
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 15491–15502
November 12-16, 2024 ©2024 Association for Computational Linguistics

Socratic Human Feedback (SoHF):
Expert Steering Strategies for LLM Code Generation

Subramanian Chidambaram*

subbuc@amazon.com
AWS AI, Amazon

Li Erran Li*

lilimam@amazon.com
AWS AI, Amazon

Min Bai
baimin@amazon.com

AWS AI, Amazon

Xiaopeng Li
xiaopel@amazon.com

AWS AI, Amazon

Kaixiang Lin
kaixianl@amazon.com

AGI, Amazon

Xiong Zhou
xiongzho@amazon.com

AWS AI, Amazon

Alex C. Williams
acwio@amazon.com

AWS AI, Amazon

Abstract

Large Language Models (LLMs) are increas-
ingly used for generating code solutions, em-
powered by features like self-debugging and
self-reflection. However, LLMs often struggle
with complex programming problems without
human guidance. This paper investigates the
strategies employed by expert programmers to
steer code-generating LLMs toward success-
ful outcomes. Through a study involving ex-
perts using natural language to guide GPT-
4, Gemini Ultra, and, Claude 3.5 Sonnet on
highly difficult programming challenges, we
frame our analysis using the "Socratic Feed-
back" paradigm for understanding effective
steering strategies. By analyzing 30 conver-
sational transcripts across all three models, we
map observed feedback strategies to five stages
of Socratic Questioning: Definition, Elenhus,
Maieutic, Dialectic, and Counter-factual rea-
soning. We find evidence that by employing
a combination of different Socratic feedback
strategies across multiple turns, programmers
successfully guided the models to solve 74%
of the problems that the models initially failed
to solve on their own.

1 Introduction

The rapid advancements in Large Language Mod-
els (LLMs) have revolutionized the field of natural
language processing (NLP) and automated code
generation. Analyses of state-of-the-art models,
such as GPT-4 (OpenAI, 2023), Claude (Anthropic,
2024) and Gemini Ultra (Gemini Team, 2024), il-
lustrate remarkable capabilities in generating code
snippets based on natural language prompts, intro-
ducing new opportunities for enhancing developer
productivity and transforming the broader practice
of software engineering. However, despite their im-
pressive performance, LLMs still face challenges
when it comes to handling complex coding prob-
lems that require a deep understanding of the task

*Authors contributed equally to this work

(Yeadon et al., 2024), effective problem decompo-
sition, and the nuanced application of algorithms
and libraries within specific constraints.

Recent research has demonstrated how LLMs
can iteratively analyze and refine generated code
based on the outcomes of unit tests through
self-debugging, mimicking the trial-and-error ap-
proach commonly employed by human program-
mers (Chen et al., 2023b). While these capabilities
show substantial promise, state-of-the-art LLMs
remain challenged by the task of accurately iden-
tify failures in generated code or generate effective
feedback to guide subsequent code refinements, re-
sulting in modest performance improvements when
tackling complex programming tasks, such as cer-
tain LeetCode’s medium and hard-level problems.
However, with certain human feedback during the
iterative analysis, we are able to find that we are
able to successfully steer models into providing a
successful solution. Thus, understanding how hu-
mans currently interact with these models and the
category of steering strategies that lead to success-
ful steering is essential for future Human-AI model
interaction design.

In this paper, we present an empirical study that
explores how expert programmers effectively steer
SOTA LLMs, such as GPT-4, Gemini Ultra, and
Claude 3.5 Sonnet, to generate functionally correct
code for programming problems that the models
initially failed to solve independently. We focus on
the Socratic feedback approach, a technique com-
monly used in argumentation and tutoring, where
targeted questions or prompts are used to stimu-
late critical thinking and guide learners towards
formulating their own solutions. This approach
mirrors the dynamics of college programming tu-
toring sessions, with the instructor providing in-
cremental feedback based on the learner’s most
recent attempt, while the learner engages in mul-
tiple rounds of debugging before seeking further
guidance.

