
Findings of the Association for Computational Linguistics: ACL 2024, pages 5438–5455
August 11-16, 2024 ©2024 Association for Computational Linguistics

Can We Continually Edit Language Models?
On the Knowledge Attenuation in Sequential Model Editing

Qi Li 1, Xiaowen Chu 1 †
1 The Hong Kong University of Science and Technology (Guangzhou)

qili@hkust-gz.edu.cn

Abstract

Model editing has become a promising ap-
proach for precisely and effectively updating
knowledge within language models. In this
paper, we investigate knowledge attenuation,
in which the retention of updated knowledge
within the language model decreases as the
number of edits increases after sequential edit-
ing. Through empirical study, we discovered
that existing editing methods generally suffer
from knowledge attenuation. We attribute this
phenomenon to two aspects: (1) redundant pa-
rameters interference and (2) update weight
disentanglement. To this end, we propose the
AdaPLE method. It not only mitigates the
knowledge attenuation issue but also improves
the performance on existing benchmarks. To
the best of our knowledge, we are the first to
investigate the cause and mitigation of knowl-
edge attenuation in sequential LLM editing.

1 Introduction

Recently, large language models (LLM) like Llama
(Touvron et al., 2023), Falcon (Almazrouei et al.,
2023), and Bloom (Workshop et al., 2022) have
shown impressive capabilities in generating human-
like text, improving performance on a variety of
natural language processing tasks. Though LLM is
capable of performing tasks based on accumulated
knowledge (Zhong et al., 2021), they are prone
to generating erroneous, harmful, or outdated in-
formation. Thus the ability to maintain fresh and
customized information is desirable in many scenar-
ios. Due to hardware and resource constraints, re-
searchers seek methods to update knowledge inside
LLM efficiently. Recent years have witnessed a
growing number of precise yet efficient model edit-
ing techniques like MEND (Mitchell et al., 2022),
MEMIT (Meng et al., 2022b), and PMET (Li et al.,
2023b), as shown in Figure 1, thus circumventing
prohibitive fine-tuning process.

†Corresponding author

Q: The current CEO of Apple Inc. is

LLM LLMModel
Editing

Steve Jobs

Tim Cook

Steve Jobs

Tim Cook

(b) LLM can easily recall updated fact after editing.

ROME, MEMIT

LLM Before Editing LLM After Editing

The CEO of Apple Inc. is Steve Jobs.

The CEO of Apple Inc. is Tim Cook.

LLM

Before Editing

After Editing

(a) We perform editing on LLM.

Model Editing

Right Answer Wrong Answer

Figure 1: Illustration of language model editing. (a)
Edit the autoregressive language model to correct out-
dated knowledge. (b) Post-edit language models can
easily recall edited knowledge.

In this paper, we focus on a specific model edit-
ing scenario termed as sequential editing (Yao et al.,
2023): editing samples arrive in sequence, and we
incrementally apply the editing weights to the edit
target layer within the language model in a con-
tinuous, step-wise manner other than roll back the
update before next edit. While successful in edit-
ing, we will show that current editing methods may
incorporate unexplored defects in sequential edit-
ing termed as knowledge attenuation (KA): As the
number of edits increases, the retention of updated
knowledge significantly deteriorates across all cri-
teria, as shown in Figure 2. The edit weights during
these editing processes comprise millions of param-
eters, making them excessively redundant for rep-
resenting the knowledge that needs to be updated.
We hypothesize that these redundant weights may
contain interfering information or lead to mutual in-
teraction, which, when sequentially adding the up-
date weights corresponding to different knowledge
representations to the model’s editing target, can
damage the underlying knowledge structure within
the model and lead to a decrease in the retention
of edited information. This flaw can undermine
the adoption of these methods, as it may erode
their utility and trustworthiness in real-world ap-
plications. In particular, there is a lack of rigorous
understanding on:

5438

Figure 2: Scaling edit performance for LLaMA2-7B (above) and GPT-J (below) on COUNTERFACT dataset.
As illustrated, with an increase in the number of edits, the retention of updated knowledge significantly deteriorates
across all criteria, a phenomenon we refer to as knowledge attenuation. Through intensive empirical study, we
observe that existing editing methods like MEND, ROME, MEMIT generally suffer from this issue.

(1) which factors are important for knowledge
attenuation in model editing ?
(2) how to address the knowledge attenuation is-
sue effectively by considering these factors ?

To close this gap, we systemically investigate
the knowledge attenuation in sequential language
model editing through intensive empirical studies.
We inspect the updated weight for the edit layer
from the lens of redundant parameter and weight
entanglement, finding that the knowledge attenua-
tion can stem from two major causes (1) interfer-
ence from redundant parameter and (2) disentan-
glement between edit weight, both of which can
lead to deteriorate in multiple edit performance.

To this end, we introduce AdaPLE , Adaptive
Precise LLM Editing, an effective model edit-
ing method that can alleviate knowledge attenua-
tion. The proposed AdaPLE achieves more precise
model editing by integrating refined optimization
goals, concurrently optimizing the hidden states
of the MHSA and FFN other than layer hidden
states, as well as employing a superior method for
integration of editing weights to edit targets. To
validate its effectiveness, we conduct intensive ex-
periments with different language models across
diverse datasets. Results demonstrate that our pro-
posed AdaPLE enables effective scaling perfor-
mance while keeping a comparable or even superior

performance to current editing methods. Further
visualization shows that our proposed AdaPLE can
result in a significant weight disentanglement com-
pared with existing editing methods, thus resulting
in a better scaling performance.

To the best of our knowledge, we are the first to
investigate the knowledge attenuation in language
model editing. The main contributions of this paper
are as follows:

(1) We systematically investigate the knowledge
attenuation in sequential language model editing
and dissect the main causes of KA (In Section 3).

(2) We introduce AdaPLE , a scalable, precise
model editing method for better sequential editing
(In Section 4).

(3) Experimental results show that AdaPLE can
reach comparable or superior performance while
mitigating knowledge attenuation (In Section 5).

2 Preliminary

In this section, we provide comprehensive prelimi-
naries of sequential model editing.

2.1 Basic Notation

We denote the language model as Mθ, where θ
signifies the model’s parameters. Knowledge tuple
t is a triplet (s, r, o), where s is subject, r is relation,

5439

and o is object. Typically, a language model is
stacked by L identical layers (Vaswani et al., 2017),
which consist of MHSA and FFN sub-block. The
FFN comprises two linear layers, denoted as Win,
Wout respectively.

2.2 Model Editing
Model editing aims to adjust a model Mθ behavior
on some facts with fine-grained without influenc-
ing unrelated samples. Current works focus on
editing knowledge tuple t = (s, r, o). The editing
process inserts new tuples (s, r, o∗) in place of the
current tuple (s, r, o), where these two share the
same s and o. An editing operation is denoted as
e = (s, r, o, o∗) for brevity. Given n fact tuples
T ∗ = (t∗1, t

∗
2, . . . , t

∗
n) where t∗i = (si, ri, o

∗
i), i =

1, 2, . . . , n, and a model Mθ, model editing yields
an edited language model M e

θ via editing opera-
tions E = {e1, e2, . . .} , where M e

θ (sj , rj) = o∗j
if tj = (sj , rj , o

∗
j) ∈ T ∗ , else M e

θ (sj , rj) = oj .
To evaluate model editing methods, current works
focus on three dimensions: efficacy, generalization,
and locality (Yao et al., 2023).

