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Abstract

Automatic metrics for evaluating translation
quality are typically validated by measuring
how well they correlate with human assess-
ments. However, correlation methods tend to
capture only the ability of metrics to differen-
tiate between good and bad source-translation
pairs, overlooking their reliability in distin-
guishing alternative translations for the same
source. In this paper, we confirm that this is
indeed the case by showing that current met-
rics are insensitive to nuanced differences in
translation quality. This effect is most pro-
nounced when the quality is high and the vari-
ance among alternatives is low. Given this find-
ing, we shift towards detecting high-quality cor-
rect translations, an important problem in prac-
tical decision-making scenarios where a binary
check of correctness is prioritized over a nu-
anced evaluation of quality. Using the MQM
framework as the gold standard, we systemati-
cally stress-test the ability of current metrics to
identify translations with no errors as marked
by humans. Our findings reveal that current
metrics often over or underestimate translation
quality, indicating significant room for improve-
ment in machine translation evaluation.

1 Introduction

The automatic evaluation of machine or human-
generated translations has gained widespread atten-
tion over the past few years. Evaluation metrics
act as proxies for translation quality in the absence
of human judgments, offering immediate feedback.
They are widely used not only to provide quality
indicators to users and translators (Béchara et al.,
2021; Castilho and O’Brien, 2017; Mehandru et al.,
2023a), but also to improve machine translation
(MT) systems themselves (He et al., 2024; Xu et al.,
2024a; Fernandes et al., 2022).

Judging whether, and to what extent, these met-
rics concur with human evaluation is important

*Equal contribution.

LP N % ZERO-MQM

WMT 2023 METRICS DATASET

EN-DE (P) 5520 25.4%
HE-EN 9840 50.8%
ZH-EN 17655 19.1%

WMT 2022 METRICS DATASET

EN-DE 18410 51.5%
EN-RU 19725 42.7%
ZH-EN 26250 46.4%

WMT 2022 CHAT DATASET

XX-EN 4756 63.2%
EN-XX 5901 60.2%

Table 1: Gold MQM scores distribution in recent WMT
datasets. High-quality translations are represented in
shades of green (darker for MQM = 0 and lighter for
MQM ≥ −5); red represents translations with at least
one major error (MQM ≤ −5). P: paragraph-level.

to ensuring their effectiveness and applicability
in diverse scenarios. A recent human evaluation
study by the Conference on Machine Translation
(WMT) revealed that translations produced by cur-
rent MT systems often achieve very high-quality
scores (ranging from 80 to 90) when judged by
humans on a direct assessment (DA) scale of 0 to
100 (Kocmi et al., 2023). Similarly, Deutsch et al.
(2023) observe that these systems increasingly gen-
erate numerous “perfect” translations (translations
with zero errors), especially for high-resource lan-
guage pairs, as shown in Table 1. As MT quality
advances, evaluating whether evaluation metrics
accurately reflect this progress is essential (Bur-
chardt et al., 2016). The absence of clear criteria
for assessing these high-quality translations can in-
troduce bias, leading to inconsistent assessments
based on metric preferences rather than objective
measures of accuracy.

Most evaluations of automatic metrics primarily
assess their ability to distinguish between good and
bad source-translation pairs (Freitag et al., 2023,
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2022b), often overlooking their capacity to discern
subtle differences in quality for a given source. Fur-
thermore, in many practical and high-risk applica-
tions (e.g., within the medical or legal domains),
the main concern is not measuring the accuracy
level of a translation but determining whether the
translation is accurate and fit for that specific use
(Nida, 1964; Church and Hovy, 1993; Bowker,
2019; Vieira et al., 2021; Mehandru et al., 2023b).
While correlations provide valuable insights into
the performance of automatic metrics, they do not
offer a definitive measure of whether these metrics
can reliably confirm translation accuracy.