15491

Our study, involving 8 expert programmers solv-
ing 30 problems across three modern LLMs GPT-4,
Gemini Ultra and Claude 3.5 Sonnet provided a
total of 90 conversational data points. Our study
demonstrates that these modern LLMs can suc-
cessfully solve originally failed competition-level
programming problems with just a few rounds of
human Socratic feedback. Furthermore, we reveal
a set of Socratic feedback techniques employed by
programmers to guide the LLM effectively. We
also discuss the failed attempts for successful steer-
ing and discuss the challenges faced by program-
mers in steering LLMs for coding task.

1.1 Socratic Questioning
Socratic Questioning is a method of inquiry and
dialogue that involves asking a series of questions
to explore complex ideas, stimulate critical think-
ing, and guide individuals towards their own under-
standing of a concept (Beversluis, 1974). This ap-
proach is based on the belief that knowledge cannot
be simply imparted but must be discovered through
a process of questioning and self-reflection.

Recent research has shown promising results in
applying Socratic Questioning to interact with lan-
guage models (Shridhar et al., 2022). For instance,
Xu et al. proposed a self-directed Socratic ques-
tioning framework that encourages LLMs to re-
cursively decompose complex reasoning problems
into solvable sub-problems (Xu et al., 2022). Com-
pared to other multi-turn prompting strategies such
as few-shot learning or Chain of Thought (CoT)
prompting (Wei et al., 2022), Socratic Questioning
offers several advantages. Few-shot learning uses
a small number of examples to guide the language
model, while Chain-of-Thought (CoT) prompting
generates a sequence of intermediate reasoning
steps before reaching the final answer. Although
CoT helps in decomposing complex problems, it
can lead to an accumulation of errors if incorrect
reasoning occurs early in the chain, since the model
follows a predetermined path without room for real-
time adjustment.

In contrast, Socratic Questioning involves an
interactive, back-and-forth dialogue between the
user and the model, where the model is continu-
ously guided by probing questions. This method
doesn’t just lay out a linear chain of reasoning;
instead, it dynamically adapts based on feedback
from each question. By encouraging the model to
rethink or justify its responses at every step, the
Socratic approach actively reduces error propaga-

tion and allows for a more targeted exploration of
the problem space. Unlike CoT, which follows a
predefined reasoning process, Socratic Question-
ing fosters a collaborative breakdown of complex
problems, focusing on reflection and refinement,
thus facilitating a more nuanced understanding of
both the question and the solution.

In this research, we aim to address the follow-
ing question: “What types of Socractic feedback
are currently used by expert programmers to re-
solve errors produced by code-generating LLMs?”.
We hypothesize that there exist common sequences
of steering behaviors, or “steering strategies” em-
ployed by programmers to guide LLMs in generat-
ing correct and efficient code. By uncovering these
strategies, we seek to gain insights into the most ef-
fective ways to interact with code-generating LLMs
and ultimately improve their performance in solv-
ing complex programming problems.

1.2 Categories of Socratic Questions:
Chang et al. investigated how various Socratic
methods, such as definition, elenchus, and counter-
factual reasoning, can be used to develop effective
prompt templates for tasks involving inductive, de-
ductive, and abductive reasoning (Chang, 2023).
To the best of our knowledge, no prior work has
explored the various types of feedback provided
by users, particularly experts, to guide these mod-
els more effectively toward a solution. To gain a
deeper understanding of the different kinds of hu-
man feedback and their classifications, we have
categorized various strategies using Socratic meth-
ods, as outlined below:

• Definition: This method involves the use of
definitions that aim to clarify and explain the
meaning of key terms and concepts.

• Elenchus: This method involves cross-
examination, where a series of questions is
used to test the consistency and coherence of
hypotheses and beliefs. Elenchus aims to test
the validity of someone’s arguments and to
help them refine their thinking and eventually
come up with well-supported hypotheses.

