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Abstract

Paraphrasing of offensive content is a better al-
ternative to content removal and helps improve
civility in a communication environment. Su-
pervised paraphrasers; however, rely heavily on
large quantities of labelled data to help preserve
meaning and intent. They also often retain a
large portion of the offensiveness of the original
content, which raises questions on their overall
usability. In this paper we aim to assist prac-
titioners in developing usable paraphrasers by
exploring In-Context Learning (ICL) with large
language models (LLMs), i.e., using a limited
number of input-label demonstration pairs to
guide the model in generating desired outputs
for specific queries. Our study focuses on key
factors such as – number and order of demon-
strations, exclusion of prompt instruction, and
reduction in measured toxicity. We perform
principled evaluation on three datasets, includ-
ing our proposed Context-Aware Polite Para-
phrase (CAPP) dataset, comprising of dialogue-
style rude utterances, polite paraphrases, and
additional dialogue context. We evaluate our
approach using four closed source and one open
source LLM. Our results reveal that ICL is com-
parable to supervised methods in generation
quality, while being qualitatively better by 25%
on human evaluation and attaining lower toxic-
ity by 76%. Also, ICL-based paraphrasers only
show a slight reduction in performance even
with just 10% training data.

1 Introduction

Disclaimer: Figures and examples in this work may
feature offensive language.

Timely moderation helps curb the spread of hate-
ful content on social-media platforms and prevents
the harmful effects it has on a user’s psychological
well-being (Waldron, 2012; Ye et al., 2023). Un-
fortunately, the sheer volume of content generated
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Figure 1: Influence of number and order of demonstra-
tions, and instruction, on BLEU Score performance and
measured Toxicity using the text-davinci-003 model.
Comparison is done between BART, instruction-only
prompting, and three In-Context Learning approaches.
Numbers on the x-axis represent number of demonstra-
tions used in the In-Context Learning framework. Note,
measured Toxicity for BART in ParaDetox is 82, ex-
ceeding the set y-axis limit.

on these platforms makes it infeasible to enforce a
scalable human moderation process (Hassan et al.,
2022; Dosono and Semaan, 2019). AI-based mod-
eration systems can help with this problem. How-
ever, current systems often remove or flag offensive
content, which can reduce user participation and
diversity in online discussions (Xiang et al., 2012;
Warner and Hirschberg, 2012; Kwok and Wang,
2013; Wang et al., 2014; Burnap and Williams,
2015; Nobata et al., 2016; Davidson et al., 2017;
Founta et al., 2019; Jhaver et al., 2019; Ye et al.,
2023). A better alternative is to paraphrase offen-
sive content to make it less offensive. Paraphrasing
offensive content; however, is nontrivial since the
paraphrased output should not only be inoffensive
but also retain the original meaning and intent.

12612

mailto:anirudh.som@sri.com
mailto:karan.sikka@sri.com
mailto:helen.gent@sri.com
mailto:ajay.divakaran@sri.com
mailto:andreas.kathol@sri.com
mailto:dimitra.vergyri@sri.com


Prior works (Atwell et al., 2022; Logacheva
et al., 2022) have proposed using supervised gen-
erative models (Vaswani et al., 2017) like BART
(Lewis et al., 2019), to paraphrase offensive con-
tent. However, these methods require sufficient la-
belled training data, which makes it harder to adapt
them to novel settings. Moreover, these models are
optimized to perform well on certain automated
metrics (Papineni et al., 2002; Zhang et al., 2019;
Lin, 2004; Vedantam et al., 2015) at the expense of
possibly retaining a portion of the original toxicity,
thereby making us question their overall usability
for the targeted task (see Figure 1).

The emergence of few-shot In-Context Learning
(ICL) has revolutionized the field by complement-
ing the generalization capabilities of Large Lan-
guage Models (LLMs) to quickly and accurately
adapt to new tasks. It does this by using a small
amount of labeled data, known as demonstrations
or demos or examples (Brown et al., 2020). As
shown in Figure 1, ICL approaches show BLEU
score performance that is comparable to BART, but
significantly reduces the measured toxicity (Hanu
and Unitary team, 2020). Through detailed, prin-
cipled experiments we explore the viability of ICL
for paraphrasing offensive content, which to the
best of our knowledge has not been done before.
Our key contributions and findings in this paper are
summarized below.

1. Influence of the following factors on genera-
tion quality, as briefly shown in Figure 1.
(a) Number of Demonstrations: Performance
improves by increasing number of demos but
eventually saturates.
(b) Selection and Order of Demonstrations:
Systematically selecting and ordering demos
is better than its random counterpart. It is
more effective to select demos that are seman-
tically similar to the query and curate them in
a decreasing/increasing order of similarity.
(c) Exclusion of Prompt Instruction in Prompt:
ICL without the main instruction only slightly
affects performance but at the expense of toxi-
city. Thus we need both demonstrations and
instructions to simultaneously preserve perfor-
mance and lower toxicity.
(d) Robustness to Training Data Size: Care-
fully ordering demos shows robustness to
available training data size, with only small de-
crease in generation performance even when
10% of training data is only made available.

2. We tested the capabilities of OpenAI’s text-
davinci-003, gpt-3.5-turbo-0613, gpt-3.5-
turbo-instruct, gpt-3.5-turbo-1106 models
and the open-source Vicuna-13b model (Chi-
ang et al., 2023). ICL generated para-
phrases are comparable to SOTA supervised
approaches in performance, but on average
show 76% less toxicity and are 25% better us-
ing a manual qualitative assessment, and thus
have superior overall usability. We also show
that our demonstration curation approach is
simpler and faster than other more sophisti-
cated methods that offer only marginal perfor-
mance improvements at the expense of signif-
icant time delays.

3. Current paraphrasers are less effective at miti-
gating offensiveness like rudeness in conversa-
tions. They are trained using datasets that fo-
cus on social-media content, and hence aren’t
directly applicable to dialogue-based environ-
ments. To this end we release a new Context-
Aware Polite Paraphrase (CAPP) dataset1, a
dialogue-style corpus of rude utterances and
corresponding polite paraphrases, with sam-
ples accompanied by additional context in the
form of prior turns from the dialogue. We con-
duct experiments to show the importance and
benefit of incorporating context to improve
paraphraser performance.