Hence, in this work, we systematically investi-
gate how existing MT metrics assess high-quality
(HQ) correct translations, defined as translations
with zero or minor errors only. We find that au-
tomatic metrics struggle to distinguish between
translations for a given source, especially when
comparing HQ translations, with reference-free or
quality estimation (QE) metrics achieving close
correlation scores to reference-based ones. We
further show that current metrics severely overes-
timate (for non-HQ translations) or underestimate
(for HQ translations) translation quality. GEMBA-
MQM (Kocmi and Federmann, 2023), a GPT-based
QE metric, achieves the highest F1 score in detect-
ing the HQ translations with no errors (HQ-ZERO).
However, it also assigns high scores to erroneous
GPT-4 translations, suggesting a preferential bias
towards the LLM’s own outputs. These findings
highlight the necessity for more robust evaluation
protocols to assess the quality of automatic metrics.

2 How good are current MT systems?

The most reliable way to assess translation qual-
ity has been through human evaluations, with
several frameworks proposed over the years for
this purpose. While earlier works consider two
dimensions—adequacy and fluency—with a 5-
point Likert scale (King, 1996), subsequent work
on direct assessments (DA) considers a single con-
tinuous scale of 0 − 100 (Graham et al., 2017).
However, several studies have questioned the cred-
ibility of DA-based evaluation (Toral et al., 2018;
Läubli et al., 2020; Fischer and Läubli, 2020;
Mathur et al., 2020b; Freitag et al., 2021).

Unlike DAs, which assign a numeric score to
a translation, the recent Multidimensional Quality
Metrics (Burchardt, 2013, MQM) framework relies
on explicit error judgments (error types and sever-

ities) marked within specific spans of the source-
translation pair, providing a more accurate and fine-
grained evaluation. Translations receive a score
of 0 if they contain no errors, a penalty of −1 for
minor errors, and −5 for major errors that impact
the usage or understanding of the content.1

We present the distribution of gold MQM scores
from the WMT23 Metrics task (Freitag et al., 2023),
WMT22 Metrics task (Freitag et al., 2022b), and
WMT22 Chat Translation task (Farinha et al., 2022)
in Table 1. Across settings and language pairs, the
percentage of translations achieving a zero MQM
score ranges from 19.1% to 63.2%. At least 52.6%
of the translations across language pairs and set-
tings have no major errors (MQM > −5). Thus,
a large percentage of the datasets include transla-
tions with no or only minor errors, emphasizing
the importance of accurately identifying these high-
quality translations in the evaluation process.

3 How well do MT metrics assess HQ
translations?

We define HQ translations as those that achieve an
MQM score > −5, i.e., translations without any
major errors according to human evaluators. By
definition, these translations do not contain errors
that impede their comprehension or usability. We
consider a subset of QE and reference-based auto-
matic metrics evaluated by the shared tasks (see
App. A for more details).

3.1 How do metrics rank HQ translations?
We first investigate how automatic metrics rank HQ
translations, which is particularly relevant today, as
these metrics are often used to guide MT training
or decoding processes. Recent work employs both
reference-based and QE metrics to rerank multiple
hypotheses generated by dedicated MT models or
large language models (LLMs), aiming to improve
translation quality (Fernandes et al., 2022; Freitag
et al., 2022a; Farinhas et al., 2023, 2024). These
metrics are also used to provide quality feedback
signals during training, either explicitly in loss sig-
nals (Ramos et al., 2024; Yan et al., 2023; He et al.,
2024) or implicitly via the creation of preference
datasets (Xu et al.; Yang et al., 2024).

Consider N systems and M source segments.
Typically, segment-level correlations are computed
between the N × M translations. However, this

1Although the MQM framework includes critical errors—
errors that could render a text unusable—they are not marked
in many datasets due to their highly contextual interpretation.
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No-grouping:  𝜌𝜌 𝐴𝐴,𝐻𝐻 , 𝐴𝐴,𝐻𝐻 ∈ 𝑅𝑅𝑑𝑑 ,𝑑𝑑 = 𝑁𝑁 × 𝑀𝑀

Group-by-src: 1
𝐾𝐾
∑𝐾𝐾 𝜌𝜌 𝐴𝐴′,𝐻𝐻′ , 𝐴𝐴𝐴,𝐻𝐻𝐴 ∈ 𝑅𝑅𝑁𝑁

All: 𝑁𝑁 × 𝑀𝑀 HQ: 𝑁𝑁 × 𝐾𝐾 All†:𝑁𝑁 × 𝐾𝐾

Given, 
A: automatic metric scores
H: human assessment scores
for N systems and M segments 

