 accordingly. Moreover, long model
inputs are truncated to a maximum of 256 tokens.

B.3 Model Sizes and Training Time

The model capacity is shown in Table 6 and the
training period of the experiments for each model
across all tasks is provided in Table 7.
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Model #Params

mBERT 178M
XLM-Rbase 278M
XLM-Rlarge 560M
mDeBERTaV3 279M

Table 6: Number of trainable parameters for the multi-
lingual pre-trained models finetuned as the baselines.

Task mBERT XLM-Rbase XLM-Rlarge mDeBERTaV3

CoLA 00:01:08 00:02:44 00:02:27 00:02:37
MNLI 02:34:51 02:50:50 05:38:01 04:03:56
MRPC 00:00:52 00:01:07 00:02:45 00:02:04
QNLI 00:39:39 00:46:07 01:38:38 01:22:58
QQP 01:20:18 03:16:38 03:59:45 02:56:57
RTE 00:01:14 00:01:14 00:03:54 00:01:51
SST2 00:13:30 00:17:15 00:29:52 00:27:18
VNRTE 00:04:06 00:04:24 00:12:38 00:08:31
VSFC 00:02:27 00:02:48 00:07:08 00:04:39
VSMEC 00:01:10 00:01:24 00:03:37 00:02:14
VToC 00:01:24 00:01:36 00:04:14 00:02:41
WNLI 00:00:09 00:00:09 00:00:38 00:00:20

Table 7: Training time of the baseline models on twelve
ViGLUE tasks. The time follows HH:MM:SS format.

B.4 BERT-like Model Benchmark Results
The models are loaded and trained with the script
from the transformers framework (Wolf et al.,
2020). Besides the multilingual language models as
the baselines, additional results of the Vietnamese
models are provided, including PhoBERT (Nguyen
and Nguyen, 2020) and ViDeBERTa (Tran et al.,
2023).

The benchmark results of all training sessions
are reported in Table 8. Matthews correlation co-
efficient is used for CoLA, accuracy/F1 score are
used for MRPC and QQP, and accuracy is used for
the rest of the tasks of ViGLUE. Each of the cho-
sen pre-trained models is finetuned on each task in
three sessions, using seed values of 1, 10, and 100,
respectively. The model’s highest performance on
each challenge, across three different seeds, is indi-
cated by underlining. The highest performance on
each task among all models is displayed in bold.

C Few-shot Learning Evaluation Results

C.1 BLOOM-7B1 vs PhoGPT
For the highly fair comparison between a multilin-
gual language model containing Vietnamese knowl-
edge and a large language model mainly pre-trained
on Vietnamese text, BLOOM-7B1 and PhoGPT are
chosen in this experiment, with the number of pa-
rameters at 7.1 billion and 7.5 billion, respectively.

The evaluation results are shown in Figure 2.

C.2 Benchmark Results of BLOOM Family
There are six configurations in the BLOOM model
family with the number of parameters 560M, 1.1B,
1.7B, 3B, 7.1B, and 176B. The evaluation results
on twelve tasks are visualized in Figure 3.

C.3 Community Model Evaluation
In addition to evaluating models from publica-
tions, many Vietnamese large language models pub-
lished by the community are utilized to assess the
ViGLUE benchmark. The objective is to offer a
concise measurement of the language understand-
ing capabilities of the models to the community,
helping them in selecting a suitable Vietnamese
LLM. The results are shown in Table 9.

Besides BLOOM and PhoGPT, two Vietnamese
large language model families provided by the com-
munity are evaluated on the ViGLUE benchmark.
The models are listed as follows,

• The Vietcuna family with three models:
vilm/vietcuna-3b, vilm/vietcuna-3bv2,
and vilm/vietcuna-7b-v3.