Paper Outline: Section 2 describes ICL in our
experimental setting; details about selecting and or-
dering the demos; and finally our proposed CAPP
dataset in detail. Section 3 contains detailed exper-
imental results. Section 4 discusses related work.
Section 5 concludes the paper.

2 Method

2.1 In-Context Learning

Prompts used for ICL contain three parts – (1) an
instruction I that defines the task to be performed;
(2) a set of n demonstrations from the training cor-
pus, D = (xi, yi)

n
i=1, where (xi, yi) denotes the

offensive, inoffensive sentence pair; and (3) the of-
fensive test query sample xq. Consider the follow-
ing prompt example with n = 2 demonstrations,
where the final sentence represents the query for
which we want to generate the paraphrase.

1The CAPP dataset and generated paraphrases are avail-
able online at https://github.com/anirudhsom/CAPP-Dataset.
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Instruction: Paraphrase the following sentence to

be more polite.

Sentence: What’s wrong with you?

Paraphrase: Are you feeling alright?

Sentence: Get out of the way.

Paraphrase: Can you please step aside?

Sentence: What’s the matter with you?

Paraphrase:

The impact of each part on the BLEU score and
toxicity is briefly illustrated in Figure 1. For in-
stance, prompts with only instruction show the low-
est BLEU scores, followed by prompts with only
demos, while prompts that include both have the
best BLEU scores. In terms of Toxicity, prompts
with just instruction show the least Toxicity, fol-
lowed by prompts that include both demos and
instruction, while prompts that only include demos
exhibit a higher toxicity. The order of demos is
also crucial, and we discuss this next.

2.2 Selection and Ordering of Demonstrations

Here we describe our approach to select and or-
der the demonstrations. We first compute normal-
ized vector embeddings for each training sample
xi and the query xq, denoted as ei and eq respec-
tively. Next, the cosine similarity score between
eq and each ei is used to select n demonstrations.
We explored the following two variations for se-
lecting the demonstrations – (1) Least Similar, (2)
Most Similar, i.e., select n demos with the lowest
and highest cosine similarity scores, respectively.
These are compared to randomly selecting n de-
mos, that are arranged in no particular order. We
further investigated if arranging the n selected de-
mos in either ascending or descending order based
on their measured cosine similarity, had any impact
on the overall performance. Using BLEU and tox-
icity, Figure 1 compares Random selection to the
Most Similar (Descending order) approach, with
the latter being better on both fronts. Our find-
ings for other selection and ordering approaches
are described in detail in Section 3.2.

2.3 Context-Aware Polite Paraphrase (CAPP)
Dataset

Existing datasets (Atwell et al., 2022; Logacheva
et al., 2022) contain comments flagged for toxicity
and provide non-toxic paraphrases that maintain
the core meaning in a neutral manner. However,
they are not directly suitable to address rudeness in
speech, as speech is often directed at specific par-

Score Description

5
Perfect meaning-preserving polite
paraphrase.

4
Paraphrase that is polite but some-
what distinct in meaning.

3
Meaning-preserving paraphrase that
could be more polite.

2
Paraphrase that is very different in
meaning and somewhat more polite
than the original.

1
Paraphrase that is very different in
meaning and not more polite than
the original.

Table 1: Description of the scoring guidelines used for
evaluating the CAPP dataset in Section 2.3. The same
guidelines were used again in Section 3.7 to evaluate
quality of paraphrases generated by the different para-
phrasers on the CAPP dataset.

ticipants, while social media posts have a broader
audience, resulting in different styles and tones.
Additionally, most social media posts can be reme-
died by removing explicit insults, but rude speech
requires additional modifications to make it more
polite. For instance, we should not just eliminate
offensive language and direct insults in a rude utter-
ance, but also transform an accusation of ignorance
into an inquiry about knowledge.

To address the aforementioned differences, we
constructed a dialogue-style rude speech dataset
by leveraging the OpenSubtitles corpus (Lison and
Tiedemann, 2016). Our approach involved a three-
step process to extract target rude utterances. First,
we fine-tuned a DistilBERT-base model (Sanh et al.,
2019) using both the Stanford Politeness corpus
(Danescu-Niculescu-Mizil et al., 2013) and a sub-
set of manually labeled OpenSubtitles samples to
train a three-class model capable of predicting po-
lite, neutral, or rude sentences. Next, we use the
fine-tuned model to annotate a larger, different por-
tion of the OpenSubtitles corpus, bootstrapping
additional training data for our final rudeness de-
tection model. Finally, a separate portion of the
OpenSubtitles dataset was selected and labeled as
rude, polite, or neutral using the updated rudeness
detection model, resulting in an intermediate set
containing rude samples without polite paraphrases.
Detailed information about the training/evaluation
of the rudeness detector is provided in Appendix A.
When available, context in the form of prior turns
from the dialogue that precede the rude utterance
was also collected for the selected rude samples.

The gpt-3.5-turbo-0613 model was used to gen-
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Prompt Manual Evaluation Score↑
Context-Free 4.214± 1.047

Context-Infused 3.324± 0.839

Context-Aware 4.096± 1.093

Table 2: Human evaluation scores of 500 polite para-
phrases generated using different prompts. A higher
score indicates a qualitatively better approach.

erate the Gold-Standard or Groundtruth polite para-
phrases. To do this we first explored three differ-
ent prompts for generating three versions of po-
lite paraphrases before finally deciding on one –
(1) Context-Free: No prior dialogue context was
included in the prompt, ensuring that the gener-
ated paraphrase is solely based on the rude utter-
ance; (2) Context-Infused: Prompt includes con-
text which can significantly influence the generated
paraphrase; (3) Context-Aware: Prompt includes
context, with the generated paraphrase being less
impacted by it. For each version, 500 rude utter-
ances and their corresponding polite paraphrases
were randomly selected for qualitative evaluation.
An in-house annotator assessed the quality of the
paraphrases using the scoring guidelines in Table
1 and was not informed about the type of prompt
used to generate the polite paraphrases. The an-
notator identifies as a 28 year old cis female (pro-
nouns she/her) and was compensated monetarily.
Table 2 shows the final evaluation scores. The
Context-Aware prompt achieves a score compara-
ble to the Context-Free prompt while still incor-
porating context like the Context-Infused prompt.
Context-Aware combines the benefits of both, and
was hence used in the CAPP dataset.

