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Abstract

With the rising popularity of Transformer-
based large language models (LLMs), reducing
their high inference costs has become a signifi-
cant research focus. One effective approach is
to compress the long input contexts. Existing
methods typically leverage the self-attention
mechanism of the LLM itself for context com-
pression. While these methods have achieved
notable results, the compression process still
involves quadratic time complexity, which lim-
its their applicability. To mitigate this limita-
tion, we propose the In-Context Former (IC-
Former). Unlike previous methods, IC-Former
does not depend on the target LLMs. Instead,
it leverages the cross-attention mechanism and
a small number of learnable digest tokens to
directly condense information from the contex-
tual word embeddings. This approach signifi-
cantly reduces inference time, which achieves
linear growth in time complexity within the
compression range. Experimental results indi-
cate that our method requires only 1/32 of the
floating-point operations of the baseline during
compression and improves processing speed
by 68 to 112 times while achieving over 90%
of the baseline performance on evaluation met-
rics. Overall, our model effectively reduces
compression costs and makes real-time com-
pression scenarios feasible.

1 Introduction

In recent years, transformer-based (Vaswani et al.,
2017) language models especially large language
models (LLMs) have made significant strides in the
field of natural language processing, demonstrating
exceptional performance across a wide range of
tasks. However, the self-attention mechanism in
LLMs leads to high inference costs. Previous work
(Child et al., 2019; Beltagy et al., 2020; Bulatov
et al., 2022; Zheng et al., 2022; Wu et al., 2022;
Ding et al., 2023; Dai et al., 2019; Choromanski
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Figure 1: Compressing long contexts into short soft
prompts (vectors in embedding space) to improve infer-
ence efficiency.

et al., 2020; Borgeaud et al., 2022) has explored
various approaches to reduce computational com-
plexity by improving the self-attention mechanism
of language models. Although these strategies mit-
igate the overhead of long context processing, they
inevitably introduce modifications to the original
structure of LLMs, potentially impacting the capa-
bilities of the original model (Liu et al., 2024).

To better avoid modifications to the LLM struc-
ture, a more intuitive approach is to introduce a
preliminary context compression process. These
methods are based on a core assumption: most
natural language texts contain redundant informa-
tion, which makes context compression feasible.
In early exploration, Mu et al. (2024) have at-
tempted to compress the instructions into short soft
prompts. This method offers a novel perspective
but still has limitations in long context compres-
sion. Later works (Chevalier et al., 2023; Ge et al.,
2024) aim to further extend compression abilities

2445

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 2445-2460
November 12-16, 2024 ©2024 Association for Computational Linguistics


https://github.com/wonderful9462/IC-Former

for document-level long contexts, and achieved
considerable results. As illustrated in Figure 1,
these methods design compression models to con-
dense lengthy contexts into short, context-rich soft
prompts, which then serve as substitutes for the
original context when input into the LLM. How-
ever, these methods still suffer the issue of expen-
sive time costs during the compression process.
This limitation restricts their application in real-
time compression scenarios, such as compressing
retrieved (Guu et al., 2020; Lyu et al., 2024) or
real-time Internet documents (Asai et al., 2023)
immediately.

By reviewing previous works on compressors,
we find that existing methods typically utilize the
LLM as the encoder. While these methods fully
utilize the powerful semantic understanding capa-
bilities of LLM, they also suffer from rapidly in-
creasing quadratic time complexity as the context
lengthens. So is there a way to significantly reduce
the theoretical complexity of compressors, with an
acceptable decrease in performance?

Driven by this motivation, we design an efficient
context compression model, the In-Context Former
(IC-Former), which aims at optimizing resource
consumption during the compression of long con-
text in existing models. This model is based on two
assumptions regarding semantic content compres-
sion: (1) Word embeddings already contain suffi-
cient semantic information (Mikolov et al., 2013;
Tache et al., 2021), suggesting that interactions be-
tween embeddings may not be necessary prior to
the extraction process. (2) Learnable tokens within
an elaborate structure can effectively aggregate in-
formation to a certain extent (Chevalier et al., 2023;
Ge et al., 2024). Based on these assumptions, we
try to discard the costly self-attention interaction
of text content in previous models. Instead, we
leverage the efficiency of the cross-attention mech-
anism for information extraction. This innovative
strategy ensures that the computational overhead
of compression grows linearly with the context
length within the compression range, significantly
enhancing compression efficiency compared to the
previous methods.