2.3 Formal Definition of Sequential Editing
Here, let’s provide a formal definition of sequen-
tial editing. Assume we have an unedited model
M0, and n editing samples(xi, yi), where i =
1, 2, . . . , n need to be incorporated into the lan-
guage model M0. Suppose the editing operation
is a function E(·, ·), where the first parameter is
the model to be edited and the second parameter
is the editing samples. Assume we get the edited
model Mi after the i-th editing operation. In se-
quential editing, Mt (model parameter after the
t-th editing) is determined by the model weight
Mt−1 and the editing sample used in the t-th edit,
like Mt = E(Mt−1, St) , where St is the edit
samples used in the t-th edit. For different in-
dex i and j, Si ∩ Sj = ∅; for every i , we have⋃

i Si = {xj , yj}j=n
j=1 . If we denote the size of

St is nt, it satify nt ≥ 1 for every t and satisfies
n =

∑
t nt for all edit batches.

2.4 Locate-then-Edit Style Model Editing
Locate-then-Edit style editing methods view down-
sample component W l

out of FFN in LLM layers as
associative memory, denoted as W. The details of
transformer architecture can be found in (Vaswani
et al., 2017). Thus we have Wki = vi. Here,
ki ≜ kli and vi ≜ vli represent the sets of keys and
values encoding the knowledge tuple ti in the l-th

layer. We can stack above equation as matrix form
like WK ≈ V , where K ≜ [k1 | k2 | · · · | kn]
and V ≜ [v1 | v2 | · · · | vn]. That means W0 ≜
argminŴ

∑n
i=1

∥∥∥Ŵki − vi

∥∥∥
2
. MEMIT (Meng

et al., 2022b) optimizes an objective to insert new
key-value tuples :

W1 ≜ argmin
W

(
n∑

i=1

∥Wki − vi∥2

︸ ︷︷ ︸
(a) original keys and values

+

n+u∑

i=n+1

∥Wki − vi∥2

︸ ︷︷ ︸
(b) inserted keys and values

).

(1)

The (a) term in Equation 1 indicates that n original
pieces of knowledge, while the (b) term indicates
u pieces of new. They consider the target weight
W1 as the sum of the original weight W0 and the
incremental weight ∆. The close-form solution of
edit target ∆ is :

∆ = RKT
1 (C0 +K1K

T
1)

−1, (2)

where R ≜ V1 − W0K1 represents the residual
between the values V1 (namely target knowledge
representations) corresponding to the keys K1 of
the target knowledge and the model original knowl-
edge W0K1. C0 ≜ K0K

T
0 = λ · Ek

[
kkT

]
is an

estimate of previously memorized keys obtained
through sampling. Here, λ is a hyper-parameter
that balances the modification and preservation.

2.5 Sequential Editing Performance
The existing protocol for evaluating model edit-
ing includes several key steps: updating a model’s
weight, evaluating the model after this update, and
reverting the model to its pre-update weight for
subsequent tests. However, in practical scenarios
such as sequential editing, it is essential for models
to preserve previous edits before incorporating new
ones. Consequently, enhancing the scalability of
editing capabilities is vital. This paper primarily
investigates the robustness of various methods in
sequential editing settings.

3 A Comprehensive Study of KA

In this section, we present a comprehensive study
of knowledge attenuation after sequentially editing
the language model. We first give a geometric
intuition for sequential editing, then we perform
a series of investigations to explore the primary
factors of knowledge attenuation.

3.1 Geometric Intuition and Insight
Inspired by recent work like (Ilharco et al., 2022;
Ortiz-Jimenez et al., 2023; Tang et al., 2023), it

5440

(a) Edit weight similarity visualization. (b) Edit weight similarity visualization after DR.

Figure 3: Edit Weight similarity visualization before and after DR. As we can see from the above figures, the
pairwise similarity of edit weight significantly decreases after drop and re-scale, indicating that weight disentangle-
ment can help mitigate knowledge attenuation.

Figure 4: Impact of top k% large parameters retain
on edit performance. Only retaining at least 20% of
high-magnitude parameters does not degrade the223
overall editing performance.

is generally believed that the less similar (closer
orthogonal) between edit weight, the less interfer-
ence between sequentially added update weight and
the better scaling edit performance. The intuition
is that the closer orthogonal edit weight indicates
that the specialized knowledge captured for each
edit sample lies in distinct subspaces with minimal
overlap or redundancy. This enables better preser-
vation of inherent knowledge structure and avoids
destructive interference during sequential language
model editing. We compute the pairwise similarity
between 10 update weights for edit samples com-
puted by MEMIT, as shown in Figure 3a. These
edit weights are similar to some extent.

On the other hand, when sequentially adding
an editing weight ∆ that is influential for knowl-

edge representation but redundant like ROME or
MEMIT to edit targets, the editing performance sig-
nificantly drops. We hypothesize that the influential
value may be obscured by the redundant parameter,
lowering the overall editing performance or decon-
structing the inherent knowledge structure of the
language model. This is aligned with observation
in work (Yadav et al., 2023b).

3.2 Further Investigation
In this section, we reveal that redundant parameters
interference and update weight disentanglement
are two primary factors of knowledge attenuation
through empirical study. We use an LLaMA2-7B
(Touvron et al., 2023) and GPT-J (Wang and Komat-
suzaki, 2021) model as the experimental backbone.
The experimental data is sampled from COUNTER-
FACT dataset.
Parameter redundancy of update weight. Recent
works have shown that, for fine-tuned models, most
model parameters can change over the adaption pro-
cess but only have a small impact on performance.
Does this hold for sequential language model edit-
ing? To validate this, we randomly select some
edit samples and compute update weight ∆ with
MEMIT (Meng et al., 2022b). For each update
weight, we keep only the largest - topk% parame-
ters and set the other parameters as zero. Results in
Figure 4 show that only retaining at least top-20%
of high-magnitude parameters does not degrade the
overall editing performance. We conduct experi-
ments on LLaMA2-7B and GPT-J with 100, 200,

5441

and 500 samples with MEMIT, and the results are
consistent the same.

Observation 3.1. Up to 80% parameters in edit
weight are redundant.

Redundancy parameters lead to interference.
To explore this, We select 1k edit samples and per-
form sequential editing with three different batch
settings: 10, 100, and 500 on different language
model for MEMIT. In integrating the update weight
into the FFN of edit target, we employed two dis-
tinct fusion methods: (1) a straightforward addi-
tion (referred to as “vanilla"), and (2) retaining
top 20% largest parameters of the update weight,
setting the remaining to 0 (referred to as “TR", top-
retain). The results indicate that the TR can miti-
gate knowledge attenuation in sequentially edited
language models to some extent. This conclusion
holds across experiments conducted with different
batches and models.

Observation 3.2. Sparsifying update weights can
mitigate redundant parameter interference.

