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Abstract

The mission of commonsense knowledge graph
completion (CKGC) is to infer missing facts
from known commonsense knowledge. CKGC
methods can be roughly divided into two cat-
egories: triple-based methods and text-based
methods. Due to the imbalanced distribution
of entities and limited structural information,
triple-based methods struggle with long-tail en-
tities. Text-based methods alleviate this issue,
but require extensive training and fine-tuning of
language models, which reduces efficiency. To
alleviate these problems, we propose ATAP, the
first CKGC framework that utilizes automati-
cally generated continuous prompt templates
combined with pre-trained language models
(PLMs). Moreover, ATAP uses a carefully de-
signed new prompt template training strategy,
guiding PLMs to generate optimal prompt tem-
plates for CKGC tasks. Combining the rich
knowledge of PLMs with the template auto-
matic augmentation strategy, ATAP effectively
mitigates the long-tail problem and enhances
CKGC performance. Results on benchmark
datasets show that ATAP achieves state-of-the-
art performance overall.1

1 Introduction

Commonsense knowledge is information that hu-
mans typically have that helps them make sense
of everyday situations (Storks et al., 2019). Com-
mosense knowledge graphs (CKGs) are powerful
representation of real-world commonsense knowl-
edge. CKGs such as ConceptNet (Speer et al.,
2017), ATOMIC (Sap et al., 2019), and Dense-
ATOMIC (Shen et al., 2023) provide a structured
way to represent commonsense concepts based
on triples, consisting of head nodes, tail nodes
and relationship edges (i.e., <head entity, rela-
tion, tail entity>). Unlike traditional knowledge
1The code and datasets are available at https://github.
com/neu-dyf/ATAP_code.
†Equal contribution. ∗Corresponding Author.

Figure 1: The entity, prompt and [MASK] are spliced
together to obtain a template, which is input into a PLM
to complete the prediction task of [MASK]. Manual
template are manually constructed from relations (e.g.,
AtLocation). Discrete templates is the optimal template
for completing the task, which are selected through
a large number of experiments on different templates.
Continuous template pi (i = 1, . . . , k), unlike before,
does not represent a specific word. It is a continuous,
vectorized, trainable pseudo-label that is input into the
PLM in a special form.

graphs (e.g., Dbpedia (Lehmann et al., 2015) and
Wikidata (Vrandečić and Krötzsch, 2014)), CKGs
consist of nodes that are represented by free-form
text. Such CKGs have been widely used to build
commonsense-grounded AI applications, such as
search engines (Lu et al., 2020), question answer-
ing (Yasunaga et al., 2021), and recommendation
systems (Zhang et al., 2016).

However, existing CKGs are typically con-
structed through manual or semi-automated meth-
ods, resulting in most CKGs are far from complete,
which affects the performance. Accordingly, com-
monsense knowledge graph completion (CKGC)
is proposed to solve the inherent incompleteness
problem of CKGs by predicting missing entities in
incomplete triples (also called link prediction).

Existing CKGC work mainly focuses on triple-
based methods (e.g., SGBC (Malaviya et al., 2020)
and InductivE (Wang et al., 2021a)), which utilize
the structure of CKGs as the only source of infor-
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mation. But CKGs are usually sparse because there
are a large number of entities with in-degree 1 in
triples of the CKGs (Wang et al., 2021a). These
existing methods struggle with long-tail entities
(Wang et al., 2022) due to limited structural in-
formation (information scarcity) and imbalanced
entity distributions (long-tail entities are prevalent).

Pre-trained language models (PLMs) (e.g.,
BERT (Kenton and Toutanova, 2019), GPT-2 (Rad-
ford et al., 2019)) have extensive knowledge bases.
These huge training text corpus can be used as
additional knowledge for many natural language
processing tasks (AlKhamissi et al., 2022; Petroni
et al., 2019; Zhang et al., 2020a), and may also be
used to alleviate information scarcity for long-tail
entities. In particular, PLMs have proven to be
very powerful in predicting [MASK] in masked
language model (MLM) learning (Kenton and
Toutanova, 2019). The work (Lv et al., 2022) pro-
vides a reliable evaluation demonstrating the po-
tential of PLMs to handle traditional knowledge
graph completion tasks. They achieve this by con-
verting the traditional knowledge graph completion
task into an MLM task, and manually constructing
prompt templates to guide the PLM to complete the
MLM task. Therefore, a straightforward approach
applied to CKGC might be to incorporate PLMs
with manually constructed prompt templates.

However, manual prompt templates have
stochasticity in the performance of PLMs.
As shown in Figure 1, the answer to the
(Oregon,AtLocation, ?) using a manual template
is incorrect. Manually building a top-performing
prompt template can be difficult, time-consuming
and costly. The recent method in open-world
knowledge graph completion domain (Jiang et al.,
2023) proposes to automatically generate discrete
prompt templates to complete the prediction of
[MASK]. However, neural networks are contin-
uous, using discrete prompt templates may be
not optimal (Liu et al., 2023). Instead of man-
ual or discrete prompt templates used in tradi-
tional close/open-world knowledge graph comple-
tion tasks, we propose an approach of automati-
cally generating continuous prompt templates as
depicted in Figure 1, and leverage it to the com-
monsense knowledge graph completion.

In our study, for the first time, we propose a
framework that enhances commonsense knowledge
graph completion by automatically generating con-
tinuous prompt templates. This framework inno-
vatively extends prompt learning (a strategy of in-

context learning (Liu et al., 2023)) into CKGC to
convert the triple form of commonsense knowl-
edge in CKGs into the text form that PLMs are
good at processing. Compared with the existing
triple-based methods, our framework leverages the
knowledge in CKGs and PLMs simultaneously,
effectively alleviating the information scarcity of
long-tail entities.