• Maieutics: This method involves helping in-
dividuals bring out the knowledge and under-
standing they already possess. Maieutics is
conducted by asking questions that encourage
the person to reflect on their own experience,
knowledge, beliefs and to explore alternative

15492

Figure 1: An overview of the study that was conducted to investigate effective steering strategies in code-generation
LLMs. Users interact with the LLMs through multi-turn prompts, and various strategies that have been identified
are categorized based on Socratic feedback presented on the right.

perspectives. Maieutics fosters self-discovery,
creative writing, and innovation.

• Counterfactual Reasoning: This method
involves imagining alternative scenarios or
"what-if" situations that are contrary to the
facts of what actually occurred. It involves
modifying prior events and then assessing the
consequences of those alternative scenarios.

• Dialectic: This method involves exploring
opposing view points through dialogue or de-
bate to arrive at a deeper understanding of a
subject.

2 Related Work

Recent studies suggest that incorporating code into
training data enables general-purpose LLMs to gen-
erate programs from natural language prompts or
to complete incomplete code snippets (OpenAI,
2023; Li et al., 2023b; Rozière et al., 2023; Chen
et al., 2021). Alternatively, specialized models
like Codex (Chen et al., 2021), AlphaCode (Li
et al., 2022), StarCoder (Li et al., 2023b), and Code
LLAMA (Rozière et al., 2023) have also been de-
veloped or fine-tuned specifically for coding tasks.
Though they have achieved SOTA performance on
code generation benchmarks (Zheng et al., 2023;
Chen et al., 2021), LLMs still exhibit limited per-
formance on medium and hard competition-level
programming problems. These complex problems
typically require a programmer’s adept skills in

understanding, planning, and implementing sophis-
ticated reasoning tasks. Furthermore, approaches
such as AlphaCode (Li et al., 2022) are impracti-
cal for real applications due to the dependency on
available unit tests and extreme amounts of compu-
tational resources.

To address this limitation, some works used
prompt-based techniques to boost LLMs’ reason-
ing for correct code. For example, studies have
demonstrated the utility of CoT prompting (Li et al.,
2023a) and Tree-of-Thought prompting (Yao et al.,
2023) as tools for decomposing challenging tasks
into more manageable intermediate sub-problems.
Additionally, self-debugging or reflection tech-
niques (Chen et al., 2023b; Shinn et al., 2023;
Madaan et al., 2023; Jiang et al., 2023) encouraged
models to analyze their own outputs and divide
the debugging process into stages of code expla-
nation and self-feedback generation. Then LLMs
refined their planning and execution grounded on
the insights obtained from their self-generated feed-
back. Besides stimulating models’ self-reflection,
some works used human prompts to support the
code refinement process. For example, Austin et al.
(2021) explored human-model collaborative cod-
ing on the MBPP dataset. They found that LLMs
can improve or correct code based on human feed-
back, benefiting from human clarification of under-
specified prompts and correction of small context
errors. However, our focus diverges as we concen-
trate on tackle competition-level problems, which

15493

are notably more complex than those found in the
MBPP dataset. Apart from incorporating human
feedback as prompts, Chen et al. (2023a) improved
CodeGen using imitation learning from human lan-
guage feedback, where human feedback is used to
learn a refinement model that generates modifica-
tion from human feedback and previous incorrect
code.

3 Methodology

We conducted a study involving three state-of-the-
art models: GPT-4, Gemini Ultra, and Claude 3.5
Sonnet. The study focused on the models’ ability to
generate Python code solutions for algorithmic and
data structure problems sourced from LeetCode,
spanning various difficulty levels and topics. We
randomly selected 223 problems from LeetCode
and filtered them to identify instances where the
models were unable to independently generate cor-
rect solutions. This filtering process yielded a set
of 45 hard problems that the models failed to solve
on their first attempt. These problems were chosen
as the basis for our study among which 30 were
solved due to availability of the programmers. We
recruited 8 expert programmers to participate in
the study. Each programmer was tasked with steer-
ing the three LLMs to solve the selected problems
through successive conversational prompting. The
experts were first asked to solve or at least have an
understanding on how to solve each problem on
their own before starting to steer the model. The
final code is considered a success if it passes all test
cases provided in the initial problem description
and the final solution was accepted by LeetCode.
The code was tested and submitted manually to the
LeetCode platform.