Randomly drop leads to better disentanglement.
Can sparsifying update weights by retaining the top
20% highest values thoroughly address the issue
of knowledge decay in sequential editing? The an-
swer is negative. Our analysis involved calculating
and visualizing the cosine similarity among 20 sets
of update weights, each pruned to retain the top
20% of large parameters. We observed that the sim-
ilarity among these pruned update weights did not
significantly decrease, indicating that merely spar-
sifying update weights by retaining the top 20%
highest values are insufficient to solve the prob-
lem. Consequently, we adopted a novel approach
termed DR (Drop and Scale): we randomly discard
parameters of update weights with probability p,
setting the discarded values to zero, and then scale
the remaining weights by 1/(1 − p) to maintain
the expected value of update weights. Following
DR in our sequential editing as above, we discov-
ered that the edited models were effectively able to
mitigate knowledge attenuation. We calculated and
visualized the pairwise similarity among 20 sets
of update weights processed by DR in Figure 3b,
revealing that the similarity between the processed
weights was significantly reduced.

Observation 3.3. Randomly dropping can reduce
entanglement and similarity between edit weights.

4 Proposed Method: AdaPLE

In this section, we introduce AdaPLE , an effective
editing method for mitigating the KA in language
model editing. It can effectively mitigate knowl-
edge attenuation by introducing adaptive merging
of update weight. Our proposed AdaPLE follows
the locate-then-edit style and composes two phases:
(i) computing edit weight and (ii) adaptive merging
of edit weight. In the computing stage, AdaPLE
first computes update weight within an optimiza-
tion process (In section 4.1). Once computed, the
update weights are merged to edit targets during
the adaptive merging process (In section 4.2). The
pseudo-code is in Algorithm 1. For more details,
please refer to Appendix C.

4.1 Computing Edit Weight

The AdaPLE follows the Locate-then-Edit style
and regards FFN in language model layer as two-
layer key–value memories, where the up-sample
block W l

in forms a key, with which the down-
sample block W l

out retrieves an associated value in
layer l. If we regard W l

out as associative memory,
denoted as W0. We have W0ki = vi where ki ≜ kli
and vi ≜ vli (i = 1, 2, . . . , n), which encodes in-
herent knowledge inside LLM with key-value form
as knowledge representation.

To perform editing, we add update weight ∆
to W0 and get W1 = ∆ + W0. For W1, it satis-
fies W1km = vm where (km, vm) is representation
of the unedited knowledge tuple (sm, rm, om) and
W1kn = v∗n where (kn, v

∗
n) is representation of

new knowledge tuple (sn, rn, o
∗
n) that we want to

update. To get update weight ∆, we view the edit-
ing process as optimizing a new objective function.

AdaPLE views the editing process as an opti-
mization problem like locate-then-edit style meth-
ods. However, existing methods don’t modify u
pieces of existing fact, but rather directly insert
extra u new triplets to incorporate new informa-
tion. The editing process should involve both for-
getting outdated or incorrect knowledge and insert-
ing the new. Thus, we alter the optimization goal

5442

of AdaPLE to:

W1 ≜ argmin
W

[

n−u∑

i=1

∥Wki − vi∥2

︸ ︷︷ ︸
(a) unedited knowledge

+
n∑

i=n−u+1

∥Wki − v∗i ∥2

︸ ︷︷ ︸
(b) inserted new knowledge

−
n∑

i=n−u+1

∥Wki − vi∥2

︸ ︷︷ ︸
(c) erased old knowledge

]

(3)

Here, ki and vi (i = 1, 2, ..., n − u) indicate
the original key and value of knowledge tuple
t = (s, r, o), and v∗i refers to the target value where
i = n−u+1, n−u+2, . . . , n. (Bau et al., 2020)
shows that inserting new key-value tuples is identi-
cal to solving a constrained least-square problem.
For brevity, we stack these vectors into ma-
trices. We have K0 ≜ [k1 | k2 | · · · | kn−u],
K1 ≜ [kn−u+1 | kn−u+2 | · · · | kn],
V0 ≜ [v1 | v2 | · · · | vn−u], V1 ≜
[vn−u+1 | vn−u+2 | · · · | vn], and V2 ≜[
v∗n−u+1 | v∗n−u+2 | · · · | v∗n

]
. Solving equa-

tion 3 can model this editing process. When
inserting knowledge into linear layers like
locate-then-edit style methods, such constrained
least-square problems have a closed-form solution
as:

∆AdaPLE = RAdaPLE KT
1 (CAdaPLE + 2K1K

T
1)

−1

(4)

where the RAdaPLE = V2 − 3W0K1 termed resid-
ual delta weights, and CAdaPLE is covariance ma-
trix. The detailed derivation can be found in Ap-
pendix C.1. For more precise editing, AdaPLE
first computes the target knowledge representations
by simultaneously optimizing the MHSA and FFN
hidden states as in PMET. Subsequently, we up-
date FFN weights in the edit target layers using
target knowledge representations. The details of
computing weight is in Appendix C.3.

4.2 Adaptive Fusion of Edit Weight

In the section 3, we reveal the extremely redundant
properties of the edit weight of language model
editing and show that such redundancy can lead to
knowledge in sequential knowledge editing. For
better fusion, we introduced the Drop-and-Rescale
(DR) fusion, which is the key design and merging
strategy of our proposed AdaPLE . The merging
phase of AdaPLE is conceptually simple and con-
sists of two steps: drop and re-scale. Given update
weight ∆, AdaPLE first performs random dropring

on update weight based on a drop rate p (setting
their values to zeros) and then rescales the remain-
ing ones by a factor 1/(1− p) as follows,

M l ∼ Bernoulli(p),

∆̃ =
(
1−M l

)
⊙∆, (5)

∆̂ = ∆̃/(1− p).

Where M l is a binary mask that shares the same
shape with update weight ∆ at layer l. Finally, we
will spread ∆̂ to different layers in edit target to
obtain the post-edit model. If we denote L as the
max AIE value layer (Meng et al., 2022a), we select
5 layers (L− 4, . . . , L− 1, L) as edit target R. To
edit multiple layers, we need to spread the residual
delta weights RAdaPLE to all target layers. The edit
target we employed is the same as MEMIT.
Theoretical Insight. Inspired by recent work (Yu
et al., 2023), we provide some theoretical intuition
for our approach. We would show that even after
dropping most update weight, AdaPLE can well
preserve the edit performance. Let W0/∆ ∈ Rm×n

be the pre-edit model /delta parameters (or edit
weight). W1 is the post-edit weight of some layer.
The input is a vector x ∈ Rn. Expectation of the
i-th (1 ≤ i ≤ m) dimension of the original hidden
states h ∈ Rm is computed by

E[W1] = E[(W0 +∆)] = W0 +∆

Assuming that AdaPLE randomly drops update
parameters with a ratio p, and rescales others by
a factor γ. With AdaPLE , the edit weight is
∆̂ = W1 − W0 ∈ Rm×n. Expectation of the i-
th dimension of hidden states becomes

E[Ŵ1] = E[
(
W0 + ∆̂

)
]

= W0 + (1− p) · γ · ∆̂ + p · γ · 0
= W0 + (1− p) · γ · ∆̂

By setting γ = 1/(1 − p), we have E[W1] =
E[Ŵ1], concluding that AdaPLE can approximate
the original update weight.

5 Experiment

In this section, we study several axes of the existing
knowledge editing methods, including a) overall
performance, and b) performance of undergoing
multiple simultaneous edits. More experimental
results are in Appendix D.