The main contributions can be summarized as
follows:

• We propose a new Automatic Template-
Augmented commonsense knowledge graph
completion framework via Pre-trained lan-
guage models (ATAP). ATAP is the first model
to combine template generation with PLMs
for CKGC.

• We propose a method to automatically gener-
ate continuous prompt templates to replace tra-
ditional manual and discrete templates, which
improves the performance of CKGC and re-
duces the cost of manual labor.

• Moreover, we propose a new prompt template
training strategy specifically designed for re-
lations in CKGC, aiming to guide the model
to generate an optimal prompt template corre-
sponding to each relation in the CKGC task.

• Extensive experiments on CKGC datasets
(ConceptNet-100k and ATOMIC) show that
ATAP achieves state-of-the-art performance
overall. More extensive experiments on other
traditional KGC datasets also verify that the
continuous template we proposed performs
better than manual and discrete templates and
has strong robustness.

2 Related Work

2.1 Knowledge Graph Completion
Traditional KGC methods. Traditional meth-
ods can be mainly divided into three categories:
translation-based methods, tensor decomposition-
based methods and neural network-based methods.
Translation-based methods operate by mapping en-
tities and relations in knowledge graphs into vec-
tor space, such as TransE (Bordes et al., 2013),
TransR (Lin et al., 2015), and RotatE (Sun et al.,
2018). Tensor decomposition-based methods, in-
cluding RESCAL (Nickel et al., 2011), DisMult
(Schlichtkrull et al., 2018), ComplEx (Trouillon
et al., 2016), Tucker (Kolda and Bader, 2009), learn
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representations of entities and relations by repre-
senting knowledge graphs as tensors and decompos-
ing the tensors. Neural network-based methods uti-
lize the powerful representation capabilities of neu-
ral networks to learn the embedding of entities and
relations in knowledge graphs, including ConvE
(Dettmers et al., 2018), R-GCN (Schlichtkrull et al.,
2018). Moreover, KG-BERT (Yao et al., 2019) is a
model based on the PLM’s BERT. It converts the
triple (head, relation, tail) into text sequences to
solve KGC task.

Commonsense KGC methods. SGBC
(Malaviya et al., 2020) uses graph neural networks
to learn CKG structural information and uses PLMs
for entity embedding to enhance the representa-
tion of entities. InductivE (Wang et al., 2021a)
further solves the prediction problem of unseen en-
tities through a novel densification process based
on SGBC. Both of them solve the long tail prob-
lem by adding similar edges, but adding a large
number of similar edges may also introduce noise.
CNPC-S and CNPC-I (Wu et al., 2023) propose to
contrastive pre-training and node clustering. Con-
trastive pre-training builds positive and negative
node pairs and uses contrastive learning to obtain
better semantic representations of nodes, while
node clustering aggregates nodes with the same
concept to alleviate the sparsity of CKG. Bi-CoRPe
(Pan et al., 2024) builds contextual sentences by de-
signing templates. It captures the first-order logic
reasoning path and leverages context to enhance
the representation of PLMs.

2.2 Language Model Prompting
As mentioned in Section 2.1, researchers have ap-
plied PLMs to the task of CKGC, but mainly used
PLMs to directly encode entities (Malaviya et al.,
2020; Wang et al., 2021a) or used PLMs to fine-
tune knowledge graphs (Yao et al., 2019). None of
these works leverage PLM’s huge training text cor-
pus to alleviate the information scarcity problem
of long-tail entities that is widely present in CKGC
tasks.

Recent studies have solved this problem by con-
structing prompt templates. Jiang et al. (2020) man-
ually construct prompt templates for traditional KG
completion, but this method depends on the qual-
ity of the manual prompt templates. Jiang et al.
(2023) propose to automatically construct discrete
prompt templates for open-domain KG completion.
However, due to the continuity of neural networks,
it is very difficult and time-consuming to find the

optimal prompt template in discrete space.
Currently, there is no work on solving common-

sense knowledge graph completion by automati-
cally generating templates. In this paper, we pro-
pose a novel method to automatically construct con-
tinuous prompts in combination with a pre-trained
language model to solve CKGC tasks.

3 ATAP

This section first introduces the definition of
CKGC, and then we propose our ATAP framework,
consisting of two key modules: Continuous Prompt
Automatic Generation and Prediction, as depicted
in Figure 2 and described in detail later.

3.1 Problem Formulation
The goal of CKGC is to predict missing triples
that objectively exist to commonsense knowledge
graphs. A CKG is typically represented as G =
{E ,R, T }, where E is the set of all entities, R
is the set of all relations, and T is the set of all
factual triples. T = {(h, r, t) | h, t ∈ E , r ∈ R},
where h and t represent head and tail entities, and
r represents a relation. CKGC includes two types
of tasks. One type of task is triple classification,
which is to determine whether the triple (h, r, t) to
be predicted belongs to T . Another type of task is
link prediction. For a given missing triple (h, r, ?)
or (?, r, t), predict the entity represented by ? that
is more consistent with the facts. Our model is used
to solve the link prediction task.

3.2 Continuous Prompt Automatic
Generation

3.2.1 CKG Triple Processing
Triple Classification. Given multiple triples with
a same relation r, instead of generating different
prompt templates for these triples, we generate a
unified prompt template based on the relation r. All
triples with this relation r will use this template,
which greatly reduces the number of templates.