Programmers were provided with a prompt tem-
plate that addressed key aspects of the problem,
including the problem description, function signa-
ture, test cases, and constraints. They were also
given a digital document containing task instruc-
tions and sample prompt templates to guide their
interactions with the LLMs. Programmers engaged
in an iterative prompting process, providing So-
cratic feedback to the LLMs based on the gener-
ated code’s performance. They were instructed to
continue the prompting process for a maximum of
10 iterations or until a correct solution was gen-
erated, whichever occurred first. The collected
conversational data was analyzed to identify and
categorize the various strategies employed by the

programmers. These strategies were then mapped
to corresponding Socratic feedback themes.

4 Steering Strategies

After analyzing all 90 dialogues consisting of 507
conversational turns (3 models across 30 problems),
we have identified various strategies employed by
users in their interactions with the model. Fig-
ure 2 presents a snippet of the conversation with
the model, and we will elucidate these different
strategies using samples from these conversation
snippets.

(A) Test Reiteration: When the provided code
fails a unit test, users prompt the model by
reiterating that one or more unit tests have not
passed.

(B) New Test Definition: If the model’s provided
code is partially or fully correct but less op-
timal solution, users refine it by introducing
new unit test samples.

(C) Revising Unit Test: Some users modify unit
test conditions to add more constraints for the
model to consider.

(D) Pointing out Specific Programmatic Error:
Users identify specific errors by specifying the
location and nature of the error in the output.

(E) Addressing Code Inefficiency: Users enhance
program efficiency by requesting an alterna-
tive approach from the model.

(F) Requirement Reiteration: Similar to test
case reiteration, users emphasize specific con-
straints if the model initially overlooks them.

(G) Requirement Clarification: Users refine and
clarify requirements, as illustrated in Figure
2G, where the user explicitly defines the range
of an index that was previously ambiguous.

(H) Approach Re-orientation: Users reorient the
model by suggesting an approach not consid-
ered previously.

(I) Specific Approach Instruction: Finally, users
provide a specific code block or instructions
on how to solve a problem. In Figure 2I,
the user offers a specific implementation ap-
proach along with a code block for an erro-
neous function.

15494

Your solution is functionally correct, but

you can improve its efficiency. Consider

the following new unit tests that your

program should pass:

Unit Test 1:

Input: grid =

[[3,4,2,1],[4,2,1,1],[2,1,1,0],[3,4,1,0]]

Output: 3

…This line is also incorrect “for offset in

range(-(k-1),k,2):”. It should be “offset in

range(-(k-1),k):”

... The code on Line 17 of your solution

encounters a list index out of range error when

nums is assigned the following value:

[5, 4, 2, 4]
This error should not occur.

... program in order to pass all the unit tests.

B

G

D

Figure 2: Examples of code steering strategies. (Left) New Test Definition (B); (Center) Pointing out Specific
Programmatic Error (G); (Right) Requirement Clarification (D); The modified portion of the code, crucial for
achieving successful steering, is highlighted by the red boxes.

4.1 Aligning the Socratic Method to Human
Feedback Strategies:

Although the Socratic method encompasses vari-
ous question categories, not all were pertinent or
observed in the empirical study. Figure 1 provides
an overview of the identified categories, mapping
them to general strategies observed, and includes
a list of corresponding sample IDs exhibiting the
associated strategy in the data.