Specifically, our IC-Former consists of a few
cross-attention blocks and some learnable digest
tokens. Through this structure, the IC-Former lever-
ages the digest tokens to extract information from
lengthy contextual content and refine it into com-
pact digest vectors. Subsequently, these digest vec-
tors directly replace the original, verbose context

and serve as input to LLMs while ensuring that the
generated texts are faithful to the original context.

In the training phase, to effectively compress
context, we follow the previous training paradigm
(Ge et al., 2024), employing a strategy that com-
bines pre-training and fine-tuning to optimize the
IC-Former. During the pre-training phase, the IC-
Former engages in a context reconstruction task. It
generates digest vectors from which an LLM can
reconstruct the original context. In the fine-tuning
phase, we train the IC-Former on instruction data
to ensure the generated digest vectors correctly re-
spond to various context-related prompts.

Additionally, through theoretical calculations,
we demonstrate that at a compression ratio of 4x,
our IC-Former achieves only 1/32 of the floating-
point operations required by the baseline. Ex-
perimental results further show that our method
achieves a compression speed that is 68 to 112
times faster than the baseline while maintaining
over 90% of the baseline performance on eval-
uation metrics. This indicates a higher cost-
effectiveness.

Overall, our contributions can be summarized in
the following three points:

* We propose the In-Context Former (IC-
Former), a novel context compression model
that can compress context to a quarter of its
original length as a soft prompt while preserv-
ing most of original contextual information.

* The IC-Former is lightweight and efficient,
with a parameter size that is 9% of the tar-
get LLM. It achieves compression speeds 68
to 112 times faster than the baseline while
maintaining more than 90% of the baseline
performance.

* We analyze the interaction between the IC-
Former and the context, enhancing the inter-
pretability of the IC-Former’s compression
process.

2 Related Work

Soft prompt compression Wingate et al. (2022)
propose to learn a compact soft prompt (Lester
et al., 2021) to represent the original natural lan-
guage prompt. They align the model predictions
that are based on the original prompt and those
conditioned on the soft prompt by optimizing KL
divergence (Hershey and Olsen, 2007). As a re-
sult, Wingate et al. (2022) discover that the trained
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Figure 2: Left: Model architecture of In-Context Former. In-Context Former utilizes a set of learnable digest
embeddings to condense the information of context and generates digest vectors. And we apply causal attention
masks for digest tokens. Right: Overview of In-Context Former’s framework.

soft prompt retain high-level semantic information
and can be utilized to control generation. However,
this approach suffers high computational costs as
it requires retraining a new soft prompt for each
new context. In contrast, our method can predict
the soft prompt corresponding to the input context.

Context distillation Another related work (Snell
etal., 2022; Askell et al., 2021) focuses on distilling
the contextual information such as instruction into a
student model without prompting. Mu et al. (2024)
propose GIST to compress prompts into gist tokens,
which can be viewed as key-value attention prefixes.
Nonetheless, this approach did not address the long
context issue as it is limited to compressing short
prompts. In addition, this method requires updating
the parameters of language model, which differs
from our method. Our method keeps the language
model fixed and therefore preserves its capability.

Context compression Chevalier et al. (2023) pro-
pose AutoCompressors to compress long text into
summary vectors recursively. However, the com-
pression procedure is sophisticated and LLMs are
still required to be fine-tuned to generate summary
vectors. ICAE (Ge et al., 2024) is the most closely
related study to our research. ICAE compresses
context into short memory slots, with a small num-
ber of additional parameters by the LoRA (Hu et al.,
2021) approach with a fixed LLM. However, both
AutoCompressors and ICAE employ self-attention
to integrate contextual information, resulting in a
quadratic complexity with respect to the length of
context. Instead, our model does not incorporate
contextual interactions and reduces both time and
space complexities, striking a balance between effi-
ciency and performance.

3 Method

3.1 Task Formulation

Context compression aims to transform lengthy
contexts into brief, compact representations while
endeavoring to preserve the fundamental semantics
and integrity of the original contexts.

Formally, we define the original context that
is to be compressed as w = (wy,ws, ..., wy),
where w; represents the i-th token of context and
n is the number of tokens in context. Then, we
denote e(-) as the word embedding lookup in
the LLM and é(-) as the learnable embeddings
of soft tokens. A context compressor model ©
utilizes the embeddings of soft tokens e(d) =
(é(dy),é(da), ..., e(dy)) and context embeddings
e(w) = (e(w1),e(ws),...,e(wy)) to generate
compact representations d = (d17 dg, ...,dk) of
context, where k is the length of compressed con-
text and k < n.