To achieve this, we first classify the set of triples
T in a CKG according to the relations ri (ri ∈
R, 1 ≤ i ≤ N). Then, we stack the triples with the
same relation ri together to form the corresponding
Ti (1 ≤ i ≤ N), and finally classify the T as
follows:

{T1, T2, ..., TN} = classify(T ), (1)

where Ti is the set of triples of the relation ri, and
N represents the number of relations. During the
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Figure 2: Our model ATAP consists of two modules: Continuous Prompt Automatic Generation (CPAG) and
Prediction. In the CPAG module, the CKG Triples are first classified according to relations to obtain triples under
each relation. Then, the relation triples are preprocessed to obtain the embeddings e(Head) and e(Tail) of the head
and tail entities. Next, the pseudo-label pi (i = 1, . . . , k) is encoded to obtain its pseudo-mark vi (i = 1, . . . , k).
The pseudo-marks, the head entity embedding e(Head), and [MASK] are concatenated into a prompt template and
input into the PLM for training. Finally, the optimal prompt under each relation is obtained in this way. In the
Prediction module, the CKGC task is completed with the help of the prompt of each relation following three steps.

training phase, we generate an identical continuous
prompt template for all triples in Ti.

Relation Triple Preprocess (RTP). The pur-
pose of RTP is to further obtain the embeddings of
the head and tail entities of each triple in Ti. We
use PLMs’ tokenizer to segment the entities:

hids = PLM_Tokenizer(h), (2)

tids = PLM_Tokenizer(t). (3)

Further, the corresponding embeddings of the
head and tail entities can be obtained as follow:

Eh = PLM_Model(hids), (4)

Et = PLM_Model(tids), (5)

where the embedding of each token (after the seg-
mentation of the head entity h and the head entity
t) is concatenated to obtain the final embedding Eh

of h and Et of t.

3.2.2 Continuous Prompt Training
Given a link prediction task (h, r, ?), it can be
converted into an MLM task. Traditional meth-
ods (Jiang et al., 2020, 2023) manually construct
prompt templates by introducing entity descrip-
tions. As we have pointed out in Section 2.2, these
methods are not only time-consuming, but also
unstable or random in performance. Instead, in-
spired by (Liu et al., 2023), we propose to train
continuous prompts to make our model more ex-
pressive and robust. Continuous prompts are com-
posed of pseudo-label pi (1 ≤ i ≤ k). Unlike

manual prompt templates, the pseudo-label pi is
not an exact word in form, but a prompt label. Its
representation is randomly initialized and can be
inserted anywhere in the prompt template.

The pseudo-label pi (1 ≤ i ≤ k) generates the
pseudo-mark vi (1 ≤ i ≤ k) through the Prompt
Encoder layer. The pseudo-mark vi is a continuous
and trainable parameter. We splice the pseudo-
marks, the embedding of the header entity Eh and
the embedding of [MASK] into a prompt template
promptT (h, r):

promptT (h, r) = {v1, . . . , vi,Eh,

vi+1, . . . , vk,E([MASK])}, (6)

where k is the number of pseudo-marks. Intuitively,
we believe that these pseudo-marks vi are depen-
dent on each other and have a sequential relation.
Therefore, we employ bidirectional RNN (Gross-
berg, 2013) as the Prompt Encoder to learn the
association among the pseudo-marks vi. Moreover,
considering that the processed pseudo-mark vi is
highly discrete and easily falls into the local opti-
mal solution. In order to solve this problem, we
use multilayer perceptron (MLP) for optimization,
which is shaped like:

vi = MLP([−→vi :←−vi ])
= MLP([RNN(v1:i) : RNN(vi:k)]).

(7)

During the training process, given a common-
sense triple (h, r, t), we use the special mark
[MASK] to replace the tail entity t. Our goal is to
input promptT (h, r) into the PLM to predict the
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correct tail entity t. Using the pre-trained language
model, the prediction logits Pt can be obtained:

Pt = PLM_Model(promptT (h, r)). (8)

Then, we compute the cross-entropy loss be-
tween the prediction logits Pt and the embedding
Et corresponding to the tail entity t to be predicted
as follows:

Lt = CrossEntropy(Pt,Et), (9)

where CrossEntropy(x,y) = −∑
j xj logyj .

Then Lt is used as the loss of the prompt template
promptT (h, r) to optimize the pseudo-marks vi as:

v̂0:k = argmin
v
Lt. (10)

The training process is presented in Appendix A.
In this way, a specific prompt of the relation ri (1 ≤
i ≤ N) in the CKG can be obtained respectively.

3.3 Prediction

For a given commonsense knowledge graph com-
pletion task (Head,Relation, ?), the goal is to
predict the missing tail entity through the head en-
tity Head and the relation Relation. As shown
in Figure 2, first find the corresponding prompt
R_Prompt according to the relation Relation.
Then concatenate the head entity, the specific
prompt R_Prompt and [MASK] together to gen-
erate a template. Finally, input the template into
PLM to predict the missing tail entity.

4 Experiment

In this section, we evaluate the ability of ATAP
on the CKG completion task: link prediction. We
compare ATAP with traditional and commonsense
completion models. In addition, we conduct abla-
tion experiments on the ATAP model. Finally, we
further analyze each module of ATAP.

4.1 Experimental Setup

Datasets. We use two standard evaluation datasets
CN-100K and ATOMIC for our experiments. CN-
100K (Li et al., 2016) is a dataset that encompasses
general commonsense knowledge. This version
contains the Open Mind Common Sense (OMCS)
entries from ConceptNet (Speer and Havasi, 2013).
ATOMIC (Sap et al., 2019) is an atlas of everyday
commonsense reasoning and primarily focuses on
event-level commonsense knowledge in the form

of if-then relations. The detailed information of
these two datasets is in Table 14 in the Appendix.

Baselines. We compare ATAP with the state-of-
the-art baselines as detailed in Section 2, including:

• KGC methods: DisMult (Schlichtkrull et al.,
2018), ComplEx (Trouillon et al., 2016), Ro-
tatE (Sun et al., 2018), ConvE (Dettmers
et al., 2018), ConvTransE (Shang et al., 2019),
COMET (Bosselut et al., 2019).