The Socratic questioning method labeled “Def-
inition” pertains to clarification, which could in-
volve elucidating testing conditions, as seen in the
“revising unit test” strategy, or specifying require-
ments. Elenchus involves cross-examining results
to assess the consistency and coherence of argu-
ments, essentially employing logical refutation,
such as providing a testing condition (Strategy:
New Unit test) to logically evaluate whether the
condition satisfies the result.

Maieutic is a technique wherein ideas are tested
to elicit existing knowledge and understanding pos-
itively. This mirrors how some test cases and re-
quirements/constraints are reiterated to reveal the
system’s inherent knowledge. Counterfactual rea-
soning, involving the exploration of alternative per-
spectives, can be observed as users consider alter-
native options to enhance code efficiency.

Dialectic questioning is a systematic reasoning
method that places opposed or contradictory ideas
side by side, seeking to resolve their conflict. This
is akin to a user pinpointing a specific error loca-
tion or approach in a solution, where conflicting
ideas between the previous prompt response and
the user’s input prompt overlap, leading to a suc-
cessful resolution.

4.2 Multi-Turn Code Steering
Most interactions with the model involve multi-
turn prompts, employing a sequence of inputs to
guide the model towards a successful outcome. To
illustrate this process, we examine a full specific
example in Figure 3.

The initial prompt (Figure 3-1) presents a
challenging programming problem categorized as
"Hard" on LeetCode. The user’s initial input com-
prehensively outlines the problem statement, pro-
vides examples, emphasizes constraints, and pro-
vides unit tests for validation. The user then in-
structs the model to articulate its understanding,
outline a planned approach, and proceed to imple-
ment and test the code. However, the initial model
response proves incorrect, lacking the appropriate
solving approach.

In the user’s first attempt to guide the model (Fig-
ure 3-2), they rectify the situation by offering the

15495

You are given a 0-indexed string s and a dictionary of words dictionary. You have to break s into one

or more non-overlapping substrings such that each substring is present in dictionary. There may be

some extra characters in s which are not present in any of the substrings.

Return the minimum number of extra characters left over if you break up s optimally….

Your solution should define a class named TrieNode that represents in a Trie object, keeps track of

children with an instance variable, and may also have an instance variable to indicate whether the

current node is a word. Your solution should define a buildTrie function that builds the Trie data

structure. Your solution should now implement the minExtraChar function such that the problem is

solved with a Trie data structure, using the TrieNode class and the buildTrie function.

Your current solution fails to pass the following unit test. Please fix your program such that the

following

s="metzeaencgpgvsckjrqafkxgyzbe"

dictonary=["zdzz","lgrhy","r","ohk","zkwok","g","zqpn","anoni","ka","qafkx","t","jr","xdye","mppc","bqqb"

,"encgp","yf"]

Based on above feedback, update your algorithmic plan and program in order to pass all unit tests.

Output=5

...

You're close, but let me give you a hint to get you on track. Instead, start the implementation of the
minExtraChar function with the following code:
root=buildTrie(dictionary)
n=len(s)
dp=[float('inf')*(n+1)]
dp[-1]=0 #No extra character for an empty string
Now, write the rest of the function. Your solution should also include code for the buildTrie function and
TrieNode class...

Figure 3: Example of successfully implemented multi-turn code steering.

correct approach and reorienting the model toward
the proper direction. Specifically, the user suggests
using a specific data structure, such as the “Trie”
data structure. The model incorporates this sugges-
tion, updating its solution accordingly (highlighted
in red in Figure 3-3). Although the revised output
still fails certain unit tests, the user iterates on the
failed test and prompts the model to address the
issue.

In this iteration, the model correctly identifies
the problem with its approach, acknowledging it
in the observation presented within its response
plan. Furthermore, the model correctly recognizes
that the appropriate approach is dynamic program-
ming, proceeding to update its solution. However,
this modified program still falls short due to an
implementation error. In the user’s third attempt
to guide the model (Figure 3-4), they pinpoint the

15496

implementation issues and provide a code block to
rectify them. The final response in Figure 3 indi-
cates that this intervention successfully resolves all
issues. The model incorporates the user-provided
code block into its final implementation, resulting
in a concise and clean solution.