3 Experiments and Discussion

We realized ICL using OpenAI’s text-davinci-003,
gpt-3.5-turbo-0613 models and their latest stand-
ins, and the open-source Vicuna-13b model. We
performed evaluation on the APPDIA (Atwell
et al., 2022), ParaDetox (Logacheva et al., 2022),
CAPP datasets, with the corresponding (#training,
#test) samples being (1584, 199), (11927, 670),
(7939, 1120) respectively. APPDIA contains offen-
sive Reddit comments and their inoffensive para-
phrases. The ParaDetox corpus consists of toxic
and non-toxic sentence pairs, obtained by filtering
the ParaNMT corpus (Wieting and Gimpel, 2017).
In CAPP, 55% of the training set and 53% of the
test set contains prior dialogue context information.
We used the sentence transformer (all-mpnet-base-
v2) (Reimers and Gurevych, 2019) to generate the
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Figure 2: BLEU as a function of number of demos.
Noticeable improvement in BLEU is observed in the
beginning, with performance saturating after a certain
number of demos.

normalized embeddings described in Section 2.2.
We evaluated generation quality using automated
evaluation metrics such as BLEU (Papineni et al.,
2002), BERT-F1 (Zhang et al., 2019), ROUGE
(Lin, 2004) and CIDEr (Vedantam et al., 2015). For
Toxicity we used the implementation by (Hanu and
Unitary team, 2020). The exact prompt instruction
used in all experiments is provided in Appendix B.

3.1 Number of Demonstrations

Figure 2 shows the relation between number of
demonstrations and BLEU (refer to Appendix
C.1, Figure 8 for other metrics). We set the
number of demonstrations to [0, 1, 10, 20, 30, 40]
for text-davinci-003, gpt-3.5-turbo-0613, and
[0, 1, 2, 4, 6, 8, 10] for Vicuna-13b. We used the
proposed Most Similar (Descending Order) ap-
proach to select and order the demos. We observe
that BLEU improves rapidly until 10 demos for
the OpenAI models and 4 demos for the Vicuna-
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Figure 3: BLEU as a function of order of demonstrations and type of instruction used in the prompt design. Demon-
strations that are semantically more similar to the query sample show better performance than less semantically
similar and randomly selected samples. Also, prompts that only include demonstrations (i.e., No Instruction) show a
BLEU score that is comparable to prompts that include instruction and demonstrations.

13b model across all datasets. Further increasing
the demos only results in slight improvement, as
each additional demo is semantically less similar
to the query and thereby less important than the
demonstrations selected before (Liu et al., 2021).

We notice in the case of the gpt-3.5-turbo-0613
model on CAPP dataset that BLEU without any de-
mos is better than with 40 demos. It’s possible that
the main instruction used here was less effective
in the ICL paradigm, and that a different instruc-
tion could have increased the BLEU score, as seen
later in Section 3.3. However, we believe this hap-
pens because the Gold-Standard for CAPP was also
generated using gpt-3.5-turbo-0613. This hints at
the possibility of ICL not necessarily improving
paraphrasing performance of LLMs, which in turn
were used to generate the dataset. We see similar
observations in the following sections as well.

3.2 Selection and Order of Demonstrations

We now discuss the effect of selection and ordering
the demos in the prompt on BLEU. Note, in Figures
3 and 4, the number of demonstrations was set to
10 and explore the different ordering mechanisms
described in Section 2.2. In Figure 3, we observe
that the Random strategy sometimes achieves better
BLEU than the Least Similar strategy. While in

most cases the Most Similar shows better perfor-
mance than both Random and Least Similar. This
intuitively makes sense since Most Similar repre-
sents samples from the training corpus that are most
semantically similar to the query (Liu et al., 2021).
This enables the LLM to generate a paraphrase that
is also similar to the Gold-Standard paraphrase of
the query. Next, the order in which the demos are
arranged also has an impact on BLEU score. We
find that curating the demos in decreasing order
of similarity often results in better BLEU than ar-
ranging them in increasing order of similarity. We
also observe similar trends with other automated
evaluation metrics. Note, the above observations
do not apply to the gpt-3.5-turbo-0613 model on
the CAPP dataset.

While the approaches described in Section 2.2
are simple and effective, they might not bring out
the best possible performance. Sophisticated meth-
ods to select and order demonstrations have been
proposed and have shown better performance in
other applications (Ye et al., 2022; Zhang et al.,
2022; Lu et al., 2021). However, we find that they
offer only marginal improvement, while taking sig-
nificantly longer times to process each query sam-
ple. For example, Table 3 shows the different per-
formance metrics and compute times for (Ye et al.,
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Figure 4: BLEU score and measured toxicity perfor-
mance with different instructions but with the same set
of demos. Instructions can either complement or work
against the selected demos and accordingly affect the
BLEU score. The No Instruction setting shows compa-
rable BLEU to prompts that include both instructions
and demos but result in paraphrases with higher toxicity.
The dotted reference lines are used to indicate the range
in BLEU score under the No Instruction setting.

2022)’s MMR method and the proposed ICL-based
approach. Note, gpt-3.5-turbo-1106 was used as
the generation model for MMR. While MMR might
be marginally better quantitatively, it is several or-
ders of magnitude slower than the proposed ap-
proach in terms of mean Similarity Compute Time
and mean Demo Retrieval Compute Time. Please
refer to Appendix C.2 for more details on this topic.

3.3 Significance of Instruction
We now investigate the effect of removing the in-
struction in the prompt. The left-most set of bars
within each bar plot in Figures 3 and 4, which show
prompts with No Instruction, display BLEU scores
that are on par with prompts that include both in-
structions and demonstrations. This is interesting
since it is a common practice to always include the
instruction in the prompt even if no demonstrations
are provided. Our results suggest that when it is
difficult to determine effective instructions for the
target paraphrasing task, with ICL one can simply
use a few systematically selected demonstrations
to get high quality generated paraphrases.

In Figure 4, for text-davinci-003 on APPDIA,
we observe that the No Instruction setting retains a
significant amount of the original content’s toxicity,
thereby making its usability questionable. Similar

observations were made with other models (refer
to Appendix C.3, Figure 9). Order of demos also
plays an important role in the No Instruction setting,
with the Most Similar showing much lower toxicity
than both Random and Least Similar strategies. For
cases that include both instruction and demos, the
measured toxicity is less impacted by the order of
demos, indicating that the main instruction serves
as a toxicity regularizer.