The condensed vectors d can substitute the orig-
inal context and be combined with other prompt
e(p) = (e(p1),...,e(p;)) for input to an LLM .
The output y = (y1, ..., Ym ) remains faithful to the
content of the original context w.

3.2 In-Context Former

As illustrated in Figure 2, IC-Former consists of
a few cross-attention layers and a set of learnable
soft tokens, which are named digest tokens. The
IC-Former utilizes context tokens and digest to-
kens as inputs, leveraging a causal cross-attention
mechanism to condense the context information
into digest vectors. Subsequent sections will detail
the attention computation process, attention masks,
and positional embeddings.

Attention computation When compressing a long
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Figure 3: Left: Pretraining stage. IC-Former learns to generate digest vectors such that, when these vectors and
a special token AE are jointly fed into an LLM, the LLM reproduces the original context. Right: Instruction
fine-tuning stage. Training IC-Former to generate digest vectors capable of correctly responding to prompts.

context, the context tokens are concatenated with
digest tokens and subsequently mapped into embed-
dings, which serve as key and value in the cross-
attention layer. Meanwhile, the embeddings of
digest tokens serve as query to interact with both
context embeddings and digest embeddings. To
be specific, the (), K and V in IC-Former can be
computed as:

Q=Wqé(d)" (1)
K =Wk [e(w); é(d)]" )
V =Wy [e(w);é(d)]” 3)

Then we employ the cross-attention mechanism
to condense contextual information, as this ap-
proach has been empirically validated effective in
multimodal information extraction. (Li et al., 2023;
Ye et al., 2023; Zhu et al., 2023; Bai et al., 2023).
Attention masks As depicted in Figure 2, our de-
sign for attention masks allows digest tokens to
attend to all context tokens as well as preceding
digest tokens, thereby mitigating the deficiency of
interaction among context tokens.

Additionally, it can be observed from the atten-
tion matrix that given a context length of n and
a target compression length of k, the time com-
plexity and space complexity of our method are
both O(kn + k?) ~ O(kn). This indicates that the
complexity of this model grows linearly with the
increase of context.

Positional embeddings We recognize that the pure
cross-attention mechanism does not capture the rel-
ative positional relationships among tokens within
the context. This implies swapping any two tokens
in the context results in an identical digest vector,
which does not align with our expectations. To
address this, we applied RoPE (Su et al., 2024) to

represent the relative positional relations within the
context tokens.

We denote the positional embeddings of the nth
token in the sequence as RoPE(n) and is abbrevi-
ated as R,,.

o
RY)
RoPE(n) = ‘ :
(4-1)
(@) _ cos(n@f) —sin(nei)
where R, sin(nf*)  cos(nf") “)

In the Equation.4, 6 = Hb an. Where Oy is a hyper-
parameter and A is the hidden size and assumed to
be even. We restate Equation.1 & 2 as follows:

Q = (QI7Q27~--,Qk) (5)
K = (k17'"7kn7kn+17'“7kn+k) (6)

We allocate positional embeddings as if placing the
digest tokens subsequent to the context tokens as
demonstrated in Equation.7 & 8.

QroPE = (Rnt1q1, Rnt2q2, ..., Rpgrqr) (1)
KRropPE = (lel, e, Rpkp, ..., Rn+kkn+k) (8)

The RoPE manifests the relative positional relation-
ships through the inner product between QQropE
and K RoPE-

(Rig)" (Rjk) = ¢"RIRjk =q"Rj_k (9)

In this manner, each digest token is capable of
perceiving the relative positions of both context
tokens and other digest tokens.
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3.3 Training process

This section introduces the training objectives of
IC-Former, including pretraining and instruction
fine-tuning, and a divide-and-conquer training strat-
egy when dealing with too long contexts.
Pretraining Previous works (Rumelhart et al.,
1986; Kramer, 1991; Van Den Oord et al., 2017; Ge
et al., 2024) have demonstrated that autoencoding
tasks can benefit models to effectively condense
and encode information. We adopt this approach to
pretrain our IC-Former by using a text reconstruc-
tion task. The objective of this task is to leverage di-
gest vectors, which are extracted from compressed
contexts, to reconstruct the original contexts. As
illustrated in Figure 3, the context tokens are com-
pressed into digest vectors by IC-Former and then
serve as input to LLM with a special token "[AE]"
to indicate the autoencoding task.