5443

Method Score↑ Efficacy↑ Generalization↑ Specificity↑
Llama2-7B 24.8 17.4 (0.5) 19.2 (0.4) 86.1 (0.7)

FT 68.8 99.1 (0.1) 78.2 (0.3) 48.3 (0.6)
MEND 23.8 16.3 (0.6) 18.8 (0.7) 84.6 (0.5)
ROME 51.8 52.3 (0.9) 51.4 (0.8) 51.7 (0.6)
MEMIT 86.5 97.5 (0.2) 89.3 (0.5) 75.6 (0.5)
PMET 86.8 98.4 (0.1) 92.8 (0.5) 73.4 (0.4)
AdaPLE 87.4 98.5 (0.4) 93.6 (0.2) 74.2 (0.3)

Table 1: Editing Llama2-7B on the COUNTERFACT
dataset. Within parentheses is 95% confidence interval.
95% confidence intervals are in parentheses.

5.1 Experimental Setup

Models. Our experiments are conducted with 3
different language models: GPT-J 6B (Wang and
Komatsuzaki, 2021), GPT-NeoX 20B (Black et al.,
2022), and Llama-2 7B (Touvron et al., 2023).
Datasets The vanilla knowledge editing is evalu-
ated on two datasets: Zero-Shot Relation Extrac-
tion (zsRE) (Levy et al., 2017) and COUNTERFACT

(Meng et al., 2022a). The details of these two
datasets can be found in Appendix B.
Baselines Our baselines include full fine-tuning
(FT), the meta learning-based MEND (Mitchell
et al., 2022), and the locate-then-edit style methods
ROME (Meng et al., 2022a), PMET (Li et al.,
2023b) and MEMIT (Meng et al., 2022b).
Implementation details We conduct our experi-
ment with Pytorch, the model weights are down-
loaded from Huggingface transformers library *.
All the experiments are running on two NVIDIA
RTX 8000 GPUs with 48GB RAM. We adopt the
codebase from MEMIT† and PMET ‡ for all of the
experiments in this work.

5.2 Main Results

Editing Knowledge on COUNTERFACT. The
score in Table 1 is the harmonic mean of effi-
cacy, generalization, and specificity. As a result,
the unedited LLMs performed poorly in terms of
efficacy and generalization but exhibited good per-
formance in terms of specificity Except for be-
ing slightly inferior to MEND in terms of speci-
ficity, AdaPLE outperforms all baselines in all
other metrics. Table 1 presents the results of all
methods on 10K counterfactual edits. In the trade-
off between editing reliability and specificity, both
PMET, AdaPLE , and MEMIT tend to prioritize
reliability, while MEND leans towards specificity.

*https://github.com/huggingface/transformers
†https://github.com/kmeng01/memit
‡https://github.com/xpq-tech/PMET

Method Score ↑ Efficacy ↑ Generalization↑ Specificity↑
Llama2-7B 27.5 27.4 (0.6) 26.8 (0.5) 28.2 (0.5)

FT 42.7 68.5 (0.6) 65.9 (0.6) 24.7 (0.5)
MEND 20.7 20.4 (0.1) 18.7 (0.3) 23.6 (0.5)
ROME 5.9 23.5 (0.7) 21.3 (0.7) 2.4 (0.1)
MEMIT 51.7 95.7 (0.3) 88.9 (0.5) 27.5 (0.5)
PMET 54.4 96.7 (0.5) 89.5 (0.4) 29.7 (0.4)
AdaPLE 54.6 97.3(0.3) 90.6 (0.2) 29.7 (0.2)

Table 2: Quantitative analysis of editing LLaMA2-7B
on ZsRE. The evaluation metric is the same as MEMIT.
95% confidence intervals are in parentheses.

Editing Knowledge on ZSRE Dataset. The re-
sults of editing 10K knowledge instances on the
zsRE dataset are presented in Table 2. The re-
sults demonstrate that AdaPLE outperforms exist-
ing methods in two of three metrics: efficacy, and
generalization. It is worth noting that AdaPLE
outperforms all baselines in all of the metrics.

5.3 Multiple Edit Performance

Our evaluation focuses on whether methods ex-
hibit robust performance in sequential editing, with
results presented in Table 3. We conduct this ex-
periment with LLaMA-7B on COUNTERFACT
dataset. As demonstrated, our proposed AdaPLE
is robust to multiple edits even scaling to 10k on
different evaluation criteria.

5.4 Ablation Studies

The AdaPLE method encompasses several key ele-
ments: (i) optimizing MHSA and FFN state sim ;
(ii) spreading of update weight to target layers with
square root; (iii) employing a new optimization ob-
ject and (iv) drop-and-rescale (DR) fusion strategy.
Now we conduct ablation studies on COUNTER-
FACT dataset to explore knowledge attenuation of
the edited language model with LLaMA2-7B. As is
presented in Table 3, results show that the drop-and-
rescale fusion strategy (DR in Table) is effective
in mitigating KA and simultaneously improves the
language model’s ability to recall knowledge after
editing. Employing a new optimization objective
also contributes to a reduction in KA to some ex-
tent. What’s more, concurrently optimizing the
states of MHSA and FFN rather than the layer state
during computing knowledge representations has
also an obvious effect on diminishing KA.

6 Discussion

In this section, we provide more discussion for
further understanding of KA and proposed method.

5444

Edits Methods Score ↑ Efficacy ↑ Generalization ↑ Specificity↑
Llama2-7B 24.8 17.4 19.2 86.1

1K

AdaPLE 91.6 97.8 96.4 82.3
w/o δai 90.9 (↓0.7) 97.6 (↓0.2) 96.0 (↓0.4) 94.4 (↓2.9)

w/o New optim 90.3(↓1.3) 96.8 (↓1.0) 95.7 (↓0.7) 80.3 (↓2.0)
w/o DR (89.4↓2.2) 96.6 (↓1.2) 94.7 (↓1.7) 81.1 (↓1.2)

10K

AdaPLE 87.4 98.5 93.6 74.2
w/o δai 86.8 (↓0.6) 98.3 (↓0.2) 92.6 (↓1.0) 72.5 (↓3.9)

w/o New optim 86.8 (↓0.6) 97.6 (↓0.9) 91.4 (↓2.2) 74.8 (↓1.6)
w/o DR 84.8 (↓4.1) 96.3 (↓2.2) 89.2 (↓4.4) 72.6 (↓2.8)

Table 3: The results of the sequential and ablation
experiments. Our proposed AdaPLE can scale to 10k
edits in sequential editing like PMET. The w/o δai repre-
sents only optimizing the hidden state δmi of FFN (We
optimize both the hidden state of FFN and MHSA here).
w/o New Optim represents using old optimization ob-
ject. w/o DR represents using original fusion policy
other than DR.

Figure 5: Edit performance with different weight
fusion strategy. The results indicate these baselines all
suffer from knowledge attenuation to some extent and
our proposed DR gets the best performance.

6.1 Different Fusing Algorithm.

In the previous section, we discussed the key de-
sign features of our proposed AdaPLE method in
calculating update weights and its implications for
mitigating KA. In this section, we aim to explore
whether existing model fusion algorithms can alle-
viate the phenomenon of KA and, further, if they
can outperform our proposed method. We primar-
ily compared the following methods: vanilla aver-
aging, Lookahead(Zhang et al., 2019), and WiSE-
FT(Wortsman et al., 2022). Through a series of
experiments, we found that these methods are all,
to some extent, affected by the phenomenon of
knowledge attenuation, as is shown in Figure 5.