We want to also highlight that creating a good
instruction for paraphrasing tasks is non-trivial. De-
spite using good demos, a bad instruction can neg-
atively impact the quality of the generated para-
phrase. For instance, in Figure 3, the Vicuna-13b
model shows better BLEU with just the curated
demonstrations on the APPDIA and ParaDetox
datasets. Similarly, in Figure 4, we see that cer-
tain instructions can result in lower BLEU than
prompts that have No Instruction.

3.4 Comparison with Supervised Approaches
We compare our ICL-based approach to prior
state-of-the-art supervised baselines. For APPDIA
we use BART, T5, DialoGPT, and PDTB+RST
methods as done in (Atwell et al., 2022); for Pa-
raDetox we use BART as done in (Logacheva et al.,
2022); and for CAPP we fine-tuned BART-base
and T5-base on the training set. We used the de-
fault hyperparameters defined in the Transform-
ers Seq2SeqTrainer for fine-tuning on CAPP. The
comparison between our ICL-based approaches (in-
cluding the newer OpenAI models, gpt-3.5-turbo-
instruct and gpt-3.5-turbo-1106) and prior base-
lines is shown in Table 3.

Note, the objective of any paraphraser should
be to score high on generation quality and have
a low Toxicity in the generated paraphrases. For
APPDIA and ParaDetox, the BART and T5 mod-
els perform better than the ICL-based approach
on the different standard evaluation metrics. How-
ever, the paraphrases generated by these baselines
seem to retain a significant amount of the original
toxicity. To better understand this issue, we use
the Toxicity for the Inoffensive Gold-Standard in
each dataset as a point of reference. Ideally, a para-
phraser should generate paraphrases whose average
Toxicity is no greater than this reference. We ob-
serve that all baseline methods except DialoGPT
show a higher Toxicity, while the ICL-based meth-
ods exhibit Toxicity that is lower or on par with that
of the Gold-Standard. Our approach offers a better
trade-off between generation quality and Toxicity.
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Dataset Method BLEU↑ BERT-F1↑ ROUGE↑ CIDEr↑ Toxicity↓ Quality↑ Similarity
Compute Time↓

Demo Retrieval
Compute Time↓

A
PP

D
IA

Offensive Test Set - - - - 75.60 -

- -

Inoffensive Gold-Standard - - - - 14.37 3.68±0.93
BART (Atwell et al., 2022) 65.0 68.1 65.6 4.77 25.91 3.42±1.08

T5 (Atwell et al., 2022) 65.3 69.2 66.5 4.75 20.15 -
DialoGPT (Atwell et al., 2022) 42.3 46.7 38.0 1.11 14.51 3.52±0.93

PDTB+RST (Atwell et al., 2022) 46.2 50.7 42.5 1.54 16.39 -
MMR-BERT (10 Demos) 58.5 65.1 59.3 3.90 17.54 - 4.7538 0.0792

MMR-Embedding (10 Demos) 57.9 63.8 57.7 3.79 14.11 - 0.0025 0.0786
gpt-3.5-turbo-1106 (10 Demos) 57.1 64.0 57.20 3.72 14.42 -

0.0025 0.0005

gpt-3.5-turbo-1106 (40 Demos) 61.2 66.4 61.9 4.23 19.55 -
gpt-3.5-turbo-0613 (10 Demos) 45.8 53.3 41.6 2.12 7.00 4.24±0.91
gpt-3.5-turbo-0613 (40 Demos) 50.4 58.2 47.6 2.67 10.08 4.11±1.00

gpt-3.5-turbo-instruct (10 Demos) 51.9 58.9 50.5 2.81 15.86 -
gpt-3.5-turbo-instruct (40 Demos) 56.2 62.9 55.8 3.42 21.37 -

text-davinci-003 (10 Demos) 56.8 63.6 57.6 3.70 11.64 3.98±1.05
text-davinci-003 (40 Demos) 60.9 66.7 62.9 4.29 12.67 3.77±1.08

Vicuna-13b (4 Demos) 38.2 46.8 34.9 1.41 12.07 3.87±1.00
Vicuna-13b (10 Demos) 40.8 48.0 37.6 1.79 18.44 3.91±1.07

Pa
ra

D
et

ox

Offensive Test Set - - - - 88.64 -
- -Inoffensive Gold-Standard - - - - 6.56 3.77±0.97

BART (Logacheva et al., 2022) 77.3 76.2 69.8 4.94 82.00 2.82±0.75
MMR-BERT (10 Demos) 68.6 68.0 58.8 3.67 8.47 - 4.7538 0.5990

MMR-Embedding (10 Demos) 67.6 67.3 57.7 3.52 8.91 - 0.0025 0.6010
gpt-3.5-turbo-1106 (10 Demos) 67.6 67.3 57.2 3.45 8.46 -

0.0025 0.0048

gpt-3.5-turbo-1106 (40 Demos) 70.1 69.3 59.6 3.79 9.64 -
gpt-3.5-turbo-0613 (10 Demos) 60.3 62.0 50.5 2.72 5.71 3.90±1.01
gpt-3.5-turbo-0613 (40 Demos) 64.3 65.1 54.1 3.08 6.20 3.92±1.02

gpt-3.5-turbo-instuct (10 Demos) 65.2 66.4 55.6 3.17 9.97 -
gpt-3.5-turbo-instuct (40 Demos) 69.1 68.1 58.9 3.68 12.3 -

text-davinci-003 (10 Demos) 68.2 67.7 58.9 3.67 6.50 4.34±0.91
text-davinci-003 (40 Demos) 70.1 69.3 60.4 3.95 6.21 4.22±0.96

Vicuna-13b (4 Demos) 49.3 54.1 41.1 1.78 7.23 4.00±0.99
Vicuna-13b (10 Demos) 52.8 56.7 43.7 2.05 9.98 4.53±0.84