To make LLM reconstruct the original context
w conditioned on the digest vectors d, we optimize
IC-Former O and digest embeddings e(d) by mini-
mizing negative log-likelihood of context w. The
pretraining objective can be written as:

EAE = _Ing (U/‘g{, 781; (I)>

= —logp (wldy,...,dy; €,0;®)  (10)

This reconstruction task forces IC-Former to focus
on each token in context, thereby preserving all
context information. The analysis on pretraining in
Section 4.3 demonstrates that this task can help IC-
Former learn to aggregate contextual information.
Instruction fine-tuning After the pretraining
phase, IC-Former has effectively learned to metic-
ulously attend to context. However, to ensure
that the compressed digest vectors appropriately
respond to various prompts, further instruction fine-
tuning (Zhang et al., 2023) of IC-Former is neces-
sary. As shown in Figure 3, we input the digest
vectors generated from IC-Former along with the
prompt embeddings into the LLM. Similarly, by
optimizing IC-Former © and digest embeddings
€(d), we minimize the negative log-likelihood of
the expected output y:

Lrr = —10g p(yld, ooy di; 1, ooy p1; O; ®)

= —logp(y|di, ..., dg; p1, ..., pi; €; ©; @)
(11)

Divide and conquer When the context length ex-
ceeds the compression limit, a divide-and-conquer
strategy (Bertsch et al., 2024; Song et al., 2024;

Global
vectors !\

Local

_____________________

Chunk N

Chunk 1

Figure 4: The excessively long contexts are broken into
chunks, which are then compressed and concatenated.

Chen et al., 2023) proves to be effective. We first
uniformly split the context into several chunks of
acceptable length. Each of these chunks is then
compressed individually to obtain local vectors.
As illustrated in Figure 4, we subsequently con-
catenate all these local vectors to form the global
vectors. This strategy is applied in both the training
and inference phases.

4 Experiments

4.1 Experimental setting

This section introduces the experimental setting
including data, baseline, and model configuration.
Data Due to resource constraints, we pretrain IC-
Former using a subset of the Pile (Gao et al., 2020)
dataset, comprising approximately 2.29 million
text entries. In the fine-tuning phase, we em-
ployed the PwC (Prompt-with-Context) dataset (Ge
et al., 2024), which includes contexts accompanied
by corresponding questions. This dataset is suit-
able for evaluating the compressor’s ability to pre-
serve contextual information. For each context, the
dataset provides ten specific and five general ques-
tions. For evaluation convenience, we select the
ten specific questions to evaluate as their answers
are relatively more definitive.

Baseline We select ICAE as our baseline for com-
parison, because the motivations behind other re-
lated works are distinct from ours. For instance, Au-
toCompressors fine-tune LLMs and focus on stabil-
ity in long-context modeling rather than on restor-
ing details in compressed text. Likewise, GIST also
modifies model parameters, and its strength lies in
compressing instruction information rather than
long context. We replicate ICAE on this dataset.
Model configuration We use Llama2-7b-chat
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Input Method Memory  Compression Inference Total
(Batchsize x Length) (GB) Time (s) Time (s) Time (s)

LLM 35.96 - 1.845 1.845

8 x 2048 LLM+ICAE 19.76 3.268 0.314 3.582
LLM+IC-Former 15.96/2.38 0.029 (112x) 0.314 0.343 (5.3%)

LLM 17.46 - 0.318 0.318

8 x 512 LLM+ICAE 19.76 0.476 0.079 0.555
LLM+IC-Former 15.82/2.28 0.007 (68x) 0.079 0.086 (3.7 x)

LLM 29.07 - 1.186 1.186

32 x 512 LLM+ICAE 38.74 1.848 0.288 2.136
LLM+IC-Former 18.98/3.52 0.017 (108x) 0.289 0.306 (3.8%)

Table 1: Compression and inference overhead. Inference time refers to the period required to perform a forward
pass, utilizing either original context embeddings or compressed vectors as input to the LLM. Memory denotes the
peak GPU memory usage during the compression and inference processes. Additionally, we quantify the memory
utilization when employing IC-Former for compression independently (right of the /).

Time&Space Theoretical
Method Complexity FLOPs
ICAE  O(n?+ 2kn) 8.50 x 1012
IC-Former O(kn) 2.62 x 10" (~ 35)

Table 2: Complexity analysis. The theoretical FLOPs
represent the computational cost incurred when com-
pressing a context of length 512 into 128 vectors for
the Llama2-7b-chat model. For further details, see the
Appendix C.

(Touvron et al., 2023) as the target LLLM for eval-
uation. Both attention and feed-forward network
modules of IC-Former have the same hidden size as
Llama2-7b-chat. The default number of digest to-
kens k is set to 128 unless otherwise specified. Fur-
thermore, IC-Former consists of only three trans-
former layers and includes approximately 607M
parameters, encompassing the digest embeddings.