Figure 1: Ranking analysis configurations. ρ: Spearman correlation.

differs from the practical setting where metrics are
used to rerank several translations for the same
source. Therefore, we follow Deutsch et al. (2023)
and compute the average correlation between the N
translation scores grouped by the source sentences.
We refer to the former setting as NO-GROUPING
and the latter as GROUP-BY-SRC. We also study
to what extent these metrics distinguish between
HQ translations. As the number of segments with
all HQ translations, K, is less than M , we report
mean correlations on subsampled datasets (ran-
domly sampled 10 times) that match the sample
size, N ×K, marked with the symbol † in Table 2.
This is motivated by Mathur et al. (2020a), who
study how these metrics rank HQ systems, where
a limited number of samples (typically 4 or 5) was
shown to yield unreliable conclusions. However,
our focus is on segment-level evaluation, where
the number of subsampled items is much larger.
Figure 1 summarizes all configurations and the cor-
responding correlation measures.

Table 2 presents Spearman correlation of auto-
matic metrics with MQM scores for configurations
described above on the WMT23 EN-DE dataset
(see App. B for other datasets and correlation met-
rics). We first note that the correlation observed
on the entire (NO-GROUPING ALL) and the sub-
sampled datasets (NO-GROUPING ALL†) is close,
establishing that the observed differences cannot
be merely attributed to changes in sample size.

Metrics exhibit only a low-to-fair correlation
with human judgments when evaluating trans-
lations for the same source. Automatic metrics
are less effective in differentiating between good

NO-GROUPING GROUP-BY-SRC
METRIC

ALL ALL† ALL† HQ
R

E
F
-B

A
S

E
D

chrF 0.262 0.227 0.267 0.136
BLEU 0.193 0.190 0.303 0.146
BERTscore 0.355 0.367 0.325 0.134
COMET 0.578 0.584 0.461 0.202
BLEURT-20 0.618 0.603 0.449 0.220
XCOMET-XL 0.713 0.705 0.461 0.250
XCOMET-XXL 0.708 0.716 0.481 0.326
MetricX-23 0.682 0.680 0.450 0.301
MaTESe 0.591 0.593 0.341 0.254

R
E

F
-F

R
E

E

GEMBA-MQM 0.614 0.621 0.462 0.368
CometKiwi 0.565 0.561 0.411 0.182
CometKiwi-XL 0.542 0.550 0.427 0.223
CometKiwi-XXL 0.525 0.504 0.456 0.327
MetricX-23-QE 0.683 0.681 0.470 0.292

Table 2: Spearman correlation on WMT23 EN-DE. †:
Subsampled to match GROUP-BY-SRC HQ’s size.

and bad translations for the same source, as evi-
denced by the drop in correlation from the NO-
GROUPING ALL† to the GROUP-BY-SRC ALL†

setting. A possible reason for this disparity lies
in how these metrics are typically trained—most
metrics are trained to predict translation quality for
a given instance (e.g., source-reference-hypothesis
trio in Comet or xCOMET). While useful for rank-
ing two systems based on averaged scores across
texts, they may provide limited information for
gauging translation quality for different translations
of the same source.2 Interestingly, BLEU’s correla-
tion is higher in the GROUP-BY-SRC setting than
in NO-GROUPING, likely due to its original use for

2Using contrastive objectives or exposing the metric to
multiple translations could potentially help mitigate this issue
(Briakou and Carpuat, 2020).
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EN-DE (1402) HE-EN (5001) ZH-EN (11309)METRIC P R F1 P R F1 P R F1
xCOMET-XL 72 40 51 78 17 28 47 28 35
xCOMET-XXL 58 59 58 74 54 62 36 63 46
MaTESe 49 69 58 66 65 65 29 75 42
MetricX-23 70 33 45 80 16 27 52 11 19
GEMBA-MQM 52 70 60 71 65 68 37 77 50
MetricX-23-QE 66 14 23 70 64 67 55 20 29

Figure 2: Top: Metric Scores distribution for HQ-ZERO translations on WMT23. Bottom: Precision, recall, and F1.

comparing multiple translations of the same source.
This underscores the limitations of using automatic
metrics as the sole measure of quality beyond their
intended use cases, particularly in scenarios where
fine-grained distinctions between translations of
the same source are required.