6.2 How Does DR Rate Affect Performance ?

The section above has empirically demonstrated
the effectiveness of our method. Another critical
hyper-parameter that requires investigation in our
proposed method is the drop rate p. We adjusted p
from 0 to 1.0, conducting tests with 1k edits. The
results in Figure 6 reveal that setting p between 0.7

Figure 6: Drop rate impact on edit performance. We
conduct 1k edits with different drop rate. The results
show that setting p between 0.7 and 0.9 effectively alle-
viates knowledge attenuation.

Figure 7: Improving existing edit methods with drop-
and-rescale strategy. Empirical study indicates that
employing the DR method for weight fusion can indeed
mitigate the knowledge attenuation issue.

and 0.9 effectively alleviates knowledge attenua-
tion. This outcome is surprising and underscores
the significant redundancy of the update weights.
The interference among these redundant update
weights is a major contributor to severe KA.

6.3 Can DR Strategy Help Existing Methods?

Given the success of our proposed AdaPLE ,
we sought to explore whether our weight fusion
method DR could serve as a plug-and-play strat-
egy to help current model editing techniques like
ROME, and PMET in mitigating knowledge de-
cay during sequential editing. To this end, we re-
placed the weight fusion components of ROME,
PMET, and MEMIT with our DR method. The
experimental outcomes in Figure 7 indicate that
employing the DR method for weight fusion can
indeed mitigate the KA issues observed in current
model editing techniques to a certain extent.

5445

7 Conclusion

In this paper, we systemically investigate knowl-
edge attenuation of sequential edited language mod-
els. We analyze the potential causes of KA and
attribute them to the primary defects of current
editing methods, including (1) redundant parame-
ters interference and (2) update weight disentangle-
ment. To this end, we propose AdaPLE . Empirical
studies indicate that it can effectively mitigate KA
of sequentially edited language models while per-
forming better on editing efficiency compared to
existing model editing methods. It must be noted
that our method can only mitigate KA to a certain
extent, and we look forward to more work that can
address this issue.

Limitation

In this paper, we systematically investigate the
knowledge attenuation of the edited language
model. Our study highlights the ubiquity of KA
in sequential edited language models and proposes
effective strategies for mitigating this issue. Given
the prevalence of potential errors or biases in exist-
ing LLMs, our approach offers a scalable approach
to alleviate this issue. Consequently, this aids in
reducing and mitigating the generation of harmful
or biased content. On the other hand, our method
could also be utilized to inject harmful information
into open-source Large Language Model weights,
potentially leading to significant societal impacts.

References
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-

shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. Falcon-40B: an open large language model
with state-of-the-art performance. arXiv preprint.

David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu,
and Antonio Torralba. 2020. Rewriting a deep gen-
erative model. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part I 16, pages 351–369.
Springer.

Sid Black, Stella Biderman, Eric Hallahan, Quentin An-
thony, Leo Gao, Laurence Golding, Horace He, Con-
nor Leahy, Kyle McDonell, Jason Phang, Michael
Pieler, USVSN Sai Prashanth, Shivanshu Purohit,
Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In Proceed-

ings of the ACL Workshop on Challenges & Perspec-
tives in Creating Large Language Models.

Siyuan Cheng, Ningyu Zhang, Bozhong Tian, Zelin
Dai, Feiyu Xiong, Wei Guo, and Huajun Chen. 2023.
Editing language model-based knowledge graph em-
beddings. arXiv preprint arXiv:2301.10405.

Nico Daheim, Thomas Möllenhoff, Edoardo Maria
Ponti, Iryna Gurevych, and Mohammad Emtiyaz
Khan. 2023. Model merging by uncertainty-based
gradient matching. arXiv preprint arXiv:2310.12808.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6491–
6506.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schütze,
and Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. Transac-
tions of the Association for Computational Linguis-
tics, 9:1012–1031.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron
Courville, and Yoshua Bengio. 2013. An em-
pirical investigation of catastrophic forgetting in
gradient-based neural networks. arXiv preprint
arXiv:1312.6211.

Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao
Liu, Ruobing Wang, and Xin Wang. 2023. Pokemqa:
Programmable knowledge editing for multi-hop ques-
tion answering. arXiv preprint arXiv:2312.15194.

Anshita Gupta, Debanjan Mondal, Akshay Sheshadri,
Wenlong Zhao, Xiang Li, Sarah Wiegreffe, and Niket
Tandon. 2023. Editing common sense in transform-
ers. In Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pages
8214–8232.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2022. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and
Pengxiang Cheng. 2022. Dataless knowledge fu-
sion by merging weights of language models. arXiv
preprint arXiv:2212.09849.

Ronald Kemker, Marc McClure, Angelina Abitino,
Tyler Hayes, and Christopher Kanan. 2018. Mea-
suring catastrophic forgetting in neural networks. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 32.

5446

https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. CoNLL 2017, page 333.

Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin
Wang, Michal Lukasik, Andreas Veit, Felix Yu,
and Sanjiv Kumar. 2022. Large language models
with controllable working memory. arXiv preprint
arXiv:2211.05110.

Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han
Hu, and Li Shen. 2023a. Deep model fusion: A
survey. arXiv preprint arXiv:2309.15698.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2023b. Pmet: Precise model editing
in a transformer. arXiv preprint arXiv:2308.08742.

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang,
Xi Chen, and Huajun Chen. 2023c. Unveiling the pit-
falls of knowledge editing for large language models.
arXiv preprint arXiv:2310.02129.

Jun-Yu Ma, Jia-Chen Gu, Zhen-Hua Ling, Quan Liu,
and Cong Liu. 2023. Untying the reversal curse via
bidirectional language model editing. arXiv preprint
arXiv:2310.10322.

Michael S Matena and Colin A Raffel. 2022. Merging
models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–
17716.

Vittorio Mazzia, Alessandro Pedrani, Andrea Caciolai,
Kay Rottmann, and Davide Bernardi. 2023. A sur-
vey on knowledge editing of neural networks. arXiv
preprint arXiv:2310.19704.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817–15831.
PMLR.

Yasumasa Onoe, Michael JQ Zhang, Shankar Padman-
abhan, Greg Durrett, and Eunsol Choi. 2023. Can
lms learn new entities from descriptions? challenges
in propagating injected knowledge. arXiv preprint
arXiv:2305.01651.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pas-
cal Frossard. 2023. Task arithmetic in the tangent
space: Improved editing of pre-trained models. arXiv
preprint arXiv:2305.12827.

Vikas Raunak and Arul Menezes. 2022. Rank-one
editing of encoder-decoder models. arXiv preprint
arXiv:2211.13317.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timo-
thy Lillicrap, and Gregory Wayne. 2019. Experience
replay for continual learning. Advances in Neural
Information Processing Systems, 32.

Nianwen Si, Hao Zhang, Heyu Chang, Wenlin Zhang,
Dan Qu, and Weiqiang Zhang. 2023. Knowledge
unlearning for llms: Tasks, methods, and challenges.
arXiv preprint arXiv:2311.15766.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin,
Sergei Popov, and Artem Babenko. 2019. Editable
neural networks. In International Conference on
Learning Representations.

Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu,
Bo Du, Yixin Chen, and Dacheng Tao. 2023. Pa-
rameter efficient multi-task model fusion with partial
linearization. arXiv preprint arXiv:2310.04742.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geof-
frey J Gordon. 2018. An empirical study of example
forgetting during deep neural network learning. In
International Conference on Learning Representa-
tions.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Ben Wang and Aran Komatsuzaki. 2021. GPT-
J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/
kingoflolz/mesh-transformer-jax.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng,
Chen Chen, et al. 2023. Knowledge editing for
large language models: A survey. arXiv preprint
arXiv:2310.16218.

BigScience Workshop, Teven Le Scao, Angela Fan,
Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luc-
cioni, François Yvon, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

5447

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

Mitchell Wortsman, Gabriel Ilharco, Jong Wook
Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali
Farhadi, Hongseok Namkoong, et al. 2022. Robust
fine-tuning of zero-shot models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7959–7971.

John M Wu, Yonatan Belinkov, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2020. Simi-
larity analysis of contextual word representation mod-
els. arXiv preprint arXiv:2005.01172.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin
Raffel, and Mohit Bansal. 2023a. Resolving in-
terference when merging models. arXiv preprint
arXiv:2306.01708.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin
Raffel, and Mohit Bansal. 2023b. Ties-merging: Re-
solving interference when merging models. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guib-
ing Guo, Xingwei Wang, and Dacheng Tao. 2023.
Adamerging: Adaptive model merging for multi-task
learning. arXiv preprint arXiv:2310.02575.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2023. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
arXiv preprint arXiv:2311.03099.

Friedemann Zenke, Ben Poole, and Surya Ganguli.
2017. Continual learning through synaptic intelli-
gence. In International conference on machine learn-
ing, pages 3987–3995. PMLR.

Michael Zhang, James Lucas, Jimmy Ba, and Geof-
frey E Hinton. 2019. Lookahead optimizer: k steps
forward, 1 step back. Advances in neural information
processing systems, 32.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng
Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan
Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang,
Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang,
Xiaowei Zhu, Jun Zhou, and Huajun Chen. 2024. A
comprehensive study of knowledge editing for large
language models.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning? arXiv
preprint arXiv:2305.12740.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [mask]: Learning vs. learning to
recall. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5017–5033.

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-
ning, Christopher Potts, and Danqi Chen. 2023.
Mquake: Assessing knowledge editing in language
models via multi-hop questions. arXiv preprint
arXiv:2305.14795.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020. Modifying memories in transformer models.
arXiv preprint arXiv:2012.00363.

5448

http://arxiv.org/abs/2401.01286
http://arxiv.org/abs/2401.01286
http://arxiv.org/abs/2401.01286

Appendix

A Related Work 13
A.1 Model Editing . 13
A.2 Drawbacks of Model Editing . 13
A.3 Model Merging . 13
A.4 Catastrophic Forgetting . 13

B Dataset 14
B.1 ZsRE Dataset . 14
B.2 Counterfact Dataset . 14

C Supplementary to Method 14
C.1 Derivation of Close-Form Solution Optimization Object for Editing 14
C.2 Algorithm . 15
C.3 Computing Update Weight . 15

D Supplement to Experiment 17
D.1 More experiments on COUNTERFACT dataset . 17
D.2 More experiment on zsRE dataset . 17

5449

A Related Work

A.1 Model Editing
Model editing has increasingly captured attention. Recent advancements suggest modifying MLP weights
directly, drawing inspiration from the linear associative memory capacities of FFNs in transformers (Geva
et al., 2020) and their successful implementation in convolutional models (Bau et al., 2020). Specifically,
work Meng et al. (2022a) edits single facts by applying a ROME to the parameters of an MLP layer in
the LLM, showing enhanced performance compared to earlier methods. Initial research in model editing
focused on updating individual neurons either by constrained layer fine-tuning (Sinitsin et al., 2019; Zhu
et al., 2020) or by employing hypernetwork-based methods such as (De Cao et al., 2021). Additionally,
some studies have investigated the use of external memory for storing updates (Li et al., 2022).

This work builds upon Meng et al. (2022b) and Li et al. (2023b), which expanded this methodology to
encompass thousands of edits by adjusting the weights across various MLP layers. Gupta et al. (2023)
showed that modifying shallow layers could effectively work with MEMIT. Additional studies, such as
Raunak and Menezes (2022), have explored editing within encoder-decoder models, while Cheng et al.
(2023) have aimed to modify knowledge graphs.

Efforts to evaluate model editing methods have included assessing through a relational perspective,
empirical studies on multi-hop QA performance like (Zhong et al., 2023) and (Gu et al., 2023), inves-
tigations into the propagation of edited entities (Onoe et al., 2023), and modifications using in-context
learning (Zheng et al., 2023). For an extensive overview of model editing, references such as Yao et al.
(2023), Wang et al. (2023), Mazzia et al. (2023), and Zhang et al. (2024) are recommended, alongside a
survey by Si et al. (2023) focusing on unlearning within model editing.

A.2 Drawbacks of Model Editing
Despite the introduction of model editing, few studies have addressed its drawbacks. Li et al. (2023c)
identified two main issues: knowledge conflict and knowledge distortion. Gupta et al. (2023) discovered
that common sense knowledge localization in FFN layers of LLMs involves crucial roles for the subject,
object, and relation in memory recall, albeit with a focus on classification rather than generation tasks.
Ma et al. (2023) aimed at mitigating the reversal curse in model editing for LLMs.

A.3 Model Merging
In our study, we delve into the integration of diverse models or modules, a process known as model fusion,
where models fine-tuned on distinct datasets are amalgamated into a unified model adept at managing
multiple tasks (Li et al., 2023a; Ilharco et al., 2022; Yadav et al., 2023a). This burgeoning field is attracting
increased interest. The concept of a task vector, introduced in (Ilharco et al., 2022), allows a model to
learn varied tasks simultaneously without catastrophic forgetting by manipulating task vectors through
arithmetic operations. Fisher-Merging (Matena and Raffel, 2022) evolves the process to weighted merging,
where the weights are determined by the Fisher information matrix, rather than a simple uniform approach.
Another method, RegMean (Jin et al., 2022), proposes merging linear layers by solving a local linear
regression problem using inner product matrices derived from training data. AdaMerging (Yang et al.,
2023) goes a step further by learning merging coefficients directly from unlabeled test data. Meanwhile,
UncertaintyMerging (Daheim et al., 2023) employs a novel strategy that leverages uncertainty by utilizing
multiple Fisher matrices, which are collected during both the pre-training and training stages.

A.4 Catastrophic Forgetting
A related issue to the knowledge attenuation phenomenon addressed in this paper is the well-documented
problem of catastrophic forgetting (CF) (Wu et al., 2020), (Goodfellow et al., 2013). Catastrophic forget-
ting refers to the prevalent issue where machine learning models, trained on evolving data distributions,
exhibit degraded performance on earlier data instances. Addressing catastrophic forgetting has been a
significant area of research focus; however, many strategies prove effective only in particular contexts,
with advancements being impeded by a limited grasp of CF’s underlying characteristics. Some studies
aim to deepen our understanding of CF, as seen in (Goodfellow et al., 2013; Toneva et al., 2018), while

5450

others concentrate on counteracting CF, such as (Kemker et al., 2018). Notable methodologies include
structural regularization, as exemplified by (Kirkpatrick et al., 2017) and (Zenke et al., 2017), and the
functional regularization approach utilizing a replay buffer (Rolnick et al., 2019).