4.2 Experiment Results

4.2.1 Compression & Inference Efficiency

Firstly we analyze the theoretical time-space com-
plexity of the IC-Former and baseline method and
the floating point operations (FLOPs) required to
compress 512 tokens to a length of 128. As illus-
trated in Table 2, our approach significantly reduces
both the temporal and spatial overhead compared
to the baseline. In experiments involving compres-
sion of contexts with a length of 512, the required
FLOPs are merely 1/32 of those needed by the
baseline method.

We further assess and compare the compression
time and memory utilization of IC-Former dur-

Length BLEU-4 Loss
ICAE IC-Former | ICAE IC-Former
100 0.9967 0.9965 0.1461 0.1789
200 0.9969 0.9972 0.0971 0.0851
300 0.9974 0.9971 0.0602 0.0558
400 0.9889 0.9892 0.0499 0.0483
500 0.9654 0.9689 0.1116 0.1078

Table 3: Results of BLEU-4 scores and cross-entropy
loss between reconstructed context and original context
across different context lengths.

ing actual compression processes with the baseline
model. Experimental results indicate that our IC-
Former significantly outperforms existing methods
in terms of both temporal efficiency and spatial
occupancy.

As shown in Table 1, our IC-Former has the
lowest memory usage during compression among
the compared models. Additionally, IC-Former’s
compression process does not depend on the target
LLM, enabling it to perform compression inde-
pendently and achieve over 88% memory savings
relative to the baseline. In terms of compression
time, our method is 68 to 112 times faster than the
baseline, rendering the compression overhead neg-
ligible compared to the inference time of the target
LLM. In scenarios where compression is followed
by inference, our method achieves approximately
four times faster processing than directly inferring
using the original context, whereas the baseline
method consumes even more time. Our approach
thus offers a viable solution for real-time compres-
sion scenarios.
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ROUGE-1 ROUGE-2 ROUGE-L
Input content
P R F1 P R F1 P R F1
512 original context tokens 0.456 0.635 0501 0300 0438 0331 0426 0.594 0.468
128 memory slots (ICAE) 0.592 0.561 0.555 0404 0385 0377 0553 0.525 0.519
128 digest vectors (IC-Former)  0.554  0.520 0.516 0.374 0.355 0348 0.517 0487 0.482
(performance ratio) 93.6% 92.7% 93.0% 92.6% 922% 923% 93.5% 92.8% 92.9%
64 digest vectors 0384 0412 0377 0211 0234 0209 0349 0375 0.343
64464 digest vectors 0.545 0498 0500 0358 0.330 0327 0507 0464 0.465
128 digest vectors 0.554 0.520 0.516 0374 0.355 0348 0.517 0.487 0.482
128 digest vectors (w/o pretrain) 0.431 0381 0.389 0.234 0.211 0212 0.393 0.349 0.355

Table 4: Evaluation results on PwC test set. The first four rows of the table compare the performance of our method
with other baseline models, and the performance ratio means the ratio of our IC-Former to the ICAE. The second
three rows demonstrate the performance variations when different compression strategies are implemented, where
"64+64" represents a divide-and-conquer approach. The last row reveals the impact of ablation pre-training on

performance.
Text type BLEU | Loss
Normal text 0.9006 | 0.125
Reversed text 0.6652 | 1.803
Patterned random text | 0.1347 | 4.401
Completely random text | 0.0080 | 8.137

Table 5: Reconstruction results for texts with varying
degrees of randomness, with randomness increasing
from top to bottom. The patterned text is generated
by adding 1 to each token_id of normal text. All texts
above are compressed from length of 512 to 128.

4.2.2 Pretraining: Context Reconstruction

We evaluate the pretraining performance of IC-
Former, focusing on its ability to reconstruct the
original context. To measure the discrepancies be-
tween the reconstructed text and the original, we
utilize BLEU (Papineni et al., 2002) and cross-
entropy loss as metrics.

As shown in Table 3, the reconstructed context
by IC-Former exhibits minimal discrepancies when
compared to the original context. For a context
length of less than 400, the BLEU-4 score reaches
0.99, and the cross-entropy loss hovers around 0.05.
When the context length is extended to 500, the
BLEU score maintains a high value of 0.96, and
the cross-entropy loss is approximately 0.1. These
results suggest that IC-Former effectively captures
the contextual information, achieving a 4x com-
pression ratio while maintaining performance com-
parable to the baseline.