• CKGC methods: RGAT (Wang et al., 2020),
SGBC (Malaviya et al., 2020), InductivE
(Wang et al., 2021a), CNPC-S and CNPC-I
(Wu et al., 2023), Bi-CoRPe (Pan et al., 2024).

Evaluation Metrics. For evaluating the perfor-
mance of ATAP, we use standard evaluation met-
rics for the CKGC task, which are also adopted
by previous baselines. These metrics include:
(i) Hits@n (n = 1, 3, 10) measures whether the
model ranks the correct entity in the top n posi-
tions for each query. (ii) MRR is the average of
the reciprocal rankings of all queries and is used to
measure the performance of the model in the rank-
ing task. The larger these metrics are, the better the
performance of the model.

Implementation Details. During the training
process, we choose the Adam optimizer for opti-
mization, and in order to better converge to the
global optimal solution, we set an exponential de-
cay learning rate scheduler to 0.98 and the learn-
ing rate to 1e-5. We used a batch size of 64 and
trained on CN-100K and ATOMIC datasets for 200
epochs. We evaluate the MRR of the validation set
for each epoch. We selected the model checkpoint
that achieved the highest MRR on the validation
set for testing.

4.2 Main Result
The results are shown in Table 1. As can be seen,
the proposed ATAP achieve state-of-the-art perfor-
mance on both CN-100K and ATOMIC in most
metrics.

Specifically, on the CN-100K and ATOMIC
datasets, ATAP achieves state-of-the-art perfor-
mance on all metrics except Hits@1. In particular,
on CN-100K, Hits@3 is improved by 1.79% and on
ATOMIC, Hits@10 is improved by 0.88%. The re-
sults show that our proposed framework combining
pre-trained language model (PLM) and automati-
cally generated continuous prompt templates can
further improve the overall performance of CKGC.
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Models CN-100K ATOMIC

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DistMult 8.97 4.51 9.76 17.44 12.39 9.24 15.18 18.30
ComplEx 11.40 7.42 12.45 19.01 14.24 13.27 14.13 15.96
ConvE 20.88 13.97 22.91 34.02 10.07 8.24 10.29 13.37
RotatE 24.72 - 28.20 45.41 11.16 - 11.54 15.60
ConvTransE 18.68 7.87 23.87 28.95 12.94 12.92 12.95 12.98
COMET 6.07 0.08 2.92 21.17 3.36 0.00 2.15 15.75

RGAT+BERTlarge 41.03 27.90 47.74 67.21 - - - -
RGAT+SIM+BERTlarge 43.97 30.75 51.54 69.34 - - - -
SGBCBERT+ConvTransE 49.56 38.12 55.5 71.54 12.33 10.21 12.78 16.20
SGBCGCN+ConvTransE 49.12 37.71 56.67 71.29 10.25 8.72 10.54 13.26
SGBCSIM+GCN+ConvTransE 29.80 21.25 33.04 47.50 13.12 10.70 13.74 17.68
SGBCGCN+BERT+ConvTransE 50.38 38.79 56.46 72.96 10.8 9.04 11.21 14.10
SGBCSIM+GCN+BERT+ConvTransE 51.11 39.42 59.58 73.59 10.33 8.41 10.79 13.86
InductivE 56.92 45.54 63.38 78.63 13.19 10.26 13.61 18.83
CNPC-S 54.52 45.33 61.46 75.92 13.14 10.11 13.75 18.80
CNPC-I 59.00 48.29 65.04 79.13 14.38 10.53 15.22 21.79
Bi-CoRPe 57.24 46.75 65.66 77.67 15.36 13.53 15.83 18.68

ATAP 59.13 47.54 66.83 80.48 15.53 12.76 16.23 22.67

Table 1: Performance comparison on Concept-100k and ATOMIC datasets, with the highest scores in bold. The
results of all other baselines are from (Pan et al., 2024).

However, the introduction of the PLM’s knowledge
brings additional noise, which may interfere with
the model’s ability to rank accurately predicted en-
tities very high when performing link prediction
tasks, resulting in ATAP’s performance on Hits@1
being lower than the baseline.

In addition, to test the performance of the ATAP
model in the Large Language Models (LLMs), we
replace the Pre-Trained Language Models (PLMs)
in ATAP with the LLMs (LLAMA3.1-8B and
Qwen2-7B) as the base for the experiment. De-
tailed results and analyses of the experiments are
provided in Appendix B.

4.3 Ablation Study

To better understand ATAP, we conduct an ablation
study on CN-100K and ATOMIC to show the effec-
tiveness of different components in Table 2. Specif-
ically, we evaluate ATAP without CKG Triple Clas-
sification (i.e., we will generate a common prompt
for all triples, denoted as "w/o classification"), with-
out fine-tuning the PLM (denoted as "w/o fune-
tuning"). We also replace our automatic continuous
template with manually constructed template in Ta-
ble 16 in the Appendix (denoted as "w/o continuous
template").

Ablation study for CKG Triple Classification.
CKG triple classification is a key pre-processing
step for subsequently obtaining the optimal prompt

for each relation. To study the impact of CKG
Triple Classification on ATAP, we remove this mod-
ule. We directly input CKG triples into the model
to obtain a common prompt for all triples. Ex-
perimental results show that removing this module
has a cliff-like effect on the performance of ATAP.
MRR dropped by 33.9% On CN-100K and 8.2%
on ATOMIC. The common prompt is to aggregate
all triple knowledge into one prompt, which can
solve a wider range of CKGC tasks. However, for
a CKGC task T = (h, r, ?), it will be affected by
other relation triple knowledge besides r.

Ablation study for fine-tuning. In ATAP, we
fine-tune the pre-trained language model using CN-
100K and AOTMIC to enable it to have the ability
of CKG completion. In order to study the impact
of fine-tuning on ATAP, we use the original ability
of the PLM to solve the CKGC completion task.
Hits@10 decreased by 28.52% on CN-100K and
7.44% on ATOMIC. This result shows that it is dif-
ficult to achieve the best effect of the PLM without
fine-tuning.