C
A

PP

Offensive Test Set - - - - 25.87 -

- -
Inoffensive Gold-Standard - - - - 0.94 4.38±0.83

BART 38.5 48.3 36.3 1.86 3.54 3.78±0.87
T5 39.4 50.2 37.9 1.92 2.63 3.84±0.87

MMR-BERT (10 Demos) 45.5 54.4 41.8 2.20 1.05 - 4.7538 0.3937
MMR-Embedding (10 Demos) 44.0 52.4 39.9 2.10 1.34 - 0.0025 0.3936
gpt-3.5-turbo-1106 (10 Demos) 43.9 53.2 40.5 2.17 1.22 -

0.0025 0.0031

gpt-3.5-turbo-1106 (40 Demos) 45.8 54.8 42.5 2.29 1.30 -
gpt-3.5-turbo-0613 (10 Demos) 43.7 51.9 39.6 2.00 0.82 4.44±0.81
gpt-3.5-turbo-0613 (40 Demos) 47.1 55.0 43.0 2.33 0.72 4.58±0.76

gpt-3.5-turbo-instruct (10 Demos) 44.9 53.6 41.1 2.18 1.23 -
gpt-3.5-turbo-instruct (40 Demos) 48.0 56.4 44.5 2.53 1.49 -

text-davinci-003 (10 Demos) 40.6 49.6 36.1 1.73 1.04 4.03±0.96
text-davinci-003 (40 Demos) 44.5 53.2 40.7 2.10 1.09 4.10±0.94

Vicuna-13b (4 Demos) 35.8 42.4 31.3 1.34 1.04 4.36±0.78
Vicuna-13b (10 Demos) 37.5 35.9 33.6 1.55 1.02 4.21±0.88

Table 3: Quantitative, qualitative and mean compute time (in seconds) assessment of different LLMs using the
ICL paradigm and comparison against different baseline supervised approaches. Toxicity of the offensive test set
and inoffensive ground-truth paraphrases is also provided. Differences in the reported Mean±Std Quality scores
between each ICL-based approach and the different baselines is significantly different (i.e., p−value < 0.05).

Figure 5 illustrates the Toxicity measured for the
different ICL-based methods by varying the num-
ber of demonstrations. The Most Similar (Descend-
ing Order) strategy was used to select and organize
the demos. It also displays the measured Toxic-
ity of the Offensive Test Set, the Gold-Standard
and the different baselines. Note that, B1, B2, B3,
B4 refer to BART, T5, DialoGPT and PDTB+RST
models respectively. For APPDIA and ParaDetox
we observe that LLMs without any demonstra-
tions show much lower Toxicity than when any
demonstration is used. The reverse, however, is
observed for the CAPP dataset. The absence of
demos causes LLMs to fallback on their own task
definition which results in paraphrases with Tox-
icity significantly different from that of the Gold-

Standard. However, the absence of demos also
causes the generated paraphrases to exhibit a lower
BLEU score as seen earlier in Figure 2. A balance
between the main instruction and demos can ensure
generation of paraphrases that reduce offensiveness
and score high using different automated metrics.

3.5 Additional Dialogue Context Helps

We show preliminary results of using the prior utter-
ances leading up to the rude utterance as additional
context in the our ICL-based method. Similar to the
example in Section 2.1, we prepend the context for
both the demo and the query. Figure 6 shows BLEU
score as we add/remove context and vary the num-
ber of demonstrations. We clearly see performance
improvement by incorporating dialogue context us-
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Figure 5: Average Toxicity measured using the Detoxify (Hanu and Unitary team, 2020). The orange dotted line
serves as a reference for the Gold-Standard’s Toxicity. U, GT, B-#, T-#, G-#, V-# along the x-axis refer to Utterance,
Gold-Standard, Baseline methods, text-davinci-003, gpt-3.5-turbo, Vicuna-13b respectively. # in T-#, G-#, V-#
indicate number of demonstrations used. Note, T-0, G-0, V-0 only contain an instruction in the prompt.

ing the text-davinci-003 and gpt-3.5-turbo-0613
models. We were unable to create a prompt for
Vicuna-13b that successfully uses additional con-
text in the ICL framework. We will develop such
prompts for Vicuna-13b in future work.

3.6 Robustness to Reduced Training Data

Here we study the impact of available training data
on the performance of our best performing strategy
i.e. Most Similar (Descending Order). We observe
only a minimal fall in BLEU up to 10% of the
training data as shown for text-davinci-003 in Fig-
ure 7 (refer to Appendix C.4, Figure 10 for other
models). Further reducing training data results in
noticeable drop in BLEU. We also find that reduc-
ing training dataset below 10% results in BLEU
score that is similar to Random demo selection and
arrangement strategy but with access to 100% of
the training data. That result shows that our ICL-
based method can work with limited training data
and thus can be adapted quickly to novel settings.

3.7 Manual Qualitative Assessment

We also perform quality assessment of the Gold-
standard and generated paraphrases using a human
annotator. We select a subset of 150, 200, and 200

samples from the test-set of APPDIA, ParaDetox
and CAPP respectively. For ParaDetox and CAPP,
we use all the supervised baseline methods listed
in Table 3. For APPDIA we only use BART and
DialoGPT models for comparison. Our in-house
annotator (mentioned earlier in Section 2.3) used
the scoring guidelines described in Tables 1 and 4.
Information about the type of model used to gener-
ate each paraphrase was not made available to the
annotator. Table 3 shows that the three ICL-based
LLM models received a higher average score that
is significantly different (i.e., p-value < 0.05) than
the corresponding baseline methods. We also note
that Vicuna-13b’s qualitative score was comparable
to and in some cases better than the OpenAI mod-
els, despite having scored lower on metrics that
are traditionally used to measure generation quality.
This shows that open-source LLM paraphrasers are
comparable to closed-source LLMs as per human
assessment and might be a viable alternative. Refer
to Appendix C.5 for additional analysis between
manual evaluation score and toxicity metric.

4 Related Work

Our paper explores the potential use of LLMs with
ICL for paraphrasing systems. There has been sig-
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Figure 6: Comparison of BLEU performance on CAPP
between including and excluding prior context in the
form of prior dialogue utterances.