Then we explore the impact of digest tokens
length k on the reconstruction task. As shown in
Figure 5, it is not surprising that the quality of the
reconstructed text deteriorates as k decreases.

104 ®

0.9

0.6
—0— k=128
k=64

05 —9— k=32

T T
300 500

Length

T T
100 200 400

Figure 5: BLEU-4 for different digest token lengths k.

Additionally, we attempt to use IC-Former to
compress texts with various levels of randomness
and analyze the reconstruction results. As observed
from Table 5, the reconstruction performance of
IC-Former progressively declines as the random-
ness of the text increases. This phenomenon may
suggest that IC-Former primarily achieves informa-
tion compression through semantic understanding
rather than mere rote memorization. Further analy-
sis is conducted in Section 4.3.

4.2.3 Performance on Downstream Task

In this section, we evaluate the model’s perfor-
mance on the PwC dataset. Although our model
can achieve good results based on the BLEU met-
ric, considering that BLEU is more susceptible to
response length, we ultimately choose the ROUGE
metric (Lin, 2004) to evaluate the performance of
our model, which more faithfully reflects the orig-
inal content of the text. We compare the perfor-
mance of various context compression models by
keeping the target LLM frozen and substituting the
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Figure 6: A part of attention map in the last layer of IC-
Former. The horizontal axis represents context tokens
acting as key and the vertical axis represents digest
tokens acting as query. For complete attention map, see
Appendix E.

context with different vectors.

As illustrated in the first row of Table 4, our
method achieves over 92% of the baseline perfor-
mance while significantly surpassing the baseline
model in terms of compression speed. The second
row of the table compares the performance of digest
vectors of varying lengths, including the compres-
sion of 512 context tokens into 64 digest vectors
and their subsequent division and compression into
two sets of 64 digest vectors each, as discussed
in Section 3.3 under the strategy of divide-and-
conquer. It can be observed that compared to di-
rectly compressing 512 context tokens into 128 di-
gest vectors, the approach of divide-and-conquer re-
sults in a slight performance degradation. Howeyver,
this performance loss is acceptable when compared
to the costs associated with retraining a model to
accommodate longer digest embeddings. Addition-
ally, we utilize an ablation study to demonstrate
the efficacy of pretraining. IC-Former without pre-
training performs poorly in capturing contextual
information and is more prone to generating hallu-
cinations. (See examples in Appendix D).

4.3 Analysis

To better understand the working principles of IC-
Former, we conducted further visualization analy-
sis based on the attention map.

Neighbourhood information aggregation We av-
erage the attention scores of all attention heads
in the third layer (last layer) of the IC-Former to
obtain an attention map. It can be observed from

An example of context

A large language model (LLM) is a computational model
notable for its ability to achieve general-purpose language
generation and other natural language processing tasks
such as classification. Based on language models, LLMs
acquire these abilities by learning statistical relationships
from vast amounts of text during a computationally
intensive self-supervised and semi-supervised training
process. LLMs can be used for text generation, a form of
generative Al by taking an input text and repeatedly
pGreenicting the next token or word. LLMs are artificial
neural networks that utilize the transformer architecture,
invented in 2017. The largest and most capable LLMs, as
of June 2024, are built with a decoder-only
transformer-based architecture, which enables efficient
processing and generation of large-scale text data. Larger
models such as GPT-3 have demonstrated the ability to
achieve similar results through prompt engineering, which
involves crafting specific input prompts to guide the
model’s responses.

Table 6: The context tokens that are most attended to by
digest tokens across layers. The color of each token is
determined by the layer when it is initially attended to.
Green, blue, and red denote the first, second and third
layer respectively. Gray indicates tokens that are never
attended to.

Figure 6 that each digest token attends to 3 to 5 con-
secutive context tokens, and digest tokens focus on
the context tokens in accordance with their sequen-
tial order, which presents a backslash shape pattern.
It is worth mentioning that the non-pretrained IC-
Former does not exhibit this phenomenon (See ex-
amples in Appendix E). These phenomena indicate
that IC-Former compresses context by aggregating
information from adjacent tokens and integrating
it into digest vectors. Moreover, the application of
positional embeddings ensures that digest tokens
attend to context in a sequential manner.

Layer-wise semantic diversification Thanks to
IC-Former being composed of merely three layers,
we are able to conduct a detailed analysis of each
layer. We examine each layer of the IC-Former to
identify the top five context tokens with the highest
attention scores for each digest token.