• The Hoa group with two mod-
els: vlsp-2023-vllm/hoa-1b4 and
vlsp-2023-vllm/hoa-7b.
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Model CoLA MNLI MRPC QNLI QQP RTE SST2 VNRTE VSFC VSMEC VToC WNLI

Multilingual Models

mBERT
10.93 79.63 85.29/88.85 88.52 89.12/85.16 65.70 88.42 99.97 93.62 48.10 80.83 49.30
10.09 79.35 83.09/87.43 89.11 88.86/84.74 64.98 88.42 99.97 93.05 51.02 81.43 56.34
14.13 79.66 83.58/87.75 88.85 89.06/85.13 70.76 88.19 99.90 93.62 53.64 81.32 53.52

XLM-Rbase

3.64 80.79 82.60/87.34 88.17 89.45/85.78 62.45 88.19 99.97 94.50 51.31 83.07 56.34
0.00 81.61 83.82/88.26 87.90 89.44/85.80 60.29 88.30 99.90 94.50 53.06 82.96 46.48
0.00 80.88 83.82/88.17 87.83 89.46/85.87 51.26 89.45 100.00 94.95 55.25 82.85 56.34

XLM-Rlarge

0.00 35.45 86.76/90.29 91.09 90.48/87.22 67.51 50.92 100.00 95.39 32.51 86.46 45.07
0.00 35.45 68.38/81.22 91.23 90.10/86.82 47.29 89.11 100.00 95.14 37.90 87.82 43.66
0.00 31.82 88.24/91.64 49.46 63.18/0.00 61.73 90.14 99.94 95.01 37.61 87.49 54.93

mDeBERTaV3
15.29 83.33 84.31/87.92 89.99 89.97/86.58 63.54 89.22 99.97 95.07 53.35 80.56 43.66
19.62 83.34 85.05/89.32 89.84 89.98/86.69 69.31 89.79 99.81 95.01 53.64 80.88 56.34
17.95 83.21 86.52/90.05 89.75 89.88/86.55 69.31 89.45 99.87 94.57 55.39 80.72 56.34

Vietnamese Models

PhoBERTbase

16.28 82.73 81.86/87.15 89.49 89.87/86.34 62.82 90.94 99.97 95.26 56.56 86.02 56.34
14.59 82.90 82.60/87.16 89.73 89.81/86.30 65.70 90.37 99.97 95.51 56.41 86.24 54.93
17.03 82.81 81.37/86.52 89.71 89.84/86.27 65.70 90.71 99.97 95.20 56.27 86.07 56.34

PhoBERTlarge

14.99 32.95 82.35/87.19 89.44 89.95/86.48 61.01 89.33 99.94 95.33 60.79 88.86 56.34
0.00 84.19 85.54/89.41 89.97 90.30/86.84 66.79 89.79 100.00 95.01 60.35 88.04 56.34
0.00 31.82 85.29/89.17 90.92 90.00/86.46 59.93 90.14 99.97 95.45 59.04 88.69 56.34

PhoBERTbaseV2
22.28 83.40 83.09/87.70 90.13 90.15/86.82 70.40 90.60 99.97 95.51 59.18 84.43 53.52
22.17 83.23 82.60/86.92 90.39 90.23/86.95 71.12 90.02 99.97 95.33 58.02 85.20 53.52
13.11 83.39 83.33/87.86 90.08 90.01/86.62 66.79 89.68 100.00 95.33 57.00 85.53 53.52

ViDeBERTaxsmall

0.00 68.79 71.81/81.72 78.46 83.26/77.18 51.26 76.49 99.55 87.11 30.32 19.39 57.75
0.00 69.18 70.83/81.44 78.29 83.19/76.23 54.15 77.06 99.71 86.67 33.09 17.04 43.66
0.00 69.06 73.53/82.97 78.60 83.06/76.59 54.87 76.83 99.49 86.10 31.63 16.49 46.48

ViDeBERTabase

0.00 32.95 68.38/81.22 78.42 83.96/77.76 50.90 50.80 99.27 79.85 31.34 20.43 56.34
0.00 44.72 68.38/81.22 70.11 83.86/77.58 51.62 67.89 99.55 81.17 32.07 15.73 56.34
0.00 40.97 71.32/81.75 78.56 84.04/78.08 49.82 55.39 99.52 84.14 30.32 12.45 43.66