Ablation study for automatic continuous
prompt and manual prompt. To study the impact
of continuous template on ATAP’s performance,
we manually constructed a template for each re-
lation in CN-100K and ATOMIC. Experimental
results show that MRR decreased significantly over-
all (CN-100K decreased by 14.06%, ATOMIC de-
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Model
CN-100K ATOMIC

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ATAP 59.13 47.54 66.83 80.48 15.53 12.76 16.23 22.67

ATAPw/o classification 25.23 16.08 29.58 42.25 7.33 4.36 7.34 11.32
ATAPw/o fune-tuning 38.26 30.02 41.03 51.96 10.33 7.26 11.36 15.23
ATAPw/o continuous template 45.07 32.69 53.88 66.72 11.53 8.39 11.73 15.79

Table 2: Ablation results of ATAP.

Figure 3: Performance of our ATAP under differ-
ent PLMs on CN100k, where [bert-base-cased(bbc),
bert-large-cased(blc)] are Bert series; [gpt2, gpt2-
medium(gm), gpt2-large(gl), gpt2-xl(gl)] are GPT2 se-
ries; and [robert-base(rb), robert-large(rl)] are RoBerta
series.

creased by 4%), and Hits@n (n = 1, 3, 10) also
decreased to varying degrees. Compared with man-
ual template, automatic continuous template can
modify template in time during training, thereby
obtaining the optimal template to solve CKGC.

4.4 Further Study

Next, we analyze five questions: the choice of
ATAP’s base for PLMs, the detailed selection of
models in Prompt Encoder, the optimal value of k
for each relation, the generalization of ATAP and
the impact of number of relations on performance.

Q1: How to select a suitable PLM as the
base for ATAP? On the CN-100K dataset, we test
Hits@n (n = 1, 3, 10) of ATAP on 8 PLMs (the
parameter of each PLM is shown in Table 15 in the
Appendix). The experimental results are shown in
Figure 3, the training parameters of each series of
PLMs increase from left to right. In theory, their
performance should also increase. The BERT and
GPT2 series basically conforms to this rule, while
the RoBerta series shows a decreasing trend. Con-
sidering that the previous CKGC models uses the

Figure 4: MRR of different k on three relations (IsA,
Atlocaton, UsedFor).

BERT model. In order to align with it, ATAP also
uses bert-large-cased as the base.

Q2: How to select the optimal neural network
model as the base for Prompt Encoder? The qual-
ity of prompt encoding is very important for the
PLMs to complete CKGC. Four models were used
in Prompt Encoder for testing, and the results are
shown in Table 4. We believe that the pseudo-
marks generated by prompt encoding are interde-
pendent. Each pseudo-mark should be affected by
the contextual pseudo-marks. The bidirectional
model can better extract the the contextual pseudo-
marks information of each pseudo-mark. In theory,
the bidirectional model is better than the unidirec-
tional model in CKGC.

In Table 4, this conclusion is verified. Bidi-
rectional RNN is better than unidirectional RNN
in various evaluation metrics. The same is true
for bidirectional LSTM and unidirectional LSTM.
Both RNN and LSTM can capture contextual in-
formation in sequence data. However, RNN is
more effective when processing short sequences,
and prompts are represented by shorter sequences.
Therefore, for ATAP, bidirectional RNN is more
suitable for CKG completion tasks than bidirec-
tional LSTM. And it is 3.34% higher on Hits@3.
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Models FB15k-237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

RESCAL 0.356 0.266 0.390 0.535 0.467 0.439 0.478 0.516
TransE 0.279 0.198 0.376 0.441 0.243 0.043 0.441 0.532
DisMult 0.241 0.155 0.263 0.419 0.430 0.390 0.440 0.490
ComplEx 0.247 0.158 0.275 0.428 0.440 0.410 0.460 0.510
RotatE 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
TuckER 0.358 0.266 0.394 0.544 0.470 0.443 0.482 0.526
HAKE 0.346 0.250 0.381 0.542 0.497 0.452 0.516 0.582
CompGCN 0.355 0.264 0.390 0.535 0.479 0.443 0.494 0.546
HittER 0.344 0.246 0.380 0.535 0.496 0.449 0.514 0.586

Pretrain-KGE 0.332 - - 0.529 0.235 - - 0.557
KG-BERT - - - 0.420 0.216 0.041 0.302 0.524
StAR 0.263 0.171 0.287 0.452 0.364 0.222 0.436 0.647
MEM-KGC(w/o EP) 0.339 0.249 0.372 0.522 0.533 0.473 0.570 0.636
MEM-KGC(w EP) 0.346 0.253 0.381 0.531 0.557 0.475 0.604 0.704
KICGPT 0.412 0.327 0.448 0.554 0.549 0.474 0.585 0.641
KICGPTtsa 0.410 0.321 0.430 0.581 0.564 0.478 0.612 0.677

ATAP 0.424 0.316 0.458 0.607 0.571 0.465 0.629 0.719

Table 3: Performance comparison on traditional KG completion datasets FB15k-237 and WN18RR, with the highest
scores in bold. The results of all other traditional KGC models are from (Wei et al., 2023).

Model CN-100K
MRR Hits@1 Hits@3 Hits@10

blc+unidLSTM 52.82 38.53 61.88 79.23
blc+bidLSTM 53.87 40.87 61.55 79.57
blc+unidRNN 53.47 40.37 61.80 78.32
blc+bidRNN 55.35 41.62 64.89 79.90

Table 4: The impact of changing the Prompt En-
coder model on blc. [bidLSTM, unidLSTM, bidRNN,
unidRNN] represent [Bidirectional LSTM, unidirec-
tional LSTM, bidirectional RNN, unidirectional RNN].