B Dataset

B.1 ZsRE Dataset
The zsRE question answering task (Levy et al., 2017) was first used for factual knowledge evaluation by
De Cao et al. (2021), later being extended and adopted by (Mitchell et al., 2022). In our study, we use
the same train/test splits as (Mitchell et al., 2022); note that non-hypernetwork methods do not require
training, so the corresponding dataset split is discarded in those cases. Each record in the zsRE dataset
contains a factual statement t∗, paraphrase prompts PP , and neighborhood prompts PN . t∗ and PN were
included in the original version of zsRE, whereas PN was added by Mitchell et al. (2022) via sampling of
a random dataset element.

B.2 Counterfact Dataset
COUNTERFACT is designed to enable distinction between superficial changes in model word choices from
specific and generalized changes in underlying factual knowledge. Each record in COUNTERFACT dataset
is derived from a corresponding entry in (Elazar et al., 2021) containing a knowledge tuple tc = (s, r, oc)
and hand-curated prompt templates T (r), where all subjects, relations, and objects exist as entities in
WikiData. Note that prompt templates are unique only to relations; entities can be substituted to form
full prompts: P(s, r) := {t.format(s) | t ∈ T (r)}, where .format() is string substitution. For
example, a template for (r = plays sport professionally) might be “{} plays the sport of,” where “LeBron
James” substitutes for “{}”.

C Supplementary to Method

C.1 Derivation of Close-Form Solution Optimization Object for Editing
Here we present the detailed derivation of Equation 4. This derivation is included for clarity and
completeness and is a review of the classical solution of least-squares with equality constraints as applied
to our setting.

If we stack keys and memories as matrices K = [k1 | k2 | · · · | kn] and V = [v1 | v2 | · · · | vn], then
the equation can be optimized by solving the normal equation. We denote Wout as W . We assume that W
is the optimal least-squares solution for memorizing a mapping from a previous set of keys K to values
V ; this solution can be written using the normal equations as follows.

the W that minimizes ||WK − V ||2F (6)

solves WKKT = V KT (7)

Here the Frobenius norm is used to write the total square error since the variable being optimized is a
matrix W rather than a vector x as in the classical textbook presentation of least squares.

We wish to find a new matrix Ŵ that solves the same least squares problem with an additional equality
constraint as written:

Ŵk∗ = v∗ (8)

MEMIT (Meng et al., 2022b) optimizes an objective function to obtain target weights :

W1 ≜ argmin
W

(
n∑

i=1

∥Wki − vi∥2

︸ ︷︷ ︸
(a) original keys and values

+

n+u∑

i=n+1

∥Wki − vi∥2

︸ ︷︷ ︸
(b) inserted keys and values

).
(9)

The (a) term in Equation 9 indicates that we want to retain n original pieces of knowledge, while the
(b) term indicates that we want to add u pieces of knowledge. We can solving the above equation with

5451

block form:

W1

[
K0 K1

] [
K0 K1

]T
=

[
V0 V1

] [
K0 K1

]T (10)

which expands to: (W0 +∆)(K0K
T
0 +K1K

T
1) = V0K

T
0 + V1K

T
1 (11)

W0K0K
T
0 +W0K1K

T
1 +∆K0K

T
0 +∆K1K

T
1 = V0K

T
0 + V1K

T
1 (12)

subtracting norm equation : ∆(K0K
T
0 +K1K

T
1) = V1K

T
1 −W0K1K

T
1 . (13)

However, it is important to note that there are some issues with the optimization framework of existing
methods. Actually, these methods do not directly insert u new pieces of knowledge, but rather modify
u pieces of existing knowledge to incorporate new information. This process should involve two steps:
forgetting outdated or incorrect knowledge and inserting new knowledge. Thus the optimization goal
should be:

Ŵ ≜ argmin
W

(

n−u∑

i=1

∥Wki − vi∥2 +
n∑

i=n−u+1

∥Wki − v∗i ∥2) + argmax
W

(
n∑

i=n−u+1

∥Wki − vi∥2) (14)

Here the ki and vi (i = 1, 2, ..., n− u)indicate the original key and value, and v∗i refers to target value
where i = n− u+ 1, n− u+ 2, . . . , n. We can solve this optimization problem analytically. It can be
re-write as:

Ŵ ≜ argmin
W

(

n−u∑

i=1

∥Wki − vi∥2 +
n∑

i=n−u+1

∥Wki − v∗i ∥2 −
n∑

i=n−u+1

∥Wki − vi∥2) (15)

then

Ŵ ≜ argmin
W

(

n−u∑

i=1

∥Wki − vi∥2 −
n∑

i=n−u+1

∥Wki − vi∥2 +
n∑

i=n−u+1

∥Wki − v∗i ∥2) (16)

The block form for above equation 14 is

W1

[
K0 K1 K1

] [
K0 K1 K1

]T
=

[
V0 −V1 V2

] [
K0 K1 K1

]T (17)

which expands to: (W0 +∆)(K0K
T
0 + 2K1K

T
1) = V0K

T
0 − V1K

T
1 + V2K

T
1 (18)

W0K0K
T
0 + 2W0K1K

T
1 +∆K0K

T
0 + 2∆K1K

T
1 = V0K

T
0 − V1K

T
1 + V2K

T
1 (19)

subtracting norm equation : ∆(K0K
T
0 + 2K1K

T
1) = V2K

T
1 − 2V1K

T
1 −W0K1K

T
1 . (20)

Thus:(K0K
T
0 + 2K1K

T
1) = (V2 − 2V1 −W0K1)K

T
1 . (21)

We have :W0K1 = V1 (22)

∆AdaPLE = (V2 − 3W0K1)K
T
1 (K0K

T
0 + 2K1K

T
1) (23)

Finally : ∆AdaPLE = RAdaPLE KT
1 (CAdaPLE + 2K1K

T
1)

−1 (24)

Here V0 denotes the unchanged value, V1 is the value to be forgotten, and V2 is the new value to be
remembered. Here, RAdaPLE is V2 − 3W0K1. CAdaPLE is the estimate of co-variance matrix.

C.2 Algorithm
The algorithm of our proposed method AdaPLE is in Algo 1.

C.3 Computing Update Weight
Upon deriving an analytical solution for the optimization objective 3 as Equation 4, it is necessary to
compute K1, V2, and residual CAdaPLE separately.
Computing knowledge representation.