Table 8: Evaluation results of the multilingual baseline models on twelve tasks of ViGLUE. Additional results
for the Vietnamese models are also measured. For all tasks, accuracy is reported except MRPC and QQP using
accuracy/F1 score and CoLA using the Matthews correlation coefficient. The model is finetuned for each task in
three sessions with three corresponding seed values, 1, 10, and 100. The highest performance of the model on each
task across three seeds is underlined while the highest performance on each task across all models is shown in bold.
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Figure 3: Few-shot learning performance of BLOOM model family with k = 0, 1, 2, 4. The star, the plus, the circle,
and the diamond symbols represent few-shot learning results with k = 0, k = 1, k = 2, and k = 4 respectively. The
metric used in the visualization is accuracy, except for CoLa, which reported the Matthew correlation coefficient.
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Model BLOOM
56

0M

BLOOM
1B

1

BLOOM
1B

7

BLOOM
3B

BLOOM
7B

1

BLOOM
17

6B

Viet
cu

na
-3B

Viet
cu

na
-3B

-v2

Viet
cu

na
-7B

-v3

Pho
gp

t-7
B5

Hoa
1B

4

Hoa
7B

CoLa
MCC

0 21.59 2.62 37.72 -0.44 6.65 3.84 0.29 2.71 1.39 93.25 31.02 0.05
1 0.00 0.00 -0.56 -5.28 -4.67 0.88 -02.07 0.00 3.93 04.63 2.10 1.81
2 -1.74 1.81 -2.38 0.74 1.90 -1.59 0.00 0.00 1.37 -2.37 -1.76 3.71
4 -2.62 -3.05 3.96 0.00 3.78 -1.60 0.00 0.00 -3.80 0.00 -0.64 3.26

MNLI
Acc.

0 36.89 49.35 45.55 50.36 47.68 32.38 23.82 22.89 32.74 66.01 37.72 46.96
1 32.73 32.72 32.73 28.18 32.73 18.78 25.63 28.32 18.45 49.77 32.72 26.83
2 32.96 35.66 35.75 30.76 33.40 32.12 25.18 27.36 17.91 44.10 33.02 34.88
4 31.83 31.82 35.16 31.68 29.46 31.65 25.65 29.54 27.25 32.67 38.93 33.52

MRPC
Acc./F1

0 69.85/71.72 97.05/97.86 35.29/10.20 68.38/70.61 44.36/32.23 68.38/81.11 24.01/6.62 24.01/1.27 28.92/0.00 98.03/98.57 48.77/40.45 99.50/99.64
1 32.1/1.42 54.90/67.60 31.86/3.47 31.61/0.00 31.61/0.00 57.84/69.28 50.49/66.10 59.31/74.14 29.16/0.00 68.62/81.34 68.38/81.22 63.97/77.55
2 31.61/0.00 56.61/65.22 31.86/1.41 31.61/0.00 31.61/0.00 58.57/70.50 45.58/60.63 50.98/65.63 27.45/01.33 49.01/54.18 69.85/81.83 68.38/81.22
4 31.61/0.00 32.10/2.12 31.61/0.00 32.10/1.42 31.61/0.00 33.08/13.88 48.03/62.27 56.61/70.93 25.73/0.65 32.10/2.80 34.31/11.25 66.66/79.64

QNLI
Acc.

0 1.88 1.24 2.01 2.14 2.72 8.07 45.30 72.43 62.73 1.00 1.59 1.73
1 39.75 14.90 20.99 13.82 38.89 50.26 40.76 44.31 19.14 46.34 48.47 17.92
2 48.91 22.35 47.90 31.31 51.41 54.23 46.98 49.64 50.26 47.66 48.36 18.35
4 49.53 44.26 50.86 48.67 51.94 55.39 47.59 50.46 50.53 50.61 48.21 30.58

QQP
Acc./F1

0 63.99/4.56 62.79/30.45 72.08/40.92 67.57/25.28 66.27/16.83 43.12/54.92 15.50/12.87 16.81/19.94 17.87/24.61 85.38/76.93 61.65/7.74 86.52/79.88
1 36.84/53.82 36.82/53.82 37.86/53.96 37.94/53.56 36.54/52.14 36.82/53.75 32.09/47.97 35.80/52.67 29.78/45.16 48.45/45.82 44.08/43.16 37.04/53.75
2 59.74/10.23 62.86/2.48 62.86/2.65 63.18/0.79 63.18/0.00 36.81/53.75 32.95/48.93 36.35/53.30 20.16/20.57 63.12/0.10 62.61/3.05 43.15/42.92
4 40.12/51.52 36.87/53.81 43.23/46.26 45.19/54.32 45.68/37.79 36.81/53.82 34.92/51.35 36.67/53.65 21.11/27.75 59.02/4.14 60.60/15.23 36.87/53.72

RTE
Acc.