5 Results & Discussion

A total of 90 conversations were recorded across
the three models: GPT-4, Gemini Ultra, and Claude
3.5 Sonnet. The conversations comprised a total
of 507 turns, during which programmers employed
various steering strategies to guide the LLMs to-
wards correct solutions. Among these conversa-
tions, 67 (74%) led to successful code generation
after steering, with the model producing a solu-
tion that was accepted by LeetCode. Claude 3.5
Sonnet had the highest success rate, with 29 out
of 30 conversations resulting in correct solutions,
followed by GPT-4, and Gemini Ultra with 26 and
12 respectively.

As shown in Figure 5, the most commonly used
strategy was “Point Out Specific Error”, which
was applied in 22% of the turns (112 out of 507).
This strategy involved programmers identifying
and highlighting specific errors in the code gen-
erated by the LLMs, prompting the models to rec-
tify those issues. The second most frequently em-
ployed strategy was “Specific Approach Instruc-
tion” used in 18% of the turns (91 out of 507). In
this approach, programmers provided the LLMs
with specific guidelines, algorithms, or techniques
to solve the problem at hand. By offering targeted
guidance, programmers aimed to steer the mod-
els towards more efficient and effective solutions.
Interestingly, “Revising Unit Test” and “Require-
ment Re-iteration” were the least preferred strate-
gies among the programmers, applied in only 4%
and 5% of the turns respectively. This suggests that
programmers found it more effective to directly ad-
dress the code generated by the LLMs, rather than
modifying the test cases or restating the problem
requirements.

Other strategies employed by the programmers
included “New Unit Test” used in 8% of the turns,
and “Requirement Clarification” used in 13% of
the turns. “New Unit Test” involved providing
additional test cases to help the LLMs understand
the problem better and cover edge cases, while
“Requirement Clarification” focused on explaining
the problem statement or constraints more clearly

to the models. “Address Code Inefficiency” and
“Test Re-iteration” were used in 9% and 13% of
the turns, respectively. The former strategy aimed
at guiding the LLMs to generate more efficient
and optimized code, while the latter involved re-
running the test cases to validate the correctness of
the generated solutions.

The results of our study demonstrate the effec-
tiveness of Socratic feedback in enabling expert
programmers to steer code-generating Large Lan-
guage Models (LLMs) towards correct solutions for
complex programming problems. By employing a
combination of strategies, with a focus on pointing
out specific errors and providing targeted guidance,
programmers successfully guided the models to
overcome initial failures and generate code that
met the required specifications. Claude 3.5 Son-
net exhibits the highest success rate among all the
models tested. By testing several different models,
we were able to find evidence for the application of
a Socratic feedback-based steering strategy across
models.

An essential aspect of successful steering identi-
fied is the ability to identify the specific program-
ming stage at which the model is struggling. Par-
ticipants who provided relevant feedback to help
the model overcome hurdles at different stages,
such as understanding, planning, implementation,
and testing, were more likely to achieve successful
outcomes. Clear communication about misunder-
standings or overlooked details proved to be crucial
in guiding the LLMs towards the correct solution.
In one example, clarifying a misunderstood prob-
lem condition led to successful steering, while in
another case, overlooking a crucial detail resulted
in a failed discourse. This finding emphasizes the
importance of programmers being attentive to the
specific challenges faced by the LLMs at each stage
of the problem-solving process and providing tar-
geted feedback to address those issues. It is unclear
however, if novice programmers will have the same
level of success similar to that of the experts in this
study.

6 Limitation & Future Work

Our study presents an initial investigation into the
application of Socratic feedback in steering code-
generating Large Language Models (LLMs). To
establish an upper bound on the feasibility of LLM
interaction, we focused our data collection on ex-
pert programmers. While the observed strategies

15497

Figure 4: Success rates for the problems through steering after initially failed by the code-generating Large Language
Models (LLMs). Green indicates the number of problems successfully steered, while red represent the number of
problems that remained unsolved after 10 interactions.