Q3: How to determine the k value in the pseudo-
mark vi (1 ≤ i ≤ k) for each relation prompt? To
analyze the impact of k on model performance, we
select different k ∈ {4, 6, 8, 10, 12} values and test
MMR on each relation, and finally determine the
optimal k value for each relation as shown in Table
5. In order to show the impact of different k on the
MRR of each relation, we select three relations on
CN-100K for display, and the results are shown in
Figure 4. It can be seen that the best k for [IsA,
Atlocation, UsedFor] is [8, 6, 12].

Moreover, our experiments reveal that the best
performance is to evenly insert the pseudo-marks
{v1, ..., vk} into the template as shown in Appendix
C. Therefore, the best template form for [IsA, At-
location, UsedFor] is [(4,4), (3,3), (6,6)].

Q4: How does ATAP perform on other datasets
that are not specifically presented to evaluate the
CKGC task? We select traditional KG completion

k CN-100K ATOMIC

(2,2) Causes, Desires, ReceivesAction, DefinedAs xWant,oWant

(3,3)
AtLocation, HasSubevent, HasPrerequisite,

xNeed
NotCapableOf, NotIsA, HasFirstSubevent, CreateBy

(4,4) IsA, PartOf xEffect,oEffect

(5,5)
CapableOf, HasProperty,

xIntent, xReact, oReact
CausesDesire, MotivateByGoal, NotHasProperty

(6,6) UsedFor, HasA, MadeOf xAttr

Table 5: The optimal prompt size for each relation in
CN-100K and ATOMIC. (2, 2) means that k is equal
to 4 and the template is transformed into the following
form: {v1, v2, e(Head), v3, v4, e([MASK])}.

datasets (FB15k-237 (Toutanova and Chen, 2015)
and WN18RR (Dettmers et al., 2018)) for experi-
ment. The results are shown in Table 3. Consider-
ing that some models in Table 3 are not proposed
for CKGC and have not been evaluated on the
CKGC task, we do not include them in the previous
comparative experiments (i.e., Table 1). Detailed
introduction of the datasets and the experimental
settings for Q4 can be found in the Appendix E.
It can be seen that from Table 3, ATAP achieves
the best performance on most metrics. On FB15k-
237, MRR is improved by 1.2% and Hits@10 is
improved by 2.6%. On WN18RR, Hits@10 is im-
proved by 1.5%. This once gain demonstrates that
our ATAP framework based on automatic continu-
ous prompts has good generalization ability.

Q5: How does the performance change with
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Figure 5: Comparison of training time on CN-100K and
ATOMIC datasets.

varying numbers of relations? In ATOMIC, the
number of relations is relatively small, whereas
ConceptNet contains a larger number of relations.
It is important to investigate whether the number
of relations affects the performance of ATAP. To
demonstrate whether the performance varies with
the number of relations, we conduct two sets of
experiments as shown in Appendix F.

4.5 Efficiency Analysis

To study the efficiency of ATAP, we compare with
existing models in several aspects. First, ATAP
takes less training time on CKGC datasets as shown
in Figure 5, similar to the traditional KGC dataset
FB15k-237 (Figure 8, Appendix D). Second, Fig-
ures 9 and 10 in Appendix D illustrate that ATAP
converges faster than other baselines on CN-100K
and FB15K-237 (even if the number of relations in
FB15K-237 is large, which has 237 relations).

5 Conclusion

In this study, we propose a new framework ATAP
to solve the CKGC task using automatically gener-
ated continuous prompts combined with PLMs. In
ATAP, we propose a method to automatically gen-
erate continuous prompt templates to replace tra-
ditional manual and discrete templates. Moreover,
we propose a new prompt template training strat-
egy specifically designed for relations in CKGC,
wihch can guide the model to generate an optimal
prompt template corresponding to each relation in
the CKGC task. Extensive experiments on CKGC
datasets show that ATAP achieves state-of-the-art
performance overall and reduces the cost of man-
ual labor. Experiments on traditional datasets also
verify the robustness of our model. In our near
future work, we intend to continue investigating
the performance of LLMs on CSKG tasks.

Limitations

We currently evaluate our method on CKGC
datasets without considering scenarios such as
temporal knowledge graph completion (Garcia-
Duran et al., 2018) and few-shot knowledge graph
completion (Xiong et al., 2018). In future research,
we plan to study the effectiveness of our method in
other scenarios.
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A Detailed prompt training process

Algorithm 1: Training process of ATAP.
Input: CKG training triple set Ttrain,

verification triple set Tvalid, and test
triple set Ttest.

Output: Specific prompt r_prompt for
each relation r.

1 Classify Ttrain, Tvalid, and Ttest according to
the relation r, assuming that the total
number of relations is N ;

2 for relation_index← 1 to N do
3 Initialize model parameters;
4 for epoch← 1 to max_epoch_num do
5 for step← 1 to max_step_num

do
6 b← sample the training batch;
7 for (h, r, [MASK]) in b do
8 Splice input template

Eq. (6);
9 Calculate cross entropy loss

Eq. (9);

10 Obtain the overall loss and
optimize models;

11 Validate ATAP using the validation
set of r;

12 if early_stop > k then break;

13 Test ATAP using the test set of r;
14 Obtain the optimal prompt r_prompt of

r;

B Performance of Large Language
Models in ATAP

The experimental results are shown in Table 6. it
can be seen that LLAMA3.1-8B and Qwen2-7B
achieve the best results in some indicators. How-
ever, considering that fine-tuning LLMs requires
a lot of computing resources and time, and most
mainstream CSKG completion baseline methods
(such as InductivE (Wang et al., 2021a) and SGBC
(Malaviya et al., 2020)) are based on bert-large-
cased with smaller parameters. Therefore, in our
current work, for fair comparison, we also choose
bert-large-cased as the base.