QE metrics are on par with reference-based ones
for differentiating translations. QE metrics
show promising results in differentiating transla-
tions for the same source, often achieving com-
parable or better correlation than reference-based
metrics. For EN-DE, the QE metrics MetricX-23-
QE and GEMBA-MQM rank second and third, re-
spectively in the ALL setting, following xCOMET-
XXL. When contrasting HQ translations, GEMBA-
MQM outperforms all other metrics. The relatively
strong performance of QE metrics, particularly in
this setting, highlights their potential as valuable
tools for translation generation and ranking tasks.

Metrics fail to distinguish HQ translations.
There is a consistent drop in correlation scores
across all metrics in the HQ relative to the ALL set-
ting, possibly because most translations in the HQ
setting receive scores in the narrow range of (−5, 0]
and are often tied in quality. Deutsch et al. (2023)
show that most metrics struggle to predict transla-
tion ties accurately, i.e., to give the same score

to two translations with similar quality, except
for error-predicting metrics like GEMBA-MQM
or MaTESe. This decreased correlation from the
HQ to the ALL setting has significant implications,
especially when they are used to rerank translations
produced by strong MT systems. It may result in
an artificial boost or bias towards specific systems
or outputs, inadvertently prioritizing translations
that align well with metric biases but deviate from
true quality improvements, as discussed in §3.3.

3.2 How well do metrics detect HQ
translations with no errors?

Ranking translations of similar quality is a difficult
task, so we also evaluate how automatic metrics
score HQ translations with zero MQM scores. (HQ-
ZERO). We consider normalized scores ≥ 0.99 as
valid scores as 1.0 is the highest score a metric
should assign to HQ-ZERO translations. Fig. 2
shows the results on WMT23 dataset. See App. C
for results in other datasets.

Metric scores have high variance for HQ trans-
lations. 9 out of 15 metrics do not assign valid
scores to HQ-ZERO translations. Lexical metrics
(chrF and BLEU) produce the lowest absolute val-
ues, possibly due to over-reliance on a reference
translation. Neural metrics trained to regress on
DA scores (BLEURT, COMET, and variants) also
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Figure 3: Absolute difference of the number of times
a metric assigns a valid score to HQ-ZERO and non
HQ-ZERO translations.

do not assign valid scores for these translations,
likely due to low agreement between DA and MQM
scores, as discussed by Freitag et al. (2021).

Metrics over or underestimate translation qual-
ity. Metrics that do score these translations within
the valid range (xCOMET, MaTESe, MetricX,
and GEMBA-MQM), exhibit different tradeoffs be-
tween precision (P) and recall (R). For example,
while xCOMET-XL and MetricX prioritize preci-
sion, MaTESe and GEMBA-MQM excel at recog-
nizing many HQ-ZERO translations, leading to in-
creased recall. This difference might stem from the
specific task each metric is optimized for: while the
first two predict sentence-level quality, the last two
are optimized to predict word-level error spans. As
expected, xCOMET-XXL significantly outperforms
xCOMET-XL across all language pairs. Finally,
the QE metric, GEMBA-MQM, based on GPT-4,
achieves the highest F1 score across all language
pairs, demonstrating the capabilities of LLM-based
evaluation in more nuanced MT evaluation.

3.3 Which HQ translations are detected?
To study preference bias from metrics towards spe-
cific systems, we compute the absolute difference
in the number of times a metric assigns a valid
score to HQ-ZERO and non-HQ-ZERO translations.
Fig. 3 shows that MaTESe equally overestimates
translation quality for many systems, as suggested

by its high R and low P scores. GEMBA-MQM
frequently assigns zero MQM scores to GPT-4
translations, even when humans identify errors in
them. This aligns with concurrent works showing
a preference bias of LLMs towards their outputs
(Panickssery et al., 2024; Xu et al., 2024b), under-
scoring the need for a more detailed evaluation to
better understand the outputs these metrics prefer
and whether they align with human preferences.