Figure 5: Percentages of various observed steering
strategies used by expert programmers to resolve code
generation failures.

demonstrated success across three different models,
suggesting their generalizability in improving the
models’ problem-solving abilities through human
steering, some strategies, such as "Point out spe-
cific error" or "Approach Re-orientation," may only
be feasible for experts. Future research could con-
duct a longitudinal study involving novice users
to determine if they can effectively employ the
same strategies identified by experts and if their
productivity improves with the understanding and
application of Socratic feedback in their prompting
techniques.

We acknowledge the limitations in the quantity
of data points gathered for making larger general-
ized claims. However, this preliminary work pro-
vides valuable insights that can be expanded upon
through more extensive data collection efforts in
the future. One potential direction is to create a
mapping between the different types of errors in
the model feedback and the programmers’ chosen
strategies for steering the models. Such a mapping
would be instrumental in designing future Human-
LLM interfaces, enabling the model to recommend
follow-up prompts, ask clarifying questions, or pro-
vide prompt templates that align with the Socratic

feedback paradigm.
The findings from this study pave the way for

future research to explore the dynamics of steering
language models in code generation tasks further,
enhancing our understanding of user challenges
and optimizing human-AI collaboration. While
our study participants employed various strategies,
there is potential for developing and evaluating
more sophisticated steering techniques. Future
work could investigate the integration of machine
learning or reinforcement learning approaches to
dynamically adapt steering strategies based on the
model’s responsiveness and the evolving context
of the conversation.

7 Conclusion

In this paper, we conducted an empirical study to
investigate the use of Socratic feedback by expert
programmers in steering code-generating Large
Language Models (LLMs) to solve complex pro-
gramming problems. By examining the interac-
tions between programmers and three state-of-the-
art LLMs - GPT-4, Gemini Ultra, and Claude 3.5
Sonnet - we identified common strategies and feed-
back techniques employed to guide the models to-
wards generating correct and efficient solutions.
Our findings demonstrate that Socratic feedback
plays a crucial role in enabling programmers to ef-
fectively steer LLMs when the models are unable to
independently generate correct solutions. Our find-
ings contribute to the growing body of research on
human-AI interaction and provide valuable insights
for the development of more effective collaboration
techniques.

Acknowledgments

We would like to thank the Amazon Science Post-
doctoral Science Program and the AWS Human-in-
the-Loop (HIL) organization for their support of
this work. We also thank Zheng Zhang, Matt Lease,
and Patrick Haffner for their insights, suggestions,
and feedback early on in the project.

15498

References
Anthropic. 2024. The claude 3 model family: Opus,

sonnet, haiku.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

John Beversluis. 1974. Socratic definition. American
Philosophical Quarterly, 11(4):331–336.

Edward Y Chang. 2023. Prompting large language
models with the socratic method. In 2023 IEEE 13th
Annual Computing and Communication Workshop
and Conference (CCWC), pages 0351–0360. IEEE.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak,
Jon Ander Campos, Jun Shern Chan, Samuel R Bow-
man, Kyunghyun Cho, and Ethan Perez. 2023a. Im-
proving code generation by training with natural lan-
guage feedback. arXiv preprint arXiv:2303.16749.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023b. Teaching large language mod-
els to self-debug. arXiv preprint arXiv:2304.05128.

Google Gemini Team. 2024. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens
of context.

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. Self-
evolve: A code evolution framework via large lan-
guage models. Preprint, arXiv:2306.02907.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023a. Struc-
tured chain-of-thought prompting for code genera-
tion. Preprint, arXiv:2305.06599.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023b. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter
Clark. 2023. Self-refine: Iterative refinement with
self-feedback. Preprint, arXiv:2303.17651.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Noah Shinn, Beck Labash, and Ashwin Gopinath.
2023. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint
arXiv:2303.11366.