C Experiments of how to insert the
pseudo-marks {v1, ..., vk} into template

In the pseudo-labels {v1, ..., vk} of length k, we
need to split them into two parts to generate the
input template {v1, ..., vi, e(Head), vi+1, ..., vk,
e([MASK])}. In order to study the impact of dif-
ferent templates of k on MRR, we test each relation
on CN-100K. For the convenience of presentation,
we show the experimental results of IsA and At-
location, as shown in Figures 6 and 7. It can be
seen that the trend of MRR is to increase first and
then decrease, and the value is the highest at the
bisection point of k. Therefore, the performance
of inserting the pseudo-marks into the template in
equal parts is the best.

Figure 6: The relation is IsA. The impact of different
templates on MRR when k = 8.

Figure 7: The relation is Atlocation. The impact of
different templates on MRR when k = 6.

D Supplementary Experiments of
Efficiency Analysis

To further verify the efficiency of our model, in
addition to experiments on the commonsense KGC
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Models CN-100K ATOMIC

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ATAPbert-large-cased 59.13 47.54 66.83 80.48 15.53 12.76 16.23 22.67
ATAPllama3.1-8b 59.45 47.23 67.43 80.79 15.21 12.35 16.57 22.98
ATAPQwen2-7b 59.37 47.06 65.95 81.28 14.87 11.76 17.31 23.12

Table 6: Performance comparison on the Concept-100k and ATOMIC datasets using different language models,
with the highest scores in bold.

Figure 8: Comparison of training time on the traditional
KGC dataset FB15k-237.

Figure 9: Comparison of convergence speed on the
commonsense KGC dataset CN-100K.

datasets (as described in Section 4.5), we compare
the training time of the model ATAP on the tradi-
tional KGC dataset FB15K-237. The experiments
are conducted on a workstation with 4 GeForce
RTX 3090 GPUs. As shown in Figure 8, the train-
ing time of ATAP is shorter than other baselines.
Furthermore, to verify the convergence speed of
our model, we also conduct experiments on the
commonsense and traditional datasets CN-100K
and FB15K-237. The experimental results in Fig-
ures 9 and 10 show that even when the number of
relations is large (FB15K-237 has 237 relations),
ATAP still converges the fastest.

Figure 10: Comparison of convergence speed on the
traditional KGC dataset FB15k-237.

E Details of ATAP on Traditional KGC
experiments

As we verified in Section 4.4, ATAP alsoyifan per-
forms better on other datasets that are not specif-
ically used to evaluate CKGC tasks. Below we
give some specific experimental details, including
datasets, baseline models, and experimental set-
tings.

Datasets. We use the following datasets for eval-
uation: (i) WN18RR is a link prediction dataset
which is a subset of WordNet (Dettmers et al.,
2018); (ii) FB15k-237 contains triples of knowl-
edge base relations and textual mentions of Free-
base entity pairs (Toutanova and Chen, 2015).
Statistics of these datasets are provided in Table 7.

Baselines. We compare ATAP with the state-of-
the-art traditional KGC baselines, including:

• Triple-based methods: RESCAL (Nickel
et al., 2011), TransE (Bordes et al., 2013),
DisMult (Schlichtkrull et al., 2018), ComplEx
(Trouillon et al., 2016), RotatE (Sun et al.,
2018), TuckER (Kolda and Bader, 2009),
HAKE (Zhang et al., 2020b), CompGCN
(Vashishth et al., 2019), HittER (Chen et al.,
2021).
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Dataset #Entities #Relations #Train #Valid #Test
FB15k-237 14541 237 272115 17535 20466
WN18RR 40943 11 86835 3034 3134

Table 7: Statistics of FB15k-237 and WN18RR

Relation k
_member_of_domain_usage (6,6)
_has_part (2,2)
_also_see (2,2)
_hypernym (3,3)
_synset_domain_topic_of (5,5)
_derivationally_related_form (6,6)
_similar_to (2,2)
_instance_hypernym (4,4)
_verb_group (3,3)
_member_meronym (4,4)
_member_of_domain_region (5,5)

Table 8: The optimal prompt size for each relation in
WN18RR.

• Text-based methods: Pretrain-KGE (Zhang
et al., 2020c), KG-BERT (Yao et al., 2019),
StAR (Wang et al., 2021b), MEM-KGC (Choi
et al., 2021).

Implementation Details. We choose bert-large-
cased as the base for ATAP. Prompt Encoder uses a
bidirectional RNN. The choice of k value will be
described in detail in Table 8 and Table 13. The
rest of the parameters are the same as in Section
4.1.

F Impact of number of relations on
performance

To demonstrate whether the performance varies
with the number of relations, we conduct two sets
of experiments.

F.1 Different numbers of relations in the same
dataset

We select ATOMIC (with 9 relations) and CN-
100K (with 34 relations) in CKGC, as well as
FB15k-237 (with 237 relations) in traditional KGC
for experiments. ATOMIC is divided into three sub-
datasets ATOMIC_Rel_3, ATOMIC_Rel_6, and
ATOMIC_Rel_9 according to different numbers of
relations, where ATOMIC_Rel_3 means that only 3
relations are included in the training set and test set,
and the relation categories in the training and test
sets are the same. Similarly, CN-100K is divided
into CN_Rel_5, CN_Rel_10, ..., and CN_Rel_34.

FB15k-237 is divided into FB_Rel_30, ..., and
FB_Rel_237.

Dataset ATOMIC
MRR Hits@1 Hits@3 Hits@10

ATOMIC_Rel_3 15.16 12.33 15.98 22.45
ATOMIC_Rel_6 15.78 12.93 16.45 23.13
ATOMIC_Rel_9 15.53 12.76 16.23 22.67

Table 9: Performance for different numbers of relations
in ATOMIC.