Score Description

5
Perfect meaning-preserving inoffen-
sive paraphrase.

4
Paraphrase that is inoffensive but
somewhat distinct in meaning.

3
Meaning-preserving paraphrase that
could be less offensive.

2
Paraphrase that is very different in
meaning and somewhat less offen-
sive than the original.

1
Paraphrase that is very different in
meaning and not less offensive than
the original.

Table 4: Description of the scoring guidelines used in
Section 3.7 for evaluating the generated paraphrases
for the APPDIA (Atwell et al., 2022) and ParaDetox
(Logacheva et al., 2022) datasets.

nificant interest in better understanding the capabil-
ities of ICL, but for other applications (Min et al.,
2021a; Zhao et al., 2021; Razeghi et al., 2022; Xie
et al., 2021; Lampinen et al., 2022; Mishra et al.,
2021; Chen et al., 2021; Min et al., 2021b; Chen
et al., 2023). For instance, (Lu et al., 2021) showed
that order of demos has a significant impact on
model performance. (Liu et al., 2021) showed that
retrieving demonstrations that are semantically sim-
ilar to the query can be a more effective approach
to control the variability in performance. (Rubin
et al., 2021) learned an encoding scheme to retrieve
better demos for ICL. Other works also explored
the influence of number of demos in different set-
tings (Garg et al., 2022; Min et al., 2022; Wei et al.,
2023). (Zhou et al., 2022) evaluated the importance
of each part in the prompt has towards the final
performance. In this paper we study the impact
of various components on the final performance,
while ensuring that the toxicity of the outputs is
within tolerable levels. This enables us to propose
a few-shot solution to offensive content paraphras-
ing. Most prior works (Atwell et al., 2022; Lo-
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Figure 7: BLEU for the “Most Similar (Descending
Order)” approach as a function of percentage of training
data available, and comparison with Randomly selected
demonstrations using 100% of the training data.

gacheva et al., 2022) have modeled paraphrasing as
a sequence-to-sequence problem and trained mod-
els such as T5, BART on human annotated data.
Despite good generation results, these models tend
towards higher toxicity and are difficult to adapt to
new applications without collecting more data. Our
solution addresses those challenges successfully,
with only a fraction of the original training set.

5 Conclusion

In this paper, we focus on developing usable offen-
sive content paraphrasing systems by leveraging
generalization capabilities of LLMs and quickly
adapting them to new tasks using ICL. A para-
phraser should generate qualitatively good para-
phrases that preserve the original content’s mean-
ing, while also minimizing toxicity. Focusing only
on one of these aspects compromises overall us-
ability. Compared to supervised approaches that
require lot of training data and often produce un-
desired yet coherent paraphrases, our ICL-based
framework is generally comparable on various eval-
uation metrics like BLEU, but is qualitatively bet-
ter and helps significantly reduce toxicity in the
generated paraphrases. Through systematic exper-
iments we tested the capabilities and limitations
of ICL-based offensive paraphrasers. Other key
highlights of using our ICL framework include: (1)
Selection and arrangement of demos significantly
impacts quality of paraphrases; (2) Measured tox-
icity is lowest when only the instruction is used
and highest when only demos are used. Combining
both instruction and demos helps ensure quality
and usability of generated paraphrases; (3) Robust
to limited data, i.e., with just 10% training data we
only see a slight decrease in overall performance,
thereby enabling us to easily scale and deploy.
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Limitations

Here, we list the limitations identified in this paper:

1. We found that ICL fails on datasets that were
prepared using the same LLMs used in the
ICL framework. Since we used the gpt-3.5-
turbo-0613 model to create polite paraphrases
for our CAPP dataset, we were unable to see
the same observations in our results when us-
ing other models and datasets. This could
have been avoided by creating manually an-
notated polite paraphrases. However, manual
annotation is a laborious process and isn’t scal-
able. Hence, a manual qualitative assessment
was done on a small subset of the final CAPP
dataset to ensure usability of the generated
paraphrases.

2. Prompt engineering for the Vicuna-13b model
with the ICL framework is nontrivial. We
found it difficult to create main instructions in
the prompt that result in the Vicuna-13b model
to behave in a desired way. Also, unlike the
two OpenAI models, the number of demon-
strations that can be effectively passed into
Vicuna-13b is quite limited. In some cases we
were able to concatenate more than 10 demos
to the prompt but it often resulted in generat-
ing incomprehensible or empty outputs.

3. The No Instruction prompt explored in the
paper resulted in paraphrases that are com-
parable to prompts that include both instruc-
tion and demos, on several automated evalua-
tion metrics. However, we notice that the No
Instruction setting also retains a significant
amount of toxicity from the original content.
We propose that in situations where it is diffi-
cult to decide on a good main instruction, one
could simply use a few carefully curated and
ordered demos like the “Most Similar (De-
scending Order)” approach to generate para-

phrases and check if it is within the desired
toxicity levels.

4. Our experimental results indicate that there is
no single prompt that works in all situations.
One must carefully balance the main instruc-
tion and the set of demos from the training
corpus to get desired paraphrase outputs.

5. We showed preliminary results showcasing
the benefit of incorporating additional con-
text in the form of prior two utterances in
the ICL framework. We believe there can be
better ways to incorporate this contextual in-
formation and further improve performance
of LLMs.

6. The closed-source OpenAI models are more
powerful, faster and expensive to use. Despite
open-source models like Vicuna-13b coming
close to OpenAI models on other tasks, they
still have a long way to go for offensive con-
tent paraphrasing.

Ethics Statement

We have to take great care with our collection of
offensive content to protect privacy. We have to
ensure judicious use of the collected data to protect
the vulnerable against such speech. We recognize
that our models cannot entirely eliminate offen-
sive content from a given text. Additionally, we
acknowledge that utilizing pretrained models may
introduce biases in specific situations, as studies
have revealed that pretrained models can be influ-
enced by biases present in the data used for their
initial training. We have to continue research on
making sure that the LLMs do not hallucinate and
end up injecting toxicity since we don’t know what
they have been trained on. There is a danger of
this kind of technology being used in reverse, i.e.,
take harmless content and paraphrase to inject toxi-
city. We realize that ethics is an ongoing challenge.
We are engaged with the Fairness, Accountability
and Transparency community and are learning to
address key ethics issues on an ongoing basis.
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A Context-Aware Polite Paraphrase
(CAPP) Dataset