4 Conclusions and Future Work

This work systematically investigates how auto-
matic metrics assess HQ translations. We find that
current metrics correlate poorly with human judg-
ments when contrasting translations for a given
source, with the correlation being even lower for
HQ translations. We then study whether metrics
can detect HQ translations that attain zero MQM
scores (HQ-ZERO) and find that many metrics fail
to assign them valid scores. While the GPT-4-based
GEMBA-MQM attains the highest F1 for detecting
HQ-ZERO, it shows some preference for GPT-4
outputs. Therefore, despite its promise, it is es-
sential to complement GEMBA-MQM with other
metrics to ensure robust evaluation.
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Limitations

We highlight the main limitations of our work.
First, we rely on human MQM annotations as the
gold standard for identifying high-quality transla-
tions, despite their potential subjectivity and occa-
sional inaccuracy. These annotations are collected
for individual translations, and the ratings might
vary if annotators were asked to evaluate and com-
pare multiple translations simultaneously. Further-
more, MQM annotations used in our analysis are
very expensive to obtain as they require trained lin-
guists to perform the assessments, which limits the
analysis to publicly available datasets.
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Second, although our analysis spans multiple
datasets across six language pairs (EN-DE, ZH-EN,
HE-EN, EN-RU, EN-FR, and EN-PT-BR) and mul-
tiple domains, we do not necessarily account for
the distribution of high-quality translations across
different domains within a dataset. As shown by
Zouhar et al. (2024), learned metrics can be sensi-
tive to the domain of evaluation.

Lastly, our analysis in §3.3 identifies one poten-
tial bias, but it remains unclear whether automatic
metrics have preferential biases towards other out-
put properties such as length, stylistic choices, etc.
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A Automatic Metrics

We present details about all automatic metrics used across different datasets in Table 3. We refer the
reader to the relevant papers (Freitag et al., 2022b, 2023; Agrawal et al., 2024) for more details.

We used the datasets and scores from the WMT 2022 and WMT 2023 Metrics Shared Task cam-
paign, which are available at https://github.com/google-research/mt-metrics-eval under the
Apache License Version 2.0. For WMT 2022 Chat Shared task human assessments, we used human as-
sessments from https://github.com/WMT-Chat-task/data-and-baselines/tree/main/data/
mqm-annotations, released under a CC-BY-NC license. In our work, we ensured that our usage
was consistent with their intended purposes as specified by the licenses.
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Table 3: Details about the automatic metrics considered in our paper. ∗: submission is an ensemble; †: {SRC, REF}
pairs are also added to the training data.
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B Ranking results

Tables 4 and 5 report the Spearman and Pearson correlation results for WMT23 EN-DE, respectively.
Tables 6 and 7 show the Spearman Correlation for the WMT22 and WMT23 datasets, respectively. We do
not perform this analysis on chat data because the number of systems is ≤ 5.

NO-GROUPING NO-GROUPING † GROUP-BY-SRC
METRIC

ALL HQ ∆ ALL HQ ∆ ALL† HQ ∆

chrF 0.262 0.137 −0.124 0.227 ±0.030 0.132 ±0.022 −0.094 0.267 ±0.050 0.136 −0.131
BLEU 0.193 0.094 −0.099 0.190 ±0.032 0.087 ±0.022 −0.103 0.303 ±0.056 0.146 −0.156
BERTscore 0.355 0.190 −0.165 0.367 ±0.039 0.183 ±0.032 −0.184 0.325 ±0.035 0.134 −0.191
COMET 0.578 0.385 −0.194 0.584 ±0.024 0.390 ±0.031 −0.194 0.461 ±0.041 0.202 −0.259
BLEURT-20 0.618 0.357 −0.262 0.603 ±0.020 0.357 ±0.033 −0.246 0.449 ±0.043 0.220 −0.229
XCOMET-XL 0.713 0.454 −0.259 0.705 ±0.020 0.449 ±0.018 −0.256 0.461 ±0.030 0.250 −0.211
XCOMET-XXL 0.708 0.399 −0.309 0.716 ±0.020 0.382 ±0.032 −0.335 0.481 ±0.041 0.326 −0.155
MetricX-23 0.682 0.433 −0.249 0.680 ±0.018 0.446 ±0.027 −0.233 0.450 ±0.043 0.301 −0.149
MaTESe 0.591 0.353 −0.238 0.593 ±0.028 0.370 ±0.044 −0.223 0.341 ±0.042 0.254 −0.087