As illustrated in Table 6, it can be observed
that in the first layer, digest tokens mainly focus
on prepositions, articles, be-verb, and punctuation
marks. As we proceed to the second layer, digest
tokens start to extend their focus to verbs, nouns,
adjectives, and adverbs. The third layer continues
this trend based on the second layer, further broad-
ening the range of grammatical categories of tokens
covered, encompassing a more extensive context.
This implies that IC-Former might rely on semantic
structures to compress context effectively.
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5 Conclusion

In this paper, we propose the In-Context Former
(IC-Former), a novel context compression model,
which can efficiently condense contextual infor-
mation into digest vectors in a linear complex-
ity by removing irrelevant interaction processing.
Moreover, our proposed IC-Former utilizes the
cross-attention mechanism to enhance the extrac-
tion ability of digest tokens. Our experimental
results demonstrate that IC-Former significantly re-
duces time and space complexity while preserving
contextual semantics, thereby supporting broader
applications requiring extensive context.

Limitations

1. We only apply IC-Former to the Llama2-7b-
chat model. Future efforts will involve con-
ducting experiments on larger-scale models
to explore further potential. It is anticipated
that the increased hidden size in larger models
will continue to enhance the performance of
the IC-Former.

2. Although our method is capable of handling
longer texts in implementation, we did not
conduct compression experiments on longer
contextual content to more comprehensively
validate the method’s performance due to re-
source constraints.

3. Despite our model significantly outperform-
ing the baseline in terms of efficiency, it has
not surpassed the baseline’s performance in
downstream tasks. Our future work will aim
to enhance performance in scenarios that are
less sensitive to real-time requirements.
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A Experiment Details

A.1 Model Configuration

We show the detailed configuration of our IC-

Former model in Table 7.

Hyperparameter Value
theta base 10000.0
hidden size 4096
layer number 3
rms norm eps le-6
initializer range 0.02
activate function silu
intermediate size 11008
digest tokens number 128
attention heads number 32
max position embeddings 2048

Table 7: Detailed configuration of IC-Former.

A.2 Training Configuration

We show the detailed configuration of pretraining

and fine-tuning in Table 8 & 9.

Hyperparameter Value
optimizer AdamW
learning rate le-4
batch size 1
gradient accumulation 16
clip norm 2.0
training steps 9.3k
dtype bfloat16

Table 8: Detailed configuration of pretraining.

Hyperparameter Value
optimizer AdamW
learning rate 5e-5
batch size 1
gradient accumulation 256
clip norm 2.0
training steps 7.9k
dtype bfloat16

Table 9: Detailed configuration of fine-tuning.

A.3 Prompt Template on Evaluation

The prompt template we used for evaluation is as

follows:

Response the Prompt based on the below
text:\n\n {context}\n\n Prompt:{prompt}

B Profiling Setup

We use a single Nvidia RTX A6000 GPU (48GB)
for pretraining, fine-tuning, and efficiency tests
(Table 1). The CPU of our machine is Intel(R)
Xeon(R) Gold 6326 with 16 cores and 1007GB
RAM. The runtime configuration is python=3.8.18,
pytorch=1.13.1, cuda=11.7, cudnn=8.5.

C Theoretical Analysis
C.1 Complexity Analysis

In Table 2 we assert that the time and space com-
plexity of ICAE is O(n? + 2kn). This conclusion
can be easily drawn by comparing the attention
maps of the IC-Former and ICAE. As illustrated in
Figure 7, ICAE utilizes memory tokens and context
for causal self-attention interaction, resulting in a
complexity of O ((n + k)?) ~ O(n? + 2kn).

4 . N
Query Attention mask
dy
d,
dy
Wi Wy, Wg W, w, dy dy .. dyg
\ Key )
/Query Attention mask
w1
w2
W3
Wa
WTI.
my
mp
my
Wi Wy Wz wy w, m; m, my
\ Key )
[]:Unmasked [ |:Masked

Figure 7: Top: Attention mask in IC-Former. Bottom:
Attention mask in ICAE. The d; represents digest tokens
in IC-Former and the m; represents the memory tokens
in ICAE’s encoder.
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C.2 Floating Point Operations Calculation

When calculating the floating-point operations, we
considered only the matrix multiplication compu-
tations involved in the attention and feed-forward
network (FFN) modules, while ignoring the rela-
tively smaller computational overhead of modules
such as normalization and softmax.