This section provides additional details about the
training protocol used to develop the rudeness de-
tector described in Section 2.3. The initial rude-
ness detection model was trained on a randomly-
selected subset of the OpenSubtitles corpus (Lison
and Tiedemann, 2016) that was manually annotated
by an in-house human annotator, as well as the Stan-
ford Politeness corpus (Danescu-Niculescu-Mizil
et al., 2013). Between these two data sources, this
model was trained on 10997 gold-quality samples.
This intermediate model achieved an overall accu-
racy score of 59.40 across the three classes (rude,
polite, and neutral). The accuracy for specifically
rude utterances in the test data was 71.84 – higher
than that of other classes. The final rudeness detec-
tion model, trained on a combination of the afore-
mentioned gold data, and a larger subset (250379
samples) of the OpenSubtitles corpus annotated
using the intermediate model, achieved an overall
accuracy of 57.20 across the three classes, with
an accuracy score of 71.84 on rude samples – still
higher than the accuracy on other classes. The dis-
parity in rudeness detector performance between
classes was deemed acceptable due to its high per-
formance on the rude class. Accurate identification
of rude utterances was prioritized in the interest
of generating a sufficient number and variety of
rude utterances for paraphraser training – with an
acceptance of the potential for noise in the form of
some non-rude utterances in the training data.

B Instructions Used in Experiments

The exact prompt instruction used for each experi-
ment in Section 3 is shown below. Except Subsec-
tion 3.2 and 3.3, we use only Instruction-1 for the
following Subsections 3.1, 3.4, 3.5, 3.6 and 3.7.

1. Instruction prompts used for text-davinci-003
and gpt-3.5-turbo models on the APPDIA
dataset:

(a) Instruction-1: Instruction: Rewrite the
following sentence to be inoffensive

(b) Instruction-2: Instruction: Rewrite the
following sentence to be inoffensive and
ensure that the paraphrased sentence is
similar to the original sentence

(c) Instruction-3: Instruction: Generate a
paraphrased sentence that expresses a
more balanced viewpoint

(d) Instruction-4: Instruction: Rewrite the
following sentence with a more objective
tone

2. Instruction prompts used for text-davinci-003
and gpt-3.5-turbo models on the ParaDetox
dataset:

(a) Instruction-1: Instruction: Rewrite the
following sentence to be inoffensive

(b) Instruction-2: Instruction: Rewrite the
following sentence to be not toxic

3. Instruction prompts used for text-davinci-003,
gpt-3.5-turbo and Vicuna-13b models on the
CAPP dataset:

(a) Instruction-1: The following sentence
can contain rude text. Please provide one
paraphrased sentence that is semantically
similar to it and is polite.

4. Instruction prompts used for Vicuna-13b
model on APPDIA and ParaDetox datasets:

(a) Instruction-1: The following sentence
contains offensive text. Please provide
one paraphrased sentence that is seman-
tically similar to it and is inoffensive.

5. While incorporating additional context in the
form of previous two turns in the dialogue,
the instruction prompt used for text-davinci-
003 and gpt-3.5-turbo models on the CAPP
dataset:

(a) Instruction-1: Paraphrase only the be-
low Sentence to be polite and semanti-
cally similar to the Sentence. Use the
context as as reference but do not include
any part of it in the final paraphrase.

C Experiments

C.1 Number of Demonstrations
Figure 8 provides additional details, supporting the
information described in Section 3.1.

C.2 Selection and Order of Demonstrations
This section provides additional details, supporting
the information described in Section 3.2. While
the original paper (Ye et al., 2022) suggests using
BERT-Score for similarity measurement, we also
explore the cosine similarity measurement for the
normalized embeddings extracted using the sen-
tence transformer models. We refer to the original
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Figure 8: Performance using different evaluation metrics as a function of number of demonstrations used in the
prompt. Noticeable improvement in score performance is observed in the beginning, with performance saturating
after a certain number of demos.

Dataset Method Similarity
Compute Time↓

Demo Retrieval
Compute Time↓

APPDIA

MMR-BERT (10 Demos) 4.7538 0.0792
MMR-BERT (40 Demos) 4.7538 0.5668

MMR-Embedding (10 Demos) 0.0025 0.0786
MMR-Embedding (40 Demos) 0.0025 0.5569
gpt-3.5-turbo-1106 (10 Demos) 0.0025 0.0005
gpt-3.5-turbo-1106 (40 Demos) 0.0025 0.0005

ParaDetox

MMR-BERT (10 Demos) 4.7538 0.5990
MMR-BERT (40 Demos) 4.7538 4.39

MMR-Embedding (10 Demos) 0.0025 0.6010
MMR-Embedding (40 Demos) 0.0025 4.17
gpt-3.5-turbo-1106 (10 Demos) 0.0025 0.0049
gpt-3.5-turbo-1106 (40 Demos) 0.0025 0.0047

CAPP

MMR-BERT (10 Demos) 4.7538 0.3937
MMR-BERT (40 Demos) 4.7538 2.97

MMR-Embedding (10 Demos) 0.0025 0.3936
MMR-Embedding (40 Demos) 0.0025 3.06
gpt-3.5-turbo-1106 (10 Demos) 0.0025 0.0031
gpt-3.5-turbo-1106 (40 Demos) 0.0025 0.0031

Table 5: Comparison of the proposed demonstration selection and ordering approach to MMR (Ye et al., 2022).
Here, the proposed approach refers to the Most Similar (Descending Order) approach outlined in Section 3.2.
While MMR provides marginal performance gains on all three datasets as shown in Table 3, it is several orders
of magnitude slower than the proposed approach. Here, the mean Similarity Compute Time measures the average
time taken to perform similarity measurement between a query test sample and all the available reference training
samples; The mean Demo Retrieval Compute Time measures the average time taken to select n demonstrations from
the available training set based on the similarity measurements done previously.

implementation as MMR-BERT and name the new
variant as MMR-Embedding. The parameter λ was
set to 0.5 for both MMR approaches. Tables 3 and
5 compare the performance differences between the
different MMR approaches and the proposed best

performing ICL-based approach, i.e., the Most Sim-
ilar (Descending Order) method. Comparison is
done using various quantitative evaluation metrics
and compute time metrics. Note, for the proposed
approach, the compute times reported correspond
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to the Most Similar (Descending Order) method,
however, these would also be the same for the other
demonstration selection and ordering approaches
described in Section 3.2. The different compute
time metrics explored are defined as follows – The
mean Similarity Compute Time measures the aver-
age time taken to perform similarity measurement
between a query test sample and all the available
reference training samples; The mean Demo Re-
trieval Compute Time measures the average time
taken to select n demonstrations from the available
training set based on the similarity measurements
done previously. Here, n is defined beside each
method’s name within parenthesis. The total time
taken to process each query test sample would ap-
proximately be equal to the sum of the above two
compute times.