Unlike ROME and MEMIT, which add optimizable parameters δi to the layer hidden states hLi at the
L-th layer and obtain the optimized layer hidden states vi = hLi + δi through gradient descent, we follow
PMET adds optimizable parameters δai and δmi to the MHSA and FFN hidden states aLi and mL

i of the

5452

Algorithm 1: The AdaPLE Algorithm

Data: Edit dataset E = {(si, ri, oi)}, language model M , layers to editR, covariances C l

Result: Edited language model containing edits from E
for si, ri, oi ∈ E do

optimize δai ← argminδi
1
P

∑P
j=1− logPM(hL

i +=δi)
[oi | xj ⊕ p(si, ri)]

optimize δmi ← argminδi
1
P

∑P
j=1− logPM(hL

i +=δi)
[oi | xj ⊕ p(si, ri)]

zi ← mL
i + δmi

hs−1
i ← 0

for l ∈ R do
hli ← hl−1

i + 3ml
i

for si, ri, oi ∈ E do
kli =

1
P

∑P
j=1 prev(Wout, prefj ⊕ p(si, oi))

rli ←
zi−hl

i√
L−l+1

K l
1 ← [kl1i , ..., k

L
i]

Rl
AdaPLE ← [rl1i , ..., r

L
i]

∆l
AdaPLE ← RlK l

1
T
(C l + 2K lK lT)−1

Random Drop and Re-scale ∆l
AdaPLE , get final edit weight ∆̂l

AdaPLE
W l

1 ←W l
0 + ∆̂l

AdaPLE

components at the L-th layer, respectively. Then, AdaPLE only retains the optimized FFN hidden states to
update MLP weights WL

out, denoted as vmi = mL
i + δmi = argmin

vmi

L(vmi). L(vmi) is defined as follows:

L(vmi)

= DKL

(
PMθ(aL

i +=δai ,mL
i +=δmi)

[
y | p′

]
∥PMθ

[
y | p′

])
+

1

P

P∑

j=1

− log PMθ(aL
i +=δai ,mL

i +=δmi)

[
ySt
i | prefj ⊕ p(xi)

]
,

(25)

whereMθ

(
aLi + = δai ,m

L
i + = δmi

)
represents the optimizable parameters δai and δmi are added to the

hidden states of MHSA and FFN at the L-th layer of the modelMθ, respectively. prefj ⊕ p(xi) and p′

are, as in ROME (Meng et al., 2022a), prefixes used to enhance the generalization of the target knowledge
and the prompt template used for calculating the KL divergence: ‘{S} is a’. After calculating the values
of all the target knowledge that needs to be changed, they can be stacked into a matrix V2.
Computing K1 with diverse prefix. Once we have V2, the next step is to obtain keys K1. Keys are
related to specific weights to be edited and represent the hidden states before entering those specific
weights. The keys kli at the l-th layer are defined as follows:

kli =
1

P

P∑

j=1

prev(Wout, prefj ⊕ p(si, oi)) (26)

where prev(Wout, prefj⊕p(si, oi)) represents the hidden state of the input prefj⊕p(si, oi) before flowing
through the weight Wout. This can be achieved by "hooking" the model to be edited (Meng et al., 2022a).
If one wants to edit Wout , then prev(Wout, p(si, oi)) = σ

(
W l

inγ
(
hl−1
j (p(si, oi))

))
. We can then get

K1 by stacking all of ki. It must be noted that the p(si, oi) here is the edit context.
Computing covariance matrix CAdaPLE . CAdaPLE ≜ K0K

T
0 = λ ·Ek

[
kkT

]
is an estimate of previously

memorized keys obtained through sampling from WIKI text dataset. Here, λ is a hyper-parameter that
balances the modification and preservation.

5453

D Supplement to Experiment

We conduct extra experiments with GPT-J and GPT-Neo-X on the zsRE and COUNTERFACT datasets.

D.1 More experiments on COUNTERFACT dataset

Method Score Efficacy Generalization Specificity Fluency Consistency

GPT-NeoX 23.5 16.6 (0.5) 18.1 (0.6) 81.4 (1.1) 620.4 (0.3) 29.0 (0.4)

FT 68.1 97.4 (0.1) 77.6 (0.7) 47.8 (0.6) 295.7 (1.3) 17.5 (0.3)
MEND 23.0 15.7 (0.7) 18.5 (0.7) 78.6 (0.5) 618.4 (0.3) 31.1 (0.2)
ROME 52.6 53.2 (0.6) 52.3 (0.8) 52.4(0.8) 588.8 (0.6) 4.9 (0.0)
MEMIT 81.8 97.0 (0.6) 81.8 (1.2) 70.7 (1.5) 603.5 (0.3) 36.2 (0.2)
PMET 84.0 97.5 (0.1) 88.9 (0.5) 70.4 (0.5) 601.6 (0.2) 39.6 (0.2)
AdaPLE 84.4 97.5 (0.3) 89.8 (0.4) 70.6 (0.3) 604.2 (0.3) 40.3 (0.5)

GPT-J 22.4 15.2 (0.7) 17.7 (0.6) 83.5 (0.5) 622.4 (0.3) 29.4 (0.2)

FT 67.6 99.4 (0.1) 77.0 (0.7) 46.9 (0.6) 293.9 (2.4) 15.9 (0.3)
MEND 23.1 13.5 (0.7) 15.1 (0.7) 83.0 (0.2) 618.4 (0.3) 31.1 (0.2)
ROME 50.3 50.2 (1.0) 50.4 (0.8) 50.2 (0.6) 589.6 (0.5) 3.3 (0.0)
MEMIT 85.8 98.9 (0.2) 88.6 (0.5) 73.7 (0.5) 619.9 (0.3) 40.1 (0.2)
PMET 86.2 99.5 (0.1) 92.8 (0.4) 71.4 (0.5) 620.0 (0.3) 40.6 (0.2)
AdaPLE 87.1 99.7 (0.3) 93.6 (0.1) 72.9 (0.4) 619.0 (0.2) 40.9 (0.1)

Table 4: Empirical results on COUNTERFACT dataset with GPT-NeoX, and GPT-J. 95% confidence intervals are in
parentheses.

D.2 More experiment on zsRE dataset

5454

Methods Efficacy Generalization Specificity

GPT-J 26.4 (±0.6) 25.8 (±0.5) 27.0 (±0.5)

FT 69.6 (±0.6) 64.8 (±0.2) 24.1 (±0.6)
MEND 19.4 (±0.4) 18.6 (±0.3) 22.4 (±0.5)
ROME 21.0 (±0.7) 19.6 (±0.7) 0.9 (±0.4)
MEMIT 96.7 (±0.3) 89.7 (±0.5) 26.6 (±0.5)
PMET 96.9 (±0.3) 90.6 (±0.2) 26.7 (±0.2)
AdaPLE 97.0(±0.4) 90.7 (±0.3) 25.3 (±0.6)

GPT-NeoX 28.6 (±0.4) 27.1 (±0.6) 27.6 (±0.2)

FT 71.6 (±0.3) 65.8 (±0.6) 26.1 (±0.5)
MEND 20.7 (±0.3) 20.6 (±0.5) 23.4 (±0.8)
ROME 23.4 (±0.8) 22.6 (±0.2) 1.6 (±0.1)
MEMIT 95.3 (±0.4) 90.7 (±0.6) 26.4 (±0.1)
PMET 95.9(±0.2) 92.2 (±0.6) 26.7 (±0.3)
AdaPLE 96.1(±0.4) 92.2 (±0.2) 27.3 (±0.7)

Table 5: Empirical results on zsRE dataset with GPT-NeoX, and GPT-J. 95% confidence intervals are in parentheses.

5455