Dataset CN-100K
MRR Hits@1 Hits@3 Hits@10

CN_Rel_5 57.34 46.73 64.89 79.61
CN_Rel_10 58.66 46.89 65.77 80.06
CN_Rel_15 59.47 47.67 66.46 80.47
CN_Rel_20 58.83 47.43 66.72 80.81
CN_Rel_25 59.31 47.61 66.70 80.21
CN_Rel_30 59.22 47.33 67.36 80.57
CN_Rel_34 59.13 47.54 66.83 80.48

Table 10: Performance for different numbers of relations
in CN-100K.

Dataset FB15k-237
MRR Hits@1 Hits@3 Hits@10

FB_Rel_30 40.36 30.46 44.78 59.86
FB_Rel_60 41.52 30.98 45.24 60.08
FB_Rel_90 42.37 31.59 45.75 60.67
FB_Rel_120 42.67 31.84 45.93 60.81
FB_Rel_150 42.32 31.69 45.70 60.36
FB_Rel_180 42.29 31.67 45.66 60.64
FB_Rel_210 42.39 31.57 45.94 60.76
FB_Rel_237 42.43 31.64 45.83 60.72

Table 11: Performance for different numbers of relations
in FB15k-237.

The experimental results are shown in Table 9
Table 10 and Table 11. As can be seen from these
tables, ATAP’s evaluation indicators first increase
with the increase in the number of relations in the
same dataset, and then fluctuate within a small
range.

F.2 Different datasets with different numbers
of relations

In addition to the CKGC datasets ATOMIC (9 re-
lations) and CN-100K (34 relations), we also se-
lect FB15k-237 (237 relations) and WN18RR (11
relations) which are commonly used to evaluate
traditional knowledge graph completion. The num-
ber of relations in FB15k-237 is 26 times that of
ATOMIC.
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Datasets Performance
MRR Hits@1 Hits@3 Hits@10

ATOMIC 15.53 12.76 16.23 22.67
WN18RR 57.13 46.49 62.87 71.86
CN-100K 59.13 47.54 66.83 80.48

FB15k-237 42.43 31.64 45.83 60.72

Table 12: Performance for different datasets with differ-
ent numbers of relations.

The experimental results are shown in Table 12.
due to different datasets, we do not get a consistent
trend between the number of relations and perfor-
mance, which may be affected by the number of
relation annotations in each dataset and the charac-
teristics of each dataset.
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Relation k
/soccer/football_team/current_roster./soccer/football_roster_position/position (4,4)
/music/artist/origin (2,2)
/ice_hockey/hockey_team/current_roster./sports/sports_team_roster/position (5,5)
/food/food/nutrients./food/nutrition_fact/nutrient (2,2)
/film/actor/film./film/performance/film (3,3)
/award/award_nominee/award_nominations./award/award_nomination/nominated_for (3,3)
/government/political_party/politicians_in_this_party./government/political_party_tenure/politician (3,3)
/base/schemastaging/person_extra/net_worth./measurement_unit/dated_money_value/currency (2,2)
/people/deceased_person/place_of_death (3,3)
/people/person/profession (4,4)
/location/administrative_division/first_level_division_of (2,2)
/sports/sports_team/roster./sports/sports_team_roster/player (3,3)
/base/schemastaging/person_extra/net_worth./measurement_unit/dated_money_value/currency (2,2)
/location/county/county_seat (5,5)
/location/location/contains (3,3)
/tv/tv_program/program_creator (3,3)
/music/performance_role/regular_performances./music/group_membership/group (2,2)
/education/educational_institution/languages_spoken (4,4)
/business/business_operation/industry (3,3)
/biology/organism_classification/higher_classification (5,5)

Table 13: The best optimal sizes for the top 20 relations in FB15k-237.

Dataset #Entities #Relations #Train #Valid #Test
CN-100K 78,334 34 100,000 1,200 1,200
ATOMIC 304,388 9 610,536 87,700 87,701

Table 14: Statistics of the CKGC datasets CN-100K and ATOMIC.

Model bert-base-cased bert-large-cased gpt2 gpt2-medium gpt2-large gpt2-xl roberta-base roberta-large

Vocabulary length 28996 30522 50257 34560 50257 50257 50265 50265
Training parameters 110M 340M 117M 345M 774M 1.5B 125M 355M

Table 15: Pre-trained language models vocabulary length and training parameter information.
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Datasets Prompt Template

CN-100K IsA: [head] is a [tail].
AtLocation: [head] is located at [tail].
UsedFor: [head] is used for [tail].
CapableOf: [head] is capable of [tail].
HasProperty: [head] has the property of [tail].
HasSubevent: [head] has the subevent [tail].
HasPrerequisite: [head] has the prerequisite [tail].
Causes: [head] causes [tail].
HasA: [head] has a [tail].
PartOf: [head] is part of [tail].
MadeOf: [head] is made of [tail].
ReceivesAction: [head] receives the action [tail].
NotCapableOf: [head] is not capable of [tail].
CausesDesire: [head] causes the desire for [tail].
Desires: [head] desires [tail].
MotivatedByGoal: [head] is motivated by the goal [tail].
NotIsA: [head] is not a [tail].
HasFirstSubevent: [head] has the first subevent [tail].
NotHasProperty: [head] does not have the property of [tail].
CreatedBy: [head] is created by [tail].
DefinedAs: [head] is defined as [tail].

ATOMIC xWant: [head] wants [tail].
oWant: Others want [tail] because of [head].
xNeed: [head] needs [tail].
xEffect: [head] causes [tail] as an effect.
oEffect: [head] causes others to [tail].
xIntent: [head] does [tail] with the intention of [tail].
xReact: [head] reacts by [tail].
oReact: Others react to [head] by [tail].
xAttr: [head] is characterized as [tail].

Table 16: Manually construct input templates for each relation for CN-100K and ATOMIC.
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