Kumar Shridhar, Jakub Macina, Mennatallah El-Assady,
Tanmay Sinha, Manu Kapur, and Mrinmaya Sachan.
2022. Automatic generation of socratic subquestions
for teaching math word problems. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4136–4149, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Frank F Xu, Bogdan Vasilescu, and Graham Neubig.
2022. In-ide code generation from natural language:
Promise and challenges. ACM Transactions on
Software Engineering and Methodology (TOSEM),
31(2):1–47.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Will Yeadon, Alex Peach, and Craig P. Testrow. 2024.
A comparison of human, gpt-3.5, and gpt-4 perfor-
mance in a university-level coding course. Preprint,
arXiv:2403.16977.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In
Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’23,
page 5673–5684, New York, NY, USA. Association
for Computing Machinery.

15499

https://www.anthropic.com/claude-3-model-card
https://www.anthropic.com/claude-3-model-card
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://api.semanticscholar.org/CorpusID:257532815
https://aclanthology.org/2022.emnlp-main.277
https://aclanthology.org/2022.emnlp-main.277
https://arxiv.org/abs/2403.16977
https://arxiv.org/abs/2403.16977
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790

A Appendix

A.1 Examples of Steering Strategies

… Your algorithm fails to pass the following

unit tests:

input: n=4, p=0, banned=[1,2], k=4

output: [0,-1,-1,1]

… provide an updated version of the program

along with the execution results for all the

given unit tests.

A

The returned smallest number must be

present in each array. Please rewrite your

unit tests accordingly.

C

Figure 6: Examples of code steering strategies with model (Left) Test Reiteration (A); (Right) Revising Unit Test
(C). The modified portion of the code, crucial for achieving successful steering, is highlighted by the red boxes.

15500

This method is still taking too long. Is

there another method?

E

The code that you have generated does

not truly produce Example 1's expected

output.

F

Figure 7: Examples of code steering strategies with model (Left) Addressing Code Inefficiency (E); (Right)
Requirement Reiteration (F); The modified portion of the code, crucial for achieving successful steering, is
highlighted by the red boxes.

There are some clues how to solve this

problem correctly:

If the list is three numbers or longer,

then one of the first three numbers will

always be your answer. This means we

don't need to iterate over the whole list,

but rather only look at the first three

numbers, and choose the middle of the

three.

H

You're close, but let me give you a hint to get you on track. Instead,

start the implementation of the minExtraChar function with the

following code:

root = buildTrie(dictionary)

n = len(s)

dp = [float('inf')] * (n + 1)

dp[-1] = 0 # No extra character for an empty string

for start in reversed(range(n)):

dp[start] = dp[start + 1] + 1 # Initialize with worst-case

scenario

Now, write the rest of the function. Your solution should also include

code for the buildTrie function and TrieNode class.

I

Figure 8: Examples of code steering strategies with model (Left) Approach Re-orientation (H); (Right) Specific
Approach Instruction (I). The modified portion of the code, crucial for achieving successful steering, is highlighted
by the red boxes.

15501

A.2 Initial Prompt Template
You are given a function signature and description
the programming tasks. Complete the function
body that pass all the unit tests. Task description:
<Paste the problem task description here: in-

clude examples and constraints if available >
Your task:
First, describe your plan for solving this problem

in natural language and then your implementation
with a explanation of your code.

Take the following three stage approach in solv-
ing the problem:

1. Understand the problem. Ask any clarifying
questions if you do not understand the prob-
lem well.

2. Please clearly describe how your would ap-
proach this problem.

3. When you describe your plan, please clarify
what specific steps the algorithm includes and
how you would implement them.

4. Provide your implementation code of your
solution to the problem. Do not move to the
next stage if you can’t do the previous stage.

Then, implement your plan in Python to solve
this problem and make sure your algorithm passes
all the given unit tests and comply with given con-
straints

15502