quality estimation

GEMBA-MQM 0.614 0.345 −0.269 0.621 ±0.027 0.358 ±0.028 −0.263 0.462 ±0.044 0.368 −0.094
CometKiwi 0.565 0.286 −0.279 0.561 ±0.019 0.268 ±0.021 −0.293 0.411 ±0.044 0.182 −0.229
CometKiwi-XL 0.542 0.240 −0.302 0.550 ±0.023 0.254 ±0.032 −0.296 0.427 ±0.029 0.223 −0.204
CometKiwi-XXL 0.525 0.236 −0.289 0.504 ±0.031 0.244 ±0.032 −0.260 0.456 ±0.029 0.327 −0.129
MetricX-23-QE 0.683 0.425 −0.258 0.681 ±0.012 0.439 ±0.027 −0.242 0.470 ±0.028 0.292 −0.177

Table 4: Spearman correlation on WMT23 EN-DE. †: Subsampled to match GROUP-BY-SRC HQ’s sample size.

NO-GROUPING NO-GROUPING † GROUP-BY-SRC
METRIC

ALL HQ ∆ ALL HQ ∆ ALL† HQ ∆

chrF 0.232 0.112 −0.120 0.244 ±0.028 0.121 ±0.028 −0.123 0.322 ±0.041 0.124 −0.198
BLEU 0.192 0.086 −0.106 0.210 ±0.029 0.079 ±0.025 −0.131 0.297 ±0.049 0.148 −0.149
BERTscore 0.325 0.150 −0.175 0.331 ±0.038 0.148 ±0.031 −0.182 0.363 ±0.043 0.150 −0.213
COMET 0.432 0.337 −0.095 0.421 ±0.037 0.367 ±0.031 −0.055 0.513 ±0.044 0.266 −0.246
BLEURT-20 0.484 0.324 −0.160 0.488 ±0.021 0.308 ±0.024 −0.180 0.469 ±0.047 0.245 −0.223
XCOMET-XL 0.680 0.414 −0.266 0.680 ±0.028 0.409 ±0.040 −0.272 0.510 ±0.054 0.359 −0.150
XCOMET-XXL 0.695 0.362 −0.333 0.688 ±0.019 0.355 ±0.038 −0.333 0.484 ±0.068 0.385 −0.098
MetricX-23 0.585 0.406 −0.179 0.576 ±0.023 0.406 ±0.025 −0.169 0.512 ±0.024 0.371 −0.141
MaTESe 0.554 0.238 −0.316 0.547 ±0.035 0.221 ±0.032 −0.325 0.345 ±0.045 0.253 −0.092

quality estimation

GEMBA-MQM 0.502 0.223 −0.279 0.497 ±0.027 0.238 ±0.021 −0.260 0.485 ±0.055 0.386 −0.099
CometKiwi 0.475 0.210 −0.265 0.476 ±0.037 0.198 ±0.049 −0.277 0.458 ±0.057 0.226 −0.232
CometKiwi-XL 0.446 0.185 −0.262 0.445 ±0.033 0.198 ±0.032 −0.247 0.499 ±0.041 0.328 −0.171
CometKiwi-XXL 0.417 0.171 −0.245 0.411 ±0.024 0.167 ±0.040 −0.244 0.531 ±0.040 0.378 −0.152
MetricX-23-QE 0.626 0.371 −0.255 0.640 ±0.036 0.372 ±0.029 −0.268 0.536 ±0.048 0.407 −0.129

Table 5: Pearson correlation on WMT23 EN-DE. †: Subsampled to match GROUP-BY-SRC HQ’s sample size.
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WMT23 HE-EN WMT23 ZH-EN