Given context embedding with shape of [b, s, h]
where b represents batch size, s represents se-
quence length and h represents hidden size, the
theoretical calculation of the FLOPs for ICAE and
IC-Former required to compress it into vectors of
length & are shown in Tables 10 & 11:

Modules | FLOPs

xWQ/WK/WV 3- 2b(3 + k‘)h2

QKT 2b(s + k)%h

AV 2b(s + k)%h

xWo 2b(s + k)h?
ZoutWap 2b(s + k)hm
l’outhate 2b(5 + k‘)hm
Zout Waown 2b(s + k)hm

4bh(s + k)(2h + s + k)

SUM +6bhm(s + k)

Table 10: Theoretical complexity in each layer of
ICAE’s encoder. A represents the attention scores ma-
trix, m represents the intermediate size of FFN.

Modules ‘ FLOPs
Wo 2blh?
Wy [Wy 2 - 2b(s + k)h?
QKT k(s + k)h
AV 2bk(s + k)h
xWo 20kh?
wouthp 2bkhm
xouthate 2bkhm
xouthown 2bkhm
Abkh? + 2bh(s + k)(h + 2k)
SUM +6bkhm

Table 11: Theoretical complexity in each layer of IC-
Former. A represents the attention scores matrix, m
represents the intermediate size of FFN.

The ratio of FLOPs between ICAE and IC-
Former R can be calculated as follows:

L-2(s+k)2h+ s+ k) +3m(s + k)]
lo - [2kh + (s + k)(h + 2k) + 3mk]
(12)

R=

where /; is the layers of ICAE and [ is the layers
of IC-Former.

In our experimental settings, [y = 32, ls = 3,
s =512, k = 128, h = 4096, m = 11004, thus

R~ 32.39 (13)

D Case Study

In Table 12, we present several cases to compare
the outputs of Llama2-7b-chat based on the 128
digest vectors generated from the pretrained and
non-pretrained IC-Former. The results indicate that
the IC-Former without pre-training has a poor abil-
ity to capture contextual information and thus is
more prone to hallucinating.

E Attention Maps in IC-Former

Additionally, by comparing the attention maps of
the pretrained and non-pretrained IC-Former mod-
els (Figure 8 & 9), it is observable that the non-
pretrained IC-Former does not exhibit the phe-
nomenon of neighborhood information aggrega-
tion. Furthermore, the words captured by each
layer do not demonstrate distinct grammatical pat-
terns, which underscores the necessity of pretrain-
ing in enhancing model performance.
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Context 1

French senior civil servant arrested on suspicion of spying for North Korea
November 27, 2018 by Joseph Fitsanakis

A senior civil servant in the upper house of the French parliament has been arrested on suspicion
of spying for North Korea, according to prosecutors. The news of the suspected spy’s arrest was
first reported on Monday by Quotidien, a daily politics and culture show on the Monaco-based
television channel TMC. The show cited “a judicial source in Paris” and said that France’s domestic
security and counterintelligence agency, the General Directorate for Internal Security (DGSI), was
in charge of the espionage case.

(omitted 155 tokens)

Quennedey is believed to be the president of the Franco-Korean Friendship Association, the French
branch of a Spanish-based organization that lobbies in favor of international support for North
Korea.

Prompt: Mention the organization Benoit Quennedey is believed to be the president of.

Output (with pretrained IC-Former): Benoit Quennedey is believed to be the president of the
Franco-Korean Friendship Association.

Output (with non-pretrianed IC-Former): Benoit Quennedey is believed to be the president of
the French intelligence agency, the Directorate General for External Security (DGSE).

Label (by GPT-4): Franco-Korean Friendship Association
Context 2

One of NewsBusters’ classification categories is "Covert Liberal Activists,” and my antennae
immediately went up when Lauren Leader was introduced on today’s Morning Joe as "co-founder
and CEO of All In Together, "a non-partisan, women’s civic and political organization."

(omitted 462 tokens)

Another clue as to Leader’s liberal leanings. Questioning whether the immigrants "actually threw
rocks," she cites . . . NPR reporting that things were "relatively peaceful except that, obviously,
they were trying to break through." When people are trying to illegally "break through" a border,
there is nothing "relatively peaceful” about it.

Prompt: What source does Lauren Leader use to question the accuracy of the immigrants throwing
rocks?

Output (with pretrained IC-Former): Lauren Leader uses NPR to question the accuracy of the
immigrants throwing rocks.

Output (with non-pretrianed IC-Former): The source is a Fox News segment.

Label (by GPT-4): Lauren Leader cites NPR reporting as a source to question the accuracy of the
immigrants throwing rocks.

Table 12: Examples of output results from Llama2-7b-chat model utilizing digest vectors generated by pretrained
and non-pretrained IC-Former models. The evidence of prompt is marked in blue and red denote the outputs that are
not faith to the original context.
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