0 51.26 49.45 43.32 49.81 53.06 59.20 77.25 72.20 75.09 7.94 51.98 43.68
1 52.70 53.42 52.70 52.70 52.70 66.06 62.81 53.79 61.73 52.70 52.70 52.70
2 49.45 47.29 55.23 53.06 55.95 53.79 62.81 58.84 62.81 53.06 54.87 55.23
4 47.29 47.29 50.18 54.15 51.62 50.90 69.31 59.56 63.17 47.29 50.18 47.29

SST2
Acc.

0 54.93 49.42 66.74 52.06 51.37 68.00 87.15 86.35 69.15 0.00 48.96 50.00
1 49.08 50.68 49.08 49.19 53.09 68.92 65.48 50.57 77.75 3.44 49.08 49.19
2 49.42 65.94 49.19 49.31 50.11 78.89 72.82 72.82 77.86 35.77 50.34 50.91
4 49.08 49.08 49.08 49.31 49.88 84.28 63.07 70.18 81.53 50.80 48.27 58.37

WNLI
Acc.

0 59.15 47.88 56.33 59.15 56.33 42.25 42.25 43.66 46.47 94.36 57.74 60.56
1 43.66 47.88 43.66 47.88 56.33 54.92 47.88 43.66 50.70 49.29 43.66 43.66
2 56.33 43.66 54.92 56.33 56.33 52.11 45.07 45.07 49.29 43.66 52.11 45.07
4 57.74 43.66 56.33 56.33 56.33 54.92 42.25 46.47 49.29 43.66 56.33 45.07

VNRTE
Acc.

0 44.08 42.87 39.49 38.95 45.45 47.33 89.76 97.44 90.14 3.47 46.82 40.51
1 46.89 42.68 46.89 46.82 46.89 48.39 92.92 87.56 90.85 45.68 46.89 47.24
2 51.35 53.13 52.11 47.33 47.94 48.67 91.83 83.39 92.12 50.04 47.05 74.78
4 58.97 53.13 50.94 46.92 47.33 52.66 89.06 83.51 92.92 52.98 47.21 56.64

VToC
Acc.

0 6.66 6.49 6.82 6.60 6.99 7.37 6.22 6.17 4.58 7.20 6.99 6.49
1 7.59 7.31 7.31 6.38 6.82 7.86 5.78 5.35 7.04 4.25 6.82 10.15
2 7.75 8.57 8.19 3.49 5.73 7.42 6.17 5.95 6.55 6.88 7.48 10.37
4 5.40 7.15 8.46 6.22 5.07 4.75 6.60 4.75 3.71 8.73 8.57 9.61

VSFC
Acc.

0 4.67 0.50 1.07 12.06 15.91 20.34 40.99 37.71 41.88 0.00 2.33 4.67
1 28.11 44.85 44.34 44.34 4.61 33.92 42.32 40.36 34.30 8.46 44.47 44.53
2 36.32 44.15 41.81 44.59 4.99 34.36 43.20 39.67 33.10 0.56 44.53 44.53
4 9.98 39.86 7.95 4.67 5.11 41.31 44.47 34.23 39.48 11.30 23.81 48.26

VSMEC
Acc.

0 7.28 7.28 7.72 8.45 8.30 4.95 11.07 8.30 6.70 6.55 7.43 8.89
1 11.95 24.05 27.25 29.73 29.88 25.21 19.53 20.11 12.09 19.09 18.07 22.44
2 26.38 30.90 13.11 27.69 23.46 12.24 21.28 16.03 7.14 15.74 12.97 4.95
4 20.11 7.14 31.19 16.18 30.17 17.63 5.68 11.51 10.34 8.30 12.39 6.12

Table 9: Large language models evaluation on all tasks. The highest F1 score is denoted with the underline while
the highest accuracy and MCC, which is short for Matthews correlation coefficient, are marked in bold.
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