NO-GROUPING † GROUP-BY-SRC NO-GROUPING † GROUP-BY-SRC

METRIC All HQ All† HQ All HQ All† HQ

chrF 0.299 0.140 0.298 0.144 0.067 0.012 0.220 0.162
BLEU 0.248 0.145 0.270 0.161 0.129 0.065 0.190 0.139
BERTscore 0.391 0.210 0.368 0.191 0.269 0.129 0.273 0.154
COMET 0.485 0.226 0.383 0.167 0.457 0.268 0.315 0.183
BLEURT-20 0.459 0.216 0.379 0.173 0.434 0.241 0.332 0.189
XCOMET-XL 0.511 0.255 0.362 0.147 0.608 0.405 0.334 0.185
XCOMET-XXL 0.528 0.260 0.381 0.140 0.607 0.364 0.373 0.219
MetricX-23 0.549 0.258 0.357 0.171 0.603 0.408 0.339 0.202
MaTESe 0.415 0.207 0.353 0.266 0.467 0.277 0.322 0.216

quality estimation

GEMBA-MQM 0.493 0.245 0.420 0.227 0.580 0.358 0.423 0.264
CometKiwi 0.459 0.225 0.309 0.106 0.533 0.328 0.333 0.160
CometKiwi-XL 0.434 0.184 0.348 0.181 0.532 0.302 0.334 0.170
CometKiwi-XXL 0.468 0.213 0.389 0.202 0.504 0.288 0.352 0.161
MetricX-23-QE 0.495 0.235 0.307 0.126 0.621 0.411 0.322 0.159
XCOMET-QE-Ensemble 0.504 0.233 0.345 0.160 0.631 0.377 0.347 0.177

Table 6: Spearman correlation on WMT23 (HE-EN and ZH-EN). †: Subsampled to match GROUP-BY-SRC HQ’s
sample size.

WMT22 EN-DE WMT22 EN-RU WMT22 ZH-EN

NO-GROUPING † GROUP-BY-SRC NO-GROUPING † GROUP-BY-SRC NO-GROUPING † GROUP-BY-SRC

METRIC All HQ All† HQ All HQ All† HQ All HQ All† HQ

chrF 0.296 0.214 0.242 0.206 0.235 0.161 0.237 0.161 0.199 0.069 0.189 0.096
BLEU 0.233 0.176 0.221 0.210 0.194 0.161 0.198 0.127 0.200 0.086 0.146 0.089
BERTScore 0.318 0.244 0.239 0.207 0.265 0.210 0.240 0.158 0.428 0.189 0.265 0.155
COMET-22 0.497 0.392 0.358 0.314 0.534 0.387 0.394 0.282 0.428 0.189 0.265 0.155
BLEURT-20 0.467 0.346 0.352 0.283 0.483 0.342 0.354 0.257 0.488 0.194 0.305 0.170
MetricX-XL 0.499 0.379 0.395 0.349 0.511 0.392 0.379 0.290 0.550 0.253 0.314 0.210
MetricX-XXL 0.490 0.377 0.370 0.304 0.561 0.430 0.402 0.338 0.554 0.260 0.303 0.204
MaTESe 0.387 0.296 0.356 0.349 0.315 0.236 0.321 0.281 0.477 0.243 0.251 0.222

quality estimation

CometKiwi 0.404 0.300 0.273 0.223 0.482 0.341 0.306 0.228 0.488 0.223 0.263 0.205
MaTESe-QE 0.294 0.236 0.314 0.316 0.258 0.184 0.268 0.256 0.412 0.214 0.212 0.208

Table 7: Spearman correlation on WMT22 (EN-DE, EN-RU, annd ZH-EN). †: Subsampled to match GROUP-BY-
SRC HQ’s sample size.

C HQ-ZERO Detection Results

We present the results for the detection task on the WMT22 Metrics and Chat datasets in Figures 4 and 5,
respectively.
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EN-DE EN-RU ZH-ENMETRIC P R F1 P R F1 P R F1
MaTESe 61 86 71 48 94 63 68 53 60
MaTESe-QE 58 87 70 46 95 62 64 55 59

Figure 4: Top: Scores distribution for HQ-ZERO translations on WMT22. Bottom: Precision, recall, and F1.

EN-XX XX-ENMETRIC P R F1 P R F1
chrF 88 38 53 92 42 58
BLEU 88 38 53 93 42 58
BERTScore 93 23 37 94 27 42
XCOMET-XL 75 33 46 87 38 53
MetricX-23-XL 76 64 69 87 62 72

XCOMET-XL-QE 66 29 40 84 49 62
MetricX-23-QE-XL 76 45 56 80 35 49

Figure 5: Top: Scores distribution for HQ-ZERO translations on WMT22 Chat. Bottom: Precision, recall, and F1.
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