Table 3 shows that the MMR methods offer
marginal improvement with respect to the different
quantitative metrics but at the expense of significant
time delays. Note, the Similarity Compute Time
for MMR-Embedding is the same as our proposed
ICL-based approach since both employ the cosine
similarity metric. Quantitative metrics for the two
MMR approaches is only reported for 10 demon-
strations in Table 3 as we observed even greater
delays with respect to Demo Retrieval Compute
Time when trying to retrieve 40 demonstrations.
Table 5 reports the two Compute Times for the dif-
ferent MMR approaches and proposed ICL method,
for both 10 and 40 demonstrations. Note, gpt-3.5-
turbo-1106 was used as the generation model for
MMR. For the proposed ICL-based approach we
observe negligible differences in compute times
when we want to retrieve either 10 or 40 demon-
strations. However, the MMR-BERT approach be-
comes 10 times slower when trying to retrieve 40
demonstrations instead of 10.

While there are several demonstration selection
and ordering approaches (Ye et al., 2022; Zhang
et al., 2022; Lu et al., 2021) that can help push the
performance ceiling, one must also make sure if
these approaches can be easily implemented and
scaled up in a real-time, real-world application set-
ting. For example, (Zhang et al., 2022) propose a
reinforcement learning algorithm to identify gener-
alizable policies to select demonstrations but find
that this approach offers diminishing returns on
larger, more sophisticated LLMs. The approach
described by (Lu et al., 2021) to overcome few-
shot prompt order sensitivity is better suited for
multi-class classification tasks, since the entropy-

based statistics framework discussed to identify
performant prompts is not directly applicable to
text generation tasks like paraphrasing.

C.3 Significance of Instruction
Figure 9 provides additional details, supporting the
information described in Section 3.3.

C.4 Robustness to Reduced Training Data
Figure 10 provides additional details, supporting
the information described in Section 3.6.

C.5 Correlation between Manual Evaluation
Score and Automated Toxicity Metric

The manual quality evaluation score considers not
just Toxicity minimization in the generated para-
phrase but also considers meaning preservation. Di-
rectly comparing it to the automated toxicity score
is not possible since there is a semantic mismatch
between the two metrics. Instead, we first compute
the difference in the toxicity measured between
the (offensive) utterance and the (inoffensive) para-
phrase. Next, we compute the Pearson correlation
between this difference in toxicity score to the man-
ual quality evaluation score. This difference cap-
tures the comparisons made by the annotator while
coming up with the manual scoring as shown in
Tables 1 and 4. Therefore, if there is correlation
between this automatically computed difference
and the manual scores, then convergent validity is
assured.

Tables 6, 7, 8 show the computed Pearson corre-
lation coefficient between the manual quality evalu-
ation score and automated toxicity score under two
different settings. Type-1 represents the Pearson
correlation coefficient between the manual qual-
ity score and automated toxicity score of the para-
phrased output; and Type-2 represents the Pearson
correlation coefficient between the manual quality
score and difference in measured toxicity between
original utterance and paraphrased output. Note,
the dynamic range of the toxicity captured in the
CAPP dataset is low because it mostly consists of
rude speech that contains little or no foul language.
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Dataset Method Type-1 Type-2

A
PP

D
IA

Gold Standard -0.28 0.07
BART -0.41 0.36

DialoGPT -0.40 0.28
text-davinci-003

(10 demos) -0.45 0.25

text-davinci-003
(40 demos) -0.43 0.27

gpt-3.5-turbo-0613
(10 demos) -0.39 0.26

gpt-3.5-turbo-0613
(40 demos) -0.35 0.21

Vicuna-13b
(4 demos) -0.42 0.24

Vicuna-13b
(10 demos) -0.41 0.17

Table 6: Computed Pearson corre-
lation coefficient on the APPDIA
dataset between manual quality score
and automated toxicity score of para-
phrased output, denoted as Type-1;
manual quality score and difference
in measured toxicity between origi-
nal utterance and paraphrased output,
denoted as Type-2.

Dataset Method Type-1 Type-2

Pa
ra

D
et

ox

Gold Standard -0.15 0.19

BART -0.60 0.56

text-davinci-003
(10 demos) -0.22 0.20

text-davinci-003
(40 demos) -0.22 0.28

gpt-3.5-turbo-0613
(10 demos) -0.24 0.25

gpt-3.5-turbo-0613
(40 demos) -0.26 0.24

Vicuna-13b
(4 demos) -0.24 0.26

Vicuna-13b
(10 demos) -0.49 0.41

Table 7: Computed Pearson corre-
lation coefficient on the ParaDetox
dataset between manual quality score
and automated toxicity score of para-
phrased output, denoted as Type-1;
manual quality score and difference
in measured toxicity between origi-
nal utterance and paraphrased output,
denoted as Type-2.

Dataset Method Type-1 Type-2

C
A

PP

Gold Standard -0.139 -0.049
BART -0.189 -0.094

T5 -0.188 -0.005
text-davinci-003

(10 demos) -0.155 0.022

text-davinci-003
(40 demos) -0.218 -0.016

gpt-3.5-turbo-0613
(10 demos) -0.197 -0.077

gpt-3.5-turbo-0613
(40 demos) -0.265 -0.129

Vicuna-13b
(4 demos) -0.096 -0.188

Vicuna-13b
(10 demos) -0.176 -0.058

Table 8: Computed Pearson correla-
tion coefficient on the CAPP dataset
between manual quality score and au-
tomated toxicity score of paraphrased
output, denoted as Type-1; manual
quality score and difference in mea-
sured toxicity between original ut-
terance and paraphrased output, de-
noted as Type-2.
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Figure 9: Measured toxicity performance of different
models on the APPDIA dataset, with different instruc-
tions but with the same set of demos. No instruction
setting results in paraphrases with higher toxicity.
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Figure 10: BLEU for the “Most Similar (Descending
Order)” approach as a function of percentage of training
data available and comparison to Random demo selec-
tion with access to 100% of the training data.
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